Age | Commit message (Collapse) | Author |
|
This updates the qcow2 code to add GRAPH_RDLOCK annotations for all
places that read bs->file.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Message-ID: <20231027155333.420094-22-kwolf@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
When the discard-no-unref flag is enabled, we keep the reference for
normal discard requests.
But when a discard is executed on a snapshot/qcow2 image with backing,
the discards are saved as zero clusters in the snapshot image.
When committing the snapshot to the backing file, not
discard_in_l2_slice is called but zero_in_l2_slice. Which did not had
any logic to keep the reference when discard-no-unref is enabled.
Therefor we add logic in the zero_in_l2_slice call to keep the reference
on commit.
Fixes: https://gitlab.com/qemu-project/qemu/-/issues/1621
Signed-off-by: Jean-Louis Dupond <jean-louis@dupond.be>
Message-Id: <20231003125236.216473-2-jean-louis@dupond.be>
[hreitz: Made the documentation change more verbose, as discussed
on-list]
Signed-off-by: Hanna Czenczek <hreitz@redhat.com>
|
|
This adds GRAPH_RDLOCK annotations to declare that callers of
qcow2_signal_corruption() need to hold a reader lock for the graph
because it calls bdrv_get_node_name(), which accesses the parents list
of a node.
For some places, we know that they will hold the lock, but we don't have
the GRAPH_RDLOCK annotations yet. In this case, add assume_graph_lock()
with a FIXME comment. These places will be removed once everything is
properly annotated.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Message-ID: <20230929145157.45443-15-kwolf@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
bdrv_co_debug_event was recently introduced, with bdrv_debug_event
becoming a wrapper for use in unknown context. Because most of the
time bdrv_debug_event is used on a BdrvChild via the wrapper macro
BLKDBG_EVENT, introduce a similar macro BLKDBG_CO_EVENT that calls
bdrv_co_debug_event, and switch whenever possible.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20230601115145.196465-13-pbonzini@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Mark functions as coroutine_fn when they are only called by other coroutine_fns
and they can suspend. Change calls to co_wrappers to use the non-wrapped
functions, which in turn requires adding GRAPH_RDLOCK annotations.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20230601115145.196465-11-pbonzini@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
When we for example have a sparse qcow2 image and discard: unmap is enabled,
there can be a lot of fragmentation in the image after some time. Especially on VM's
that do a lot of writes/deletes.
This causes the qcow2 image to grow even over 110% of its virtual size,
because the free gaps in the image get too small to allocate new
continuous clusters. So it allocates new space at the end of the image.
Disabling discard is not an option, as discard is needed to keep the
incremental backup size as low as possible. Without discard, the
incremental backups would become large, as qemu thinks it's just dirty
blocks but it doesn't know the blocks are unneeded.
So we need to avoid fragmentation but also 'empty' the unneeded blocks in
the image to have a small incremental backup.
In addition, we also want to send the discards further down the stack, so
the underlying blocks are still discarded.
Therefor we introduce a new qcow2 option "discard-no-unref".
When setting this option to true, discards will no longer have the qcow2
driver relinquish cluster allocations. Other than that, the request is
handled as normal: All clusters in range are marked as zero, and, if
pass-discard-request is true, it is passed further down the stack.
The only difference is that the now-zero clusters are preallocated
instead of being unallocated.
This will avoid fragmentation on the qcow2 image.
Fixes: https://gitlab.com/qemu-project/qemu/-/issues/1621
Signed-off-by: Jean-Louis Dupond <jean-louis@dupond.be>
Message-Id: <20230605084523.34134-2-jean-louis@dupond.be>
Reviewed-by: Hanna Czenczek <hreitz@redhat.com>
Signed-off-by: Hanna Czenczek <hreitz@redhat.com>
|
|
Functions that can do I/O (including calling bdrv_is_allocated
and bdrv_block_status functions) are prime candidates for being
coroutine_fns. Make the change for those that are themselves called
only from coroutine_fns. Also annotate that they are called with the
graph rdlock taken, thus allowing them to call bdrv_co_*() functions
for I/O.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20230309084456.304669-9-pbonzini@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
This adds GRAPH_RDLOCK annotations to declare that callers of
bdrv_co_pread*/pwrite*() need to hold a reader lock for the graph.
For some places, we know that they will hold the lock, but we don't have
the GRAPH_RDLOCK annotations yet. In this case, add assume_graph_lock()
with a FIXME comment. These places will be removed once everything is
properly annotated.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Message-Id: <20230203152202.49054-12-kwolf@redhat.com>
Reviewed-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
This adds GRAPH_RDLOCK annotations to declare that callers of
bdrv_driver_*() need to hold a reader lock for the graph. It doesn't add
the annotation to public functions yet.
For some places, we know that they will hold the lock, but we don't have
the GRAPH_RDLOCK annotations yet. In this case, add assume_graph_lock()
with a FIXME comment. These places will be removed once everything is
properly annotated.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Message-Id: <20230203152202.49054-11-kwolf@redhat.com>
Reviewed-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
We have two inclusion loops:
block/block.h
-> block/block-global-state.h
-> block/block-common.h
-> block/blockjob.h
-> block/block.h
block/block.h
-> block/block-io.h
-> block/block-common.h
-> block/blockjob.h
-> block/block.h
I believe these go back to Emanuele's reorganization of the block API,
merged a few months ago in commit d7e2fe4aac8.
Fortunately, breaking them is merely a matter of deleting unnecessary
includes from headers, and adding them back in places where they are
now missing.
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20221221133551.3967339-2-armbru@redhat.com>
|
|
Signed-off-by: Alberto Faria <afaria@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221013123711.620631-20-pbonzini@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
The validity of these was double-checked with Alberto Faria's static
analyzer.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20221013123711.620631-13-pbonzini@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Callers of coroutine_fn must be coroutine_fn themselves, or the call
must be within "if (qemu_in_coroutine())". Apply coroutine_fn to
functions where this holds.
Reviewed-by: Alberto Faria <afaria@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220922084924.201610-15-pbonzini@redhat.com>
[kwolf: Fixed up coding style]
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
Swap 'buf' and 'bytes' around for consistency with
bdrv_co_{pread,pwrite}(), and in preparation to implement these
functions using generated_co_wrapper.
Callers were updated using this Coccinelle script:
@@ expression child, offset, buf, bytes, flags; @@
- bdrv_pread(child, offset, buf, bytes, flags)
+ bdrv_pread(child, offset, bytes, buf, flags)
@@ expression child, offset, buf, bytes, flags; @@
- bdrv_pwrite(child, offset, buf, bytes, flags)
+ bdrv_pwrite(child, offset, bytes, buf, flags)
@@ expression child, offset, buf, bytes, flags; @@
- bdrv_pwrite_sync(child, offset, buf, bytes, flags)
+ bdrv_pwrite_sync(child, offset, bytes, buf, flags)
Resulting overly-long lines were then fixed by hand.
Signed-off-by: Alberto Faria <afaria@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@yandex-team.ru>
Message-Id: <20220609152744.3891847-3-afaria@redhat.com>
Reviewed-by: Hanna Reitz <hreitz@redhat.com>
Signed-off-by: Hanna Reitz <hreitz@redhat.com>
|
|
For consistency with other I/O functions, and in preparation to
implement them using generated_co_wrapper.
Callers were updated using this Coccinelle script:
@@ expression child, offset, buf, bytes; @@
- bdrv_pread(child, offset, buf, bytes)
+ bdrv_pread(child, offset, buf, bytes, 0)
@@ expression child, offset, buf, bytes; @@
- bdrv_pwrite(child, offset, buf, bytes)
+ bdrv_pwrite(child, offset, buf, bytes, 0)
@@ expression child, offset, buf, bytes; @@
- bdrv_pwrite_sync(child, offset, buf, bytes)
+ bdrv_pwrite_sync(child, offset, buf, bytes, 0)
Resulting overly-long lines were then fixed by hand.
Signed-off-by: Alberto Faria <afaria@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@yandex-team.ru>
Message-Id: <20220609152744.3891847-2-afaria@redhat.com>
Reviewed-by: Hanna Reitz <hreitz@redhat.com>
Signed-off-by: Hanna Reitz <hreitz@redhat.com>
|
|
Move the various memalign-related functions out of osdep.h and into
their own header, which we include only where they are used.
While we're doing this, add some brief documentation comments.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20220226180723.1706285-10-peter.maydell@linaro.org
|
|
With -m32, size_t is generally only a uint32_t. That makes clang
complain that in the assertion
assert(qiov->size <= INT64_MAX);
the range of the type of qiov->size (size_t) is too small for any of its
values to ever exceed INT64_MAX.
Cast qiov->size to uint64_t to silence clang.
Fixes: f7ef38dd1310d7d9db76d0aa16899cbc5744f36d
("block: use int64_t instead of uint64_t in driver read
handlers")
Signed-off-by: Hanna Reitz <hreitz@redhat.com>
Message-Id: <20211011155031.149158-1-hreitz@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Eric Blake <eblake@redhat.com>
|
|
We are generally moving to int64_t for both offset and bytes parameters
on all io paths.
Main motivation is realization of 64-bit write_zeroes operation for
fast zeroing large disk chunks, up to the whole disk.
We chose signed type, to be consistent with off_t (which is signed) and
with possibility for signed return type (where negative value means
error).
So, convert driver read handlers parameters which are already 64bit to
signed type.
While being here, convert also flags parameter to be BdrvRequestFlags.
Now let's consider all callers. Simple
git grep '\->bdrv_\(aio\|co\)_preadv\(_part\)\?'
shows that's there three callers of driver function:
bdrv_driver_preadv() in block/io.c, passes int64_t, checked by
bdrv_check_qiov_request() to be non-negative.
qcow2_load_vmstate() does bdrv_check_qiov_request().
do_perform_cow_read() has uint64_t argument. And a lot of things in
qcow2 driver are uint64_t, so converting it is big job. But we must
not work with requests that don't satisfy bdrv_check_qiov_request(),
so let's just assert it here.
Still, the functions may be called directly, not only by drv->...
Let's check:
git grep '\.bdrv_\(aio\|co\)_preadv\(_part\)\?\s*=' | \
awk '{print $4}' | sed 's/,//' | sed 's/&//' | sort | uniq | \
while read func; do git grep "$func(" | \
grep -v "$func(BlockDriverState"; done
The only one such caller:
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, &data, 1);
...
ret = bdrv_replace_test_co_preadv(bs, 0, 1, &qiov, 0);
in tests/unit/test-bdrv-drain.c, and it's OK obviously.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20210903102807.27127-4-vsementsov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
[eblake: fix typos]
Signed-off-by: Eric Blake <eblake@redhat.com>
|
|
Add helper to parse compressed l2_entry and use it everywhere instead
of open-coding.
Note, that in most places we move to precise coffset/csize instead of
sector-aligned. Still it should work good enough for updating
refcounts.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Hanna Reitz <hreitz@redhat.com>
Message-Id: <20210914122454.141075-4-vsementsov@virtuozzo.com>
Signed-off-by: Hanna Reitz <hreitz@redhat.com>
|
|
Let's pass the whole L2 entry and not bother with
L2E_COMPRESSED_OFFSET_SIZE_MASK.
It also helps further refactoring that adds generic
qcow2_parse_compressed_l2_entry() helper.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Hanna Reitz <hreitz@redhat.com>
Message-Id: <20210914122454.141075-3-vsementsov@virtuozzo.com>
Signed-off-by: Hanna Reitz <hreitz@redhat.com>
|
|
There is no conflict and no dependency if we have parallel writes to
different subclusters of one cluster when the cluster itself is already
allocated. So, relax extra dependency.
Measure performance:
First, prepare build/qemu-img-old and build/qemu-img-new images.
cd scripts/simplebench
./img_bench_templater.py
Paste the following to stdin of running script:
qemu_img=../../build/qemu-img-{old|new}
$qemu_img create -f qcow2 -o extended_l2=on /ssd/x.qcow2 1G
$qemu_img bench -c 100000 -d 8 [-s 2K|-s 2K -o 512|-s $((1024*2+512))] \
-w -t none -n /ssd/x.qcow2
The result:
All results are in seconds
------------------ --------- ---------
old new
-s 2K 6.7 ± 15% 6.2 ± 12%
-7%
-s 2K -o 512 13 ± 3% 11 ± 5%
-16%
-s $((1024*2+512)) 9.5 ± 4% 8.4
-12%
------------------ --------- ---------
So small writes are more independent now and that helps to keep deeper
io queue which improves performance.
271 iotest output becomes racy for three allocation in one cluster.
Second and third writes may finish in different order. Second and
third requests don't depend on each other any more. Still they both
depend on first request anyway. Filter out second and third write
offsets to cover both possible outputs.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20210824101517.59802-4-vsementsov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Hanna Reitz <hreitz@redhat.com>
[hreitz: s/ an / and /]
Signed-off-by: Hanna Reitz <hreitz@redhat.com>
|
|
No logic change, just prepare for the following commit. While being
here do also small grammar fix in a comment.
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Hanna Reitz <hreitz@redhat.com>
Message-Id: <20210824101517.59802-3-vsementsov@virtuozzo.com>
Signed-off-by: Hanna Reitz <hreitz@redhat.com>
|
|
Commit 205fa50750 ("qcow2: Add subcluster support to zero_in_l2_slice()")
introduced a subtle change to code in zero_in_l2_slice:
It swapped the order of
1. qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2. set_l2_entry(s, l2_slice, l2_index + i, QCOW_OFLAG_ZERO);
3. qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
To
1. qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2. qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
3. set_l2_entry(s, l2_slice, l2_index + i, QCOW_OFLAG_ZERO);
It seems harmless, however the call to qcow2_free_any_clusters can
trigger a cache flush which can mark the L2 table as clean, and
assuming that this was the last write to it, a stale version of it
will remain on the disk.
Now we have a valid L2 entry pointing to a freed cluster. Oops.
Fixes: 205fa50750 ("qcow2: Add subcluster support to zero_in_l2_slice()")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
[ kwolf: Fixed to restore the correct original order from before
205fa50750; added comments like in discard_in_l2_slice(). ]
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Message-Id: <20201124092815.39056-1-kwolf@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
The QCowL2Meta structure is used to store information about a part of
a write request that touches clusters that need changes in their L2
entries. This happens with newly-allocated clusters or subclusters.
This structure has changed a bit since it was first created and its
current documentation is not quite up-to-date.
A write request can span a region consisting of a combination of
clusters of different types, and qcow2_alloc_host_offset() can
repeatedly call handle_copied() and handle_alloc() to add more
clusters to the mix as long as they all are contiguous on the image
file.
Because of this a write request has a list of QCowL2Meta structures,
one for each part of the request that needs changes in the L2
metadata.
Each one of them spans nb_clusters and has two copy-on-write regions
located immediately before and after the middle region touched by that
part of the write request. Even when those regions themselves are
empty their offsets must be correct because they are used to know the
location of the middle region.
This was not always the case but it is not a problem anymore
because the only two places where QCowL2Meta structures are created
(calculate_l2_meta() and qcow2_co_truncate()) ensure that the
copy-on-write regions are correctly defined, and so do assertions like
the ones in perform_cow().
The conditional initialization of the 'written_to' variable is
therefore unnecessary and is removed by this patch.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20201007161323.4667-1-berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
We overlooked these in 02b1ecfa100e7ecc2306560cd27a4a2622bfeb04
Signed-off-by: Alberto Garcia <berto@igalia.com>
Message-Id: <20200928162333.14998-1-berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
qcow2_alloc_cluster_offset() takes an (unaligned) guest offset and
returns the (aligned) offset of the corresponding cluster in the qcow2
image.
In practice none of the callers need to know where the cluster starts
so this patch makes the function calculate and return the final host
offset directly. The function is also renamed accordingly.
See 388e581615 for a similar change to qcow2_get_cluster_offset().
Signed-off-by: Alberto Garcia <berto@igalia.com>
Message-Id: <9bfef50ec9200d752413be4fc2aeb22a28378817.1599833007.git.berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
This function takes an L2 entry and a number of clusters to free.
Although in principle it can free any type of cluster (using the L2
entry to determine its type) in practice the API is broken because
compressed clusters have a variable size and there is no way to free
more than one without having the L2 entry of each one of them.
The good news all callers are passing nb_clusters=1 so we can simply
get rid of that parameter.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Message-Id: <77cea0f4616f921d37e971b3c5b18a2faa24b173.1599573989.git.berto@igalia.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
The current text corresponds to an earlier, simpler version of this
function and it does not explain how it works now.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Message-Id: <bb5bd06f07c5a05b0818611de0d06ec5b66c8df3.1599150873.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
When a write request needs to allocate new clusters (or change the L2
bitmap of existing ones) a QCowL2Meta structure is created so the L2
metadata can be later updated and any copy-on-write can be performed
if necessary.
A write request can span a region consisting of an arbitrary
combination of previously unallocated and allocated clusters, and if
the unallocated ones can be put contiguous to the existing ones then
QEMU will do so in order to minimize the number of write operations.
In practice this means that a write request has not just one but a
number of QCowL2Meta structures. All of them are added to the
cluster_allocs list that is stored in BDRVQcow2State and is used to
detect overlapping requests. After the write request finishes all its
associated QCowL2Meta are removed from that list. calculate_l2_meta()
takes care of creating and putting those structures in the list, and
qcow2_handle_l2meta() takes care of removing them.
The problem is that the error path in handle_alloc() also tries to
remove an item in that list, a remnant from the time when this was
handled there (that code would not even be correct anymore because
it only removes one struct and not all the ones from the same write
request).
This can trigger a double removal of the same item from the list,
causing a crash. This is not easy to reproduce in practice because
it requires that do_alloc_cluster_offset() fails after a successful
previous allocation during the same write request, but it can be
reproduced with the included test case.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Message-Id: <3440a1c4d53c4fe48312b478c96accb338cbef7c.1599150873.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
This patch replaces instances of sizeof(uint64_t) in the qcow2 driver
with macros that indicate what those sizes are actually referring to.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Message-Id: <20200828110828.13833-1-berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
When compiling with -Werror=implicit-fallthrough, the compiler currently
complains:
../../devel/qemu/block/qcow2-cluster.c: In function ‘cluster_needs_new_alloc’:
../../devel/qemu/block/qcow2-cluster.c:1320:12: error: this statement may fall
through [-Werror=implicit-fallthrough=]
if (l2_entry & QCOW_OFLAG_COPIED) {
^
../../devel/qemu/block/qcow2-cluster.c:1323:5: note: here
case QCOW2_CLUSTER_UNALLOCATED:
^~~~
It's quite obvious that the fallthrough is intended here, so let's add
a comment to silence the compiler warning.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20200908070028.193298-1-thuth@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
|
|
This function is only used by qcow2_expand_zero_clusters() to
downgrade a qcow2 image to a previous version. This would require
transforming all extended L2 entries into normal L2 entries but this
is not a simple task and there are no plans to implement this at the
moment.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <15e65112b4144381b4d8c0bdf8fb76b0d813e3d1.1594396418.git.berto@igalia.com>
[mreitz: Fixed comment style]
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
This field allows us to indicate that the L2 metadata update does not
come from a write request with actual data but from a preallocation
request.
For traditional images this does not make any difference, but for
images with extended L2 entries this means that the clusters are
allocated normally in the L2 table but individual subclusters are
marked as unallocated.
This will allow preallocating images that have a backing file.
There is one special case: when we resize an existing image we can
also request that the new clusters are preallocated. If the image
already had a backing file then we have to hide any possible stale
data and zero out the new clusters (see commit 955c7d6687 for more
details).
In this case the subclusters cannot be left as unallocated so the L2
bitmap must be updated.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <960d4c444a4f5a870e2b47e5da322a73cd9a2f5a.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
This works now at the subcluster level and pwrite_zeroes_alignment is
updated accordingly.
qcow2_cluster_zeroize() is turned into qcow2_subcluster_zeroize() with
the following changes:
- The request can now be subcluster-aligned.
- The cluster-aligned body of the request is still zeroized using
zero_in_l2_slice() as before.
- The subcluster-aligned head and tail of the request are zeroized
with the new zero_l2_subclusters() function.
There is just one thing to take into account for a possible future
improvement: compressed clusters cannot be partially zeroized so
zero_l2_subclusters() on the head or the tail can return -ENOTSUP.
This makes the caller repeat the *complete* request and write actual
zeroes to disk. This is sub-optimal because
1) if the head area was compressed we would still be able to use
the fast path for the body and possibly the tail.
2) if the tail area was compressed we are writing zeroes to the
head and the body areas, which are already zeroized.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <17e05e2ee7e12f10dcf012da81e83ebe27eb3bef.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
Compressed clusters always have the bitmap part of the extended L2
entry set to 0.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <04455b3de5dfeb9d1cfe1fc7b02d7060a6e09710.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
The L2 bitmap needs to be updated after each write to indicate what
new subclusters are now allocated. This needs to happen even if the
cluster was already allocated and the L2 entry was otherwise valid.
In some cases however a write operation doesn't need change the L2
bitmap (because all affected subclusters were already allocated). This
is detected in calculate_l2_meta(), and qcow2_alloc_cluster_link_l2()
is never called in those cases.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <0875620d49f44320334b6a91c73b3f301f975f38.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
Two things need to be taken into account here:
1) With full_discard == true the L2 entry must be cleared completely.
This also includes the L2 bitmap if the image has extended L2
entries.
2) With full_discard == false we have to make the discarded cluster
read back as zeroes. With normal L2 entries this is done with the
QCOW_OFLAG_ZERO bit, whereas with extended L2 entries this is done
with the individual 'all zeroes' bits for each subcluster.
Note however that QCOW_OFLAG_ZERO is not supported in v2 qcow2
images so, if there is a backing file, discard cannot guarantee
that the image will read back as zeroes. If this is important for
the caller it should forbid it as qcow2_co_pdiscard() does (see
80f5c01183 for more details).
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <5ef8274e628aa3ab559bfac467abf488534f2b76.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
The QCOW_OFLAG_ZERO bit that indicates that a cluster reads as
zeroes is only used in standard L2 entries. Extended L2 entries use
individual 'all zeroes' bits for each subcluster.
This must be taken into account when updating the L2 entry and also
when deciding that an existing entry does not need to be updated.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <b61d61606d8c9b367bd641ab37351ddb9172799a.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
The logic of this function remains pretty much the same, except that
it uses count_contiguous_subclusters(), which combines the logic of
count_contiguous_clusters() / count_contiguous_clusters_unallocated()
and checks individual subclusters.
qcow2_cluster_to_subcluster_type() is not necessary as a separate
function anymore so it's inlined into its caller.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <d2193fd48653a350d80f0eca1c67b1d9053fb2f3.1594396418.git.berto@igalia.com>
[mreitz: Initialize expected_type to anything]
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
If an image has subclusters then there are more copy-on-write
scenarios that we need to consider. Let's say we have a write request
from the middle of subcluster #3 until the end of the cluster:
1) If we are writing to a newly allocated cluster then we need
copy-on-write. The previous contents of subclusters #0 to #3 must
be copied to the new cluster. We can optimize this process by
skipping all leading unallocated or zero subclusters (the status of
those skipped subclusters will be reflected in the new L2 bitmap).
2) If we are overwriting an existing cluster:
2.1) If subcluster #3 is unallocated or has the all-zeroes bit set
then we need copy-on-write (on subcluster #3 only).
2.2) If subcluster #3 was already allocated then there is no need
for any copy-on-write. However we still need to update the L2
bitmap to reflect possible changes in the allocation status of
subclusters #4 to #31. Because of this, this function checks
if all the overwritten subclusters are already allocated and
in this case it returns without creating a new QCowL2Meta
structure.
After all these changes l2meta_cow_start() and l2meta_cow_end()
are not necessarily cluster-aligned anymore. We need to update the
calculation of old_start and old_end in handle_dependencies() to
guarantee that no two requests try to write on the same cluster.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <4292dd56e4446d386a2fe307311737a711c00708.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
In order to support extended L2 entries some functions of the qcow2
driver need to start dealing with subclusters instead of clusters.
qcow2_get_host_offset() is modified to return the subcluster type
instead of the cluster type, and all callers are updated to replace
all values of QCow2ClusterType with their QCow2SubclusterType
equivalents.
This patch only changes the data types, there are no semantic changes.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <f6c29737c295f32cbee74c903c30b01820363b34.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
This function returns an integer that can be either an error code or a
cluster type (a value from the QCow2ClusterType enum).
We are going to start using subcluster types instead of cluster types
in some functions so it's better to use the exact data types instead
of integers for clarity and in order to detect errors more easily.
This patch makes qcow2_get_host_offset() return 0 on success and
puts the returned cluster type in a separate parameter. There are no
semantic changes.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <396b6eab1859a271551dcd7dcba77f8934aa3c3f.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
There are situations in which we want to know how many contiguous
subclusters of the same type there are in a given cluster. This can be
done by simply iterating over the subclusters and repeatedly calling
qcow2_get_subcluster_type() for each one of them.
However once we determined the type of a subcluster we can check the
rest efficiently by counting the number of adjacent ones (or zeroes)
in the bitmap. This is what this function does.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <db917263d568ec6ffb4a41cac3c9100f96bf6c18.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
qcow2 images with subclusters have 128-bit L2 entries. The first 64
bits contain the same information as traditional images and the last
64 bits form a bitmap with the status of each individual subcluster.
Because of that we cannot assume that L2 entries are sizeof(uint64_t)
anymore. This function returns the proper value for the image.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <d34d578bd0380e739e2dde3e8dd6187d3d249fa9.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
The size of an L2 entry is 64 bits, but if we want to have subclusters
we need extended L2 entries. This means that we have to access L2
tables and slices differently depending on whether an image has
extended L2 entries or not.
This patch replaces all l2_slice[] accesses with calls to
get_l2_entry() and set_l2_entry().
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <9586363531fec125ba1386e561762d3e4224e9fc.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
When writing to a qcow2 file there are two functions that take a
virtual offset and return a host offset, possibly allocating new
clusters if necessary:
- handle_copied() looks for normal data clusters that are already
allocated and have a reference count of 1. In those clusters we
can simply write the data and there is no need to perform any
copy-on-write.
- handle_alloc() looks for clusters that do need copy-on-write,
either because they haven't been allocated yet, because their
reference count is != 1 or because they are ZERO_ALLOC clusters.
The ZERO_ALLOC case is a bit special because those are clusters that
are already allocated and they could perfectly be dealt with in
handle_copied() (as long as copy-on-write is performed when required).
In fact, there is extra code specifically for them in handle_alloc()
that tries to reuse the existing allocation if possible and frees them
otherwise.
This patch changes the handling of ZERO_ALLOC clusters so the
semantics of these two functions are now like this:
- handle_copied() looks for clusters that are already allocated and
which we can overwrite (NORMAL and ZERO_ALLOC clusters with a
reference count of 1).
- handle_alloc() looks for clusters for which we need a new
allocation (all other cases).
One important difference after this change is that clusters found
in handle_copied() may now require copy-on-write, but this will be
necessary anyway once we add support for subclusters.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <eb17fc938f6be7be2e8d8ff42763d2c19241f866.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
We are going to need it in other places.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <65e5d9627ca2ebe7e62deaeddf60949c33067d9d.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
handle_alloc() creates a QCowL2Meta structure in order to update the
image metadata and perform the necessary copy-on-write operations.
This patch moves that code to a separate function so it can be used
from other places.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <e5bc4a648dac31972bfa7a0e554be8064be78799.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
qcow2_get_cluster_offset() takes an (unaligned) guest offset and
returns the (aligned) offset of the corresponding cluster in the qcow2
image.
In practice none of the callers need to know where the cluster starts
so this patch makes the function calculate and return the final host
offset directly. The function is also renamed accordingly.
There is a pre-existing exception with compressed clusters: in this
case the function returns the complete cluster descriptor (containing
the offset and size of the compressed data). This does not change with
this patch but it is now documented.
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <ffae6cdc5ca8950e8280ac0f696dcc376cb07095.1594396418.git.berto@igalia.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
|
|
When calculating the offset, the result of left shift operation will be promoted
to type int64 automatically because the left operand of + operator is uint64_t.
but the result after integer promotion may be produce an error value for us and
trigger the following asserting error.
For example, consider i=0x2000, cluster_bits=18, the result of left shift
operation will be 0x80000000. Cause argument i is of signed integer type,
the result is automatically promoted to 0xffffffff80000000 which is not
we expected
The way to trigger the assertion error:
qemu-img create -f qcow2 -o preallocation=full,cluster_size=256k tmpdisk 10G
This patch fix it by casting @i to uint64_t before doing left shift operation
Signed-off-by: Guoyi Tu <tu.guoyi@h3c.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Alberto Garcia <berto@igalia.com>
Message-id: 81ba90fe0c014f269621c283269b42ad@h3c.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
|