diff options
Diffstat (limited to 'tests/qtest/rtc-test.c')
-rw-r--r-- | tests/qtest/rtc-test.c | 720 |
1 files changed, 720 insertions, 0 deletions
diff --git a/tests/qtest/rtc-test.c b/tests/qtest/rtc-test.c new file mode 100644 index 0000000000..c7af34f6b1 --- /dev/null +++ b/tests/qtest/rtc-test.c @@ -0,0 +1,720 @@ +/* + * QTest testcase for the MC146818 real-time clock + * + * Copyright IBM, Corp. 2012 + * + * Authors: + * Anthony Liguori <aliguori@us.ibm.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + */ + +#include "qemu/osdep.h" + +#include "libqtest-single.h" +#include "qemu/timer.h" +#include "hw/rtc/mc146818rtc.h" +#include "hw/rtc/mc146818rtc_regs.h" + +#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) + +static uint8_t base = 0x70; + +static int bcd2dec(int value) +{ + return (((value >> 4) & 0x0F) * 10) + (value & 0x0F); +} + +static uint8_t cmos_read(uint8_t reg) +{ + outb(base + 0, reg); + return inb(base + 1); +} + +static void cmos_write(uint8_t reg, uint8_t val) +{ + outb(base + 0, reg); + outb(base + 1, val); +} + +static int tm_cmp(struct tm *lhs, struct tm *rhs) +{ + time_t a, b; + struct tm d1, d2; + + memcpy(&d1, lhs, sizeof(d1)); + memcpy(&d2, rhs, sizeof(d2)); + + a = mktime(&d1); + b = mktime(&d2); + + if (a < b) { + return -1; + } else if (a > b) { + return 1; + } + + return 0; +} + +#if 0 +static void print_tm(struct tm *tm) +{ + printf("%04d-%02d-%02d %02d:%02d:%02d\n", + tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, + tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff); +} +#endif + +static void cmos_get_date_time(struct tm *date) +{ + int base_year = 2000, hour_offset; + int sec, min, hour, mday, mon, year; + time_t ts; + struct tm dummy; + + sec = cmos_read(RTC_SECONDS); + min = cmos_read(RTC_MINUTES); + hour = cmos_read(RTC_HOURS); + mday = cmos_read(RTC_DAY_OF_MONTH); + mon = cmos_read(RTC_MONTH); + year = cmos_read(RTC_YEAR); + + if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) { + sec = bcd2dec(sec); + min = bcd2dec(min); + hour = bcd2dec(hour); + mday = bcd2dec(mday); + mon = bcd2dec(mon); + year = bcd2dec(year); + hour_offset = 80; + } else { + hour_offset = 0x80; + } + + if ((cmos_read(0x0B) & REG_B_24H) == 0) { + if (hour >= hour_offset) { + hour -= hour_offset; + hour += 12; + } + } + + ts = time(NULL); + localtime_r(&ts, &dummy); + + date->tm_isdst = dummy.tm_isdst; + date->tm_sec = sec; + date->tm_min = min; + date->tm_hour = hour; + date->tm_mday = mday; + date->tm_mon = mon - 1; + date->tm_year = base_year + year - 1900; +#ifndef __sun__ + date->tm_gmtoff = 0; +#endif + + ts = mktime(date); +} + +static void check_time(int wiggle) +{ + struct tm start, date[4], end; + struct tm *datep; + time_t ts; + + /* + * This check assumes a few things. First, we cannot guarantee that we get + * a consistent reading from the wall clock because we may hit an edge of + * the clock while reading. To work around this, we read four clock readings + * such that at least two of them should match. We need to assume that one + * reading is corrupt so we need four readings to ensure that we have at + * least two consecutive identical readings + * + * It's also possible that we'll cross an edge reading the host clock so + * simply check to make sure that the clock reading is within the period of + * when we expect it to be. + */ + + ts = time(NULL); + gmtime_r(&ts, &start); + + cmos_get_date_time(&date[0]); + cmos_get_date_time(&date[1]); + cmos_get_date_time(&date[2]); + cmos_get_date_time(&date[3]); + + ts = time(NULL); + gmtime_r(&ts, &end); + + if (tm_cmp(&date[0], &date[1]) == 0) { + datep = &date[0]; + } else if (tm_cmp(&date[1], &date[2]) == 0) { + datep = &date[1]; + } else if (tm_cmp(&date[2], &date[3]) == 0) { + datep = &date[2]; + } else { + g_assert_not_reached(); + } + + if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) { + long t, s; + + start.tm_isdst = datep->tm_isdst; + + t = (long)mktime(datep); + s = (long)mktime(&start); + if (t < s) { + g_test_message("RTC is %ld second(s) behind wall-clock", (s - t)); + } else { + g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s)); + } + + g_assert_cmpint(ABS(t - s), <=, wiggle); + } +} + +static int wiggle = 2; + +static void set_year_20xx(void) +{ + /* Set BCD mode */ + cmos_write(RTC_REG_B, REG_B_24H); + cmos_write(RTC_REG_A, 0x76); + cmos_write(RTC_YEAR, 0x11); + cmos_write(RTC_CENTURY, 0x20); + cmos_write(RTC_MONTH, 0x02); + cmos_write(RTC_DAY_OF_MONTH, 0x02); + cmos_write(RTC_HOURS, 0x02); + cmos_write(RTC_MINUTES, 0x04); + cmos_write(RTC_SECONDS, 0x58); + cmos_write(RTC_REG_A, 0x26); + + g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); + g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); + g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); + g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); + + if (sizeof(time_t) == 4) { + return; + } + + /* Set a date in 2080 to ensure there is no year-2038 overflow. */ + cmos_write(RTC_REG_A, 0x76); + cmos_write(RTC_YEAR, 0x80); + cmos_write(RTC_REG_A, 0x26); + + g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); + g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); + g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); + g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); + + cmos_write(RTC_REG_A, 0x76); + cmos_write(RTC_YEAR, 0x11); + cmos_write(RTC_REG_A, 0x26); + + g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); + g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); + g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); + g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); +} + +static void set_year_1980(void) +{ + /* Set BCD mode */ + cmos_write(RTC_REG_B, REG_B_24H); + cmos_write(RTC_REG_A, 0x76); + cmos_write(RTC_YEAR, 0x80); + cmos_write(RTC_CENTURY, 0x19); + cmos_write(RTC_MONTH, 0x02); + cmos_write(RTC_DAY_OF_MONTH, 0x02); + cmos_write(RTC_HOURS, 0x02); + cmos_write(RTC_MINUTES, 0x04); + cmos_write(RTC_SECONDS, 0x58); + cmos_write(RTC_REG_A, 0x26); + + g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); + g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); + g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); + g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); + g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19); +} + +static void bcd_check_time(void) +{ + /* Set BCD mode */ + cmos_write(RTC_REG_B, REG_B_24H); + check_time(wiggle); +} + +static void dec_check_time(void) +{ + /* Set DEC mode */ + cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); + check_time(wiggle); +} + +static void alarm_time(void) +{ + struct tm now; + time_t ts; + int i; + + ts = time(NULL); + gmtime_r(&ts, &now); + + /* set DEC mode */ + cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); + + g_assert(!get_irq(RTC_ISA_IRQ)); + cmos_read(RTC_REG_C); + + now.tm_sec = (now.tm_sec + 2) % 60; + cmos_write(RTC_SECONDS_ALARM, now.tm_sec); + cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE); + cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE); + cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE); + + for (i = 0; i < 2 + wiggle; i++) { + if (get_irq(RTC_ISA_IRQ)) { + break; + } + + clock_step(1000000000); + } + + g_assert(get_irq(RTC_ISA_IRQ)); + g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); + g_assert(cmos_read(RTC_REG_C) == 0); +} + +static void set_time_regs(int h, int m, int s) +{ + cmos_write(RTC_HOURS, h); + cmos_write(RTC_MINUTES, m); + cmos_write(RTC_SECONDS, s); +} + +static void set_time(int mode, int h, int m, int s) +{ + cmos_write(RTC_REG_B, mode); + cmos_write(RTC_REG_A, 0x76); + set_time_regs(h, m, s); + cmos_write(RTC_REG_A, 0x26); +} + +static void set_datetime_bcd(int h, int min, int s, int d, int m, int y) +{ + cmos_write(RTC_HOURS, h); + cmos_write(RTC_MINUTES, min); + cmos_write(RTC_SECONDS, s); + cmos_write(RTC_YEAR, y & 0xFF); + cmos_write(RTC_CENTURY, y >> 8); + cmos_write(RTC_MONTH, m); + cmos_write(RTC_DAY_OF_MONTH, d); +} + +static void set_datetime_dec(int h, int min, int s, int d, int m, int y) +{ + cmos_write(RTC_HOURS, h); + cmos_write(RTC_MINUTES, min); + cmos_write(RTC_SECONDS, s); + cmos_write(RTC_YEAR, y % 100); + cmos_write(RTC_CENTURY, y / 100); + cmos_write(RTC_MONTH, m); + cmos_write(RTC_DAY_OF_MONTH, d); +} + +static void set_datetime(int mode, int h, int min, int s, int d, int m, int y) +{ + cmos_write(RTC_REG_B, mode); + + cmos_write(RTC_REG_A, 0x76); + if (mode & REG_B_DM) { + set_datetime_dec(h, min, s, d, m, y); + } else { + set_datetime_bcd(h, min, s, d, m, y); + } + cmos_write(RTC_REG_A, 0x26); +} + +#define assert_time(h, m, s) \ + do { \ + g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ + g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \ + g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ + } while(0) + +#define assert_datetime_bcd(h, min, s, d, m, y) \ + do { \ + g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ + g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \ + g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ + g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \ + g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \ + g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \ + g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \ + } while(0) + +static void basic_12h_bcd(void) +{ + /* set BCD 12 hour mode */ + set_time(0, 0x81, 0x59, 0x00); + clock_step(1000000000LL); + assert_time(0x81, 0x59, 0x01); + clock_step(59000000000LL); + assert_time(0x82, 0x00, 0x00); + + /* test BCD wraparound */ + set_time(0, 0x09, 0x59, 0x59); + clock_step(60000000000LL); + assert_time(0x10, 0x00, 0x59); + + /* 12 AM -> 1 AM */ + set_time(0, 0x12, 0x59, 0x59); + clock_step(1000000000LL); + assert_time(0x01, 0x00, 0x00); + + /* 12 PM -> 1 PM */ + set_time(0, 0x92, 0x59, 0x59); + clock_step(1000000000LL); + assert_time(0x81, 0x00, 0x00); + + /* 11 AM -> 12 PM */ + set_time(0, 0x11, 0x59, 0x59); + clock_step(1000000000LL); + assert_time(0x92, 0x00, 0x00); + /* TODO: test day wraparound */ + + /* 11 PM -> 12 AM */ + set_time(0, 0x91, 0x59, 0x59); + clock_step(1000000000LL); + assert_time(0x12, 0x00, 0x00); + /* TODO: test day wraparound */ +} + +static void basic_12h_dec(void) +{ + /* set decimal 12 hour mode */ + set_time(REG_B_DM, 0x81, 59, 0); + clock_step(1000000000LL); + assert_time(0x81, 59, 1); + clock_step(59000000000LL); + assert_time(0x82, 0, 0); + + /* 12 PM -> 1 PM */ + set_time(REG_B_DM, 0x8c, 59, 59); + clock_step(1000000000LL); + assert_time(0x81, 0, 0); + + /* 12 AM -> 1 AM */ + set_time(REG_B_DM, 0x0c, 59, 59); + clock_step(1000000000LL); + assert_time(0x01, 0, 0); + + /* 11 AM -> 12 PM */ + set_time(REG_B_DM, 0x0b, 59, 59); + clock_step(1000000000LL); + assert_time(0x8c, 0, 0); + + /* 11 PM -> 12 AM */ + set_time(REG_B_DM, 0x8b, 59, 59); + clock_step(1000000000LL); + assert_time(0x0c, 0, 0); + /* TODO: test day wraparound */ +} + +static void basic_24h_bcd(void) +{ + /* set BCD 24 hour mode */ + set_time(REG_B_24H, 0x09, 0x59, 0x00); + clock_step(1000000000LL); + assert_time(0x09, 0x59, 0x01); + clock_step(59000000000LL); + assert_time(0x10, 0x00, 0x00); + + /* test BCD wraparound */ + set_time(REG_B_24H, 0x09, 0x59, 0x00); + clock_step(60000000000LL); + assert_time(0x10, 0x00, 0x00); + + /* TODO: test day wraparound */ + set_time(REG_B_24H, 0x23, 0x59, 0x00); + clock_step(60000000000LL); + assert_time(0x00, 0x00, 0x00); +} + +static void basic_24h_dec(void) +{ + /* set decimal 24 hour mode */ + set_time(REG_B_24H | REG_B_DM, 9, 59, 0); + clock_step(1000000000LL); + assert_time(9, 59, 1); + clock_step(59000000000LL); + assert_time(10, 0, 0); + + /* test BCD wraparound */ + set_time(REG_B_24H | REG_B_DM, 9, 59, 0); + clock_step(60000000000LL); + assert_time(10, 0, 0); + + /* TODO: test day wraparound */ + set_time(REG_B_24H | REG_B_DM, 23, 59, 0); + clock_step(60000000000LL); + assert_time(0, 0, 0); +} + +static void am_pm_alarm(void) +{ + cmos_write(RTC_MINUTES_ALARM, 0xC0); + cmos_write(RTC_SECONDS_ALARM, 0xC0); + + /* set BCD 12 hour mode */ + cmos_write(RTC_REG_B, 0); + + /* Set time and alarm hour. */ + cmos_write(RTC_REG_A, 0x76); + cmos_write(RTC_HOURS_ALARM, 0x82); + cmos_write(RTC_HOURS, 0x81); + cmos_write(RTC_MINUTES, 0x59); + cmos_write(RTC_SECONDS, 0x00); + cmos_read(RTC_REG_C); + cmos_write(RTC_REG_A, 0x26); + + /* Check that alarm triggers when AM/PM is set. */ + clock_step(60000000000LL); + g_assert(cmos_read(RTC_HOURS) == 0x82); + g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); + + /* + * Each of the following two tests takes over 60 seconds due to the time + * needed to report the PIT interrupts. Unfortunately, our PIT device + * model keeps counting even when GATE=0, so we cannot simply disable + * it in main(). + */ + if (g_test_quick()) { + return; + } + + /* set DEC 12 hour mode */ + cmos_write(RTC_REG_B, REG_B_DM); + + /* Set time and alarm hour. */ + cmos_write(RTC_REG_A, 0x76); + cmos_write(RTC_HOURS_ALARM, 0x82); + cmos_write(RTC_HOURS, 3); + cmos_write(RTC_MINUTES, 0); + cmos_write(RTC_SECONDS, 0); + cmos_read(RTC_REG_C); + cmos_write(RTC_REG_A, 0x26); + + /* Check that alarm triggers. */ + clock_step(3600 * 11 * 1000000000LL); + g_assert(cmos_read(RTC_HOURS) == 0x82); + g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); + + /* Same as above, with inverted HOURS and HOURS_ALARM. */ + cmos_write(RTC_REG_A, 0x76); + cmos_write(RTC_HOURS_ALARM, 2); + cmos_write(RTC_HOURS, 3); + cmos_write(RTC_MINUTES, 0); + cmos_write(RTC_SECONDS, 0); + cmos_read(RTC_REG_C); + cmos_write(RTC_REG_A, 0x26); + + /* Check that alarm does not trigger if hours differ only by AM/PM. */ + clock_step(3600 * 11 * 1000000000LL); + g_assert(cmos_read(RTC_HOURS) == 0x82); + g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0); +} + +/* success if no crash or abort */ +static void fuzz_registers(void) +{ + unsigned int i; + + for (i = 0; i < 1000; i++) { + uint8_t reg, val; + + reg = (uint8_t)g_test_rand_int_range(0, 16); + val = (uint8_t)g_test_rand_int_range(0, 256); + + cmos_write(reg, val); + cmos_read(reg); + } +} + +static void register_b_set_flag(void) +{ + if (cmos_read(RTC_REG_A) & REG_A_UIP) { + clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5); + } + g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); + + /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/ + cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET); + + set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); + + assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); + + /* Since SET flag is still enabled, time does not advance. */ + clock_step(1000000000LL); + assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); + + /* Disable SET flag in Register B */ + cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET); + + assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); + + /* Since SET flag is disabled, the clock now advances. */ + clock_step(1000000000LL); + assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); +} + +static void divider_reset(void) +{ + /* Enable binary-coded decimal (BCD) mode in Register B*/ + cmos_write(RTC_REG_B, REG_B_24H); + + /* Enter divider reset */ + cmos_write(RTC_REG_A, 0x76); + set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); + + assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); + + /* Since divider reset flag is still enabled, these are equality checks. */ + clock_step(1000000000LL); + assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); + + /* The first update ends 500 ms after divider reset */ + cmos_write(RTC_REG_A, 0x26); + clock_step(500000000LL - UIP_HOLD_LENGTH - 1); + g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); + assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); + + clock_step(1); + g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0); + clock_step(UIP_HOLD_LENGTH); + g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); + + assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); +} + +static void uip_stuck(void) +{ + set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); + + /* The first update ends 500 ms after divider reset */ + (void)cmos_read(RTC_REG_C); + clock_step(500000000LL); + g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); + assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); + + /* UF is now set. */ + cmos_write(RTC_HOURS_ALARM, 0x02); + cmos_write(RTC_MINUTES_ALARM, 0xC0); + cmos_write(RTC_SECONDS_ALARM, 0xC0); + + /* Because the alarm will fire soon, reading register A will latch UIP. */ + clock_step(1000000000LL - UIP_HOLD_LENGTH / 2); + g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0); + + /* Move the alarm far away. This must not cause UIP to remain stuck! */ + cmos_write(RTC_HOURS_ALARM, 0x03); + clock_step(UIP_HOLD_LENGTH); + g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); +} + +#define RTC_PERIOD_CODE1 13 /* 8 Hz */ +#define RTC_PERIOD_CODE2 15 /* 2 Hz */ + +#define RTC_PERIOD_TEST_NR 50 + +static uint64_t wait_periodic_interrupt(uint64_t real_time) +{ + while (!get_irq(RTC_ISA_IRQ)) { + real_time = clock_step_next(); + } + + g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0); + return real_time; +} + +static void periodic_timer(void) +{ + int i; + uint64_t period_clocks, period_time, start_time, real_time; + + /* disable all interrupts. */ + cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & + ~(REG_B_PIE | REG_B_AIE | REG_B_UIE)); + cmos_write(RTC_REG_A, RTC_PERIOD_CODE1); + /* enable periodic interrupt after properly configure the period. */ + cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE); + + start_time = real_time = clock_step_next(); + + for (i = 0; i < RTC_PERIOD_TEST_NR; i++) { + cmos_write(RTC_REG_A, RTC_PERIOD_CODE1); + real_time = wait_periodic_interrupt(real_time); + cmos_write(RTC_REG_A, RTC_PERIOD_CODE2); + real_time = wait_periodic_interrupt(real_time); + } + + period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) + + periodic_period_to_clock(RTC_PERIOD_CODE2); + period_clocks *= RTC_PERIOD_TEST_NR; + period_time = periodic_clock_to_ns(period_clocks); + + real_time -= start_time; + g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=, + NANOSECONDS_PER_SECOND * 0.5); +} + +int main(int argc, char **argv) +{ + QTestState *s = NULL; + int ret; + + g_test_init(&argc, &argv, NULL); + + s = qtest_start("-rtc clock=vm"); + qtest_irq_intercept_in(s, "ioapic"); + + qtest_add_func("/rtc/check-time/bcd", bcd_check_time); + qtest_add_func("/rtc/check-time/dec", dec_check_time); + qtest_add_func("/rtc/alarm/interrupt", alarm_time); + qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm); + qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec); + qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd); + qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec); + qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd); + qtest_add_func("/rtc/set-year/20xx", set_year_20xx); + qtest_add_func("/rtc/set-year/1980", set_year_1980); + qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag); + qtest_add_func("/rtc/update/divider-reset", divider_reset); + qtest_add_func("/rtc/update/uip-stuck", uip_stuck); + qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers); + qtest_add_func("/rtc/periodic/interrupt", periodic_timer); + + ret = g_test_run(); + + if (s) { + qtest_quit(s); + } + + return ret; +} |