aboutsummaryrefslogtreecommitdiff
path: root/tests
diff options
context:
space:
mode:
Diffstat (limited to 'tests')
-rw-r--r--tests/qtest/meson.build4
-rw-r--r--tests/qtest/npcm7xx_adc-test.c377
-rw-r--r--tests/qtest/npcm7xx_pwm-test.c490
3 files changed, 870 insertions, 1 deletions
diff --git a/tests/qtest/meson.build b/tests/qtest/meson.build
index 6ec09821d7..16d04625b8 100644
--- a/tests/qtest/meson.build
+++ b/tests/qtest/meson.build
@@ -134,7 +134,9 @@ qtests_sparc64 = \
['prom-env-test', 'boot-serial-test']
qtests_npcm7xx = \
- ['npcm7xx_gpio-test',
+ ['npcm7xx_adc-test',
+ 'npcm7xx_gpio-test',
+ 'npcm7xx_pwm-test',
'npcm7xx_rng-test',
'npcm7xx_timer-test',
'npcm7xx_watchdog_timer-test']
diff --git a/tests/qtest/npcm7xx_adc-test.c b/tests/qtest/npcm7xx_adc-test.c
new file mode 100644
index 0000000000..f029706945
--- /dev/null
+++ b/tests/qtest/npcm7xx_adc-test.c
@@ -0,0 +1,377 @@
+/*
+ * QTests for Nuvoton NPCM7xx ADCModules.
+ *
+ * Copyright 2020 Google LLC
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/bitops.h"
+#include "qemu/timer.h"
+#include "libqos/libqtest.h"
+#include "qapi/qmp/qdict.h"
+
+#define REF_HZ (25000000)
+
+#define CON_OFFSET 0x0
+#define DATA_OFFSET 0x4
+
+#define NUM_INPUTS 8
+#define DEFAULT_IREF 2000000
+#define CONV_CYCLES 20
+#define RESET_CYCLES 10
+#define R0_INPUT 500000
+#define R1_INPUT 1500000
+#define MAX_RESULT 1023
+
+#define DEFAULT_CLKDIV 5
+
+#define FUSE_ARRAY_BA 0xf018a000
+#define FCTL_OFFSET 0x14
+#define FST_OFFSET 0x0
+#define FADDR_OFFSET 0x4
+#define FDATA_OFFSET 0x8
+#define ADC_CALIB_ADDR 24
+#define FUSE_READ 0x2
+
+/* Register field definitions. */
+#define CON_MUX(rv) ((rv) << 24)
+#define CON_INT_EN BIT(21)
+#define CON_REFSEL BIT(19)
+#define CON_INT BIT(18)
+#define CON_EN BIT(17)
+#define CON_RST BIT(16)
+#define CON_CONV BIT(14)
+#define CON_DIV(rv) extract32(rv, 1, 8)
+
+#define FST_RDST BIT(1)
+#define FDATA_MASK 0xff
+
+#define MAX_ERROR 10000
+#define MIN_CALIB_INPUT 100000
+#define MAX_CALIB_INPUT 1800000
+
+static const uint32_t input_list[] = {
+ 100000,
+ 500000,
+ 1000000,
+ 1500000,
+ 1800000,
+ 2000000,
+};
+
+static const uint32_t vref_list[] = {
+ 2000000,
+ 2200000,
+ 2500000,
+};
+
+static const uint32_t iref_list[] = {
+ 1800000,
+ 1900000,
+ 2000000,
+ 2100000,
+ 2200000,
+};
+
+static const uint32_t div_list[] = {0, 1, 3, 7, 15};
+
+typedef struct ADC {
+ int irq;
+ uint64_t base_addr;
+} ADC;
+
+ADC adc = {
+ .irq = 0,
+ .base_addr = 0xf000c000
+};
+
+static uint32_t adc_read_con(QTestState *qts, const ADC *adc)
+{
+ return qtest_readl(qts, adc->base_addr + CON_OFFSET);
+}
+
+static void adc_write_con(QTestState *qts, const ADC *adc, uint32_t value)
+{
+ qtest_writel(qts, adc->base_addr + CON_OFFSET, value);
+}
+
+static uint32_t adc_read_data(QTestState *qts, const ADC *adc)
+{
+ return qtest_readl(qts, adc->base_addr + DATA_OFFSET);
+}
+
+static uint32_t adc_calibrate(uint32_t measured, uint32_t *rv)
+{
+ return R0_INPUT + (R1_INPUT - R0_INPUT) * (int32_t)(measured - rv[0])
+ / (int32_t)(rv[1] - rv[0]);
+}
+
+static void adc_qom_set(QTestState *qts, const ADC *adc,
+ const char *name, uint32_t value)
+{
+ QDict *response;
+ const char *path = "/machine/soc/adc";
+
+ g_test_message("Setting properties %s of %s with value %u",
+ name, path, value);
+ response = qtest_qmp(qts, "{ 'execute': 'qom-set',"
+ " 'arguments': { 'path': %s, 'property': %s, 'value': %u}}",
+ path, name, value);
+ /* The qom set message returns successfully. */
+ g_assert_true(qdict_haskey(response, "return"));
+}
+
+static void adc_write_input(QTestState *qts, const ADC *adc,
+ uint32_t index, uint32_t value)
+{
+ char name[100];
+
+ sprintf(name, "adci[%u]", index);
+ adc_qom_set(qts, adc, name, value);
+}
+
+static void adc_write_vref(QTestState *qts, const ADC *adc, uint32_t value)
+{
+ adc_qom_set(qts, adc, "vref", value);
+}
+
+static uint32_t adc_calculate_output(uint32_t input, uint32_t ref)
+{
+ uint32_t output;
+
+ g_assert_cmpuint(input, <=, ref);
+ output = (input * (MAX_RESULT + 1)) / ref;
+ if (output > MAX_RESULT) {
+ output = MAX_RESULT;
+ }
+
+ return output;
+}
+
+static uint32_t adc_prescaler(QTestState *qts, const ADC *adc)
+{
+ uint32_t div = extract32(adc_read_con(qts, adc), 1, 8);
+
+ return 2 * (div + 1);
+}
+
+static int64_t adc_calculate_steps(uint32_t cycles, uint32_t prescale,
+ uint32_t clkdiv)
+{
+ return (NANOSECONDS_PER_SECOND / (REF_HZ >> clkdiv)) * cycles * prescale;
+}
+
+static void adc_wait_conv_finished(QTestState *qts, const ADC *adc,
+ uint32_t clkdiv)
+{
+ uint32_t prescaler = adc_prescaler(qts, adc);
+
+ /*
+ * ADC should takes roughly 20 cycles to convert one sample. So we assert it
+ * should take 10~30 cycles here.
+ */
+ qtest_clock_step(qts, adc_calculate_steps(CONV_CYCLES / 2, prescaler,
+ clkdiv));
+ /* ADC is still converting. */
+ g_assert_true(adc_read_con(qts, adc) & CON_CONV);
+ qtest_clock_step(qts, adc_calculate_steps(CONV_CYCLES, prescaler, clkdiv));
+ /* ADC has finished conversion. */
+ g_assert_false(adc_read_con(qts, adc) & CON_CONV);
+}
+
+/* Check ADC can be reset to default value. */
+static void test_init(gconstpointer adc_p)
+{
+ const ADC *adc = adc_p;
+
+ QTestState *qts = qtest_init("-machine quanta-gsj");
+ adc_write_con(qts, adc, CON_REFSEL | CON_INT);
+ g_assert_cmphex(adc_read_con(qts, adc), ==, CON_REFSEL);
+ qtest_quit(qts);
+}
+
+/* Check ADC can convert from an internal reference. */
+static void test_convert_internal(gconstpointer adc_p)
+{
+ const ADC *adc = adc_p;
+ uint32_t index, input, output, expected_output;
+ QTestState *qts = qtest_init("-machine quanta-gsj");
+ qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
+
+ for (index = 0; index < NUM_INPUTS; ++index) {
+ for (size_t i = 0; i < ARRAY_SIZE(input_list); ++i) {
+ input = input_list[i];
+ expected_output = adc_calculate_output(input, DEFAULT_IREF);
+
+ adc_write_input(qts, adc, index, input);
+ adc_write_con(qts, adc, CON_MUX(index) | CON_REFSEL | CON_INT |
+ CON_EN | CON_CONV);
+ adc_wait_conv_finished(qts, adc, DEFAULT_CLKDIV);
+ g_assert_cmphex(adc_read_con(qts, adc), ==, CON_MUX(index) |
+ CON_REFSEL | CON_EN);
+ g_assert_false(qtest_get_irq(qts, adc->irq));
+ output = adc_read_data(qts, adc);
+ g_assert_cmpuint(output, ==, expected_output);
+ }
+ }
+
+ qtest_quit(qts);
+}
+
+/* Check ADC can convert from an external reference. */
+static void test_convert_external(gconstpointer adc_p)
+{
+ const ADC *adc = adc_p;
+ uint32_t index, input, vref, output, expected_output;
+ QTestState *qts = qtest_init("-machine quanta-gsj");
+ qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
+
+ for (index = 0; index < NUM_INPUTS; ++index) {
+ for (size_t i = 0; i < ARRAY_SIZE(input_list); ++i) {
+ for (size_t j = 0; j < ARRAY_SIZE(vref_list); ++j) {
+ input = input_list[i];
+ vref = vref_list[j];
+ expected_output = adc_calculate_output(input, vref);
+
+ adc_write_input(qts, adc, index, input);
+ adc_write_vref(qts, adc, vref);
+ adc_write_con(qts, adc, CON_MUX(index) | CON_INT | CON_EN |
+ CON_CONV);
+ adc_wait_conv_finished(qts, adc, DEFAULT_CLKDIV);
+ g_assert_cmphex(adc_read_con(qts, adc), ==,
+ CON_MUX(index) | CON_EN);
+ g_assert_false(qtest_get_irq(qts, adc->irq));
+ output = adc_read_data(qts, adc);
+ g_assert_cmpuint(output, ==, expected_output);
+ }
+ }
+ }
+
+ qtest_quit(qts);
+}
+
+/* Check ADC interrupt files if and only if CON_INT_EN is set. */
+static void test_interrupt(gconstpointer adc_p)
+{
+ const ADC *adc = adc_p;
+ uint32_t index, input, output, expected_output;
+ QTestState *qts = qtest_init("-machine quanta-gsj");
+
+ index = 1;
+ input = input_list[1];
+ expected_output = adc_calculate_output(input, DEFAULT_IREF);
+
+ qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
+ adc_write_input(qts, adc, index, input);
+ g_assert_false(qtest_get_irq(qts, adc->irq));
+ adc_write_con(qts, adc, CON_MUX(index) | CON_INT_EN | CON_REFSEL | CON_INT
+ | CON_EN | CON_CONV);
+ adc_wait_conv_finished(qts, adc, DEFAULT_CLKDIV);
+ g_assert_cmphex(adc_read_con(qts, adc), ==, CON_MUX(index) | CON_INT_EN
+ | CON_REFSEL | CON_INT | CON_EN);
+ g_assert_true(qtest_get_irq(qts, adc->irq));
+ output = adc_read_data(qts, adc);
+ g_assert_cmpuint(output, ==, expected_output);
+
+ qtest_quit(qts);
+}
+
+/* Check ADC is reset after setting ADC_RST for 10 ADC cycles. */
+static void test_reset(gconstpointer adc_p)
+{
+ const ADC *adc = adc_p;
+ QTestState *qts = qtest_init("-machine quanta-gsj");
+
+ for (size_t i = 0; i < ARRAY_SIZE(div_list); ++i) {
+ uint32_t div = div_list[i];
+
+ adc_write_con(qts, adc, CON_INT | CON_EN | CON_RST | CON_DIV(div));
+ qtest_clock_step(qts, adc_calculate_steps(RESET_CYCLES,
+ adc_prescaler(qts, adc), DEFAULT_CLKDIV));
+ g_assert_false(adc_read_con(qts, adc) & CON_EN);
+ }
+ qtest_quit(qts);
+}
+
+/* Check ADC Calibration works as desired. */
+static void test_calibrate(gconstpointer adc_p)
+{
+ int i, j;
+ const ADC *adc = adc_p;
+
+ for (j = 0; j < ARRAY_SIZE(iref_list); ++j) {
+ uint32_t iref = iref_list[j];
+ uint32_t expected_rv[] = {
+ adc_calculate_output(R0_INPUT, iref),
+ adc_calculate_output(R1_INPUT, iref),
+ };
+ char buf[100];
+ QTestState *qts;
+
+ sprintf(buf, "-machine quanta-gsj -global npcm7xx-adc.iref=%u", iref);
+ qts = qtest_init(buf);
+
+ /* Check the converted value is correct using the calibration value. */
+ for (i = 0; i < ARRAY_SIZE(input_list); ++i) {
+ uint32_t input;
+ uint32_t output;
+ uint32_t expected_output;
+ uint32_t calibrated_voltage;
+ uint32_t index = 0;
+
+ input = input_list[i];
+ /* Calibration only works for input range 0.1V ~ 1.8V. */
+ if (input < MIN_CALIB_INPUT || input > MAX_CALIB_INPUT) {
+ continue;
+ }
+ expected_output = adc_calculate_output(input, iref);
+
+ adc_write_input(qts, adc, index, input);
+ adc_write_con(qts, adc, CON_MUX(index) | CON_REFSEL | CON_INT |
+ CON_EN | CON_CONV);
+ adc_wait_conv_finished(qts, adc, DEFAULT_CLKDIV);
+ g_assert_cmphex(adc_read_con(qts, adc), ==,
+ CON_REFSEL | CON_MUX(index) | CON_EN);
+ output = adc_read_data(qts, adc);
+ g_assert_cmpuint(output, ==, expected_output);
+
+ calibrated_voltage = adc_calibrate(output, expected_rv);
+ g_assert_cmpuint(calibrated_voltage, >, input - MAX_ERROR);
+ g_assert_cmpuint(calibrated_voltage, <, input + MAX_ERROR);
+ }
+
+ qtest_quit(qts);
+ }
+}
+
+static void adc_add_test(const char *name, const ADC* wd,
+ GTestDataFunc fn)
+{
+ g_autofree char *full_name = g_strdup_printf("npcm7xx_adc/%s", name);
+ qtest_add_data_func(full_name, wd, fn);
+}
+#define add_test(name, td) adc_add_test(#name, td, test_##name)
+
+int main(int argc, char **argv)
+{
+ g_test_init(&argc, &argv, NULL);
+
+ add_test(init, &adc);
+ add_test(convert_internal, &adc);
+ add_test(convert_external, &adc);
+ add_test(interrupt, &adc);
+ add_test(reset, &adc);
+ add_test(calibrate, &adc);
+
+ return g_test_run();
+}
diff --git a/tests/qtest/npcm7xx_pwm-test.c b/tests/qtest/npcm7xx_pwm-test.c
new file mode 100644
index 0000000000..33fbdf5f54
--- /dev/null
+++ b/tests/qtest/npcm7xx_pwm-test.c
@@ -0,0 +1,490 @@
+/*
+ * QTests for Nuvoton NPCM7xx PWM Modules.
+ *
+ * Copyright 2020 Google LLC
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/bitops.h"
+#include "libqos/libqtest.h"
+#include "qapi/qmp/qdict.h"
+#include "qapi/qmp/qnum.h"
+
+#define REF_HZ 25000000
+
+/* Register field definitions. */
+#define CH_EN BIT(0)
+#define CH_INV BIT(2)
+#define CH_MOD BIT(3)
+
+/* Registers shared between all PWMs in a module */
+#define PPR 0x00
+#define CSR 0x04
+#define PCR 0x08
+#define PIER 0x3c
+#define PIIR 0x40
+
+/* CLK module related */
+#define CLK_BA 0xf0801000
+#define CLKSEL 0x04
+#define CLKDIV1 0x08
+#define CLKDIV2 0x2c
+#define PLLCON0 0x0c
+#define PLLCON1 0x10
+#define PLL_INDV(rv) extract32((rv), 0, 6)
+#define PLL_FBDV(rv) extract32((rv), 16, 12)
+#define PLL_OTDV1(rv) extract32((rv), 8, 3)
+#define PLL_OTDV2(rv) extract32((rv), 13, 3)
+#define APB3CKDIV(rv) extract32((rv), 28, 2)
+#define CLK2CKDIV(rv) extract32((rv), 0, 1)
+#define CLK4CKDIV(rv) extract32((rv), 26, 2)
+#define CPUCKSEL(rv) extract32((rv), 0, 2)
+
+#define MAX_DUTY 1000000
+
+typedef struct PWMModule {
+ int irq;
+ uint64_t base_addr;
+} PWMModule;
+
+typedef struct PWM {
+ uint32_t cnr_offset;
+ uint32_t cmr_offset;
+ uint32_t pdr_offset;
+ uint32_t pwdr_offset;
+} PWM;
+
+typedef struct TestData {
+ const PWMModule *module;
+ const PWM *pwm;
+} TestData;
+
+static const PWMModule pwm_module_list[] = {
+ {
+ .irq = 93,
+ .base_addr = 0xf0103000
+ },
+ {
+ .irq = 94,
+ .base_addr = 0xf0104000
+ }
+};
+
+static const PWM pwm_list[] = {
+ {
+ .cnr_offset = 0x0c,
+ .cmr_offset = 0x10,
+ .pdr_offset = 0x14,
+ .pwdr_offset = 0x44,
+ },
+ {
+ .cnr_offset = 0x18,
+ .cmr_offset = 0x1c,
+ .pdr_offset = 0x20,
+ .pwdr_offset = 0x48,
+ },
+ {
+ .cnr_offset = 0x24,
+ .cmr_offset = 0x28,
+ .pdr_offset = 0x2c,
+ .pwdr_offset = 0x4c,
+ },
+ {
+ .cnr_offset = 0x30,
+ .cmr_offset = 0x34,
+ .pdr_offset = 0x38,
+ .pwdr_offset = 0x50,
+ },
+};
+
+static const int ppr_base[] = { 0, 0, 8, 8 };
+static const int csr_base[] = { 0, 4, 8, 12 };
+static const int pcr_base[] = { 0, 8, 12, 16 };
+
+static const uint32_t ppr_list[] = {
+ 0,
+ 1,
+ 10,
+ 100,
+ 255, /* Max possible value. */
+};
+
+static const uint32_t csr_list[] = {
+ 0,
+ 1,
+ 2,
+ 3,
+ 4, /* Max possible value. */
+};
+
+static const uint32_t cnr_list[] = {
+ 0,
+ 1,
+ 50,
+ 100,
+ 150,
+ 200,
+ 1000,
+ 10000,
+ 65535, /* Max possible value. */
+};
+
+static const uint32_t cmr_list[] = {
+ 0,
+ 1,
+ 10,
+ 50,
+ 100,
+ 150,
+ 200,
+ 1000,
+ 10000,
+ 65535, /* Max possible value. */
+};
+
+/* Returns the index of the PWM module. */
+static int pwm_module_index(const PWMModule *module)
+{
+ ptrdiff_t diff = module - pwm_module_list;
+
+ g_assert_true(diff >= 0 && diff < ARRAY_SIZE(pwm_module_list));
+
+ return diff;
+}
+
+/* Returns the index of the PWM entry. */
+static int pwm_index(const PWM *pwm)
+{
+ ptrdiff_t diff = pwm - pwm_list;
+
+ g_assert_true(diff >= 0 && diff < ARRAY_SIZE(pwm_list));
+
+ return diff;
+}
+
+static uint64_t pwm_qom_get(QTestState *qts, const char *path, const char *name)
+{
+ QDict *response;
+
+ g_test_message("Getting properties %s from %s", name, path);
+ response = qtest_qmp(qts, "{ 'execute': 'qom-get',"
+ " 'arguments': { 'path': %s, 'property': %s}}",
+ path, name);
+ /* The qom set message returns successfully. */
+ g_assert_true(qdict_haskey(response, "return"));
+ return qnum_get_uint(qobject_to(QNum, qdict_get(response, "return")));
+}
+
+static uint64_t pwm_get_freq(QTestState *qts, int module_index, int pwm_index)
+{
+ char path[100];
+ char name[100];
+
+ sprintf(path, "/machine/soc/pwm[%d]", module_index);
+ sprintf(name, "freq[%d]", pwm_index);
+
+ return pwm_qom_get(qts, path, name);
+}
+
+static uint64_t pwm_get_duty(QTestState *qts, int module_index, int pwm_index)
+{
+ char path[100];
+ char name[100];
+
+ sprintf(path, "/machine/soc/pwm[%d]", module_index);
+ sprintf(name, "duty[%d]", pwm_index);
+
+ return pwm_qom_get(qts, path, name);
+}
+
+static uint32_t get_pll(uint32_t con)
+{
+ return REF_HZ * PLL_FBDV(con) / (PLL_INDV(con) * PLL_OTDV1(con)
+ * PLL_OTDV2(con));
+}
+
+static uint64_t read_pclk(QTestState *qts)
+{
+ uint64_t freq = REF_HZ;
+ uint32_t clksel = qtest_readl(qts, CLK_BA + CLKSEL);
+ uint32_t pllcon;
+ uint32_t clkdiv1 = qtest_readl(qts, CLK_BA + CLKDIV1);
+ uint32_t clkdiv2 = qtest_readl(qts, CLK_BA + CLKDIV2);
+
+ switch (CPUCKSEL(clksel)) {
+ case 0:
+ pllcon = qtest_readl(qts, CLK_BA + PLLCON0);
+ freq = get_pll(pllcon);
+ break;
+ case 1:
+ pllcon = qtest_readl(qts, CLK_BA + PLLCON1);
+ freq = get_pll(pllcon);
+ break;
+ case 2:
+ break;
+ case 3:
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ freq >>= (CLK2CKDIV(clkdiv1) + CLK4CKDIV(clkdiv1) + APB3CKDIV(clkdiv2));
+
+ return freq;
+}
+
+static uint32_t pwm_selector(uint32_t csr)
+{
+ switch (csr) {
+ case 0:
+ return 2;
+ case 1:
+ return 4;
+ case 2:
+ return 8;
+ case 3:
+ return 16;
+ case 4:
+ return 1;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static uint64_t pwm_compute_freq(QTestState *qts, uint32_t ppr, uint32_t csr,
+ uint32_t cnr)
+{
+ return read_pclk(qts) / ((ppr + 1) * pwm_selector(csr) * (cnr + 1));
+}
+
+static uint64_t pwm_compute_duty(uint32_t cnr, uint32_t cmr, bool inverted)
+{
+ uint64_t duty;
+
+ if (cnr == 0) {
+ /* PWM is stopped. */
+ duty = 0;
+ } else if (cmr >= cnr) {
+ duty = MAX_DUTY;
+ } else {
+ duty = MAX_DUTY * (cmr + 1) / (cnr + 1);
+ }
+
+ if (inverted) {
+ duty = MAX_DUTY - duty;
+ }
+
+ return duty;
+}
+
+static uint32_t pwm_read(QTestState *qts, const TestData *td, unsigned offset)
+{
+ return qtest_readl(qts, td->module->base_addr + offset);
+}
+
+static void pwm_write(QTestState *qts, const TestData *td, unsigned offset,
+ uint32_t value)
+{
+ qtest_writel(qts, td->module->base_addr + offset, value);
+}
+
+static uint32_t pwm_read_ppr(QTestState *qts, const TestData *td)
+{
+ return extract32(pwm_read(qts, td, PPR), ppr_base[pwm_index(td->pwm)], 8);
+}
+
+static void pwm_write_ppr(QTestState *qts, const TestData *td, uint32_t value)
+{
+ pwm_write(qts, td, PPR, value << ppr_base[pwm_index(td->pwm)]);
+}
+
+static uint32_t pwm_read_csr(QTestState *qts, const TestData *td)
+{
+ return extract32(pwm_read(qts, td, CSR), csr_base[pwm_index(td->pwm)], 3);
+}
+
+static void pwm_write_csr(QTestState *qts, const TestData *td, uint32_t value)
+{
+ pwm_write(qts, td, CSR, value << csr_base[pwm_index(td->pwm)]);
+}
+
+static uint32_t pwm_read_pcr(QTestState *qts, const TestData *td)
+{
+ return extract32(pwm_read(qts, td, PCR), pcr_base[pwm_index(td->pwm)], 4);
+}
+
+static void pwm_write_pcr(QTestState *qts, const TestData *td, uint32_t value)
+{
+ pwm_write(qts, td, PCR, value << pcr_base[pwm_index(td->pwm)]);
+}
+
+static uint32_t pwm_read_cnr(QTestState *qts, const TestData *td)
+{
+ return pwm_read(qts, td, td->pwm->cnr_offset);
+}
+
+static void pwm_write_cnr(QTestState *qts, const TestData *td, uint32_t value)
+{
+ pwm_write(qts, td, td->pwm->cnr_offset, value);
+}
+
+static uint32_t pwm_read_cmr(QTestState *qts, const TestData *td)
+{
+ return pwm_read(qts, td, td->pwm->cmr_offset);
+}
+
+static void pwm_write_cmr(QTestState *qts, const TestData *td, uint32_t value)
+{
+ pwm_write(qts, td, td->pwm->cmr_offset, value);
+}
+
+/* Check pwm registers can be reset to default value */
+static void test_init(gconstpointer test_data)
+{
+ const TestData *td = test_data;
+ QTestState *qts = qtest_init("-machine quanta-gsj");
+ int module = pwm_module_index(td->module);
+ int pwm = pwm_index(td->pwm);
+
+ g_assert_cmpuint(pwm_get_freq(qts, module, pwm), ==, 0);
+ g_assert_cmpuint(pwm_get_duty(qts, module, pwm), ==, 0);
+
+ qtest_quit(qts);
+}
+
+/* One-shot mode should not change frequency and duty cycle. */
+static void test_oneshot(gconstpointer test_data)
+{
+ const TestData *td = test_data;
+ QTestState *qts = qtest_init("-machine quanta-gsj");
+ int module = pwm_module_index(td->module);
+ int pwm = pwm_index(td->pwm);
+ uint32_t ppr, csr, pcr;
+ int i, j;
+
+ pcr = CH_EN;
+ for (i = 0; i < ARRAY_SIZE(ppr_list); ++i) {
+ ppr = ppr_list[i];
+ pwm_write_ppr(qts, td, ppr);
+
+ for (j = 0; j < ARRAY_SIZE(csr_list); ++j) {
+ csr = csr_list[j];
+ pwm_write_csr(qts, td, csr);
+ pwm_write_pcr(qts, td, pcr);
+
+ g_assert_cmpuint(pwm_read_ppr(qts, td), ==, ppr);
+ g_assert_cmpuint(pwm_read_csr(qts, td), ==, csr);
+ g_assert_cmpuint(pwm_read_pcr(qts, td), ==, pcr);
+ g_assert_cmpuint(pwm_get_freq(qts, module, pwm), ==, 0);
+ g_assert_cmpuint(pwm_get_duty(qts, module, pwm), ==, 0);
+ }
+ }
+
+ qtest_quit(qts);
+}
+
+/* In toggle mode, the PWM generates correct outputs. */
+static void test_toggle(gconstpointer test_data)
+{
+ const TestData *td = test_data;
+ QTestState *qts = qtest_init("-machine quanta-gsj");
+ int module = pwm_module_index(td->module);
+ int pwm = pwm_index(td->pwm);
+ uint32_t ppr, csr, pcr, cnr, cmr;
+ int i, j, k, l;
+ uint64_t expected_freq, expected_duty;
+
+ pcr = CH_EN | CH_MOD;
+ for (i = 0; i < ARRAY_SIZE(ppr_list); ++i) {
+ ppr = ppr_list[i];
+ pwm_write_ppr(qts, td, ppr);
+
+ for (j = 0; j < ARRAY_SIZE(csr_list); ++j) {
+ csr = csr_list[j];
+ pwm_write_csr(qts, td, csr);
+
+ for (k = 0; k < ARRAY_SIZE(cnr_list); ++k) {
+ cnr = cnr_list[k];
+ pwm_write_cnr(qts, td, cnr);
+
+ for (l = 0; l < ARRAY_SIZE(cmr_list); ++l) {
+ cmr = cmr_list[l];
+ pwm_write_cmr(qts, td, cmr);
+ expected_freq = pwm_compute_freq(qts, ppr, csr, cnr);
+ expected_duty = pwm_compute_duty(cnr, cmr, false);
+
+ pwm_write_pcr(qts, td, pcr);
+ g_assert_cmpuint(pwm_read_ppr(qts, td), ==, ppr);
+ g_assert_cmpuint(pwm_read_csr(qts, td), ==, csr);
+ g_assert_cmpuint(pwm_read_pcr(qts, td), ==, pcr);
+ g_assert_cmpuint(pwm_read_cnr(qts, td), ==, cnr);
+ g_assert_cmpuint(pwm_read_cmr(qts, td), ==, cmr);
+ g_assert_cmpuint(pwm_get_duty(qts, module, pwm),
+ ==, expected_duty);
+ if (expected_duty != 0 && expected_duty != 100) {
+ /* Duty cycle with 0 or 100 doesn't need frequency. */
+ g_assert_cmpuint(pwm_get_freq(qts, module, pwm),
+ ==, expected_freq);
+ }
+
+ /* Test inverted mode */
+ expected_duty = pwm_compute_duty(cnr, cmr, true);
+ pwm_write_pcr(qts, td, pcr | CH_INV);
+ g_assert_cmpuint(pwm_read_pcr(qts, td), ==, pcr | CH_INV);
+ g_assert_cmpuint(pwm_get_duty(qts, module, pwm),
+ ==, expected_duty);
+ if (expected_duty != 0 && expected_duty != 100) {
+ /* Duty cycle with 0 or 100 doesn't need frequency. */
+ g_assert_cmpuint(pwm_get_freq(qts, module, pwm),
+ ==, expected_freq);
+ }
+
+ }
+ }
+ }
+ }
+
+ qtest_quit(qts);
+}
+
+static void pwm_add_test(const char *name, const TestData* td,
+ GTestDataFunc fn)
+{
+ g_autofree char *full_name = g_strdup_printf(
+ "npcm7xx_pwm/module[%d]/pwm[%d]/%s", pwm_module_index(td->module),
+ pwm_index(td->pwm), name);
+ qtest_add_data_func(full_name, td, fn);
+}
+#define add_test(name, td) pwm_add_test(#name, td, test_##name)
+
+int main(int argc, char **argv)
+{
+ TestData test_data_list[ARRAY_SIZE(pwm_module_list) * ARRAY_SIZE(pwm_list)];
+
+ g_test_init(&argc, &argv, NULL);
+
+ for (int i = 0; i < ARRAY_SIZE(pwm_module_list); ++i) {
+ for (int j = 0; j < ARRAY_SIZE(pwm_list); ++j) {
+ TestData *td = &test_data_list[i * ARRAY_SIZE(pwm_list) + j];
+
+ td->module = &pwm_module_list[i];
+ td->pwm = &pwm_list[j];
+
+ add_test(init, td);
+ add_test(oneshot, td);
+ add_test(toggle, td);
+ }
+ }
+
+ return g_test_run();
+}