aboutsummaryrefslogtreecommitdiff
path: root/tests/qtest/rtc-test.c
diff options
context:
space:
mode:
Diffstat (limited to 'tests/qtest/rtc-test.c')
-rw-r--r--tests/qtest/rtc-test.c720
1 files changed, 720 insertions, 0 deletions
diff --git a/tests/qtest/rtc-test.c b/tests/qtest/rtc-test.c
new file mode 100644
index 0000000000..c7af34f6b1
--- /dev/null
+++ b/tests/qtest/rtc-test.c
@@ -0,0 +1,720 @@
+/*
+ * QTest testcase for the MC146818 real-time clock
+ *
+ * Copyright IBM, Corp. 2012
+ *
+ * Authors:
+ * Anthony Liguori <aliguori@us.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include "qemu/osdep.h"
+
+#include "libqtest-single.h"
+#include "qemu/timer.h"
+#include "hw/rtc/mc146818rtc.h"
+#include "hw/rtc/mc146818rtc_regs.h"
+
+#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
+
+static uint8_t base = 0x70;
+
+static int bcd2dec(int value)
+{
+ return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
+}
+
+static uint8_t cmos_read(uint8_t reg)
+{
+ outb(base + 0, reg);
+ return inb(base + 1);
+}
+
+static void cmos_write(uint8_t reg, uint8_t val)
+{
+ outb(base + 0, reg);
+ outb(base + 1, val);
+}
+
+static int tm_cmp(struct tm *lhs, struct tm *rhs)
+{
+ time_t a, b;
+ struct tm d1, d2;
+
+ memcpy(&d1, lhs, sizeof(d1));
+ memcpy(&d2, rhs, sizeof(d2));
+
+ a = mktime(&d1);
+ b = mktime(&d2);
+
+ if (a < b) {
+ return -1;
+ } else if (a > b) {
+ return 1;
+ }
+
+ return 0;
+}
+
+#if 0
+static void print_tm(struct tm *tm)
+{
+ printf("%04d-%02d-%02d %02d:%02d:%02d\n",
+ tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
+ tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
+}
+#endif
+
+static void cmos_get_date_time(struct tm *date)
+{
+ int base_year = 2000, hour_offset;
+ int sec, min, hour, mday, mon, year;
+ time_t ts;
+ struct tm dummy;
+
+ sec = cmos_read(RTC_SECONDS);
+ min = cmos_read(RTC_MINUTES);
+ hour = cmos_read(RTC_HOURS);
+ mday = cmos_read(RTC_DAY_OF_MONTH);
+ mon = cmos_read(RTC_MONTH);
+ year = cmos_read(RTC_YEAR);
+
+ if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
+ sec = bcd2dec(sec);
+ min = bcd2dec(min);
+ hour = bcd2dec(hour);
+ mday = bcd2dec(mday);
+ mon = bcd2dec(mon);
+ year = bcd2dec(year);
+ hour_offset = 80;
+ } else {
+ hour_offset = 0x80;
+ }
+
+ if ((cmos_read(0x0B) & REG_B_24H) == 0) {
+ if (hour >= hour_offset) {
+ hour -= hour_offset;
+ hour += 12;
+ }
+ }
+
+ ts = time(NULL);
+ localtime_r(&ts, &dummy);
+
+ date->tm_isdst = dummy.tm_isdst;
+ date->tm_sec = sec;
+ date->tm_min = min;
+ date->tm_hour = hour;
+ date->tm_mday = mday;
+ date->tm_mon = mon - 1;
+ date->tm_year = base_year + year - 1900;
+#ifndef __sun__
+ date->tm_gmtoff = 0;
+#endif
+
+ ts = mktime(date);
+}
+
+static void check_time(int wiggle)
+{
+ struct tm start, date[4], end;
+ struct tm *datep;
+ time_t ts;
+
+ /*
+ * This check assumes a few things. First, we cannot guarantee that we get
+ * a consistent reading from the wall clock because we may hit an edge of
+ * the clock while reading. To work around this, we read four clock readings
+ * such that at least two of them should match. We need to assume that one
+ * reading is corrupt so we need four readings to ensure that we have at
+ * least two consecutive identical readings
+ *
+ * It's also possible that we'll cross an edge reading the host clock so
+ * simply check to make sure that the clock reading is within the period of
+ * when we expect it to be.
+ */
+
+ ts = time(NULL);
+ gmtime_r(&ts, &start);
+
+ cmos_get_date_time(&date[0]);
+ cmos_get_date_time(&date[1]);
+ cmos_get_date_time(&date[2]);
+ cmos_get_date_time(&date[3]);
+
+ ts = time(NULL);
+ gmtime_r(&ts, &end);
+
+ if (tm_cmp(&date[0], &date[1]) == 0) {
+ datep = &date[0];
+ } else if (tm_cmp(&date[1], &date[2]) == 0) {
+ datep = &date[1];
+ } else if (tm_cmp(&date[2], &date[3]) == 0) {
+ datep = &date[2];
+ } else {
+ g_assert_not_reached();
+ }
+
+ if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
+ long t, s;
+
+ start.tm_isdst = datep->tm_isdst;
+
+ t = (long)mktime(datep);
+ s = (long)mktime(&start);
+ if (t < s) {
+ g_test_message("RTC is %ld second(s) behind wall-clock", (s - t));
+ } else {
+ g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s));
+ }
+
+ g_assert_cmpint(ABS(t - s), <=, wiggle);
+ }
+}
+
+static int wiggle = 2;
+
+static void set_year_20xx(void)
+{
+ /* Set BCD mode */
+ cmos_write(RTC_REG_B, REG_B_24H);
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_YEAR, 0x11);
+ cmos_write(RTC_CENTURY, 0x20);
+ cmos_write(RTC_MONTH, 0x02);
+ cmos_write(RTC_DAY_OF_MONTH, 0x02);
+ cmos_write(RTC_HOURS, 0x02);
+ cmos_write(RTC_MINUTES, 0x04);
+ cmos_write(RTC_SECONDS, 0x58);
+ cmos_write(RTC_REG_A, 0x26);
+
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
+ g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
+
+ if (sizeof(time_t) == 4) {
+ return;
+ }
+
+ /* Set a date in 2080 to ensure there is no year-2038 overflow. */
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_YEAR, 0x80);
+ cmos_write(RTC_REG_A, 0x26);
+
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
+ g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
+
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_YEAR, 0x11);
+ cmos_write(RTC_REG_A, 0x26);
+
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
+ g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
+}
+
+static void set_year_1980(void)
+{
+ /* Set BCD mode */
+ cmos_write(RTC_REG_B, REG_B_24H);
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_YEAR, 0x80);
+ cmos_write(RTC_CENTURY, 0x19);
+ cmos_write(RTC_MONTH, 0x02);
+ cmos_write(RTC_DAY_OF_MONTH, 0x02);
+ cmos_write(RTC_HOURS, 0x02);
+ cmos_write(RTC_MINUTES, 0x04);
+ cmos_write(RTC_SECONDS, 0x58);
+ cmos_write(RTC_REG_A, 0x26);
+
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
+ g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
+}
+
+static void bcd_check_time(void)
+{
+ /* Set BCD mode */
+ cmos_write(RTC_REG_B, REG_B_24H);
+ check_time(wiggle);
+}
+
+static void dec_check_time(void)
+{
+ /* Set DEC mode */
+ cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
+ check_time(wiggle);
+}
+
+static void alarm_time(void)
+{
+ struct tm now;
+ time_t ts;
+ int i;
+
+ ts = time(NULL);
+ gmtime_r(&ts, &now);
+
+ /* set DEC mode */
+ cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
+
+ g_assert(!get_irq(RTC_ISA_IRQ));
+ cmos_read(RTC_REG_C);
+
+ now.tm_sec = (now.tm_sec + 2) % 60;
+ cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
+ cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
+ cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
+ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
+
+ for (i = 0; i < 2 + wiggle; i++) {
+ if (get_irq(RTC_ISA_IRQ)) {
+ break;
+ }
+
+ clock_step(1000000000);
+ }
+
+ g_assert(get_irq(RTC_ISA_IRQ));
+ g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
+ g_assert(cmos_read(RTC_REG_C) == 0);
+}
+
+static void set_time_regs(int h, int m, int s)
+{
+ cmos_write(RTC_HOURS, h);
+ cmos_write(RTC_MINUTES, m);
+ cmos_write(RTC_SECONDS, s);
+}
+
+static void set_time(int mode, int h, int m, int s)
+{
+ cmos_write(RTC_REG_B, mode);
+ cmos_write(RTC_REG_A, 0x76);
+ set_time_regs(h, m, s);
+ cmos_write(RTC_REG_A, 0x26);
+}
+
+static void set_datetime_bcd(int h, int min, int s, int d, int m, int y)
+{
+ cmos_write(RTC_HOURS, h);
+ cmos_write(RTC_MINUTES, min);
+ cmos_write(RTC_SECONDS, s);
+ cmos_write(RTC_YEAR, y & 0xFF);
+ cmos_write(RTC_CENTURY, y >> 8);
+ cmos_write(RTC_MONTH, m);
+ cmos_write(RTC_DAY_OF_MONTH, d);
+}
+
+static void set_datetime_dec(int h, int min, int s, int d, int m, int y)
+{
+ cmos_write(RTC_HOURS, h);
+ cmos_write(RTC_MINUTES, min);
+ cmos_write(RTC_SECONDS, s);
+ cmos_write(RTC_YEAR, y % 100);
+ cmos_write(RTC_CENTURY, y / 100);
+ cmos_write(RTC_MONTH, m);
+ cmos_write(RTC_DAY_OF_MONTH, d);
+}
+
+static void set_datetime(int mode, int h, int min, int s, int d, int m, int y)
+{
+ cmos_write(RTC_REG_B, mode);
+
+ cmos_write(RTC_REG_A, 0x76);
+ if (mode & REG_B_DM) {
+ set_datetime_dec(h, min, s, d, m, y);
+ } else {
+ set_datetime_bcd(h, min, s, d, m, y);
+ }
+ cmos_write(RTC_REG_A, 0x26);
+}
+
+#define assert_time(h, m, s) \
+ do { \
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
+ g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
+ } while(0)
+
+#define assert_datetime_bcd(h, min, s, d, m, y) \
+ do { \
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
+ g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
+ } while(0)
+
+static void basic_12h_bcd(void)
+{
+ /* set BCD 12 hour mode */
+ set_time(0, 0x81, 0x59, 0x00);
+ clock_step(1000000000LL);
+ assert_time(0x81, 0x59, 0x01);
+ clock_step(59000000000LL);
+ assert_time(0x82, 0x00, 0x00);
+
+ /* test BCD wraparound */
+ set_time(0, 0x09, 0x59, 0x59);
+ clock_step(60000000000LL);
+ assert_time(0x10, 0x00, 0x59);
+
+ /* 12 AM -> 1 AM */
+ set_time(0, 0x12, 0x59, 0x59);
+ clock_step(1000000000LL);
+ assert_time(0x01, 0x00, 0x00);
+
+ /* 12 PM -> 1 PM */
+ set_time(0, 0x92, 0x59, 0x59);
+ clock_step(1000000000LL);
+ assert_time(0x81, 0x00, 0x00);
+
+ /* 11 AM -> 12 PM */
+ set_time(0, 0x11, 0x59, 0x59);
+ clock_step(1000000000LL);
+ assert_time(0x92, 0x00, 0x00);
+ /* TODO: test day wraparound */
+
+ /* 11 PM -> 12 AM */
+ set_time(0, 0x91, 0x59, 0x59);
+ clock_step(1000000000LL);
+ assert_time(0x12, 0x00, 0x00);
+ /* TODO: test day wraparound */
+}
+
+static void basic_12h_dec(void)
+{
+ /* set decimal 12 hour mode */
+ set_time(REG_B_DM, 0x81, 59, 0);
+ clock_step(1000000000LL);
+ assert_time(0x81, 59, 1);
+ clock_step(59000000000LL);
+ assert_time(0x82, 0, 0);
+
+ /* 12 PM -> 1 PM */
+ set_time(REG_B_DM, 0x8c, 59, 59);
+ clock_step(1000000000LL);
+ assert_time(0x81, 0, 0);
+
+ /* 12 AM -> 1 AM */
+ set_time(REG_B_DM, 0x0c, 59, 59);
+ clock_step(1000000000LL);
+ assert_time(0x01, 0, 0);
+
+ /* 11 AM -> 12 PM */
+ set_time(REG_B_DM, 0x0b, 59, 59);
+ clock_step(1000000000LL);
+ assert_time(0x8c, 0, 0);
+
+ /* 11 PM -> 12 AM */
+ set_time(REG_B_DM, 0x8b, 59, 59);
+ clock_step(1000000000LL);
+ assert_time(0x0c, 0, 0);
+ /* TODO: test day wraparound */
+}
+
+static void basic_24h_bcd(void)
+{
+ /* set BCD 24 hour mode */
+ set_time(REG_B_24H, 0x09, 0x59, 0x00);
+ clock_step(1000000000LL);
+ assert_time(0x09, 0x59, 0x01);
+ clock_step(59000000000LL);
+ assert_time(0x10, 0x00, 0x00);
+
+ /* test BCD wraparound */
+ set_time(REG_B_24H, 0x09, 0x59, 0x00);
+ clock_step(60000000000LL);
+ assert_time(0x10, 0x00, 0x00);
+
+ /* TODO: test day wraparound */
+ set_time(REG_B_24H, 0x23, 0x59, 0x00);
+ clock_step(60000000000LL);
+ assert_time(0x00, 0x00, 0x00);
+}
+
+static void basic_24h_dec(void)
+{
+ /* set decimal 24 hour mode */
+ set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
+ clock_step(1000000000LL);
+ assert_time(9, 59, 1);
+ clock_step(59000000000LL);
+ assert_time(10, 0, 0);
+
+ /* test BCD wraparound */
+ set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
+ clock_step(60000000000LL);
+ assert_time(10, 0, 0);
+
+ /* TODO: test day wraparound */
+ set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
+ clock_step(60000000000LL);
+ assert_time(0, 0, 0);
+}
+
+static void am_pm_alarm(void)
+{
+ cmos_write(RTC_MINUTES_ALARM, 0xC0);
+ cmos_write(RTC_SECONDS_ALARM, 0xC0);
+
+ /* set BCD 12 hour mode */
+ cmos_write(RTC_REG_B, 0);
+
+ /* Set time and alarm hour. */
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_HOURS_ALARM, 0x82);
+ cmos_write(RTC_HOURS, 0x81);
+ cmos_write(RTC_MINUTES, 0x59);
+ cmos_write(RTC_SECONDS, 0x00);
+ cmos_read(RTC_REG_C);
+ cmos_write(RTC_REG_A, 0x26);
+
+ /* Check that alarm triggers when AM/PM is set. */
+ clock_step(60000000000LL);
+ g_assert(cmos_read(RTC_HOURS) == 0x82);
+ g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
+
+ /*
+ * Each of the following two tests takes over 60 seconds due to the time
+ * needed to report the PIT interrupts. Unfortunately, our PIT device
+ * model keeps counting even when GATE=0, so we cannot simply disable
+ * it in main().
+ */
+ if (g_test_quick()) {
+ return;
+ }
+
+ /* set DEC 12 hour mode */
+ cmos_write(RTC_REG_B, REG_B_DM);
+
+ /* Set time and alarm hour. */
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_HOURS_ALARM, 0x82);
+ cmos_write(RTC_HOURS, 3);
+ cmos_write(RTC_MINUTES, 0);
+ cmos_write(RTC_SECONDS, 0);
+ cmos_read(RTC_REG_C);
+ cmos_write(RTC_REG_A, 0x26);
+
+ /* Check that alarm triggers. */
+ clock_step(3600 * 11 * 1000000000LL);
+ g_assert(cmos_read(RTC_HOURS) == 0x82);
+ g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
+
+ /* Same as above, with inverted HOURS and HOURS_ALARM. */
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_HOURS_ALARM, 2);
+ cmos_write(RTC_HOURS, 3);
+ cmos_write(RTC_MINUTES, 0);
+ cmos_write(RTC_SECONDS, 0);
+ cmos_read(RTC_REG_C);
+ cmos_write(RTC_REG_A, 0x26);
+
+ /* Check that alarm does not trigger if hours differ only by AM/PM. */
+ clock_step(3600 * 11 * 1000000000LL);
+ g_assert(cmos_read(RTC_HOURS) == 0x82);
+ g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
+}
+
+/* success if no crash or abort */
+static void fuzz_registers(void)
+{
+ unsigned int i;
+
+ for (i = 0; i < 1000; i++) {
+ uint8_t reg, val;
+
+ reg = (uint8_t)g_test_rand_int_range(0, 16);
+ val = (uint8_t)g_test_rand_int_range(0, 256);
+
+ cmos_write(reg, val);
+ cmos_read(reg);
+ }
+}
+
+static void register_b_set_flag(void)
+{
+ if (cmos_read(RTC_REG_A) & REG_A_UIP) {
+ clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5);
+ }
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+
+ /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
+ cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
+
+ set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* Since SET flag is still enabled, time does not advance. */
+ clock_step(1000000000LL);
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* Disable SET flag in Register B */
+ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
+
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* Since SET flag is disabled, the clock now advances. */
+ clock_step(1000000000LL);
+ assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
+}
+
+static void divider_reset(void)
+{
+ /* Enable binary-coded decimal (BCD) mode in Register B*/
+ cmos_write(RTC_REG_B, REG_B_24H);
+
+ /* Enter divider reset */
+ cmos_write(RTC_REG_A, 0x76);
+ set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* Since divider reset flag is still enabled, these are equality checks. */
+ clock_step(1000000000LL);
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* The first update ends 500 ms after divider reset */
+ cmos_write(RTC_REG_A, 0x26);
+ clock_step(500000000LL - UIP_HOLD_LENGTH - 1);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ clock_step(1);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
+ clock_step(UIP_HOLD_LENGTH);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+
+ assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
+}
+
+static void uip_stuck(void)
+{
+ set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* The first update ends 500 ms after divider reset */
+ (void)cmos_read(RTC_REG_C);
+ clock_step(500000000LL);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+ assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
+
+ /* UF is now set. */
+ cmos_write(RTC_HOURS_ALARM, 0x02);
+ cmos_write(RTC_MINUTES_ALARM, 0xC0);
+ cmos_write(RTC_SECONDS_ALARM, 0xC0);
+
+ /* Because the alarm will fire soon, reading register A will latch UIP. */
+ clock_step(1000000000LL - UIP_HOLD_LENGTH / 2);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
+
+ /* Move the alarm far away. This must not cause UIP to remain stuck! */
+ cmos_write(RTC_HOURS_ALARM, 0x03);
+ clock_step(UIP_HOLD_LENGTH);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+}
+
+#define RTC_PERIOD_CODE1 13 /* 8 Hz */
+#define RTC_PERIOD_CODE2 15 /* 2 Hz */
+
+#define RTC_PERIOD_TEST_NR 50
+
+static uint64_t wait_periodic_interrupt(uint64_t real_time)
+{
+ while (!get_irq(RTC_ISA_IRQ)) {
+ real_time = clock_step_next();
+ }
+
+ g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0);
+ return real_time;
+}
+
+static void periodic_timer(void)
+{
+ int i;
+ uint64_t period_clocks, period_time, start_time, real_time;
+
+ /* disable all interrupts. */
+ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) &
+ ~(REG_B_PIE | REG_B_AIE | REG_B_UIE));
+ cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
+ /* enable periodic interrupt after properly configure the period. */
+ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE);
+
+ start_time = real_time = clock_step_next();
+
+ for (i = 0; i < RTC_PERIOD_TEST_NR; i++) {
+ cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
+ real_time = wait_periodic_interrupt(real_time);
+ cmos_write(RTC_REG_A, RTC_PERIOD_CODE2);
+ real_time = wait_periodic_interrupt(real_time);
+ }
+
+ period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) +
+ periodic_period_to_clock(RTC_PERIOD_CODE2);
+ period_clocks *= RTC_PERIOD_TEST_NR;
+ period_time = periodic_clock_to_ns(period_clocks);
+
+ real_time -= start_time;
+ g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=,
+ NANOSECONDS_PER_SECOND * 0.5);
+}
+
+int main(int argc, char **argv)
+{
+ QTestState *s = NULL;
+ int ret;
+
+ g_test_init(&argc, &argv, NULL);
+
+ s = qtest_start("-rtc clock=vm");
+ qtest_irq_intercept_in(s, "ioapic");
+
+ qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
+ qtest_add_func("/rtc/check-time/dec", dec_check_time);
+ qtest_add_func("/rtc/alarm/interrupt", alarm_time);
+ qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
+ qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
+ qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
+ qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
+ qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
+ qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
+ qtest_add_func("/rtc/set-year/1980", set_year_1980);
+ qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag);
+ qtest_add_func("/rtc/update/divider-reset", divider_reset);
+ qtest_add_func("/rtc/update/uip-stuck", uip_stuck);
+ qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
+ qtest_add_func("/rtc/periodic/interrupt", periodic_timer);
+
+ ret = g_test_run();
+
+ if (s) {
+ qtest_quit(s);
+ }
+
+ return ret;
+}