Age | Commit message (Collapse) | Author |
|
Commit d7086422b1c1e75e320519cfe26176db6ec97a37 added a local_err
variable global to the qcow2_amend_options() function, so there's no
need to have this other one.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Message-id: 20170511150337.21470-1-berto@igalia.com
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
Passing a byte offset, but sector count, when we ultimately
want to operate on cluster granularity, is madness. Clean up
the external interfaces to take both offset and count as bytes,
while still keeping the assertion added previously that the
caller must align the values to a cluster. Then rename things
to make sure backports don't get confused by changed units:
instead of qcow2_discard_clusters() and qcow2_zero_clusters(),
we now have qcow2_cluster_discard() and qcow2_cluster_zeroize().
The internal functions still operate on clusters at a time, and
return an int for number of cleared clusters; but on an image
with 2M clusters, a single L2 table holds 256k entries that each
represent a 2M cluster, totalling well over INT_MAX bytes if we
ever had a request for that many bytes at once. All our callers
currently limit themselves to 32-bit bytes (and therefore fewer
clusters), but by making this function 64-bit clean, we have one
less place to clean up if we later improve the block layer to
support 64-bit bytes through all operations (with the block layer
auto-fragmenting on behalf of more-limited drivers), rather than
the current state where some interfaces are artificially limited
to INT_MAX at a time.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-id: 20170507000552.20847-13-eblake@redhat.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
We've already improved discards to operate efficiently on the tail
of an unaligned qcow2 image; it's time to make a similar improvement
to write zeroes. The special case is only valid at the tail
cluster of a file, where we must recognize that any sectors beyond
the image end would implicitly read as zero, and therefore should
not penalize our logic for widening a partial cluster into writing
the whole cluster as zero.
However, note that for now, the special case of end-of-file is only
recognized if there is no backing file, or if the backing file has
the same length; that's because when the backing file is shorter
than the active layer, we don't have code in place to recognize
that reads of a sector unallocated at the top and beyond the backing
end-of-file are implicitly zero. It's not much of a real loss,
because most people don't use images that aren't cluster-aligned,
or where the active layer is a different size than the backing
layer (especially where the difference falls within a single cluster).
Update test 154 to cover the new scenarios, using two images of
intentionally differing length.
While at it, fix the test to gracefully skip when run as
./check -qcow2 -o compat=0.10 154
since the older format lacks zero clusters already required earlier
in the test.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-id: 20170507000552.20847-11-eblake@redhat.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
Treat plain zero clusters differently from allocated ones, so that
we can simplify the logic of checking whether an offset is present.
Do this by splitting QCOW2_CLUSTER_ZERO into two new enums,
QCOW2_CLUSTER_ZERO_PLAIN and QCOW2_CLUSTER_ZERO_ALLOC.
I tried to arrange the enum so that we could use
'ret <= QCOW2_CLUSTER_ZERO_PLAIN' for all unallocated types, and
'ret >= QCOW2_CLUSTER_ZERO_ALLOC' for allocated types, although
I didn't actually end up taking advantage of the layout.
In many cases, this leads to simpler code, by properly combining
cases (sometimes, both zero types pair together, other times,
plain zero is more like unallocated while allocated zero is more
like normal).
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-id: 20170507000552.20847-7-eblake@redhat.com
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
When calculating the number of reftable entries, we should actually use
the number of refblocks and not (wrongly[1]) re-calculate it.
[1] "Wrongly" means: Dividing the number of clusters by the number of
entries per refblock and rounding down instead of up.
Reported-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
We now have macros in place to make it less verbose to add a scalar
to QDict and QList, so use them.
Patch created mechanically via:
spatch --sp-file scripts/coccinelle/qobject.cocci \
--macro-file scripts/cocci-macro-file.h --dir . --in-place
then touched up manually to fix a couple of '?:' back to original
spacing, as well as avoiding a long line in monitor.c.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20170427215821.19397-7-eblake@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
|
|
As mentioned in commit 0c1bd46, we ignored requests to
discard the trailing cluster of an unaligned image. While
discard is an advisory operation from the guest standpoint,
(and we are therefore free to ignore any request), our
qcow2 implementation exploits the fact that a discarded
cluster reads back as 0. As long as we discard on cluster
boundaries, we are fine; but that means we could observe
non-zero data leaked at the tail of an unaligned image.
Enhance iotest 66 to cover this case, and fix the implementation
to honor a discard request on the final partial cluster.
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-id: 20170407013709.18440-1-eblake@redhat.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
Add missing error messages for the block driver implementations of
.bdrv_truncate(); drop the generic one from block.c's bdrv_truncate().
Since one of these changes touches a mis-indented block in
block/file-posix.c, this patch fixes that coding style issue along the
way.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Message-id: 20170328205129.15138-5-mreitz@redhat.com
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
Add an Error parameter to the block drivers' bdrv_truncate() interface.
If a block driver does not set this in case of an error, the generic
bdrv_truncate() implementation will do so.
Where it is obvious, this patch also makes some block drivers set this
value.
Signed-off-by: Max Reitz <mreitz@redhat.com>
Message-id: 20170328205129.15138-4-mreitz@redhat.com
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
For one thing, this allows us to drop the error message generation from
qemu-img.c and blockdev.c and instead have it unified in
bdrv_truncate().
Signed-off-by: Max Reitz <mreitz@redhat.com>
Message-id: 20170328205129.15138-3-mreitz@redhat.com
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
blk_new_open() is a convenience function that processes flags rather
than QDict options as a simple way to just open an image file.
In order to keep it convenient in the future, it must automatically
request the necessary permissions. This can easily be inferred from the
flags for read and write, but we need another flag that tells us whether
to get the resize permission.
We can't just always request it because that means that no block jobs
can run on the resulting BlockBackend (which is something that e.g.
qemu-img commit wants to do), but we also can't request it never because
most of the .bdrv_create() implementations call blk_truncate().
The solution is to introduce another flag that is passed by all users
that want to resize the image.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Acked-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
|
|
Now that blk_insert_bs() requests the BlockBackend permissions for the
node it attaches to, it can fail. Instead of aborting, pass the errors
to the callers.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Acked-by: Fam Zheng <famz@redhat.com>
|
|
We want every user to be specific about the permissions it needs, so
we'll pass the initial permissions as parameters to blk_new(). A user
only needs to call blk_set_perm() if it wants to change the permissions
after the fact.
The permissions are stored in the BlockBackend and applied whenever a
BlockDriverState should be attached in blk_insert_bs().
This does not include actually choosing the right set of permissions
everywhere yet. Instead, the usual FIXME comment is added to each place
and will be addressed in individual patches.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Acked-by: Fam Zheng <famz@redhat.com>
|
|
This makes use of the .bdrv_child_perm() implementation for formats that
we just added. All format drivers expose the permissions they actually
need nows, so that they can be set accordingly and updated when parents
are attached or detached.
The only format not included here is raw, which was already converted
with the other filter drivers.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Acked-by: Fam Zheng <famz@redhat.com>
|
|
The way that attaching bs->file worked was a bit unusual in that it was
the only child that would be attached to a node which is not opened yet.
Because of this, the block layer couldn't know yet which permissions the
driver would eventually need.
This patch moves the point where bs->file is attached to the beginning
of the individual .bdrv_open() implementations, so drivers already know
what they are going to do with the child. This is also more consistent
with how driver-specific children work.
For a moment, bdrv_open() gets its own BdrvChild to perform image
probing, but instead of directly assigning this BdrvChild to the BDS, it
becomes a temporary one and the node name is passed as an option to the
drivers, so that they can simply use bdrv_open_child() to create another
reference for their own use.
This duplicated child for (the not opened yet) bs is not the final
state, a follow-up patch will change the image probing code to use a
BlockBackend, which is completely independent of bs.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
|
|
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
|
|
In order to able to convert bdrv_truncate() to take a BdrvChild and
later to correctly check the resize permission here, we need to use a
BlockBackend for resizing the image.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
|
|
The metadata overlap checks introduced in a40f1c2add help detect
corruption in the qcow2 image by verifying that data writes don't
overlap with existing metadata sections.
The 'refcount-block' check in particular iterates over the refcount
table in order to get the addresses of all refcount blocks and check
that none of them overlap with the region where we want to write.
The problem with the refcount table is that since it always occupies
complete clusters its size is usually very big. With the default
values of cluster_size=64KB and refcount_bits=16 this table holds 8192
entries, each one of them enough to map 2GB worth of host clusters.
So unless we're using images with several TB of allocated data this
table is going to be mostly empty, and iterating over it is a waste of
CPU. If the storage backend is fast enough this can have an effect on
I/O performance.
This patch keeps the index of the last used (i.e. non-zero) entry in
the refcount table and updates it every time the table changes. The
refcount-block overlap check then uses that index instead of reading
the whole table.
In my tests with a 4GB qcow2 file stored in RAM this doubles the
amount of write IOPS.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Message-id: 20170201123828.4815-1-berto@igalia.com
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
The qcow2_make_empty() function is reached during 'qemu-img commit',
in order to clear out ALL clusters of an image. However, if the
image cannot use the fast code path (true if the image is format
0.10, or if the image contains a snapshot), the cluster size is
larger than 512, and the image is larger than 2G in size, then our
choice of sector_step causes problems. Since it is not cluster
aligned, but qcow2_discard_clusters() silently ignores an unaligned
head or tail, we are leaving clusters allocated.
Enhance the testsuite to expose the flaw, and patch the problem by
ensuring our step size is aligned.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
The cache-clean-interval option of qcow2 only works on Linux. However
we allow setting it in other systems regardless of whether it works or
not.
In those systems this option is not simply a no-op: it actually
invalidates perfectly valid cache tables for no good reason without
freeing their memory.
This patch forbids using that option in non-Linux systems.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Right now, the block layer rounds discard requests, so that
individual drivers are able to assert that discard requests
will never be unaligned. But there are some ISCSI devices
that track and coalesce multiple unaligned requests, turning it
into an actual discard if the requests eventually cover an
entire page, which implies that it is better to always pass
discard requests as low down the stack as possible.
In isolation, this patch has no semantic effect, since the
block layer currently never passes an unaligned request through.
But the block layer already has code that silently ignores
drivers that return -ENOTSUP for a discard request that cannot
be honored (as well as drivers that return 0 even when nothing
was done). But the next patch will update the block layer to
fragment discard requests, so that clients are guaranteed that
they are either dealing with an unaligned head or tail, or an
aligned core, making it similar to the block layer semantics of
write zero fragmentation.
CC: qemu-stable@nongnu.org
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
At the qcow2 layer, discard is only possible on a per-cluster
basis; at the moment, qcow2 silently rounds any unaligned
requests to this granularity. However, an upcoming patch will
fix a regression in the block layer ignoring too much of an
unaligned discard request, by changing the block layer to
break up a discard request at alignment boundaries; for that
to work, the block layer must know about our limits.
However, we can't go one step further by changing
qcow2_discard_clusters() to assert that requests are always
aligned, since that helper function is reached on paths
outside of the block layer.
CC: qemu-stable@nongnu.org
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Handling this is similar to what is done to the L2 entry in the case of
compressed clusters.
Signed-off-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
It can't guarantee all cipher modes are supported
if one cipher algorithm is supported by a backend.
Let's extend qcrypto_cipher_supports() to take both
the algorithm and mode as parameters.
Signed-off-by: Gonglei <arei.gonglei@huawei.com>
Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
|
|
Section "7.1.4 Use of library functions" in the C99 standard says:
If an argument to a function has an invalid value (such as [...]
a null pointer [...]) [...] the behavior is undefined.
Additionally the "searching and sorting" functions are specified as
requiring valid pointer values as described in 7.1.4.
This patch fixes the following sanitizer errors:
block/qcow2.c:1807:41: runtime error: null pointer passed as argument 2, which is declared to never be null
block/qcow2-cluster.c:86:26: runtime error: null pointer passed as argument 2, which is declared to never be null
Reported-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Message-id: 1473758138-19260-1-git-send-email-stefanha@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
|
|
Use bytes as the size would be more exact than s->cluster_size. Although
qemu_iovec_to_buf() will not allow to go beyond the qiov.
Signed-off-by: Pavel Butsykin <pbutsykin@virtuozzo.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Now that the function uses a vector instead of a buffer, there is no
need to use recursive code.
Signed-off-by: Pavel Butsykin <pbutsykin@virtuozzo.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Jeff Cody <jcody@redhat.com>
CC: Markus Armbruster <armbru@redhat.com>
CC: Eric Blake <eblake@redhat.com>
CC: John Snow <jsnow@redhat.com>
CC: Stefan Hajnoczi <stefanha@redhat.com>
CC: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Added implementation of the qcow2_co_pwritev_compressed function that
will allow us to safely use compressed writes for the qcow2 from running
VMs.
Signed-off-by: Pavel Butsykin <pbutsykin@virtuozzo.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Jeff Cody <jcody@redhat.com>
CC: Markus Armbruster <armbru@redhat.com>
CC: Eric Blake <eblake@redhat.com>
CC: John Snow <jsnow@redhat.com>
CC: Stefan Hajnoczi <stefanha@redhat.com>
CC: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
There are no needs to allocate more than one cluster, as we set
avail_out for deflate to one cluster.
Zlib docs (http://www.zlib.net/manual.html) says:
"deflate compresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full."
So, deflate will not write more than avail_out to output buffer. If
there is not enough space in output buffer for compressed data (it may
be larger than input data) deflate just returns Z_OK. (if all data is
compressed and written to output buffer deflate returns Z_STREAM_END).
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-id: 1468515565-81313-1-git-send-email-vsementsov@virtuozzo.com
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
Another step towards killing off sector-based block APIs.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Message-id: 1468624988-423-15-git-send-email-eblake@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
|
|
In practice the entry argument is always known at creation time, and
it is confusing that sometimes qemu_coroutine_enter is used with a
non-NULL argument to re-enter a coroutine (this happens in
block/sheepdog.c and tests/test-coroutine.c). So pass the opaque value
at creation time, for consistency with e.g. aio_bh_new.
Mostly done with the following semantic patch:
@ entry1 @
expression entry, arg, co;
@@
- co = qemu_coroutine_create(entry);
+ co = qemu_coroutine_create(entry, arg);
...
- qemu_coroutine_enter(co, arg);
+ qemu_coroutine_enter(co);
@ entry2 @
expression entry, arg;
identifier co;
@@
- Coroutine *co = qemu_coroutine_create(entry);
+ Coroutine *co = qemu_coroutine_create(entry, arg);
...
- qemu_coroutine_enter(co, arg);
+ qemu_coroutine_enter(co);
@ entry3 @
expression entry, arg;
@@
- qemu_coroutine_enter(qemu_coroutine_create(entry), arg);
+ qemu_coroutine_enter(qemu_coroutine_create(entry, arg));
@ reentry @
expression co;
@@
- qemu_coroutine_enter(co, NULL);
+ qemu_coroutine_enter(co);
except for the aforementioned few places where the semantic patch
stumbled (as expected) and for test_co_queue, which would otherwise
produce an uninitialized variable warning.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Don't use the cpu_to_*w() functions, which we are trying to deprecate.
Instead either just use cpu_to_*() to do the byteswap, or use
st*_be_p() if we need to do the store somewhere other than to a
variable that's already the correct type.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 1466093177-17890-1-git-send-email-peter.maydell@linaro.org
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
This is the final patch for converting the common I/O path to take
a BdrvChild parameter instead of BlockDriverState.
The completion of this conversion means that all users that perform I/O
on an image need to actually hold a reference (in the form of BdrvChild,
possible as part of a BlockBackend) to that image. This also protects
against inconsistent use of BlockBackend vs. BlockDriverState functions
because direct use of a BlockDriverState isn't possible any more and
blk->root is private for block-backends.c.
In addition, we can now distinguish different users in the I/O path,
and the future op blockers work is going to add assertions based on
permissions stored in BdrvChild.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
|
|
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
|
|
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
|
|
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
|
|
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Acked-by: Stefan Hajnoczi <stefanha@redhat.com>
|
|
Using int for values that are only used as booleans is confusing.
While at it, rearrange a couple of members so that all the bools
are contiguous.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
It makes more sense to have ALL block size limit constraints
in the same struct. Improve the documentation while at it.
Simplify a couple of conditionals, now that we have audited and
documented that request_alignment is always non-zero.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
We want to eventually stick request_alignment alongside other
BlockLimits, but first, we must ensure it is populated at the
same time as all other limits, rather than being a special case
that is set only when a block is first opened.
Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
error_propagate() already ignores local_err==NULL, so there's no
need to check it before calling.
Coccinelle patch used to perform the changes added to
scripts/coccinelle/error_propagate_null.cocci.
Reviewed-by: Eric Blake <eblake@redhat.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Message-Id: <1465855078-19435-2-git-send-email-ehabkost@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
|
|
We don't really want to go through the block layer in order to read from
or write to the vmstate in a qcow2 image. Doing so required a few ugly
hacks like saving and restoring the old image size (because writing to
vmstate offsets would increase the image size) or disabling the "reads
after EOF = zeroes" logic. When calling the right functions directly,
these hacks aren't necessary any more.
Note that .bdrv_vmstate_load/save() return 0 instead of the number of
bytes in case of success now.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
|
|
This brings it in line with .bdrv_save_vmstate().
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Fam Zheng <famz@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
|
|
Back in the 2.3.0 release we declared qcow[2] encryption as
deprecated, warning people that it would be removed in a future
release.
commit a1f688f4152e65260b94f37543521ceff8bfebe4
Author: Markus Armbruster <armbru@redhat.com>
Date: Fri Mar 13 21:09:40 2015 +0100
block: Deprecate QCOW/QCOW2 encryption
The code still exists today, but by a (happy?) accident we entirely
broke the ability to use qcow[2] encryption in the system emulators
in the 2.4.0 release due to
commit 8336aafae1451d54c81dd2b187b45f7c45d2428e
Author: Daniel P. Berrange <berrange@redhat.com>
Date: Tue May 12 17:09:18 2015 +0100
qcow2/qcow: protect against uninitialized encryption key
This commit was designed to prevent future coding bugs which
might cause QEMU to read/write data on an encrypted block
device in plain text mode before a decryption key is set.
It turns out this preventative measure was a little too good,
because we already had a long standing bug where QEMU read
encrypted data in plain text mode during system emulator
startup, in order to guess disk geometry:
Thread 10 (Thread 0x7fffd3fff700 (LWP 30373)):
#0 0x00007fffe90b1a28 in raise () at /lib64/libc.so.6
#1 0x00007fffe90b362a in abort () at /lib64/libc.so.6
#2 0x00007fffe90aa227 in __assert_fail_base () at /lib64/libc.so.6
#3 0x00007fffe90aa2d2 in () at /lib64/libc.so.6
#4 0x000055555587ae19 in qcow2_co_readv (bs=0x5555562accb0, sector_num=0, remaining_sectors=1, qiov=0x7fffffffd260) at block/qcow2.c:1229
#5 0x000055555589b60d in bdrv_aligned_preadv (bs=bs@entry=0x5555562accb0, req=req@entry=0x7fffd3ffea50, offset=offset@entry=0, bytes=bytes@entry=512, align=align@entry=512, qiov=qiov@entry=0x7fffffffd260, flags=0) at block/io.c:908
#6 0x000055555589b8bc in bdrv_co_do_preadv (bs=0x5555562accb0, offset=0, bytes=512, qiov=0x7fffffffd260, flags=<optimized out>) at block/io.c:999
#7 0x000055555589c375 in bdrv_rw_co_entry (opaque=0x7fffffffd210) at block/io.c:544
#8 0x000055555586933b in coroutine_thread (opaque=0x555557876310) at coroutine-gthread.c:134
#9 0x00007ffff64e1835 in g_thread_proxy (data=0x5555562b5590) at gthread.c:778
#10 0x00007ffff6bb760a in start_thread () at /lib64/libpthread.so.0
#11 0x00007fffe917f59d in clone () at /lib64/libc.so.6
Thread 1 (Thread 0x7ffff7ecab40 (LWP 30343)):
#0 0x00007fffe91797a9 in syscall () at /lib64/libc.so.6
#1 0x00007ffff64ff87f in g_cond_wait (cond=cond@entry=0x555555e085f0 <coroutine_cond>, mutex=mutex@entry=0x555555e08600 <coroutine_lock>) at gthread-posix.c:1397
#2 0x00005555558692c3 in qemu_coroutine_switch (co=<optimized out>) at coroutine-gthread.c:117
#3 0x00005555558692c3 in qemu_coroutine_switch (from_=0x5555562b5e30, to_=to_@entry=0x555557876310, action=action@entry=COROUTINE_ENTER) at coroutine-gthread.c:175
#4 0x0000555555868a90 in qemu_coroutine_enter (co=0x555557876310, opaque=0x0) at qemu-coroutine.c:116
#5 0x0000555555859b84 in thread_pool_completion_bh (opaque=0x7fffd40010e0) at thread-pool.c:187
#6 0x0000555555859514 in aio_bh_poll (ctx=ctx@entry=0x5555562953b0) at async.c:85
#7 0x0000555555864d10 in aio_dispatch (ctx=ctx@entry=0x5555562953b0) at aio-posix.c:135
#8 0x0000555555864f75 in aio_poll (ctx=ctx@entry=0x5555562953b0, blocking=blocking@entry=true) at aio-posix.c:291
#9 0x000055555589c40d in bdrv_prwv_co (bs=bs@entry=0x5555562accb0, offset=offset@entry=0, qiov=qiov@entry=0x7fffffffd260, is_write=is_write@entry=false, flags=flags@entry=(unknown: 0)) at block/io.c:591
#10 0x000055555589c503 in bdrv_rw_co (bs=bs@entry=0x5555562accb0, sector_num=sector_num@entry=0, buf=buf@entry=0x7fffffffd2e0 "\321,", nb_sectors=nb_sectors@entry=21845, is_write=is_write@entry=false, flags=flags@entry=(unknown: 0)) at block/io.c:614
#11 0x000055555589c562 in bdrv_read_unthrottled (nb_sectors=21845, buf=0x7fffffffd2e0 "\321,", sector_num=0, bs=0x5555562accb0) at block/io.c:622
#12 0x000055555589c562 in bdrv_read_unthrottled (bs=0x5555562accb0, sector_num=sector_num@entry=0, buf=buf@entry=0x7fffffffd2e0 "\321,", nb_sectors=nb_sectors@entry=21845) at block/io.c:634
nb_sectors@entry=1) at block/block-backend.c:504
#14 0x0000555555752e9f in guess_disk_lchs (blk=blk@entry=0x5555562a5290, pcylinders=pcylinders@entry=0x7fffffffd52c, pheads=pheads@entry=0x7fffffffd530, psectors=psectors@entry=0x7fffffffd534) at hw/block/hd-geometry.c:68
#15 0x0000555555752ff7 in hd_geometry_guess (blk=0x5555562a5290, pcyls=pcyls@entry=0x555557875d1c, pheads=pheads@entry=0x555557875d20, psecs=psecs@entry=0x555557875d24, ptrans=ptrans@entry=0x555557875d28) at hw/block/hd-geometry.c:133
#16 0x0000555555752b87 in blkconf_geometry (conf=conf@entry=0x555557875d00, ptrans=ptrans@entry=0x555557875d28, cyls_max=cyls_max@entry=65536, heads_max=heads_max@entry=16, secs_max=secs_max@entry=255, errp=errp@entry=0x7fffffffd5e0) at hw/block/block.c:71
#17 0x0000555555799bc4 in ide_dev_initfn (dev=0x555557875c80, kind=IDE_HD) at hw/ide/qdev.c:174
#18 0x0000555555768394 in device_realize (dev=0x555557875c80, errp=0x7fffffffd640) at hw/core/qdev.c:247
#19 0x0000555555769a81 in device_set_realized (obj=0x555557875c80, value=<optimized out>, errp=0x7fffffffd730) at hw/core/qdev.c:1058
#20 0x00005555558240ce in property_set_bool (obj=0x555557875c80, v=<optimized out>, opaque=0x555557875de0, name=<optimized out>, errp=0x7fffffffd730)
at qom/object.c:1514
#21 0x0000555555826c87 in object_property_set_qobject (obj=obj@entry=0x555557875c80, value=value@entry=0x55555784bcb0, name=name@entry=0x55555591cb3d "realized", errp=errp@entry=0x7fffffffd730) at qom/qom-qobject.c:24
#22 0x0000555555825760 in object_property_set_bool (obj=obj@entry=0x555557875c80, value=value@entry=true, name=name@entry=0x55555591cb3d "realized", errp=errp@entry=0x7fffffffd730) at qom/object.c:905
#23 0x000055555576897b in qdev_init_nofail (dev=dev@entry=0x555557875c80) at hw/core/qdev.c:380
#24 0x0000555555799ead in ide_create_drive (bus=bus@entry=0x555557629630, unit=unit@entry=0, drive=0x5555562b77e0) at hw/ide/qdev.c:122
#25 0x000055555579a746 in pci_ide_create_devs (dev=dev@entry=0x555557628db0, hd_table=hd_table@entry=0x7fffffffd830) at hw/ide/pci.c:440
#26 0x000055555579b165 in pci_piix3_ide_init (bus=<optimized out>, hd_table=0x7fffffffd830, devfn=<optimized out>) at hw/ide/piix.c:218
#27 0x000055555568ca55 in pc_init1 (machine=0x5555562960a0, pci_enabled=1, kvmclock_enabled=<optimized out>) at /home/berrange/src/virt/qemu/hw/i386/pc_piix.c:256
#28 0x0000555555603ab2 in main (argc=<optimized out>, argv=<optimized out>, envp=<optimized out>) at vl.c:4249
So the safety net is correctly preventing QEMU reading cipher
text as if it were plain text, during startup and aborting QEMU
to avoid bad usage of this data.
For added fun this bug only happens if the encrypted qcow2
file happens to have data written to the first cluster,
otherwise the cluster won't be allocated and so qcow2 would
not try the decryption routines at all, just return all 0's.
That no one even noticed, let alone reported, this bug that
has shipped in 2.4.0, 2.5.0 and 2.6.0 shows that the number
of actual users of encrypted qcow2 is approximately zero.
So rather than fix the crash, and backport it to stable
releases, just go ahead with what we have warned users about
and disable any use of qcow2 encryption in the system
emulators. qemu-img/qemu-io/qemu-nbd are still able to access
qcow2 encrypted images for the sake of data conversion.
In the future, qcow2 will gain support for the alternative
luks format, but when this happens it'll be using the
'-object secret' infrastructure for getting keys, which
avoids this problematic scenario entirely.
Signed-off-by: Daniel P. Berrange <berrange@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
This changes qcow2 to implement the byte-based .bdrv_co_pwritev
interface rather than the sector-based old one.
As preallocation uses the same allocation function as normal writes, and
the interface of that function needs to be changed, it is converted in
the same patch.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
|
|
Reading from qcow2 images is now byte granularity.
Most of the affected code in qcow2 actually gets simpler with this
change. The only exception is encryption, which is fixed on 512 bytes
blocks; in order to keep this working, bs->request_alignment is set for
encrypted images.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
|
|
The problem with excessive flushing was found by a couple of performance
tests:
- parallel directory tree creation (from 2 processes)
- 32 cached writes + fsync at the end in a loop
For the first one results improved from 2.6 loops/sec to 3.5 loops/sec.
Each loop creates 10^3 directories with 10 files in each.
For the second one results improved from ~600 fsync/sec to ~1100
fsync/sec. Though, it was run on SSD so it probably won't show such
performance gain on rotational media.
qcow2_cache_flush() calls bdrv_flush() unconditionally after writing
cache entries of a particular cache. This can lead to as many as
2 additional fdatasyncs inside bdrv_flush.
We can simply skip all fdatasync calls inside qcow2_co_flush_to_os
as bdrv_flush for sure will do the job. These flushes are necessary to
keep the right order of writes to the different caches. Though this is
not necessary in the current code base as this ordering is ensured through
the flush in qcow2_cache_flush_dependency().
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Pavel Borzenkov <pborzenkov@virtuozzo.com>
CC: Kevin Wolf <kwolf@redhat.com>
CC: Max Reitz <mreitz@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Another step on our continuing quest to switch to byte-based
interfaces.
Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Rename to bdrv_pwrite_zeroes() to let the compiler ensure we
cater to the updated semantics. Do the same for bdrv_co_write_zeroes().
Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Another step towards removing sector-based interfaces: convert
the maximum write and minimum alignment values from sectors to
bytes. Rename the variables to let the compiler check that all
users are converted to the new semantics.
The maximum remains an int as long as BDRV_REQUEST_MAX_SECTORS
is constrained by INT_MAX (this means that we can't even
support a 2G write_zeroes, but just under it) - changing
operation lengths to unsigned or to 64-bits is a much bigger
audit, and debatable if we even want to do it (since at the
core, a 32-bit platform will still have ssize_t as its
underlying limit on write()).
Meanwhile, alignment is changed to 'uint32_t', since it makes no
sense to have an alignment larger than the maximum write, and
less painful to use an unsigned type with well-defined behavior
in bit operations than to have to worry about what happens if
a driver mistakenly supplies a negative alignment.
Add an assert that no one was trying to use sectors to get a
write zeroes larger than 2G, and therefore that a later conversion
to bytes won't be impacted by keeping the limit at 32 bits.
Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|