diff options
Diffstat (limited to 'target')
-rw-r--r-- | target/arm/Makefile.objs | 24 | ||||
-rw-r--r-- | target/arm/cpu.c | 232 | ||||
-rw-r--r-- | target/arm/cpu.h | 2 | ||||
-rw-r--r-- | target/arm/helper.c | 498 | ||||
-rw-r--r-- | target/arm/internals.h | 69 | ||||
-rw-r--r-- | target/arm/op_helper.c | 262 | ||||
-rw-r--r-- | target/arm/tlb_helper.c | 200 | ||||
-rw-r--r-- | target/arm/translate-a64.c | 128 | ||||
-rw-r--r-- | target/arm/translate.c | 91 | ||||
-rw-r--r-- | target/arm/translate.h | 5 | ||||
-rw-r--r-- | target/arm/vfp_helper.c | 199 | ||||
-rw-r--r-- | target/ppc/fpu_helper.c | 841 | ||||
-rw-r--r-- | target/ppc/helper.h | 320 | ||||
-rw-r--r-- | target/ppc/int_helper.c | 26 | ||||
-rw-r--r-- | target/ppc/internal.h | 12 | ||||
-rw-r--r-- | target/ppc/kvm.c | 11 | ||||
-rw-r--r-- | target/ppc/kvm_ppc.h | 10 | ||||
-rw-r--r-- | target/ppc/machine.c | 2 | ||||
-rw-r--r-- | target/ppc/mem_helper.c | 25 | ||||
-rw-r--r-- | target/ppc/translate/vsx-impl.inc.c | 567 | ||||
-rw-r--r-- | target/ppc/translate/vsx-ops.inc.c | 70 | ||||
-rw-r--r-- | target/s390x/cpu_features.c | 352 | ||||
-rw-r--r-- | target/s390x/cpu_features_def.h | 352 | ||||
-rw-r--r-- | target/s390x/cpu_features_def.inc.h | 369 | ||||
-rw-r--r-- | target/s390x/gen-features.c | 30 |
25 files changed, 2323 insertions, 2374 deletions
diff --git a/target/arm/Makefile.objs b/target/arm/Makefile.objs index dfa736a375..5c154f01c5 100644 --- a/target/arm/Makefile.objs +++ b/target/arm/Makefile.objs @@ -1,16 +1,15 @@ obj-y += arm-semi.o -obj-$(CONFIG_SOFTMMU) += machine.o psci.o arch_dump.o monitor.o +obj-y += helper.o vfp_helper.o +obj-y += cpu.o gdbstub.o +obj-$(TARGET_AARCH64) += cpu64.o gdbstub64.o + +obj-$(CONFIG_SOFTMMU) += machine.o arch_dump.o monitor.o +obj-$(CONFIG_SOFTMMU) += arm-powerctl.o + obj-$(CONFIG_KVM) += kvm.o obj-$(call land,$(CONFIG_KVM),$(call lnot,$(TARGET_AARCH64))) += kvm32.o obj-$(call land,$(CONFIG_KVM),$(TARGET_AARCH64)) += kvm64.o obj-$(call lnot,$(CONFIG_KVM)) += kvm-stub.o -obj-y += translate.o op_helper.o helper.o cpu.o -obj-y += neon_helper.o iwmmxt_helper.o vec_helper.o vfp_helper.o -obj-y += gdbstub.o -obj-$(TARGET_AARCH64) += cpu64.o translate-a64.o helper-a64.o gdbstub64.o -obj-$(TARGET_AARCH64) += pauth_helper.o -obj-y += crypto_helper.o -obj-$(CONFIG_SOFTMMU) += arm-powerctl.o DECODETREE = $(SRC_PATH)/scripts/decodetree.py @@ -33,4 +32,13 @@ target/arm/translate-sve.o: target/arm/decode-sve.inc.c target/arm/translate.o: target/arm/decode-vfp.inc.c target/arm/translate.o: target/arm/decode-vfp-uncond.inc.c +obj-y += tlb_helper.o +obj-y += translate.o op_helper.o +obj-y += crypto_helper.o +obj-y += iwmmxt_helper.o vec_helper.o neon_helper.o + +obj-$(CONFIG_SOFTMMU) += psci.o + +obj-$(TARGET_AARCH64) += translate-a64.o helper-a64.o obj-$(TARGET_AARCH64) += translate-sve.o sve_helper.o +obj-$(TARGET_AARCH64) += pauth_helper.o diff --git a/target/arm/cpu.c b/target/arm/cpu.c index 376db154f0..f21261c8ff 100644 --- a/target/arm/cpu.c +++ b/target/arm/cpu.c @@ -19,6 +19,7 @@ */ #include "qemu/osdep.h" +#include "qemu/qemu-print.h" #include "qemu-common.h" #include "target/arm/idau.h" #include "qemu/module.h" @@ -676,6 +677,231 @@ static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) #endif } +#ifdef TARGET_AARCH64 + +static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + uint32_t psr = pstate_read(env); + int i; + int el = arm_current_el(env); + const char *ns_status; + + qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); + for (i = 0; i < 32; i++) { + if (i == 31) { + qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); + } else { + qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], + (i + 2) % 3 ? " " : "\n"); + } + } + + if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { + ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; + } else { + ns_status = ""; + } + qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", + psr, + psr & PSTATE_N ? 'N' : '-', + psr & PSTATE_Z ? 'Z' : '-', + psr & PSTATE_C ? 'C' : '-', + psr & PSTATE_V ? 'V' : '-', + ns_status, + el, + psr & PSTATE_SP ? 'h' : 't'); + + if (cpu_isar_feature(aa64_bti, cpu)) { + qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); + } + if (!(flags & CPU_DUMP_FPU)) { + qemu_fprintf(f, "\n"); + return; + } + if (fp_exception_el(env, el) != 0) { + qemu_fprintf(f, " FPU disabled\n"); + return; + } + qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", + vfp_get_fpcr(env), vfp_get_fpsr(env)); + + if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) { + int j, zcr_len = sve_zcr_len_for_el(env, el); + + for (i = 0; i <= FFR_PRED_NUM; i++) { + bool eol; + if (i == FFR_PRED_NUM) { + qemu_fprintf(f, "FFR="); + /* It's last, so end the line. */ + eol = true; + } else { + qemu_fprintf(f, "P%02d=", i); + switch (zcr_len) { + case 0: + eol = i % 8 == 7; + break; + case 1: + eol = i % 6 == 5; + break; + case 2: + case 3: + eol = i % 3 == 2; + break; + default: + /* More than one quadword per predicate. */ + eol = true; + break; + } + } + for (j = zcr_len / 4; j >= 0; j--) { + int digits; + if (j * 4 + 4 <= zcr_len + 1) { + digits = 16; + } else { + digits = (zcr_len % 4 + 1) * 4; + } + qemu_fprintf(f, "%0*" PRIx64 "%s", digits, + env->vfp.pregs[i].p[j], + j ? ":" : eol ? "\n" : " "); + } + } + + for (i = 0; i < 32; i++) { + if (zcr_len == 0) { + qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", + i, env->vfp.zregs[i].d[1], + env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); + } else if (zcr_len == 1) { + qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 + ":%016" PRIx64 ":%016" PRIx64 "\n", + i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], + env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); + } else { + for (j = zcr_len; j >= 0; j--) { + bool odd = (zcr_len - j) % 2 != 0; + if (j == zcr_len) { + qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); + } else if (!odd) { + if (j > 0) { + qemu_fprintf(f, " [%x-%x]=", j, j - 1); + } else { + qemu_fprintf(f, " [%x]=", j); + } + } + qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", + env->vfp.zregs[i].d[j * 2 + 1], + env->vfp.zregs[i].d[j * 2], + odd || j == 0 ? "\n" : ":"); + } + } + } + } else { + for (i = 0; i < 32; i++) { + uint64_t *q = aa64_vfp_qreg(env, i); + qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", + i, q[1], q[0], (i & 1 ? "\n" : " ")); + } + } +} + +#else + +static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) +{ + g_assert_not_reached(); +} + +#endif + +static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) +{ + ARMCPU *cpu = ARM_CPU(cs); + CPUARMState *env = &cpu->env; + int i; + + if (is_a64(env)) { + aarch64_cpu_dump_state(cs, f, flags); + return; + } + + for (i = 0; i < 16; i++) { + qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); + if ((i % 4) == 3) { + qemu_fprintf(f, "\n"); + } else { + qemu_fprintf(f, " "); + } + } + + if (arm_feature(env, ARM_FEATURE_M)) { + uint32_t xpsr = xpsr_read(env); + const char *mode; + const char *ns_status = ""; + + if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { + ns_status = env->v7m.secure ? "S " : "NS "; + } + + if (xpsr & XPSR_EXCP) { + mode = "handler"; + } else { + if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { + mode = "unpriv-thread"; + } else { + mode = "priv-thread"; + } + } + + qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", + xpsr, + xpsr & XPSR_N ? 'N' : '-', + xpsr & XPSR_Z ? 'Z' : '-', + xpsr & XPSR_C ? 'C' : '-', + xpsr & XPSR_V ? 'V' : '-', + xpsr & XPSR_T ? 'T' : 'A', + ns_status, + mode); + } else { + uint32_t psr = cpsr_read(env); + const char *ns_status = ""; + + if (arm_feature(env, ARM_FEATURE_EL3) && + (psr & CPSR_M) != ARM_CPU_MODE_MON) { + ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; + } + + qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", + psr, + psr & CPSR_N ? 'N' : '-', + psr & CPSR_Z ? 'Z' : '-', + psr & CPSR_C ? 'C' : '-', + psr & CPSR_V ? 'V' : '-', + psr & CPSR_T ? 'T' : 'A', + ns_status, + aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); + } + + if (flags & CPU_DUMP_FPU) { + int numvfpregs = 0; + if (arm_feature(env, ARM_FEATURE_VFP)) { + numvfpregs += 16; + } + if (arm_feature(env, ARM_FEATURE_VFP3)) { + numvfpregs += 16; + } + for (i = 0; i < numvfpregs; i++) { + uint64_t v = *aa32_vfp_dreg(env, i); + qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", + i * 2, (uint32_t)v, + i * 2 + 1, (uint32_t)(v >> 32), + i, v); + } + qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); + } +} + uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz) { uint32_t Aff1 = idx / clustersz; @@ -2340,8 +2566,6 @@ static void arm_cpu_class_init(ObjectClass *oc, void *data) cc->gdb_write_register = arm_cpu_gdb_write_register; #ifndef CONFIG_USER_ONLY cc->do_interrupt = arm_cpu_do_interrupt; - cc->do_unaligned_access = arm_cpu_do_unaligned_access; - cc->do_transaction_failed = arm_cpu_do_transaction_failed; cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug; cc->asidx_from_attrs = arm_asidx_from_attrs; cc->vmsd = &vmstate_arm_cpu; @@ -2364,6 +2588,10 @@ static void arm_cpu_class_init(ObjectClass *oc, void *data) #ifdef CONFIG_TCG cc->tcg_initialize = arm_translate_init; cc->tlb_fill = arm_cpu_tlb_fill; +#if !defined(CONFIG_USER_ONLY) + cc->do_unaligned_access = arm_cpu_do_unaligned_access; + cc->do_transaction_failed = arm_cpu_do_transaction_failed; +#endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ #endif } diff --git a/target/arm/cpu.h b/target/arm/cpu.h index f9da672be5..a9be18660f 100644 --- a/target/arm/cpu.h +++ b/target/arm/cpu.h @@ -929,8 +929,6 @@ void arm_cpu_do_interrupt(CPUState *cpu); void arm_v7m_cpu_do_interrupt(CPUState *cpu); bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); -void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags); - hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, MemTxAttrs *attrs); diff --git a/target/arm/helper.c b/target/arm/helper.c index 7caea52561..9a1fe3b72e 100644 --- a/target/arm/helper.c +++ b/target/arm/helper.c @@ -1,3 +1,10 @@ +/* + * ARM generic helpers. + * + * This code is licensed under the GNU GPL v2 or later. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ #include "qemu/osdep.h" #include "qemu/units.h" #include "target/arm/idau.h" @@ -7,7 +14,6 @@ #include "exec/gdbstub.h" #include "exec/helper-proto.h" #include "qemu/host-utils.h" -#include "sysemu/arch_init.h" #include "sysemu/sysemu.h" #include "qemu/bitops.h" #include "qemu/crc32c.h" @@ -19,7 +25,6 @@ #include "hw/semihosting/semihost.h" #include "sysemu/cpus.h" #include "sysemu/kvm.h" -#include "fpu/softfloat.h" #include "qemu/range.h" #include "qapi/qapi-commands-machine-target.h" #include "qapi/error.h" @@ -28,38 +33,12 @@ #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ #ifndef CONFIG_USER_ONLY -/* Cacheability and shareability attributes for a memory access */ -typedef struct ARMCacheAttrs { - unsigned int attrs:8; /* as in the MAIR register encoding */ - unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ -} ARMCacheAttrs; - -static bool get_phys_addr(CPUARMState *env, target_ulong address, - MMUAccessType access_type, ARMMMUIdx mmu_idx, - hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, - target_ulong *page_size, - ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, target_ulong *page_size_ptr, ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); - -/* Security attributes for an address, as returned by v8m_security_lookup. */ -typedef struct V8M_SAttributes { - bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ - bool ns; - bool nsc; - uint8_t sregion; - bool srvalid; - uint8_t iregion; - bool irvalid; -} V8M_SAttributes; - -static void v8m_security_lookup(CPUARMState *env, uint32_t address, - MMUAccessType access_type, ARMMMUIdx mmu_idx, - V8M_SAttributes *sattrs); #endif static void switch_mode(CPUARMState *env, int mode); @@ -7524,7 +7503,8 @@ void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr) uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) { - /* The TT instructions can be used by unprivileged code, but in + /* + * The TT instructions can be used by unprivileged code, but in * user-only emulation we don't have the MPU. * Luckily since we know we are NonSecure unprivileged (and that in * turn means that the A flag wasn't specified), all the bits in the @@ -7700,22 +7680,41 @@ uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, return target_el; } -/* - * Return true if the v7M CPACR permits access to the FPU for the specified - * security state and privilege level. - */ -static bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv) +void arm_log_exception(int idx) { - switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { - case 0: - case 2: /* UNPREDICTABLE: we treat like 0 */ - return false; - case 1: - return is_priv; - case 3: - return true; - default: - g_assert_not_reached(); + if (qemu_loglevel_mask(CPU_LOG_INT)) { + const char *exc = NULL; + static const char * const excnames[] = { + [EXCP_UDEF] = "Undefined Instruction", + [EXCP_SWI] = "SVC", + [EXCP_PREFETCH_ABORT] = "Prefetch Abort", + [EXCP_DATA_ABORT] = "Data Abort", + [EXCP_IRQ] = "IRQ", + [EXCP_FIQ] = "FIQ", + [EXCP_BKPT] = "Breakpoint", + [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", + [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", + [EXCP_HVC] = "Hypervisor Call", + [EXCP_HYP_TRAP] = "Hypervisor Trap", + [EXCP_SMC] = "Secure Monitor Call", + [EXCP_VIRQ] = "Virtual IRQ", + [EXCP_VFIQ] = "Virtual FIQ", + [EXCP_SEMIHOST] = "Semihosting call", + [EXCP_NOCP] = "v7M NOCP UsageFault", + [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", + [EXCP_STKOF] = "v8M STKOF UsageFault", + [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", + [EXCP_LSERR] = "v8M LSERR UsageFault", + [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", + }; + + if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { + exc = excnames[idx]; + } + if (!exc) { + exc = "unknown"; + } + qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); } } @@ -7796,7 +7795,8 @@ static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, return true; pend_fault: - /* By pending the exception at this point we are making + /* + * By pending the exception at this point we are making * the IMPDEF choice "overridden exceptions pended" (see the * MergeExcInfo() pseudocode). The other choice would be to not * pend them now and then make a choice about which to throw away @@ -7871,7 +7871,8 @@ static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, return true; pend_fault: - /* By pending the exception at this point we are making + /* + * By pending the exception at this point we are making * the IMPDEF choice "overridden exceptions pended" (see the * MergeExcInfo() pseudocode). The other choice would be to not * pend them now and then make a choice about which to throw away @@ -7972,7 +7973,8 @@ void HELPER(v7m_preserve_fp_state)(CPUARMState *env) */ } -/* Write to v7M CONTROL.SPSEL bit for the specified security bank. +/* + * Write to v7M CONTROL.SPSEL bit for the specified security bank. * This may change the current stack pointer between Main and Process * stack pointers if it is done for the CONTROL register for the current * security state. @@ -8000,7 +8002,8 @@ static void write_v7m_control_spsel_for_secstate(CPUARMState *env, } } -/* Write to v7M CONTROL.SPSEL bit. This may change the current +/* + * Write to v7M CONTROL.SPSEL bit. This may change the current * stack pointer between Main and Process stack pointers. */ static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) @@ -8010,7 +8013,8 @@ static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) void write_v7m_exception(CPUARMState *env, uint32_t new_exc) { - /* Write a new value to v7m.exception, thus transitioning into or out + /* + * Write a new value to v7m.exception, thus transitioning into or out * of Handler mode; this may result in a change of active stack pointer. */ bool new_is_psp, old_is_psp = v7m_using_psp(env); @@ -8036,7 +8040,8 @@ static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) return; } - /* All the banked state is accessed by looking at env->v7m.secure + /* + * All the banked state is accessed by looking at env->v7m.secure * except for the stack pointer; rearrange the SP appropriately. */ new_ss_msp = env->v7m.other_ss_msp; @@ -8063,7 +8068,8 @@ static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) { - /* Handle v7M BXNS: + /* + * Handle v7M BXNS: * - if the return value is a magic value, do exception return (like BX) * - otherwise bit 0 of the return value is the target security state */ @@ -8078,7 +8084,8 @@ void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) } if (dest >= min_magic) { - /* This is an exception return magic value; put it where + /* + * This is an exception return magic value; put it where * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. * Note that if we ever add gen_ss_advance() singlestep support to * M profile this should count as an "instruction execution complete" @@ -8103,7 +8110,8 @@ void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) { - /* Handle v7M BLXNS: + /* + * Handle v7M BLXNS: * - bit 0 of the destination address is the target security state */ @@ -8116,7 +8124,8 @@ void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) assert(env->v7m.secure); if (dest & 1) { - /* target is Secure, so this is just a normal BLX, + /* + * Target is Secure, so this is just a normal BLX, * except that the low bit doesn't indicate Thumb/not. */ env->regs[14] = nextinst; @@ -8147,7 +8156,8 @@ void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) env->regs[13] = sp; env->regs[14] = 0xfeffffff; if (arm_v7m_is_handler_mode(env)) { - /* Write a dummy value to IPSR, to avoid leaking the current secure + /* + * Write a dummy value to IPSR, to avoid leaking the current secure * exception number to non-secure code. This is guaranteed not * to cause write_v7m_exception() to actually change stacks. */ @@ -8162,7 +8172,8 @@ void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, bool spsel) { - /* Return a pointer to the location where we currently store the + /* + * Return a pointer to the location where we currently store the * stack pointer for the requested security state and thread mode. * This pointer will become invalid if the CPU state is updated * such that the stack pointers are switched around (eg changing @@ -8208,7 +8219,8 @@ static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); - /* We don't do a get_phys_addr() here because the rules for vector + /* + * We don't do a get_phys_addr() here because the rules for vector * loads are special: they always use the default memory map, and * the default memory map permits reads from all addresses. * Since there's no easy way to pass through to pmsav8_mpu_lookup() @@ -8239,7 +8251,8 @@ static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, return true; load_fail: - /* All vector table fetch fails are reported as HardFault, with + /* + * All vector table fetch fails are reported as HardFault, with * HFSR.VECTTBL and .FORCED set. (FORCED is set because * technically the underlying exception is a MemManage or BusFault * that is escalated to HardFault.) This is a terminal exception, @@ -8271,7 +8284,8 @@ static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr) static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, bool ignore_faults) { - /* For v8M, push the callee-saves register part of the stack frame. + /* + * For v8M, push the callee-saves register part of the stack frame. * Compare the v8M pseudocode PushCalleeStack(). * In the tailchaining case this may not be the current stack. */ @@ -8322,7 +8336,8 @@ static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, return true; } - /* Write as much of the stack frame as we can. A write failure may + /* + * Write as much of the stack frame as we can. A write failure may * cause us to pend a derived exception. */ sig = v7m_integrity_sig(env, lr); @@ -8346,7 +8361,8 @@ static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, bool ignore_stackfaults) { - /* Do the "take the exception" parts of exception entry, + /* + * Do the "take the exception" parts of exception entry, * but not the pushing of state to the stack. This is * similar to the pseudocode ExceptionTaken() function. */ @@ -8371,13 +8387,15 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, if (arm_feature(env, ARM_FEATURE_V8)) { if (arm_feature(env, ARM_FEATURE_M_SECURITY) && (lr & R_V7M_EXCRET_S_MASK)) { - /* The background code (the owner of the registers in the + /* + * The background code (the owner of the registers in the * exception frame) is Secure. This means it may either already * have or now needs to push callee-saves registers. */ if (targets_secure) { if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { - /* We took an exception from Secure to NonSecure + /* + * We took an exception from Secure to NonSecure * (which means the callee-saved registers got stacked) * and are now tailchaining to a Secure exception. * Clear DCRS so eventual return from this Secure @@ -8386,7 +8404,8 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, lr &= ~R_V7M_EXCRET_DCRS_MASK; } } else { - /* We're going to a non-secure exception; push the + /* + * We're going to a non-secure exception; push the * callee-saves registers to the stack now, if they're * not already saved. */ @@ -8408,14 +8427,16 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, lr |= R_V7M_EXCRET_SPSEL_MASK; } - /* Clear registers if necessary to prevent non-secure exception + /* + * Clear registers if necessary to prevent non-secure exception * code being able to see register values from secure code. * Where register values become architecturally UNKNOWN we leave * them with their previous values. */ if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { if (!targets_secure) { - /* Always clear the caller-saved registers (they have been + /* + * Always clear the caller-saved registers (they have been * pushed to the stack earlier in v7m_push_stack()). * Clear callee-saved registers if the background code is * Secure (in which case these regs were saved in @@ -8436,7 +8457,8 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, } if (push_failed && !ignore_stackfaults) { - /* Derived exception on callee-saves register stacking: + /* + * Derived exception on callee-saves register stacking: * we might now want to take a different exception which * targets a different security state, so try again from the top. */ @@ -8453,7 +8475,8 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, return; } - /* Now we've done everything that might cause a derived exception + /* + * Now we've done everything that might cause a derived exception * we can go ahead and activate whichever exception we're going to * take (which might now be the derived exception). */ @@ -8656,7 +8679,8 @@ void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr) static bool v7m_push_stack(ARMCPU *cpu) { - /* Do the "set up stack frame" part of exception entry, + /* + * Do the "set up stack frame" part of exception entry, * similar to pseudocode PushStack(). * Return true if we generate a derived exception (and so * should ignore further stack faults trying to process @@ -8724,7 +8748,8 @@ static bool v7m_push_stack(ARMCPU *cpu) } } - /* Write as much of the stack frame as we can. If we fail a stack + /* + * Write as much of the stack frame as we can. If we fail a stack * write this will result in a derived exception being pended * (which may be taken in preference to the one we started with * if it has higher priority). @@ -8841,7 +8866,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) bool ftype; bool restore_s16_s31; - /* If we're not in Handler mode then jumps to magic exception-exit + /* + * If we're not in Handler mode then jumps to magic exception-exit * addresses don't have magic behaviour. However for the v8M * security extensions the magic secure-function-return has to * work in thread mode too, so to avoid doing an extra check in @@ -8855,7 +8881,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) return; } - /* In the spec pseudocode ExceptionReturn() is called directly + /* + * In the spec pseudocode ExceptionReturn() is called directly * from BXWritePC() and gets the full target PC value including * bit zero. In QEMU's implementation we treat it as a normal * jump-to-register (which is then caught later on), and so split @@ -8888,7 +8915,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) } if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { - /* EXC_RETURN.ES validation check (R_SMFL). We must do this before + /* + * EXC_RETURN.ES validation check (R_SMFL). We must do this before * we pick which FAULTMASK to clear. */ if (!env->v7m.secure && @@ -8902,7 +8930,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) } if (env->v7m.exception != ARMV7M_EXCP_NMI) { - /* Auto-clear FAULTMASK on return from other than NMI. + /* + * Auto-clear FAULTMASK on return from other than NMI. * If the security extension is implemented then this only * happens if the raw execution priority is >= 0; the * value of the ES bit in the exception return value indicates @@ -8927,7 +8956,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) /* still an irq active now */ break; case 1: - /* we returned to base exception level, no nesting. + /* + * We returned to base exception level, no nesting. * (In the pseudocode this is written using "NestedActivation != 1" * where we have 'rettobase == false'.) */ @@ -8944,7 +8974,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) if (arm_feature(env, ARM_FEATURE_V8)) { if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { - /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); + /* + * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); * we choose to take the UsageFault. */ if ((excret & R_V7M_EXCRET_S_MASK) || @@ -8963,7 +8994,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) break; case 13: /* Return to Thread using Process stack */ case 9: /* Return to Thread using Main stack */ - /* We only need to check NONBASETHRDENA for v7M, because in + /* + * We only need to check NONBASETHRDENA for v7M, because in * v8M this bit does not exist (it is RES1). */ if (!rettobase && @@ -9021,7 +9053,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) } if (ufault) { - /* Bad exception return: instead of popping the exception + /* + * Bad exception return: instead of popping the exception * stack, directly take a usage fault on the current stack. */ env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; @@ -9051,7 +9084,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) switch_v7m_security_state(env, return_to_secure); { - /* The stack pointer we should be reading the exception frame from + /* + * The stack pointer we should be reading the exception frame from * depends on bits in the magic exception return type value (and * for v8M isn't necessarily the stack pointer we will eventually * end up resuming execution with). Get a pointer to the location @@ -9124,7 +9158,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); if (!pop_ok) { - /* v7m_stack_read() pended a fault, so take it (as a tail + /* + * v7m_stack_read() pended a fault, so take it (as a tail * chained exception on the same stack frame) */ qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); @@ -9132,7 +9167,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) return; } - /* Returning from an exception with a PC with bit 0 set is defined + /* + * Returning from an exception with a PC with bit 0 set is defined * behaviour on v8M (bit 0 is ignored), but for v7M it was specified * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore * the lsbit, and there are several RTOSes out there which incorrectly @@ -9150,13 +9186,15 @@ static void do_v7m_exception_exit(ARMCPU *cpu) } if (arm_feature(env, ARM_FEATURE_V8)) { - /* For v8M we have to check whether the xPSR exception field + /* + * For v8M we have to check whether the xPSR exception field * matches the EXCRET value for return to handler/thread * before we commit to changing the SP and xPSR. */ bool will_be_handler = (xpsr & XPSR_EXCP) != 0; if (return_to_handler != will_be_handler) { - /* Take an INVPC UsageFault on the current stack. + /* + * Take an INVPC UsageFault on the current stack. * By this point we will have switched to the security state * for the background state, so this UsageFault will target * that state. @@ -9271,7 +9309,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) frameptr += 0x40; } } - /* Undo stack alignment (the SPREALIGN bit indicates that the original + /* + * Undo stack alignment (the SPREALIGN bit indicates that the original * pre-exception SP was not 8-aligned and we added a padding word to * align it, so we undo this by ORing in the bit that increases it * from the current 8-aligned value to the 8-unaligned value. (Adding 4 @@ -9297,13 +9336,15 @@ static void do_v7m_exception_exit(ARMCPU *cpu) V7M_CONTROL, SFPA, sfpa); } - /* The restored xPSR exception field will be zero if we're + /* + * The restored xPSR exception field will be zero if we're * resuming in Thread mode. If that doesn't match what the * exception return excret specified then this is a UsageFault. * v7M requires we make this check here; v8M did it earlier. */ if (return_to_handler != arm_v7m_is_handler_mode(env)) { - /* Take an INVPC UsageFault by pushing the stack again; + /* + * Take an INVPC UsageFault by pushing the stack again; * we know we're v7M so this is never a Secure UsageFault. */ bool ignore_stackfaults; @@ -9325,7 +9366,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu) static bool do_v7m_function_return(ARMCPU *cpu) { - /* v8M security extensions magic function return. + /* + * v8M security extensions magic function return. * We may either: * (1) throw an exception (longjump) * (2) return true if we successfully handled the function return @@ -9355,7 +9397,8 @@ static bool do_v7m_function_return(ARMCPU *cpu) frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); frameptr = *frame_sp_p; - /* These loads may throw an exception (for MPU faults). We want to + /* + * These loads may throw an exception (for MPU faults). We want to * do them as secure, so work out what MMU index that is. */ mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); @@ -9395,48 +9438,11 @@ static bool do_v7m_function_return(ARMCPU *cpu) return true; } -static void arm_log_exception(int idx) -{ - if (qemu_loglevel_mask(CPU_LOG_INT)) { - const char *exc = NULL; - static const char * const excnames[] = { - [EXCP_UDEF] = "Undefined Instruction", - [EXCP_SWI] = "SVC", - [EXCP_PREFETCH_ABORT] = "Prefetch Abort", - [EXCP_DATA_ABORT] = "Data Abort", - [EXCP_IRQ] = "IRQ", - [EXCP_FIQ] = "FIQ", - [EXCP_BKPT] = "Breakpoint", - [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", - [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", - [EXCP_HVC] = "Hypervisor Call", - [EXCP_HYP_TRAP] = "Hypervisor Trap", - [EXCP_SMC] = "Secure Monitor Call", - [EXCP_VIRQ] = "Virtual IRQ", - [EXCP_VFIQ] = "Virtual FIQ", - [EXCP_SEMIHOST] = "Semihosting call", - [EXCP_NOCP] = "v7M NOCP UsageFault", - [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", - [EXCP_STKOF] = "v8M STKOF UsageFault", - [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", - [EXCP_LSERR] = "v8M LSERR UsageFault", - [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", - }; - - if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { - exc = excnames[idx]; - } - if (!exc) { - exc = "unknown"; - } - qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); - } -} - static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, uint32_t addr, uint16_t *insn) { - /* Load a 16-bit portion of a v7M instruction, returning true on success, + /* + * Load a 16-bit portion of a v7M instruction, returning true on success, * or false on failure (in which case we will have pended the appropriate * exception). * We need to do the instruction fetch's MPU and SAU checks @@ -9459,7 +9465,8 @@ static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); if (!sattrs.nsc || sattrs.ns) { - /* This must be the second half of the insn, and it straddles a + /* + * This must be the second half of the insn, and it straddles a * region boundary with the second half not being S&NSC. */ env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; @@ -9489,7 +9496,8 @@ static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, static bool v7m_handle_execute_nsc(ARMCPU *cpu) { - /* Check whether this attempt to execute code in a Secure & NS-Callable + /* + * Check whether this attempt to execute code in a Secure & NS-Callable * memory region is for an SG instruction; if so, then emulate the * effect of the SG instruction and return true. Otherwise pend * the correct kind of exception and return false. @@ -9498,7 +9506,8 @@ static bool v7m_handle_execute_nsc(ARMCPU *cpu) ARMMMUIdx mmu_idx; uint16_t insn; - /* We should never get here unless get_phys_addr_pmsav8() caused + /* + * We should never get here unless get_phys_addr_pmsav8() caused * an exception for NS executing in S&NSC memory. */ assert(!env->v7m.secure); @@ -9516,7 +9525,8 @@ static bool v7m_handle_execute_nsc(ARMCPU *cpu) } if (insn != 0xe97f) { - /* Not an SG instruction first half (we choose the IMPDEF + /* + * Not an SG instruction first half (we choose the IMPDEF * early-SG-check option). */ goto gen_invep; @@ -9527,13 +9537,15 @@ static bool v7m_handle_execute_nsc(ARMCPU *cpu) } if (insn != 0xe97f) { - /* Not an SG instruction second half (yes, both halves of the SG + /* + * Not an SG instruction second half (yes, both halves of the SG * insn have the same hex value) */ goto gen_invep; } - /* OK, we have confirmed that we really have an SG instruction. + /* + * OK, we have confirmed that we really have an SG instruction. * We know we're NS in S memory so don't need to repeat those checks. */ qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 @@ -9562,8 +9574,10 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs) arm_log_exception(cs->exception_index); - /* For exceptions we just mark as pending on the NVIC, and let that - handle it. */ + /* + * For exceptions we just mark as pending on the NVIC, and let that + * handle it. + */ switch (cs->exception_index) { case EXCP_UDEF: armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); @@ -9609,13 +9623,15 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs) break; case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: - /* Note that for M profile we don't have a guest facing FSR, but + /* + * Note that for M profile we don't have a guest facing FSR, but * the env->exception.fsr will be populated by the code that * raises the fault, in the A profile short-descriptor format. */ switch (env->exception.fsr & 0xf) { case M_FAKE_FSR_NSC_EXEC: - /* Exception generated when we try to execute code at an address + /* + * Exception generated when we try to execute code at an address * which is marked as Secure & Non-Secure Callable and the CPU * is in the Non-Secure state. The only instruction which can * be executed like this is SG (and that only if both halves of @@ -9628,7 +9644,8 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs) } break; case M_FAKE_FSR_SFAULT: - /* Various flavours of SecureFault for attempts to execute or + /* + * Various flavours of SecureFault for attempts to execute or * access data in the wrong security state. */ switch (cs->exception_index) { @@ -9670,7 +9687,8 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs) armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); break; default: - /* All other FSR values are either MPU faults or "can't happen + /* + * All other FSR values are either MPU faults or "can't happen * for M profile" cases. */ switch (cs->exception_index) { @@ -9736,7 +9754,8 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs) if (arm_feature(env, ARM_FEATURE_V8)) { lr = R_V7M_EXCRET_RES1_MASK | R_V7M_EXCRET_DCRS_MASK; - /* The S bit indicates whether we should return to Secure + /* + * The S bit indicates whether we should return to Secure * or NonSecure (ie our current state). * The ES bit indicates whether we're taking this exception * to Secure or NonSecure (ie our target state). We set it @@ -9771,7 +9790,8 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs) v7m_exception_taken(cpu, lr, false, ignore_stackfaults); } -/* Function used to synchronize QEMU's AArch64 register set with AArch32 +/* + * Function used to synchronize QEMU's AArch64 register set with AArch32 * register set. This is necessary when switching between AArch32 and AArch64 * execution state. */ @@ -9785,7 +9805,8 @@ void aarch64_sync_32_to_64(CPUARMState *env) env->xregs[i] = env->regs[i]; } - /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. + /* + * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. * Otherwise, they come from the banked user regs. */ if (mode == ARM_CPU_MODE_FIQ) { @@ -9798,7 +9819,8 @@ void aarch64_sync_32_to_64(CPUARMState *env) } } - /* Registers x13-x23 are the various mode SP and FP registers. Registers + /* + * Registers x13-x23 are the various mode SP and FP registers. Registers * r13 and r14 are only copied if we are in that mode, otherwise we copy * from the mode banked register. */ @@ -9853,7 +9875,8 @@ void aarch64_sync_32_to_64(CPUARMState *env) env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; } - /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ + /* + * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ * mode, then we can copy from r8-r14. Otherwise, we copy from the * FIQ bank for r8-r14. */ @@ -9872,7 +9895,8 @@ void aarch64_sync_32_to_64(CPUARMState *env) env->pc = env->regs[15]; } -/* Function used to synchronize QEMU's AArch32 register set with AArch64 +/* + * Function used to synchronize QEMU's AArch32 register set with AArch64 * register set. This is necessary when switching between AArch32 and AArch64 * execution state. */ @@ -9886,7 +9910,8 @@ void aarch64_sync_64_to_32(CPUARMState *env) env->regs[i] = env->xregs[i]; } - /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. + /* + * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. * Otherwise, we copy x8-x12 into the banked user regs. */ if (mode == ARM_CPU_MODE_FIQ) { @@ -9899,7 +9924,8 @@ void aarch64_sync_64_to_32(CPUARMState *env) } } - /* Registers r13 & r14 depend on the current mode. + /* + * Registers r13 & r14 depend on the current mode. * If we are in a given mode, we copy the corresponding x registers to r13 * and r14. Otherwise, we copy the x register to the banked r13 and r14 * for the mode. @@ -9910,7 +9936,8 @@ void aarch64_sync_64_to_32(CPUARMState *env) } else { env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; - /* HYP is an exception in that it does not have its own banked r14 but + /* + * HYP is an exception in that it does not have its own banked r14 but * shares the USR r14 */ if (mode == ARM_CPU_MODE_HYP) { @@ -12056,7 +12083,7 @@ static bool v8m_is_sau_exempt(CPUARMState *env, (address >= 0xe00ff000 && address <= 0xe00fffff); } -static void v8m_security_lookup(CPUARMState *env, uint32_t address, +void v8m_security_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, V8M_SAttributes *sattrs) { @@ -12163,7 +12190,7 @@ static void v8m_security_lookup(CPUARMState *env, uint32_t address, } } -static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, +bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, MMUAccessType access_type, ARMMMUIdx mmu_idx, hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, bool *is_subpage, @@ -12567,11 +12594,11 @@ static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) * @fi: set to fault info if the translation fails * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes */ -static bool get_phys_addr(CPUARMState *env, target_ulong address, - MMUAccessType access_type, ARMMMUIdx mmu_idx, - hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, - target_ulong *page_size, - ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) +bool get_phys_addr(CPUARMState *env, target_ulong address, + MMUAccessType access_type, ARMMMUIdx mmu_idx, + hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, + target_ulong *page_size, + ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) { if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { /* Call ourselves recursively to do the stage 1 and then stage 2 @@ -12753,7 +12780,8 @@ uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) return value; } case 0x94: /* CONTROL_NS */ - /* We have to handle this here because unprivileged Secure code + /* + * We have to handle this here because unprivileged Secure code * can read the NS CONTROL register. */ if (!env->v7m.secure) { @@ -12806,7 +12834,8 @@ uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) return env->v7m.faultmask[M_REG_NS]; case 0x98: /* SP_NS */ { - /* This gives the non-secure SP selected based on whether we're + /* + * This gives the non-secure SP selected based on whether we're * currently in handler mode or not, using the NS CONTROL.SPSEL. */ bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; @@ -12857,7 +12886,8 @@ uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) { - /* We're passed bits [11..0] of the instruction; extract + /* + * We're passed bits [11..0] of the instruction; extract * SYSm and the mask bits. * Invalid combinations of SYSm and mask are UNPREDICTABLE; * we choose to treat them as if the mask bits were valid. @@ -12943,7 +12973,8 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) return; case 0x98: /* SP_NS */ { - /* This gives the non-secure SP selected based on whether we're + /* + * This gives the non-secure SP selected based on whether we're * currently in handler mode or not, using the NS CONTROL.SPSEL. */ bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; @@ -13104,7 +13135,8 @@ uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) bool targetsec = env->v7m.secure; bool is_subpage; - /* Work out what the security state and privilege level we're + /* + * Work out what the security state and privilege level we're * interested in is... */ if (alt) { @@ -13121,12 +13153,14 @@ uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) /* ...and then figure out which MMU index this is */ mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); - /* We know that the MPU and SAU don't care about the access type + /* + * We know that the MPU and SAU don't care about the access type * for our purposes beyond that we don't want to claim to be * an insn fetch, so we arbitrarily call this a read. */ - /* MPU region info only available for privileged or if + /* + * MPU region info only available for privileged or if * inspecting the other MPU state. */ if (arm_current_el(env) != 0 || alt) { @@ -13176,146 +13210,6 @@ uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) #endif -bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, - MMUAccessType access_type, int mmu_idx, - bool probe, uintptr_t retaddr) -{ - ARMCPU *cpu = ARM_CPU(cs); - -#ifdef CONFIG_USER_ONLY - cpu->env.exception.vaddress = address; - if (access_type == MMU_INST_FETCH) { - cs->exception_index = EXCP_PREFETCH_ABORT; - } else { - cs->exception_index = EXCP_DATA_ABORT; - } - cpu_loop_exit_restore(cs, retaddr); -#else - hwaddr phys_addr; - target_ulong page_size; - int prot, ret; - MemTxAttrs attrs = {}; - ARMMMUFaultInfo fi = {}; - - /* - * Walk the page table and (if the mapping exists) add the page - * to the TLB. On success, return true. Otherwise, if probing, - * return false. Otherwise populate fsr with ARM DFSR/IFSR fault - * register format, and signal the fault. - */ - ret = get_phys_addr(&cpu->env, address, access_type, - core_to_arm_mmu_idx(&cpu->env, mmu_idx), - &phys_addr, &attrs, &prot, &page_size, &fi, NULL); - if (likely(!ret)) { - /* - * Map a single [sub]page. Regions smaller than our declared - * target page size are handled specially, so for those we - * pass in the exact addresses. - */ - if (page_size >= TARGET_PAGE_SIZE) { - phys_addr &= TARGET_PAGE_MASK; - address &= TARGET_PAGE_MASK; - } - tlb_set_page_with_attrs(cs, address, phys_addr, attrs, - prot, mmu_idx, page_size); - return true; - } else if (probe) { - return false; - } else { - /* now we have a real cpu fault */ - cpu_restore_state(cs, retaddr, true); - arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi); - } -#endif -} - -void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) -{ - /* Implement DC ZVA, which zeroes a fixed-length block of memory. - * Note that we do not implement the (architecturally mandated) - * alignment fault for attempts to use this on Device memory - * (which matches the usual QEMU behaviour of not implementing either - * alignment faults or any memory attribute handling). - */ - - ARMCPU *cpu = env_archcpu(env); - uint64_t blocklen = 4 << cpu->dcz_blocksize; - uint64_t vaddr = vaddr_in & ~(blocklen - 1); - -#ifndef CONFIG_USER_ONLY - { - /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than - * the block size so we might have to do more than one TLB lookup. - * We know that in fact for any v8 CPU the page size is at least 4K - * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only - * 1K as an artefact of legacy v5 subpage support being present in the - * same QEMU executable. So in practice the hostaddr[] array has - * two entries, given the current setting of TARGET_PAGE_BITS_MIN. - */ - int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); - void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)]; - int try, i; - unsigned mmu_idx = cpu_mmu_index(env, false); - TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); - - assert(maxidx <= ARRAY_SIZE(hostaddr)); - - for (try = 0; try < 2; try++) { - - for (i = 0; i < maxidx; i++) { - hostaddr[i] = tlb_vaddr_to_host(env, - vaddr + TARGET_PAGE_SIZE * i, - 1, mmu_idx); - if (!hostaddr[i]) { - break; - } - } - if (i == maxidx) { - /* If it's all in the TLB it's fair game for just writing to; - * we know we don't need to update dirty status, etc. - */ - for (i = 0; i < maxidx - 1; i++) { - memset(hostaddr[i], 0, TARGET_PAGE_SIZE); - } - memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); - return; - } - /* OK, try a store and see if we can populate the tlb. This - * might cause an exception if the memory isn't writable, - * in which case we will longjmp out of here. We must for - * this purpose use the actual register value passed to us - * so that we get the fault address right. - */ - helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); - /* Now we can populate the other TLB entries, if any */ - for (i = 0; i < maxidx; i++) { - uint64_t va = vaddr + TARGET_PAGE_SIZE * i; - if (va != (vaddr_in & TARGET_PAGE_MASK)) { - helper_ret_stb_mmu(env, va, 0, oi, GETPC()); - } - } - } - - /* Slow path (probably attempt to do this to an I/O device or - * similar, or clearing of a block of code we have translations - * cached for). Just do a series of byte writes as the architecture - * demands. It's not worth trying to use a cpu_physical_memory_map(), - * memset(), unmap() sequence here because: - * + we'd need to account for the blocksize being larger than a page - * + the direct-RAM access case is almost always going to be dealt - * with in the fastpath code above, so there's no speed benefit - * + we would have to deal with the map returning NULL because the - * bounce buffer was in use - */ - for (i = 0; i < blocklen; i++) { - helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); - } - } -#else - memset(g2h(vaddr), 0, blocklen); -#endif -} - /* Note that signed overflow is undefined in C. The following routines are careful to use unsigned types where modulo arithmetic is required. Failure to do so _will_ break on newer gcc. */ diff --git a/target/arm/internals.h b/target/arm/internals.h index 5a02f458f3..232d963875 100644 --- a/target/arm/internals.h +++ b/target/arm/internals.h @@ -529,11 +529,15 @@ vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len); /* Callback function for when a watchpoint or breakpoint triggers. */ void arm_debug_excp_handler(CPUState *cs); -#ifdef CONFIG_USER_ONLY +#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG) static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) { return false; } +static inline void arm_handle_psci_call(ARMCPU *cpu) +{ + g_assert_not_reached(); +} #else /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ bool arm_is_psci_call(ARMCPU *cpu, int excp_type); @@ -765,9 +769,6 @@ bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, MMUAccessType access_type, int mmu_idx, bool probe, uintptr_t retaddr); -void arm_deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type, - int mmu_idx, ARMMMUFaultInfo *fi) QEMU_NORETURN; - /* Return true if the stage 1 translation regime is using LPAE format page * tables */ bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); @@ -892,6 +893,27 @@ static inline uint32_t v7m_sp_limit(CPUARMState *env) } /** + * v7m_cpacr_pass: + * Return true if the v7M CPACR permits access to the FPU for the specified + * security state and privilege level. + */ +static inline bool v7m_cpacr_pass(CPUARMState *env, + bool is_secure, bool is_priv) +{ + switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { + case 0: + case 2: /* UNPREDICTABLE: we treat like 0 */ + return false; + case 1: + return is_priv; + case 3: + return true; + default: + g_assert_not_reached(); + } +} + +/** * aarch32_mode_name(): Return name of the AArch32 CPU mode * @psr: Program Status Register indicating CPU mode * @@ -985,4 +1007,43 @@ static inline int exception_target_el(CPUARMState *env) return target_el; } +#ifndef CONFIG_USER_ONLY + +/* Security attributes for an address, as returned by v8m_security_lookup. */ +typedef struct V8M_SAttributes { + bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ + bool ns; + bool nsc; + uint8_t sregion; + bool srvalid; + uint8_t iregion; + bool irvalid; +} V8M_SAttributes; + +void v8m_security_lookup(CPUARMState *env, uint32_t address, + MMUAccessType access_type, ARMMMUIdx mmu_idx, + V8M_SAttributes *sattrs); + +bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, + MMUAccessType access_type, ARMMMUIdx mmu_idx, + hwaddr *phys_ptr, MemTxAttrs *txattrs, + int *prot, bool *is_subpage, + ARMMMUFaultInfo *fi, uint32_t *mregion); + +/* Cacheability and shareability attributes for a memory access */ +typedef struct ARMCacheAttrs { + unsigned int attrs:8; /* as in the MAIR register encoding */ + unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ +} ARMCacheAttrs; + +bool get_phys_addr(CPUARMState *env, target_ulong address, + MMUAccessType access_type, ARMMMUIdx mmu_idx, + hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, + target_ulong *page_size, + ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); + +void arm_log_exception(int idx); + +#endif /* !CONFIG_USER_ONLY */ + #endif diff --git a/target/arm/op_helper.c b/target/arm/op_helper.c index 4db254876d..9850993c11 100644 --- a/target/arm/op_helper.c +++ b/target/arm/op_helper.c @@ -17,6 +17,7 @@ * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" +#include "qemu/units.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "cpu.h" @@ -87,136 +88,6 @@ uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn, return val; } -#if !defined(CONFIG_USER_ONLY) - -static inline uint32_t merge_syn_data_abort(uint32_t template_syn, - unsigned int target_el, - bool same_el, bool ea, - bool s1ptw, bool is_write, - int fsc) -{ - uint32_t syn; - - /* ISV is only set for data aborts routed to EL2 and - * never for stage-1 page table walks faulting on stage 2. - * - * Furthermore, ISV is only set for certain kinds of load/stores. - * If the template syndrome does not have ISV set, we should leave - * it cleared. - * - * See ARMv8 specs, D7-1974: - * ISS encoding for an exception from a Data Abort, the - * ISV field. - */ - if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) { - syn = syn_data_abort_no_iss(same_el, - ea, 0, s1ptw, is_write, fsc); - } else { - /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template - * syndrome created at translation time. - * Now we create the runtime syndrome with the remaining fields. - */ - syn = syn_data_abort_with_iss(same_el, - 0, 0, 0, 0, 0, - ea, 0, s1ptw, is_write, fsc, - false); - /* Merge the runtime syndrome with the template syndrome. */ - syn |= template_syn; - } - return syn; -} - -void arm_deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type, - int mmu_idx, ARMMMUFaultInfo *fi) -{ - CPUARMState *env = &cpu->env; - int target_el; - bool same_el; - uint32_t syn, exc, fsr, fsc; - ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); - - target_el = exception_target_el(env); - if (fi->stage2) { - target_el = 2; - env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4; - } - same_el = (arm_current_el(env) == target_el); - - if (target_el == 2 || arm_el_is_aa64(env, target_el) || - arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) { - /* LPAE format fault status register : bottom 6 bits are - * status code in the same form as needed for syndrome - */ - fsr = arm_fi_to_lfsc(fi); - fsc = extract32(fsr, 0, 6); - } else { - fsr = arm_fi_to_sfsc(fi); - /* Short format FSR : this fault will never actually be reported - * to an EL that uses a syndrome register. Use a (currently) - * reserved FSR code in case the constructed syndrome does leak - * into the guest somehow. - */ - fsc = 0x3f; - } - - if (access_type == MMU_INST_FETCH) { - syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc); - exc = EXCP_PREFETCH_ABORT; - } else { - syn = merge_syn_data_abort(env->exception.syndrome, target_el, - same_el, fi->ea, fi->s1ptw, - access_type == MMU_DATA_STORE, - fsc); - if (access_type == MMU_DATA_STORE - && arm_feature(env, ARM_FEATURE_V6)) { - fsr |= (1 << 11); - } - exc = EXCP_DATA_ABORT; - } - - env->exception.vaddress = addr; - env->exception.fsr = fsr; - raise_exception(env, exc, syn, target_el); -} - -/* Raise a data fault alignment exception for the specified virtual address */ -void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, - MMUAccessType access_type, - int mmu_idx, uintptr_t retaddr) -{ - ARMCPU *cpu = ARM_CPU(cs); - ARMMMUFaultInfo fi = {}; - - /* now we have a real cpu fault */ - cpu_restore_state(cs, retaddr, true); - - fi.type = ARMFault_Alignment; - arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi); -} - -/* arm_cpu_do_transaction_failed: handle a memory system error response - * (eg "no device/memory present at address") by raising an external abort - * exception - */ -void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, - vaddr addr, unsigned size, - MMUAccessType access_type, - int mmu_idx, MemTxAttrs attrs, - MemTxResult response, uintptr_t retaddr) -{ - ARMCPU *cpu = ARM_CPU(cs); - ARMMMUFaultInfo fi = {}; - - /* now we have a real cpu fault */ - cpu_restore_state(cs, retaddr, true); - - fi.ea = arm_extabort_type(response); - fi.type = ARMFault_SyncExternal; - arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi); -} - -#endif /* !defined(CONFIG_USER_ONLY) */ - void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue) { /* @@ -970,7 +841,8 @@ static bool linked_bp_matches(ARMCPU *cpu, int lbn) int bt; uint32_t contextidr; - /* Links to unimplemented or non-context aware breakpoints are + /* + * Links to unimplemented or non-context aware breakpoints are * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or * as if linked to an UNKNOWN context-aware breakpoint (in which * case DBGWCR<n>_EL1.LBN must indicate that breakpoint). @@ -989,7 +861,8 @@ static bool linked_bp_matches(ARMCPU *cpu, int lbn) bt = extract64(bcr, 20, 4); - /* We match the whole register even if this is AArch32 using the + /* + * We match the whole register even if this is AArch32 using the * short descriptor format (in which case it holds both PROCID and ASID), * since we don't implement the optional v7 context ID masking. */ @@ -1006,7 +879,8 @@ static bool linked_bp_matches(ARMCPU *cpu, int lbn) case 9: /* linked VMID match (reserved if no EL2) */ case 11: /* linked context ID and VMID match (reserved if no EL2) */ default: - /* Links to Unlinked context breakpoints must generate no + /* + * Links to Unlinked context breakpoints must generate no * events; we choose to do the same for reserved values too. */ return false; @@ -1020,7 +894,8 @@ static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) CPUARMState *env = &cpu->env; uint64_t cr; int pac, hmc, ssc, wt, lbn; - /* Note that for watchpoints the check is against the CPU security + /* + * Note that for watchpoints the check is against the CPU security * state, not the S/NS attribute on the offending data access. */ bool is_secure = arm_is_secure(env); @@ -1034,7 +909,8 @@ static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) } cr = env->cp15.dbgwcr[n]; if (wp->hitattrs.user) { - /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should + /* + * The LDRT/STRT/LDT/STT "unprivileged access" instructions should * match watchpoints as if they were accesses done at EL0, even if * the CPU is at EL1 or higher. */ @@ -1048,7 +924,8 @@ static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp) } cr = env->cp15.dbgbcr[n]; } - /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is + /* + * The WATCHPOINT_HIT flag guarantees us that the watchpoint is * enabled and that the address and access type match; for breakpoints * we know the address matched; check the remaining fields, including * linked breakpoints. We rely on WCR and BCR having the same layout @@ -1116,7 +993,8 @@ static bool check_watchpoints(ARMCPU *cpu) CPUARMState *env = &cpu->env; int n; - /* If watchpoints are disabled globally or we can't take debug + /* + * If watchpoints are disabled globally or we can't take debug * exceptions here then watchpoint firings are ignored. */ if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 @@ -1137,7 +1015,8 @@ static bool check_breakpoints(ARMCPU *cpu) CPUARMState *env = &cpu->env; int n; - /* If breakpoints are disabled globally or we can't take debug + /* + * If breakpoints are disabled globally or we can't take debug * exceptions here then breakpoint firings are ignored. */ if (extract32(env->cp15.mdscr_el1, 15, 1) == 0 @@ -1164,7 +1043,8 @@ void HELPER(check_breakpoints)(CPUARMState *env) bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp) { - /* Called by core code when a CPU watchpoint fires; need to check if this + /* + * Called by core code when a CPU watchpoint fires; need to check if this * is also an architectural watchpoint match. */ ARMCPU *cpu = ARM_CPU(cs); @@ -1177,7 +1057,8 @@ vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len) ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; - /* In BE32 system mode, target memory is stored byteswapped (on a + /* + * In BE32 system mode, target memory is stored byteswapped (on a * little-endian host system), and by the time we reach here (via an * opcode helper) the addresses of subword accesses have been adjusted * to account for that, which means that watchpoints will not match. @@ -1196,7 +1077,8 @@ vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len) void arm_debug_excp_handler(CPUState *cs) { - /* Called by core code when a watchpoint or breakpoint fires; + /* + * Called by core code when a watchpoint or breakpoint fires; * need to check which one and raise the appropriate exception. */ ARMCPU *cpu = ARM_CPU(cs); @@ -1220,7 +1102,8 @@ void arm_debug_excp_handler(CPUState *cs) uint64_t pc = is_a64(env) ? env->pc : env->regs[15]; bool same_el = (arm_debug_target_el(env) == arm_current_el(env)); - /* (1) GDB breakpoints should be handled first. + /* + * (1) GDB breakpoints should be handled first. * (2) Do not raise a CPU exception if no CPU breakpoint has fired, * since singlestep is also done by generating a debug internal * exception. @@ -1231,7 +1114,8 @@ void arm_debug_excp_handler(CPUState *cs) } env->exception.fsr = arm_debug_exception_fsr(env); - /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing + /* + * FAR is UNKNOWN: clear vaddress to avoid potentially exposing * values to the guest that it shouldn't be able to see at its * exception/security level. */ @@ -1307,3 +1191,95 @@ uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) return ((uint32_t)x >> shift) | (x << (32 - shift)); } } + +void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) +{ + /* + * Implement DC ZVA, which zeroes a fixed-length block of memory. + * Note that we do not implement the (architecturally mandated) + * alignment fault for attempts to use this on Device memory + * (which matches the usual QEMU behaviour of not implementing either + * alignment faults or any memory attribute handling). + */ + + ARMCPU *cpu = env_archcpu(env); + uint64_t blocklen = 4 << cpu->dcz_blocksize; + uint64_t vaddr = vaddr_in & ~(blocklen - 1); + +#ifndef CONFIG_USER_ONLY + { + /* + * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than + * the block size so we might have to do more than one TLB lookup. + * We know that in fact for any v8 CPU the page size is at least 4K + * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only + * 1K as an artefact of legacy v5 subpage support being present in the + * same QEMU executable. So in practice the hostaddr[] array has + * two entries, given the current setting of TARGET_PAGE_BITS_MIN. + */ + int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); + void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)]; + int try, i; + unsigned mmu_idx = cpu_mmu_index(env, false); + TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); + + assert(maxidx <= ARRAY_SIZE(hostaddr)); + + for (try = 0; try < 2; try++) { + + for (i = 0; i < maxidx; i++) { + hostaddr[i] = tlb_vaddr_to_host(env, + vaddr + TARGET_PAGE_SIZE * i, + 1, mmu_idx); + if (!hostaddr[i]) { + break; + } + } + if (i == maxidx) { + /* + * If it's all in the TLB it's fair game for just writing to; + * we know we don't need to update dirty status, etc. + */ + for (i = 0; i < maxidx - 1; i++) { + memset(hostaddr[i], 0, TARGET_PAGE_SIZE); + } + memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); + return; + } + /* + * OK, try a store and see if we can populate the tlb. This + * might cause an exception if the memory isn't writable, + * in which case we will longjmp out of here. We must for + * this purpose use the actual register value passed to us + * so that we get the fault address right. + */ + helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); + /* Now we can populate the other TLB entries, if any */ + for (i = 0; i < maxidx; i++) { + uint64_t va = vaddr + TARGET_PAGE_SIZE * i; + if (va != (vaddr_in & TARGET_PAGE_MASK)) { + helper_ret_stb_mmu(env, va, 0, oi, GETPC()); + } + } + } + + /* + * Slow path (probably attempt to do this to an I/O device or + * similar, or clearing of a block of code we have translations + * cached for). Just do a series of byte writes as the architecture + * demands. It's not worth trying to use a cpu_physical_memory_map(), + * memset(), unmap() sequence here because: + * + we'd need to account for the blocksize being larger than a page + * + the direct-RAM access case is almost always going to be dealt + * with in the fastpath code above, so there's no speed benefit + * + we would have to deal with the map returning NULL because the + * bounce buffer was in use + */ + for (i = 0; i < blocklen; i++) { + helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); + } + } +#else + memset(g2h(vaddr), 0, blocklen); +#endif +} diff --git a/target/arm/tlb_helper.c b/target/arm/tlb_helper.c new file mode 100644 index 0000000000..5feb312941 --- /dev/null +++ b/target/arm/tlb_helper.c @@ -0,0 +1,200 @@ +/* + * ARM TLB (Translation lookaside buffer) helpers. + * + * This code is licensed under the GNU GPL v2 or later. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ +#include "qemu/osdep.h" +#include "cpu.h" +#include "internals.h" +#include "exec/exec-all.h" + +#if !defined(CONFIG_USER_ONLY) + +static inline uint32_t merge_syn_data_abort(uint32_t template_syn, + unsigned int target_el, + bool same_el, bool ea, + bool s1ptw, bool is_write, + int fsc) +{ + uint32_t syn; + + /* + * ISV is only set for data aborts routed to EL2 and + * never for stage-1 page table walks faulting on stage 2. + * + * Furthermore, ISV is only set for certain kinds of load/stores. + * If the template syndrome does not have ISV set, we should leave + * it cleared. + * + * See ARMv8 specs, D7-1974: + * ISS encoding for an exception from a Data Abort, the + * ISV field. + */ + if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) { + syn = syn_data_abort_no_iss(same_el, + ea, 0, s1ptw, is_write, fsc); + } else { + /* + * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template + * syndrome created at translation time. + * Now we create the runtime syndrome with the remaining fields. + */ + syn = syn_data_abort_with_iss(same_el, + 0, 0, 0, 0, 0, + ea, 0, s1ptw, is_write, fsc, + false); + /* Merge the runtime syndrome with the template syndrome. */ + syn |= template_syn; + } + return syn; +} + +static void QEMU_NORETURN arm_deliver_fault(ARMCPU *cpu, vaddr addr, + MMUAccessType access_type, + int mmu_idx, ARMMMUFaultInfo *fi) +{ + CPUARMState *env = &cpu->env; + int target_el; + bool same_el; + uint32_t syn, exc, fsr, fsc; + ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx); + + target_el = exception_target_el(env); + if (fi->stage2) { + target_el = 2; + env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4; + } + same_el = (arm_current_el(env) == target_el); + + if (target_el == 2 || arm_el_is_aa64(env, target_el) || + arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) { + /* + * LPAE format fault status register : bottom 6 bits are + * status code in the same form as needed for syndrome + */ + fsr = arm_fi_to_lfsc(fi); + fsc = extract32(fsr, 0, 6); + } else { + fsr = arm_fi_to_sfsc(fi); + /* + * Short format FSR : this fault will never actually be reported + * to an EL that uses a syndrome register. Use a (currently) + * reserved FSR code in case the constructed syndrome does leak + * into the guest somehow. + */ + fsc = 0x3f; + } + + if (access_type == MMU_INST_FETCH) { + syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc); + exc = EXCP_PREFETCH_ABORT; + } else { + syn = merge_syn_data_abort(env->exception.syndrome, target_el, + same_el, fi->ea, fi->s1ptw, + access_type == MMU_DATA_STORE, + fsc); + if (access_type == MMU_DATA_STORE + && arm_feature(env, ARM_FEATURE_V6)) { + fsr |= (1 << 11); + } + exc = EXCP_DATA_ABORT; + } + + env->exception.vaddress = addr; + env->exception.fsr = fsr; + raise_exception(env, exc, syn, target_el); +} + +/* Raise a data fault alignment exception for the specified virtual address */ +void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, + MMUAccessType access_type, + int mmu_idx, uintptr_t retaddr) +{ + ARMCPU *cpu = ARM_CPU(cs); + ARMMMUFaultInfo fi = {}; + + /* now we have a real cpu fault */ + cpu_restore_state(cs, retaddr, true); + + fi.type = ARMFault_Alignment; + arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi); +} + +/* + * arm_cpu_do_transaction_failed: handle a memory system error response + * (eg "no device/memory present at address") by raising an external abort + * exception + */ +void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, + vaddr addr, unsigned size, + MMUAccessType access_type, + int mmu_idx, MemTxAttrs attrs, + MemTxResult response, uintptr_t retaddr) +{ + ARMCPU *cpu = ARM_CPU(cs); + ARMMMUFaultInfo fi = {}; + + /* now we have a real cpu fault */ + cpu_restore_state(cs, retaddr, true); + + fi.ea = arm_extabort_type(response); + fi.type = ARMFault_SyncExternal; + arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi); +} + +#endif /* !defined(CONFIG_USER_ONLY) */ + +bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, + MMUAccessType access_type, int mmu_idx, + bool probe, uintptr_t retaddr) +{ + ARMCPU *cpu = ARM_CPU(cs); + +#ifdef CONFIG_USER_ONLY + cpu->env.exception.vaddress = address; + if (access_type == MMU_INST_FETCH) { + cs->exception_index = EXCP_PREFETCH_ABORT; + } else { + cs->exception_index = EXCP_DATA_ABORT; + } + cpu_loop_exit_restore(cs, retaddr); +#else + hwaddr phys_addr; + target_ulong page_size; + int prot, ret; + MemTxAttrs attrs = {}; + ARMMMUFaultInfo fi = {}; + + /* + * Walk the page table and (if the mapping exists) add the page + * to the TLB. On success, return true. Otherwise, if probing, + * return false. Otherwise populate fsr with ARM DFSR/IFSR fault + * register format, and signal the fault. + */ + ret = get_phys_addr(&cpu->env, address, access_type, + core_to_arm_mmu_idx(&cpu->env, mmu_idx), + &phys_addr, &attrs, &prot, &page_size, &fi, NULL); + if (likely(!ret)) { + /* + * Map a single [sub]page. Regions smaller than our declared + * target page size are handled specially, so for those we + * pass in the exact addresses. + */ + if (page_size >= TARGET_PAGE_SIZE) { + phys_addr &= TARGET_PAGE_MASK; + address &= TARGET_PAGE_MASK; + } + tlb_set_page_with_attrs(cs, address, phys_addr, attrs, + prot, mmu_idx, page_size); + return true; + } else if (probe) { + return false; + } else { + /* now we have a real cpu fault */ + cpu_restore_state(cs, retaddr, true); + arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi); + } +#endif +} diff --git a/target/arm/translate-a64.c b/target/arm/translate-a64.c index 97f4164fbb..d3231477a2 100644 --- a/target/arm/translate-a64.c +++ b/target/arm/translate-a64.c @@ -27,7 +27,6 @@ #include "translate.h" #include "internals.h" #include "qemu/host-utils.h" -#include "qemu/qemu-print.h" #include "hw/semihosting/semihost.h" #include "exec/gen-icount.h" @@ -152,133 +151,6 @@ static void set_btype(DisasContext *s, int val) s->btype = -1; } -void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) -{ - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - uint32_t psr = pstate_read(env); - int i; - int el = arm_current_el(env); - const char *ns_status; - - qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); - for (i = 0; i < 32; i++) { - if (i == 31) { - qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); - } else { - qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], - (i + 2) % 3 ? " " : "\n"); - } - } - - if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { - ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; - } else { - ns_status = ""; - } - qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", - psr, - psr & PSTATE_N ? 'N' : '-', - psr & PSTATE_Z ? 'Z' : '-', - psr & PSTATE_C ? 'C' : '-', - psr & PSTATE_V ? 'V' : '-', - ns_status, - el, - psr & PSTATE_SP ? 'h' : 't'); - - if (cpu_isar_feature(aa64_bti, cpu)) { - qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); - } - if (!(flags & CPU_DUMP_FPU)) { - qemu_fprintf(f, "\n"); - return; - } - if (fp_exception_el(env, el) != 0) { - qemu_fprintf(f, " FPU disabled\n"); - return; - } - qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", - vfp_get_fpcr(env), vfp_get_fpsr(env)); - - if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) { - int j, zcr_len = sve_zcr_len_for_el(env, el); - - for (i = 0; i <= FFR_PRED_NUM; i++) { - bool eol; - if (i == FFR_PRED_NUM) { - qemu_fprintf(f, "FFR="); - /* It's last, so end the line. */ - eol = true; - } else { - qemu_fprintf(f, "P%02d=", i); - switch (zcr_len) { - case 0: - eol = i % 8 == 7; - break; - case 1: - eol = i % 6 == 5; - break; - case 2: - case 3: - eol = i % 3 == 2; - break; - default: - /* More than one quadword per predicate. */ - eol = true; - break; - } - } - for (j = zcr_len / 4; j >= 0; j--) { - int digits; - if (j * 4 + 4 <= zcr_len + 1) { - digits = 16; - } else { - digits = (zcr_len % 4 + 1) * 4; - } - qemu_fprintf(f, "%0*" PRIx64 "%s", digits, - env->vfp.pregs[i].p[j], - j ? ":" : eol ? "\n" : " "); - } - } - - for (i = 0; i < 32; i++) { - if (zcr_len == 0) { - qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", - i, env->vfp.zregs[i].d[1], - env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); - } else if (zcr_len == 1) { - qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 - ":%016" PRIx64 ":%016" PRIx64 "\n", - i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], - env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); - } else { - for (j = zcr_len; j >= 0; j--) { - bool odd = (zcr_len - j) % 2 != 0; - if (j == zcr_len) { - qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); - } else if (!odd) { - if (j > 0) { - qemu_fprintf(f, " [%x-%x]=", j, j - 1); - } else { - qemu_fprintf(f, " [%x]=", j); - } - } - qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", - env->vfp.zregs[i].d[j * 2 + 1], - env->vfp.zregs[i].d[j * 2], - odd || j == 0 ? "\n" : ":"); - } - } - } - } else { - for (i = 0; i < 32; i++) { - uint64_t *q = aa64_vfp_qreg(env, i); - qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", - i, q[1], q[0], (i & 1 ? "\n" : " ")); - } - } -} - void gen_a64_set_pc_im(uint64_t val) { tcg_gen_movi_i64(cpu_pc, val); diff --git a/target/arm/translate.c b/target/arm/translate.c index 4750b9fa1b..a5d7723423 100644 --- a/target/arm/translate.c +++ b/target/arm/translate.c @@ -28,7 +28,6 @@ #include "tcg-op-gvec.h" #include "qemu/log.h" #include "qemu/bitops.h" -#include "qemu/qemu-print.h" #include "arm_ldst.h" #include "hw/semihosting/semihost.h" @@ -9109,7 +9108,7 @@ static void disas_arm_insn(DisasContext *s, unsigned int insn) loaded_base = 0; loaded_var = NULL; n = 0; - for(i=0;i<16;i++) { + for (i = 0; i < 16; i++) { if (insn & (1 << i)) n++; } @@ -9132,7 +9131,7 @@ static void disas_arm_insn(DisasContext *s, unsigned int insn) } } j = 0; - for(i=0;i<16;i++) { + for (i = 0; i < 16; i++) { if (insn & (1 << i)) { if (is_load) { /* load */ @@ -12342,92 +12341,6 @@ void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns) translator_loop(ops, &dc.base, cpu, tb, max_insns); } -void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) -{ - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - int i; - - if (is_a64(env)) { - aarch64_cpu_dump_state(cs, f, flags); - return; - } - - for(i=0;i<16;i++) { - qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); - if ((i % 4) == 3) - qemu_fprintf(f, "\n"); - else - qemu_fprintf(f, " "); - } - - if (arm_feature(env, ARM_FEATURE_M)) { - uint32_t xpsr = xpsr_read(env); - const char *mode; - const char *ns_status = ""; - - if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { - ns_status = env->v7m.secure ? "S " : "NS "; - } - - if (xpsr & XPSR_EXCP) { - mode = "handler"; - } else { - if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { - mode = "unpriv-thread"; - } else { - mode = "priv-thread"; - } - } - - qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", - xpsr, - xpsr & XPSR_N ? 'N' : '-', - xpsr & XPSR_Z ? 'Z' : '-', - xpsr & XPSR_C ? 'C' : '-', - xpsr & XPSR_V ? 'V' : '-', - xpsr & XPSR_T ? 'T' : 'A', - ns_status, - mode); - } else { - uint32_t psr = cpsr_read(env); - const char *ns_status = ""; - - if (arm_feature(env, ARM_FEATURE_EL3) && - (psr & CPSR_M) != ARM_CPU_MODE_MON) { - ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; - } - - qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", - psr, - psr & CPSR_N ? 'N' : '-', - psr & CPSR_Z ? 'Z' : '-', - psr & CPSR_C ? 'C' : '-', - psr & CPSR_V ? 'V' : '-', - psr & CPSR_T ? 'T' : 'A', - ns_status, - aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); - } - - if (flags & CPU_DUMP_FPU) { - int numvfpregs = 0; - if (arm_feature(env, ARM_FEATURE_VFP)) { - numvfpregs += 16; - } - if (arm_feature(env, ARM_FEATURE_VFP3)) { - numvfpregs += 16; - } - for (i = 0; i < numvfpregs; i++) { - uint64_t v = *aa32_vfp_dreg(env, i); - qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", - i * 2, (uint32_t)v, - i * 2 + 1, (uint32_t)(v >> 32), - i, v); - } - qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); - } -} - void restore_state_to_opc(CPUARMState *env, TranslationBlock *tb, target_ulong *data) { diff --git a/target/arm/translate.h b/target/arm/translate.h index bc1617809d..a20f6e2056 100644 --- a/target/arm/translate.h +++ b/target/arm/translate.h @@ -169,7 +169,6 @@ static inline void disas_set_insn_syndrome(DisasContext *s, uint32_t syn) #ifdef TARGET_AARCH64 void a64_translate_init(void); void gen_a64_set_pc_im(uint64_t val); -void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags); extern const TranslatorOps aarch64_translator_ops; #else static inline void a64_translate_init(void) @@ -179,10 +178,6 @@ static inline void a64_translate_init(void) static inline void gen_a64_set_pc_im(uint64_t val) { } - -static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) -{ -} #endif void arm_test_cc(DisasCompare *cmp, int cc); diff --git a/target/arm/vfp_helper.c b/target/arm/vfp_helper.c index d3e83b627b..46041e3294 100644 --- a/target/arm/vfp_helper.c +++ b/target/arm/vfp_helper.c @@ -18,121 +18,88 @@ */ #include "qemu/osdep.h" -#include "qemu/log.h" #include "cpu.h" #include "exec/helper-proto.h" -#include "fpu/softfloat.h" #include "internals.h" - +#ifdef CONFIG_TCG +#include "qemu/log.h" +#include "fpu/softfloat.h" +#endif /* VFP support. We follow the convention used for VFP instructions: Single precision routines have a "s" suffix, double precision a "d" suffix. */ +#ifdef CONFIG_TCG + /* Convert host exception flags to vfp form. */ static inline int vfp_exceptbits_from_host(int host_bits) { int target_bits = 0; - if (host_bits & float_flag_invalid) + if (host_bits & float_flag_invalid) { target_bits |= 1; - if (host_bits & float_flag_divbyzero) + } + if (host_bits & float_flag_divbyzero) { target_bits |= 2; - if (host_bits & float_flag_overflow) + } + if (host_bits & float_flag_overflow) { target_bits |= 4; - if (host_bits & (float_flag_underflow | float_flag_output_denormal)) + } + if (host_bits & (float_flag_underflow | float_flag_output_denormal)) { target_bits |= 8; - if (host_bits & float_flag_inexact) + } + if (host_bits & float_flag_inexact) { target_bits |= 0x10; - if (host_bits & float_flag_input_denormal) + } + if (host_bits & float_flag_input_denormal) { target_bits |= 0x80; + } return target_bits; } -uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) -{ - uint32_t i, fpscr; - - fpscr = env->vfp.xregs[ARM_VFP_FPSCR] - | (env->vfp.vec_len << 16) - | (env->vfp.vec_stride << 20); - - i = get_float_exception_flags(&env->vfp.fp_status); - i |= get_float_exception_flags(&env->vfp.standard_fp_status); - /* FZ16 does not generate an input denormal exception. */ - i |= (get_float_exception_flags(&env->vfp.fp_status_f16) - & ~float_flag_input_denormal); - fpscr |= vfp_exceptbits_from_host(i); - - i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3]; - fpscr |= i ? FPCR_QC : 0; - - return fpscr; -} - -uint32_t vfp_get_fpscr(CPUARMState *env) -{ - return HELPER(vfp_get_fpscr)(env); -} - /* Convert vfp exception flags to target form. */ static inline int vfp_exceptbits_to_host(int target_bits) { int host_bits = 0; - if (target_bits & 1) + if (target_bits & 1) { host_bits |= float_flag_invalid; - if (target_bits & 2) + } + if (target_bits & 2) { host_bits |= float_flag_divbyzero; - if (target_bits & 4) + } + if (target_bits & 4) { host_bits |= float_flag_overflow; - if (target_bits & 8) + } + if (target_bits & 8) { host_bits |= float_flag_underflow; - if (target_bits & 0x10) + } + if (target_bits & 0x10) { host_bits |= float_flag_inexact; - if (target_bits & 0x80) + } + if (target_bits & 0x80) { host_bits |= float_flag_input_denormal; + } return host_bits; } -void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) +static uint32_t vfp_get_fpscr_from_host(CPUARMState *env) { - int i; - uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR]; - - /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ - if (!cpu_isar_feature(aa64_fp16, env_archcpu(env))) { - val &= ~FPCR_FZ16; - } - - if (arm_feature(env, ARM_FEATURE_M)) { - /* - * M profile FPSCR is RES0 for the QC, STRIDE, FZ16, LEN bits - * and also for the trapped-exception-handling bits IxE. - */ - val &= 0xf7c0009f; - } + uint32_t i; - /* - * We don't implement trapped exception handling, so the - * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!) - * - * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC - * (which are stored in fp_status), and the other RES0 bits - * in between, then we clear all of the low 16 bits. - */ - env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000; - env->vfp.vec_len = (val >> 16) & 7; - env->vfp.vec_stride = (val >> 20) & 3; + i = get_float_exception_flags(&env->vfp.fp_status); + i |= get_float_exception_flags(&env->vfp.standard_fp_status); + /* FZ16 does not generate an input denormal exception. */ + i |= (get_float_exception_flags(&env->vfp.fp_status_f16) + & ~float_flag_input_denormal); + return vfp_exceptbits_from_host(i); +} - /* - * The bit we set within fpscr_q is arbitrary; the register as a - * whole being zero/non-zero is what counts. - */ - env->vfp.qc[0] = val & FPCR_QC; - env->vfp.qc[1] = 0; - env->vfp.qc[2] = 0; - env->vfp.qc[3] = 0; +static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val) +{ + int i; + uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR]; changed ^= val; if (changed & (3 << 22)) { @@ -170,7 +137,8 @@ void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); } - /* The exception flags are ORed together when we read fpscr so we + /* + * The exception flags are ORed together when we read fpscr so we * only need to preserve the current state in one of our * float_status values. */ @@ -180,11 +148,86 @@ void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) set_float_exception_flags(0, &env->vfp.standard_fp_status); } +#else + +static uint32_t vfp_get_fpscr_from_host(CPUARMState *env) +{ + return 0; +} + +static void vfp_set_fpscr_to_host(CPUARMState *env, uint32_t val) +{ +} + +#endif + +uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) +{ + uint32_t i, fpscr; + + fpscr = env->vfp.xregs[ARM_VFP_FPSCR] + | (env->vfp.vec_len << 16) + | (env->vfp.vec_stride << 20); + + fpscr |= vfp_get_fpscr_from_host(env); + + i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3]; + fpscr |= i ? FPCR_QC : 0; + + return fpscr; +} + +uint32_t vfp_get_fpscr(CPUARMState *env) +{ + return HELPER(vfp_get_fpscr)(env); +} + +void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) +{ + /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ + if (!cpu_isar_feature(aa64_fp16, env_archcpu(env))) { + val &= ~FPCR_FZ16; + } + + if (arm_feature(env, ARM_FEATURE_M)) { + /* + * M profile FPSCR is RES0 for the QC, STRIDE, FZ16, LEN bits + * and also for the trapped-exception-handling bits IxE. + */ + val &= 0xf7c0009f; + } + + /* + * We don't implement trapped exception handling, so the + * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!) + * + * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC + * (which are stored in fp_status), and the other RES0 bits + * in between, then we clear all of the low 16 bits. + */ + env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000; + env->vfp.vec_len = (val >> 16) & 7; + env->vfp.vec_stride = (val >> 20) & 3; + + /* + * The bit we set within fpscr_q is arbitrary; the register as a + * whole being zero/non-zero is what counts. + */ + env->vfp.qc[0] = val & FPCR_QC; + env->vfp.qc[1] = 0; + env->vfp.qc[2] = 0; + env->vfp.qc[3] = 0; + + vfp_set_fpscr_to_host(env, val); +} + void vfp_set_fpscr(CPUARMState *env, uint32_t val) { HELPER(vfp_set_fpscr)(env, val); } +#ifdef CONFIG_TCG + #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) #define VFP_BINOP(name) \ @@ -1278,3 +1321,5 @@ float64 HELPER(frint64_d)(float64 f, void *fpst) { return frint_d(f, fpst, 64); } + +#endif diff --git a/target/ppc/fpu_helper.c b/target/ppc/fpu_helper.c index ffbd19afa1..f437c88aad 100644 --- a/target/ppc/fpu_helper.c +++ b/target/ppc/fpu_helper.c @@ -1801,37 +1801,35 @@ uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) * sfprf - set FPRF */ #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \ -void helper_##name(CPUPPCState *env, uint32_t opcode) \ +void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xa, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ - xt.fld = tp##_##op(xa.fld, xb.fld, &tstat); \ + t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ float_invalid_op_addsub(env, sfprf, GETPC(), \ - tp##_classify(xa.fld) | \ - tp##_classify(xb.fld)); \ + tp##_classify(xa->fld) | \ + tp##_classify(xb->fld)); \ } \ \ if (r2sp) { \ - xt.fld = helper_frsp(env, xt.fld); \ + t.fld = helper_frsp(env, t.fld); \ } \ \ if (sfprf) { \ - helper_compute_fprf_float64(env, xt.fld); \ + helper_compute_fprf_float64(env, t.fld); \ } \ } \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -1844,14 +1842,12 @@ VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1) VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0) VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0) -void helper_xsaddqp(CPUPPCState *env, uint32_t opcode) +void helper_xsaddqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) { - ppc_vsr_t xt, xa, xb; + ppc_vsr_t t = *xt; float_status tstat; - getVSR(rA(opcode) + 32, &xa, env); - getVSR(rB(opcode) + 32, &xb, env); - getVSR(rD(opcode) + 32, &xt, env); helper_reset_fpstatus(env); tstat = env->fp_status; @@ -1860,18 +1856,18 @@ void helper_xsaddqp(CPUPPCState *env, uint32_t opcode) } set_float_exception_flags(0, &tstat); - xt.f128 = float128_add(xa.f128, xb.f128, &tstat); + t.f128 = float128_add(xa->f128, xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { float_invalid_op_addsub(env, 1, GETPC(), - float128_classify(xa.f128) | - float128_classify(xb.f128)); + float128_classify(xa->f128) | + float128_classify(xb->f128)); } - helper_compute_fprf_float128(env, xt.f128); + helper_compute_fprf_float128(env, t.f128); - putVSR(rD(opcode) + 32, &xt, env); + *xt = t; do_float_check_status(env, GETPC()); } @@ -1884,38 +1880,36 @@ void helper_xsaddqp(CPUPPCState *env, uint32_t opcode) * sfprf - set FPRF */ #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xa, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ - xt.fld = tp##_mul(xa.fld, xb.fld, &tstat); \ + t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ float_invalid_op_mul(env, sfprf, GETPC(), \ - tp##_classify(xa.fld) | \ - tp##_classify(xb.fld)); \ + tp##_classify(xa->fld) | \ + tp##_classify(xb->fld)); \ } \ \ if (r2sp) { \ - xt.fld = helper_frsp(env, xt.fld); \ + t.fld = helper_frsp(env, t.fld); \ } \ \ if (sfprf) { \ - helper_compute_fprf_float64(env, xt.fld); \ + helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -1924,15 +1918,12 @@ VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1) VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0) VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0) -void helper_xsmulqp(CPUPPCState *env, uint32_t opcode) +void helper_xsmulqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) { - ppc_vsr_t xt, xa, xb; + ppc_vsr_t t = *xt; float_status tstat; - getVSR(rA(opcode) + 32, &xa, env); - getVSR(rB(opcode) + 32, &xb, env); - getVSR(rD(opcode) + 32, &xt, env); - helper_reset_fpstatus(env); tstat = env->fp_status; if (unlikely(Rc(opcode) != 0)) { @@ -1940,17 +1931,17 @@ void helper_xsmulqp(CPUPPCState *env, uint32_t opcode) } set_float_exception_flags(0, &tstat); - xt.f128 = float128_mul(xa.f128, xb.f128, &tstat); + t.f128 = float128_mul(xa->f128, xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { float_invalid_op_mul(env, 1, GETPC(), - float128_classify(xa.f128) | - float128_classify(xb.f128)); + float128_classify(xa->f128) | + float128_classify(xb->f128)); } - helper_compute_fprf_float128(env, xt.f128); + helper_compute_fprf_float128(env, t.f128); - putVSR(rD(opcode) + 32, &xt, env); + *xt = t; do_float_check_status(env, GETPC()); } @@ -1963,41 +1954,39 @@ void helper_xsmulqp(CPUPPCState *env, uint32_t opcode) * sfprf - set FPRF */ #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xa, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ - xt.fld = tp##_div(xa.fld, xb.fld, &tstat); \ + t.fld = tp##_div(xa->fld, xb->fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ float_invalid_op_div(env, sfprf, GETPC(), \ - tp##_classify(xa.fld) | \ - tp##_classify(xb.fld)); \ + tp##_classify(xa->fld) | \ + tp##_classify(xb->fld)); \ } \ if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \ float_zero_divide_excp(env, GETPC()); \ } \ \ if (r2sp) { \ - xt.fld = helper_frsp(env, xt.fld); \ + t.fld = helper_frsp(env, t.fld); \ } \ \ if (sfprf) { \ - helper_compute_fprf_float64(env, xt.fld); \ + helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -2006,15 +1995,12 @@ VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1) VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0) VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0) -void helper_xsdivqp(CPUPPCState *env, uint32_t opcode) +void helper_xsdivqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) { - ppc_vsr_t xt, xa, xb; + ppc_vsr_t t = *xt; float_status tstat; - getVSR(rA(opcode) + 32, &xa, env); - getVSR(rB(opcode) + 32, &xb, env); - getVSR(rD(opcode) + 32, &xt, env); - helper_reset_fpstatus(env); tstat = env->fp_status; if (unlikely(Rc(opcode) != 0)) { @@ -2022,20 +2008,20 @@ void helper_xsdivqp(CPUPPCState *env, uint32_t opcode) } set_float_exception_flags(0, &tstat); - xt.f128 = float128_div(xa.f128, xb.f128, &tstat); + t.f128 = float128_div(xa->f128, xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { float_invalid_op_div(env, 1, GETPC(), - float128_classify(xa.f128) | - float128_classify(xb.f128)); + float128_classify(xa->f128) | + float128_classify(xb->f128)); } if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { float_zero_divide_excp(env, GETPC()); } - helper_compute_fprf_float128(env, xt.f128); - putVSR(rD(opcode) + 32, &xt, env); + helper_compute_fprf_float128(env, t.f128); + *xt = t; do_float_check_status(env, GETPC()); } @@ -2048,31 +2034,29 @@ void helper_xsdivqp(CPUPPCState *env, uint32_t opcode) * sfprf - set FPRF */ #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ - if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \ + if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ - xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status); \ + t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \ \ if (r2sp) { \ - xt.fld = helper_frsp(env, xt.fld); \ + t.fld = helper_frsp(env, t.fld); \ } \ \ if (sfprf) { \ - helper_compute_fprf_float64(env, xt.fld); \ + helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -2090,39 +2074,37 @@ VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0) * sfprf - set FPRF */ #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ - xt.fld = tp##_sqrt(xb.fld, &tstat); \ + t.fld = tp##_sqrt(xb->fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ - if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \ + if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \ float_invalid_op_vxsqrt(env, sfprf, GETPC()); \ - } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \ + } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ } \ \ if (r2sp) { \ - xt.fld = helper_frsp(env, xt.fld); \ + t.fld = helper_frsp(env, t.fld); \ } \ \ if (sfprf) { \ - helper_compute_fprf_float64(env, xt.fld); \ + helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -2140,40 +2122,38 @@ VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0) * sfprf - set FPRF */ #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ - xt.fld = tp##_sqrt(xb.fld, &tstat); \ - xt.fld = tp##_div(tp##_one, xt.fld, &tstat); \ + t.fld = tp##_sqrt(xb->fld, &tstat); \ + t.fld = tp##_div(tp##_one, t.fld, &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ - if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) { \ + if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) { \ float_invalid_op_vxsqrt(env, sfprf, GETPC()); \ - } else if (tp##_is_signaling_nan(xb.fld, &tstat)) { \ + } else if (tp##_is_signaling_nan(xb->fld, &tstat)) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ } \ \ if (r2sp) { \ - xt.fld = helper_frsp(env, xt.fld); \ + t.fld = helper_frsp(env, t.fld); \ } \ \ if (sfprf) { \ - helper_compute_fprf_float64(env, xt.fld); \ + helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -2193,39 +2173,36 @@ VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0) * nbits - number of fraction bits */ #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xa, xb; \ int i; \ int fe_flag = 0; \ int fg_flag = 0; \ \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ - \ for (i = 0; i < nels; i++) { \ - if (unlikely(tp##_is_infinity(xa.fld) || \ - tp##_is_infinity(xb.fld) || \ - tp##_is_zero(xb.fld))) { \ + if (unlikely(tp##_is_infinity(xa->fld) || \ + tp##_is_infinity(xb->fld) || \ + tp##_is_zero(xb->fld))) { \ fe_flag = 1; \ fg_flag = 1; \ } else { \ - int e_a = ppc_##tp##_get_unbiased_exp(xa.fld); \ - int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \ + int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \ + int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ \ - if (unlikely(tp##_is_any_nan(xa.fld) || \ - tp##_is_any_nan(xb.fld))) { \ + if (unlikely(tp##_is_any_nan(xa->fld) || \ + tp##_is_any_nan(xb->fld))) { \ fe_flag = 1; \ } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \ fe_flag = 1; \ - } else if (!tp##_is_zero(xa.fld) && \ + } else if (!tp##_is_zero(xa->fld) && \ (((e_a - e_b) >= emax) || \ ((e_a - e_b) <= (emin + 1)) || \ (e_a <= (emin + nbits)))) { \ fe_flag = 1; \ } \ \ - if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \ + if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ /* \ * XB is not zero because of the above check and so \ * must be denormalized. \ @@ -2253,36 +2230,32 @@ VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23) * nbits - number of fraction bits */ #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xa, xb; \ int i; \ int fe_flag = 0; \ int fg_flag = 0; \ \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ - \ for (i = 0; i < nels; i++) { \ - if (unlikely(tp##_is_infinity(xb.fld) || \ - tp##_is_zero(xb.fld))) { \ + if (unlikely(tp##_is_infinity(xb->fld) || \ + tp##_is_zero(xb->fld))) { \ fe_flag = 1; \ fg_flag = 1; \ } else { \ - int e_b = ppc_##tp##_get_unbiased_exp(xb.fld); \ + int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ \ - if (unlikely(tp##_is_any_nan(xb.fld))) { \ + if (unlikely(tp##_is_any_nan(xb->fld))) { \ fe_flag = 1; \ - } else if (unlikely(tp##_is_zero(xb.fld))) { \ + } else if (unlikely(tp##_is_zero(xb->fld))) { \ fe_flag = 1; \ - } else if (unlikely(tp##_is_neg(xb.fld))) { \ + } else if (unlikely(tp##_is_neg(xb->fld))) { \ fe_flag = 1; \ - } else if (!tp##_is_zero(xb.fld) && \ + } else if (!tp##_is_zero(xb->fld) && \ (e_b <= (emin + nbits))) { \ fe_flag = 1; \ } \ \ - if (unlikely(tp##_is_zero_or_denormal(xb.fld))) { \ + if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ /* \ * XB is not zero because of the above check and \ * therefore must be denormalized. \ @@ -2307,30 +2280,15 @@ VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23) * fld - vsr_t field (VsrD(*) or VsrW(*)) * maddflgs - flags for the float*muladd routine that control the * various forms (madd, msub, nmadd, nmsub) - * afrm - A form (1=A, 0=M) * sfprf - set FPRF */ -#define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +#define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c) \ { \ - ppc_vsr_t xt_in, xa, xb, xt_out; \ - ppc_vsr_t *b, *c; \ + ppc_vsr_t t = *xt; \ int i; \ \ - if (afrm) { /* AxB + T */ \ - b = &xb; \ - c = &xt_in; \ - } else { /* AxT + B */ \ - b = &xt_in; \ - c = &xb; \ - } \ - \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt_in, env); \ - \ - xt_out = xt_in; \ - \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ @@ -2342,68 +2300,51 @@ void helper_##op(CPUPPCState *env, uint32_t opcode) \ * result to odd. \ */ \ set_float_rounding_mode(float_round_to_zero, &tstat); \ - xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \ - maddflgs, &tstat); \ - xt_out.fld |= (get_float_exception_flags(&tstat) & \ - float_flag_inexact) != 0; \ + t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \ + maddflgs, &tstat); \ + t.fld |= (get_float_exception_flags(&tstat) & \ + float_flag_inexact) != 0; \ } else { \ - xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld, \ - maddflgs, &tstat); \ + t.fld = tp##_muladd(xa->fld, b->fld, c->fld, \ + maddflgs, &tstat); \ } \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ - tp##_maddsub_update_excp(env, xa.fld, b->fld, \ + tp##_maddsub_update_excp(env, xa->fld, b->fld, \ c->fld, maddflgs, GETPC()); \ } \ \ if (r2sp) { \ - xt_out.fld = helper_frsp(env, xt_out.fld); \ + t.fld = helper_frsp(env, t.fld); \ } \ \ if (sfprf) { \ - helper_compute_fprf_float64(env, xt_out.fld); \ + helper_compute_fprf_float64(env, t.fld); \ } \ } \ - putVSR(xT(opcode), &xt_out, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } -VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0) -VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0) -VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0) -VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0) -VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0) -VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0) -VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0) -VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0) - -VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1) -VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1) -VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1) -VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1) -VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1) -VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1) -VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1) -VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1) - -VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0) -VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0) -VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0) -VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0) -VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0) -VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0) -VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0) -VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0) - -VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0) -VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0) -VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0) -VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0) -VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0) -VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0) -VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0) -VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0) +VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0) +VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0) +VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0) +VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0) +VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1) +VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1) +VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1) +VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1) + +VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0) +VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0) +VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0) +VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0) + +VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0) +VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0) +VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0) +VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0) /* * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision @@ -2413,24 +2354,21 @@ VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0) * svxvc - set VXVC bit */ #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xa, xb; \ + ppc_vsr_t t = *xt; \ bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false; \ \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ - \ - if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \ - float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \ + if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ + float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ vxsnan_flag = true; \ if (fpscr_ve == 0 && svxvc) { \ vxvc_flag = true; \ } \ } else if (svxvc) { \ - vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \ - float64_is_quiet_nan(xb.VsrD(0), &env->fp_status); \ + vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \ + float64_is_quiet_nan(xb->VsrD(0), &env->fp_status); \ } \ if (vxsnan_flag) { \ float_invalid_op_vxsnan(env, GETPC()); \ @@ -2441,15 +2379,16 @@ void helper_##op(CPUPPCState *env, uint32_t opcode) \ vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag); \ \ if (!vex_flag) { \ - if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) { \ - xt.VsrD(0) = -1; \ - xt.VsrD(1) = 0; \ + if (float64_##cmp(xb->VsrD(0), xa->VsrD(0), \ + &env->fp_status) == exp) { \ + t.VsrD(0) = -1; \ + t.VsrD(1) = 0; \ } else { \ - xt.VsrD(0) = 0; \ - xt.VsrD(1) = 0; \ + t.VsrD(0) = 0; \ + t.VsrD(1) = 0; \ } \ } \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -2458,20 +2397,17 @@ VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1) VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1) VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0) -void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode) +void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xa, ppc_vsr_t *xb) { - ppc_vsr_t xa, xb; int64_t exp_a, exp_b; uint32_t cc; - getVSR(xA(opcode), &xa, env); - getVSR(xB(opcode), &xb, env); - - exp_a = extract64(xa.VsrD(0), 52, 11); - exp_b = extract64(xb.VsrD(0), 52, 11); + exp_a = extract64(xa->VsrD(0), 52, 11); + exp_b = extract64(xb->VsrD(0), 52, 11); - if (unlikely(float64_is_any_nan(xa.VsrD(0)) || - float64_is_any_nan(xb.VsrD(0)))) { + if (unlikely(float64_is_any_nan(xa->VsrD(0)) || + float64_is_any_nan(xb->VsrD(0)))) { cc = CRF_SO; } else { if (exp_a < exp_b) { @@ -2490,20 +2426,17 @@ void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode) do_float_check_status(env, GETPC()); } -void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode) +void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xa, ppc_vsr_t *xb) { - ppc_vsr_t xa, xb; int64_t exp_a, exp_b; uint32_t cc; - getVSR(rA(opcode) + 32, &xa, env); - getVSR(rB(opcode) + 32, &xb, env); + exp_a = extract64(xa->VsrD(0), 48, 15); + exp_b = extract64(xb->VsrD(0), 48, 15); - exp_a = extract64(xa.VsrD(0), 48, 15); - exp_b = extract64(xb.VsrD(0), 48, 15); - - if (unlikely(float128_is_any_nan(xa.f128) || - float128_is_any_nan(xb.f128))) { + if (unlikely(float128_is_any_nan(xa->f128) || + float128_is_any_nan(xb->f128))) { cc = CRF_SO; } else { if (exp_a < exp_b) { @@ -2523,25 +2456,23 @@ void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode) } #define VSX_SCALAR_CMP(op, ordered) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xa, xb; \ uint32_t cc = 0; \ bool vxsnan_flag = false, vxvc_flag = false; \ \ helper_reset_fpstatus(env); \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ \ - if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \ - float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \ + if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ + float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ vxsnan_flag = true; \ cc = CRF_SO; \ if (fpscr_ve == 0 && ordered) { \ vxvc_flag = true; \ } \ - } else if (float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) || \ - float64_is_quiet_nan(xb.VsrD(0), &env->fp_status)) { \ + } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || \ + float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { \ cc = CRF_SO; \ if (ordered) { \ vxvc_flag = true; \ @@ -2554,9 +2485,9 @@ void helper_##op(CPUPPCState *env, uint32_t opcode) \ float_invalid_op_vxvc(env, 0, GETPC()); \ } \ \ - if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \ + if (float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \ cc |= CRF_LT; \ - } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) { \ + } else if (!float64_le(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { \ cc |= CRF_GT; \ } else { \ cc |= CRF_EQ; \ @@ -2573,25 +2504,23 @@ VSX_SCALAR_CMP(xscmpodp, 1) VSX_SCALAR_CMP(xscmpudp, 0) #define VSX_SCALAR_CMPQ(op, ordered) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xa, xb; \ uint32_t cc = 0; \ bool vxsnan_flag = false, vxvc_flag = false; \ \ helper_reset_fpstatus(env); \ - getVSR(rA(opcode) + 32, &xa, env); \ - getVSR(rB(opcode) + 32, &xb, env); \ \ - if (float128_is_signaling_nan(xa.f128, &env->fp_status) || \ - float128_is_signaling_nan(xb.f128, &env->fp_status)) { \ + if (float128_is_signaling_nan(xa->f128, &env->fp_status) || \ + float128_is_signaling_nan(xb->f128, &env->fp_status)) { \ vxsnan_flag = true; \ cc = CRF_SO; \ if (fpscr_ve == 0 && ordered) { \ vxvc_flag = true; \ } \ - } else if (float128_is_quiet_nan(xa.f128, &env->fp_status) || \ - float128_is_quiet_nan(xb.f128, &env->fp_status)) { \ + } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || \ + float128_is_quiet_nan(xb->f128, &env->fp_status)) { \ cc = CRF_SO; \ if (ordered) { \ vxvc_flag = true; \ @@ -2604,9 +2533,9 @@ void helper_##op(CPUPPCState *env, uint32_t opcode) \ float_invalid_op_vxvc(env, 0, GETPC()); \ } \ \ - if (float128_lt(xa.f128, xb.f128, &env->fp_status)) { \ + if (float128_lt(xa->f128, xb->f128, &env->fp_status)) { \ cc |= CRF_LT; \ - } else if (!float128_le(xa.f128, xb.f128, &env->fp_status)) { \ + } else if (!float128_le(xa->f128, xb->f128, &env->fp_status)) { \ cc |= CRF_GT; \ } else { \ cc |= CRF_EQ; \ @@ -2631,24 +2560,21 @@ VSX_SCALAR_CMPQ(xscmpuqp, 0) * fld - vsr_t field (VsrD(*) or VsrW(*)) */ #define VSX_MAX_MIN(name, op, nels, tp, fld) \ -void helper_##name(CPUPPCState *env, uint32_t opcode) \ +void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xa, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ - \ for (i = 0; i < nels; i++) { \ - xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status); \ - if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) || \ - tp##_is_signaling_nan(xb.fld, &env->fp_status))) { \ + t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \ + if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ + tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -2660,29 +2586,26 @@ VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i)) VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i)) #define VSX_MAX_MINC(name, max) \ -void helper_##name(CPUPPCState *env, uint32_t opcode) \ +void helper_##name(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xa, xb; \ + ppc_vsr_t t = *xt; \ bool vxsnan_flag = false, vex_flag = false; \ \ - getVSR(rA(opcode) + 32, &xa, env); \ - getVSR(rB(opcode) + 32, &xb, env); \ - getVSR(rD(opcode) + 32, &xt, env); \ - \ - if (unlikely(float64_is_any_nan(xa.VsrD(0)) || \ - float64_is_any_nan(xb.VsrD(0)))) { \ - if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) || \ - float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \ + if (unlikely(float64_is_any_nan(xa->VsrD(0)) || \ + float64_is_any_nan(xb->VsrD(0)))) { \ + if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || \ + float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ vxsnan_flag = true; \ } \ - xt.VsrD(0) = xb.VsrD(0); \ + t.VsrD(0) = xb->VsrD(0); \ } else if ((max && \ - !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) || \ + !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \ (!max && \ - float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) { \ - xt.VsrD(0) = xa.VsrD(0); \ + float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \ + t.VsrD(0) = xa->VsrD(0); \ } else { \ - xt.VsrD(0) = xb.VsrD(0); \ + t.VsrD(0) = xb->VsrD(0); \ } \ \ vex_flag = fpscr_ve & vxsnan_flag; \ @@ -2690,7 +2613,7 @@ void helper_##name(CPUPPCState *env, uint32_t opcode) \ float_invalid_op_vxsnan(env, GETPC()); \ } \ if (!vex_flag) { \ - putVSR(rD(opcode) + 32, &xt, env); \ + *xt = t; \ } \ } \ @@ -2698,46 +2621,46 @@ VSX_MAX_MINC(xsmaxcdp, 1); VSX_MAX_MINC(xsmincdp, 0); #define VSX_MAX_MINJ(name, max) \ -void helper_##name(CPUPPCState *env, uint32_t opcode) \ +void helper_##name(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xa, xb; \ + ppc_vsr_t t = *xt; \ bool vxsnan_flag = false, vex_flag = false; \ \ - getVSR(rA(opcode) + 32, &xa, env); \ - getVSR(rB(opcode) + 32, &xb, env); \ - getVSR(rD(opcode) + 32, &xt, env); \ - \ - if (unlikely(float64_is_any_nan(xa.VsrD(0)))) { \ - if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status)) { \ + if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \ + if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \ vxsnan_flag = true; \ } \ - xt.VsrD(0) = xa.VsrD(0); \ - } else if (unlikely(float64_is_any_nan(xb.VsrD(0)))) { \ - if (float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) { \ + t.VsrD(0) = xa->VsrD(0); \ + } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \ + if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ vxsnan_flag = true; \ } \ - xt.VsrD(0) = xb.VsrD(0); \ - } else if (float64_is_zero(xa.VsrD(0)) && float64_is_zero(xb.VsrD(0))) { \ + t.VsrD(0) = xb->VsrD(0); \ + } else if (float64_is_zero(xa->VsrD(0)) && \ + float64_is_zero(xb->VsrD(0))) { \ if (max) { \ - if (!float64_is_neg(xa.VsrD(0)) || !float64_is_neg(xb.VsrD(0))) { \ - xt.VsrD(0) = 0ULL; \ + if (!float64_is_neg(xa->VsrD(0)) || \ + !float64_is_neg(xb->VsrD(0))) { \ + t.VsrD(0) = 0ULL; \ } else { \ - xt.VsrD(0) = 0x8000000000000000ULL; \ + t.VsrD(0) = 0x8000000000000000ULL; \ } \ } else { \ - if (float64_is_neg(xa.VsrD(0)) || float64_is_neg(xb.VsrD(0))) { \ - xt.VsrD(0) = 0x8000000000000000ULL; \ + if (float64_is_neg(xa->VsrD(0)) || \ + float64_is_neg(xb->VsrD(0))) { \ + t.VsrD(0) = 0x8000000000000000ULL; \ } else { \ - xt.VsrD(0) = 0ULL; \ + t.VsrD(0) = 0ULL; \ } \ } \ } else if ((max && \ - !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) || \ + !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \ (!max && \ - float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) { \ - xt.VsrD(0) = xa.VsrD(0); \ + float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \ + t.VsrD(0) = xa->VsrD(0); \ } else { \ - xt.VsrD(0) = xb.VsrD(0); \ + t.VsrD(0) = xb->VsrD(0); \ } \ \ vex_flag = fpscr_ve & vxsnan_flag; \ @@ -2745,7 +2668,7 @@ void helper_##name(CPUPPCState *env, uint32_t opcode) \ float_invalid_op_vxsnan(env, GETPC()); \ } \ if (!vex_flag) { \ - putVSR(rD(opcode) + 32, &xt, env); \ + *xt = t; \ } \ } \ @@ -2763,46 +2686,42 @@ VSX_MAX_MINJ(xsminjdp, 0); * exp - expected result of comparison */ #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xa, xb; \ + ppc_vsr_t t = *xt; \ + uint32_t crf6 = 0; \ int i; \ int all_true = 1; \ int all_false = 1; \ \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ - \ for (i = 0; i < nels; i++) { \ - if (unlikely(tp##_is_any_nan(xa.fld) || \ - tp##_is_any_nan(xb.fld))) { \ - if (tp##_is_signaling_nan(xa.fld, &env->fp_status) || \ - tp##_is_signaling_nan(xb.fld, &env->fp_status)) { \ + if (unlikely(tp##_is_any_nan(xa->fld) || \ + tp##_is_any_nan(xb->fld))) { \ + if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ + tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \ float_invalid_op_vxsnan(env, GETPC()); \ } \ if (svxvc) { \ float_invalid_op_vxvc(env, 0, GETPC()); \ } \ - xt.fld = 0; \ + t.fld = 0; \ all_true = 0; \ } else { \ - if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) { \ - xt.fld = -1; \ + if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \ + t.fld = -1; \ all_false = 0; \ } else { \ - xt.fld = 0; \ + t.fld = 0; \ all_true = 0; \ } \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ - if ((opcode >> (31 - 21)) & 1) { \ - env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \ - } \ - do_float_check_status(env, GETPC()); \ - } + *xt = t; \ + crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \ + return crf6; \ +} VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1) VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1) @@ -2824,27 +2743,24 @@ VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0) * sfprf - set FPRF */ #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ - \ for (i = 0; i < nels; i++) { \ - xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ - if (unlikely(stp##_is_signaling_nan(xb.sfld, \ + t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ + if (unlikely(stp##_is_signaling_nan(xb->sfld, \ &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ - xt.tfld = ttp##_snan_to_qnan(xt.tfld); \ + t.tfld = ttp##_snan_to_qnan(t.tfld); \ } \ if (sfprf) { \ - helper_compute_fprf_##ttp(env, xt.tfld); \ + helper_compute_fprf_##ttp(env, t.tfld); \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -2864,27 +2780,25 @@ VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0) * sfprf - set FPRF */ #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(rB(opcode) + 32, &xb, env); \ - getVSR(rD(opcode) + 32, &xt, env); \ - \ for (i = 0; i < nels; i++) { \ - xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ - if (unlikely(stp##_is_signaling_nan(xb.sfld, \ + t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ + if (unlikely(stp##_is_signaling_nan(xb->sfld, \ &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ - xt.tfld = ttp##_snan_to_qnan(xt.tfld); \ + t.tfld = ttp##_snan_to_qnan(t.tfld); \ } \ if (sfprf) { \ - helper_compute_fprf_##ttp(env, xt.tfld); \ + helper_compute_fprf_##ttp(env, t.tfld); \ } \ } \ \ - putVSR(rD(opcode) + 32, &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -2902,27 +2816,24 @@ VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1) * sfprf - set FPRF */ #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = { }; \ int i; \ \ - getVSR(xB(opcode), &xb, env); \ - memset(&xt, 0, sizeof(xt)); \ - \ for (i = 0; i < nels; i++) { \ - xt.tfld = stp##_to_##ttp(xb.sfld, 1, &env->fp_status); \ - if (unlikely(stp##_is_signaling_nan(xb.sfld, \ + t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \ + if (unlikely(stp##_is_signaling_nan(xb->sfld, \ &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ - xt.tfld = ttp##_snan_to_qnan(xt.tfld); \ + t.tfld = ttp##_snan_to_qnan(t.tfld); \ } \ if (sfprf) { \ - helper_compute_fprf_##ttp(env, xt.tfld); \ + helper_compute_fprf_##ttp(env, t.tfld); \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -2935,28 +2846,26 @@ VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0) * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be * added to this later. */ -void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode) +void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xb) { - ppc_vsr_t xt, xb; + ppc_vsr_t t = { }; float_status tstat; - getVSR(rB(opcode) + 32, &xb, env); - memset(&xt, 0, sizeof(xt)); - tstat = env->fp_status; if (unlikely(Rc(opcode) != 0)) { tstat.float_rounding_mode = float_round_to_odd; } - xt.VsrD(0) = float128_to_float64(xb.f128, &tstat); + t.VsrD(0) = float128_to_float64(xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; - if (unlikely(float128_is_signaling_nan(xb.f128, &tstat))) { + if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) { float_invalid_op_vxsnan(env, GETPC()); - xt.VsrD(0) = float64_snan_to_qnan(xt.VsrD(0)); + t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0)); } - helper_compute_fprf_float64(env, xt.VsrD(0)); + helper_compute_fprf_float64(env, t.VsrD(0)); - putVSR(rD(opcode) + 32, &xt, env); + *xt = t; do_float_check_status(env, GETPC()); } @@ -2987,27 +2896,24 @@ uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb) * rnan - resulting NaN */ #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ int all_flags = env->fp_status.float_exception_flags, flags; \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ - \ for (i = 0; i < nels; i++) { \ env->fp_status.float_exception_flags = 0; \ - xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, &env->fp_status); \ + t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ flags = env->fp_status.float_exception_flags; \ if (unlikely(flags & float_flag_invalid)) { \ - float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb.sfld)); \ - xt.tfld = rnan; \ + float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \ + t.tfld = rnan; \ } \ all_flags |= flags; \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ env->fp_status.float_exception_flags = all_flags; \ do_float_check_status(env, GETPC()); \ } @@ -3040,20 +2946,18 @@ VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U) * rnan - resulting NaN */ #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = { }; \ \ - getVSR(rB(opcode) + 32, &xb, env); \ - memset(&xt, 0, sizeof(xt)); \ - \ - xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, &env->fp_status); \ + t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ if (env->fp_status.float_exception_flags & float_flag_invalid) { \ - float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb.sfld)); \ - xt.tfld = rnan; \ + float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld)); \ + t.tfld = rnan; \ } \ \ - putVSR(rD(opcode) + 32, &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -3077,25 +2981,22 @@ VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL) * sfprf - set FPRF */ #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = *xt; \ int i; \ \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ - \ for (i = 0; i < nels; i++) { \ - xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ + t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ if (r2sp) { \ - xt.tfld = helper_frsp(env, xt.tfld); \ + t.tfld = helper_frsp(env, t.tfld); \ } \ if (sfprf) { \ - helper_compute_fprf_float64(env, xt.tfld); \ + helper_compute_fprf_float64(env, t.tfld); \ } \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -3121,17 +3022,15 @@ VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0) * tfld - target vsr_t field */ #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, uint32_t opcode, \ + ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = *xt; \ \ - getVSR(rB(opcode) + 32, &xb, env); \ - getVSR(rD(opcode) + 32, &xt, env); \ + t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ + helper_compute_fprf_##ttp(env, t.tfld); \ \ - xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ - helper_compute_fprf_##ttp(env, xt.tfld); \ - \ - putVSR(xT(opcode) + 32, &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -3155,27 +3054,25 @@ VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128) * sfprf - set FPRF */ #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t t = *xt; \ int i; \ - getVSR(xB(opcode), &xb, env); \ - getVSR(xT(opcode), &xt, env); \ \ if (rmode != FLOAT_ROUND_CURRENT) { \ set_float_rounding_mode(rmode, &env->fp_status); \ } \ \ for (i = 0; i < nels; i++) { \ - if (unlikely(tp##_is_signaling_nan(xb.fld, \ + if (unlikely(tp##_is_signaling_nan(xb->fld, \ &env->fp_status))) { \ float_invalid_op_vxsnan(env, GETPC()); \ - xt.fld = tp##_snan_to_qnan(xb.fld); \ + t.fld = tp##_snan_to_qnan(xb->fld); \ } else { \ - xt.fld = tp##_round_to_int(xb.fld, &env->fp_status); \ + t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \ } \ if (sfprf) { \ - helper_compute_fprf_float64(env, xt.fld); \ + helper_compute_fprf_float64(env, t.fld); \ } \ } \ \ @@ -3189,7 +3086,7 @@ void helper_##op(CPUPPCState *env, uint32_t opcode) \ env->fp_status.float_exception_flags &= ~float_flag_inexact; \ } \ \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ do_float_check_status(env, GETPC()); \ } @@ -3223,46 +3120,41 @@ uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb) } #define VSX_XXPERM(op, indexed) \ -void helper_##op(CPUPPCState *env, uint32_t opcode) \ +void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ + ppc_vsr_t *xa, ppc_vsr_t *pcv) \ { \ - ppc_vsr_t xt, xa, pcv, xto; \ + ppc_vsr_t t = *xt; \ int i, idx; \ \ - getVSR(xA(opcode), &xa, env); \ - getVSR(xT(opcode), &xt, env); \ - getVSR(xB(opcode), &pcv, env); \ - \ for (i = 0; i < 16; i++) { \ - idx = pcv.VsrB(i) & 0x1F; \ + idx = pcv->VsrB(i) & 0x1F; \ if (indexed) { \ idx = 31 - idx; \ } \ - xto.VsrB(i) = (idx <= 15) ? xa.VsrB(idx) : xt.VsrB(idx - 16); \ + t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx) \ + : xt->VsrB(idx - 16); \ } \ - putVSR(xT(opcode), &xto, env); \ + *xt = t; \ } VSX_XXPERM(xxperm, 0) VSX_XXPERM(xxpermr, 1) -void helper_xvxsigsp(CPUPPCState *env, uint32_t opcode) +void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) { - ppc_vsr_t xt, xb; + ppc_vsr_t t = { }; uint32_t exp, i, fraction; - getVSR(xB(opcode), &xb, env); - memset(&xt, 0, sizeof(xt)); - for (i = 0; i < 4; i++) { - exp = (xb.VsrW(i) >> 23) & 0xFF; - fraction = xb.VsrW(i) & 0x7FFFFF; + exp = (xb->VsrW(i) >> 23) & 0xFF; + fraction = xb->VsrW(i) & 0x7FFFFF; if (exp != 0 && exp != 255) { - xt.VsrW(i) = fraction | 0x00800000; + t.VsrW(i) = fraction | 0x00800000; } else { - xt.VsrW(i) = fraction; + t.VsrW(i) = fraction; } } - putVSR(xT(opcode), &xt, env); + *xt = t; } /* @@ -3279,27 +3171,28 @@ void helper_xvxsigsp(CPUPPCState *env, uint32_t opcode) #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ - ppc_vsr_t xt, xb; \ + ppc_vsr_t *xt = &env->vsr[xT(opcode)]; \ + ppc_vsr_t *xb = &env->vsr[xbn]; \ + ppc_vsr_t t = { }; \ uint32_t i, sign, dcmx; \ uint32_t cc, match = 0; \ \ - getVSR(xbn, &xb, env); \ if (!scrf) { \ - memset(&xt, 0, sizeof(xt)); \ dcmx = DCMX_XV(opcode); \ } else { \ + t = *xt; \ dcmx = DCMX(opcode); \ } \ \ for (i = 0; i < nels; i++) { \ - sign = tp##_is_neg(xb.fld); \ - if (tp##_is_any_nan(xb.fld)) { \ + sign = tp##_is_neg(xb->fld); \ + if (tp##_is_any_nan(xb->fld)) { \ match = extract32(dcmx, 6, 1); \ - } else if (tp##_is_infinity(xb.fld)) { \ + } else if (tp##_is_infinity(xb->fld)) { \ match = extract32(dcmx, 4 + !sign, 1); \ - } else if (tp##_is_zero(xb.fld)) { \ + } else if (tp##_is_zero(xb->fld)) { \ match = extract32(dcmx, 2 + !sign, 1); \ - } else if (tp##_is_zero_or_denormal(xb.fld)) { \ + } else if (tp##_is_zero_or_denormal(xb->fld)) { \ match = extract32(dcmx, 0 + !sign, 1); \ } \ \ @@ -3309,12 +3202,12 @@ void helper_##op(CPUPPCState *env, uint32_t opcode) \ env->fpscr |= cc << FPSCR_FPRF; \ env->crf[BF(opcode)] = cc; \ } else { \ - xt.tfld = match ? fld_max : 0; \ + t.tfld = match ? fld_max : 0; \ } \ match = 0; \ } \ if (!scrf) { \ - putVSR(xT(opcode), &xt, env); \ + *xt = t; \ } \ } @@ -3323,31 +3216,29 @@ VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0) VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1) VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1) -void helper_xststdcsp(CPUPPCState *env, uint32_t opcode) +void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) { - ppc_vsr_t xb; uint32_t dcmx, sign, exp; uint32_t cc, match = 0, not_sp = 0; - getVSR(xB(opcode), &xb, env); dcmx = DCMX(opcode); - exp = (xb.VsrD(0) >> 52) & 0x7FF; + exp = (xb->VsrD(0) >> 52) & 0x7FF; - sign = float64_is_neg(xb.VsrD(0)); - if (float64_is_any_nan(xb.VsrD(0))) { + sign = float64_is_neg(xb->VsrD(0)); + if (float64_is_any_nan(xb->VsrD(0))) { match = extract32(dcmx, 6, 1); - } else if (float64_is_infinity(xb.VsrD(0))) { + } else if (float64_is_infinity(xb->VsrD(0))) { match = extract32(dcmx, 4 + !sign, 1); - } else if (float64_is_zero(xb.VsrD(0))) { + } else if (float64_is_zero(xb->VsrD(0))) { match = extract32(dcmx, 2 + !sign, 1); - } else if (float64_is_zero_or_denormal(xb.VsrD(0)) || + } else if (float64_is_zero_or_denormal(xb->VsrD(0)) || (exp > 0 && exp < 0x381)) { match = extract32(dcmx, 0 + !sign, 1); } - not_sp = !float64_eq(xb.VsrD(0), + not_sp = !float64_eq(xb->VsrD(0), float32_to_float64( - float64_to_float32(xb.VsrD(0), &env->fp_status), + float64_to_float32(xb->VsrD(0), &env->fp_status), &env->fp_status), &env->fp_status); cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT; @@ -3356,18 +3247,16 @@ void helper_xststdcsp(CPUPPCState *env, uint32_t opcode) env->crf[BF(opcode)] = cc; } -void helper_xsrqpi(CPUPPCState *env, uint32_t opcode) +void helper_xsrqpi(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xb) { - ppc_vsr_t xb; - ppc_vsr_t xt; + ppc_vsr_t t = { }; uint8_t r = Rrm(opcode); uint8_t ex = Rc(opcode); uint8_t rmc = RMC(opcode); uint8_t rmode = 0; float_status tstat; - getVSR(rB(opcode) + 32, &xb, env); - memset(&xt, 0, sizeof(xt)); helper_reset_fpstatus(env); if (r == 0 && rmc == 0) { @@ -3396,13 +3285,13 @@ void helper_xsrqpi(CPUPPCState *env, uint32_t opcode) tstat = env->fp_status; set_float_exception_flags(0, &tstat); set_float_rounding_mode(rmode, &tstat); - xt.f128 = float128_round_to_int(xb.f128, &tstat); + t.f128 = float128_round_to_int(xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { - if (float128_is_signaling_nan(xb.f128, &tstat)) { + if (float128_is_signaling_nan(xb->f128, &tstat)) { float_invalid_op_vxsnan(env, GETPC()); - xt.f128 = float128_snan_to_qnan(xt.f128); + t.f128 = float128_snan_to_qnan(t.f128); } } @@ -3410,23 +3299,21 @@ void helper_xsrqpi(CPUPPCState *env, uint32_t opcode) env->fp_status.float_exception_flags &= ~float_flag_inexact; } - helper_compute_fprf_float128(env, xt.f128); + helper_compute_fprf_float128(env, t.f128); do_float_check_status(env, GETPC()); - putVSR(rD(opcode) + 32, &xt, env); + *xt = t; } -void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode) +void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xb) { - ppc_vsr_t xb; - ppc_vsr_t xt; + ppc_vsr_t t = { }; uint8_t r = Rrm(opcode); uint8_t rmc = RMC(opcode); uint8_t rmode = 0; floatx80 round_res; float_status tstat; - getVSR(rB(opcode) + 32, &xb, env); - memset(&xt, 0, sizeof(xt)); helper_reset_fpstatus(env); if (r == 0 && rmc == 0) { @@ -3455,30 +3342,28 @@ void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode) tstat = env->fp_status; set_float_exception_flags(0, &tstat); set_float_rounding_mode(rmode, &tstat); - round_res = float128_to_floatx80(xb.f128, &tstat); - xt.f128 = floatx80_to_float128(round_res, &tstat); + round_res = float128_to_floatx80(xb->f128, &tstat); + t.f128 = floatx80_to_float128(round_res, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { - if (float128_is_signaling_nan(xb.f128, &tstat)) { + if (float128_is_signaling_nan(xb->f128, &tstat)) { float_invalid_op_vxsnan(env, GETPC()); - xt.f128 = float128_snan_to_qnan(xt.f128); + t.f128 = float128_snan_to_qnan(t.f128); } } - helper_compute_fprf_float128(env, xt.f128); - putVSR(rD(opcode) + 32, &xt, env); + helper_compute_fprf_float128(env, t.f128); + *xt = t; do_float_check_status(env, GETPC()); } -void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode) +void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xb) { - ppc_vsr_t xb; - ppc_vsr_t xt; + ppc_vsr_t t = { }; float_status tstat; - getVSR(rB(opcode) + 32, &xb, env); - memset(&xt, 0, sizeof(xt)); helper_reset_fpstatus(env); tstat = env->fp_status; @@ -3487,34 +3372,32 @@ void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode) } set_float_exception_flags(0, &tstat); - xt.f128 = float128_sqrt(xb.f128, &tstat); + t.f128 = float128_sqrt(xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { - if (float128_is_signaling_nan(xb.f128, &tstat)) { + if (float128_is_signaling_nan(xb->f128, &tstat)) { float_invalid_op_vxsnan(env, GETPC()); - xt.f128 = float128_snan_to_qnan(xb.f128); - } else if (float128_is_quiet_nan(xb.f128, &tstat)) { - xt.f128 = xb.f128; - } else if (float128_is_neg(xb.f128) && !float128_is_zero(xb.f128)) { + t.f128 = float128_snan_to_qnan(xb->f128); + } else if (float128_is_quiet_nan(xb->f128, &tstat)) { + t.f128 = xb->f128; + } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) { float_invalid_op_vxsqrt(env, 1, GETPC()); - xt.f128 = float128_default_nan(&env->fp_status); + t.f128 = float128_default_nan(&env->fp_status); } } - helper_compute_fprf_float128(env, xt.f128); - putVSR(rD(opcode) + 32, &xt, env); + helper_compute_fprf_float128(env, t.f128); + *xt = t; do_float_check_status(env, GETPC()); } -void helper_xssubqp(CPUPPCState *env, uint32_t opcode) +void helper_xssubqp(CPUPPCState *env, uint32_t opcode, + ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) { - ppc_vsr_t xt, xa, xb; + ppc_vsr_t t = *xt; float_status tstat; - getVSR(rA(opcode) + 32, &xa, env); - getVSR(rB(opcode) + 32, &xb, env); - getVSR(rD(opcode) + 32, &xt, env); helper_reset_fpstatus(env); tstat = env->fp_status; @@ -3523,16 +3406,16 @@ void helper_xssubqp(CPUPPCState *env, uint32_t opcode) } set_float_exception_flags(0, &tstat); - xt.f128 = float128_sub(xa.f128, xb.f128, &tstat); + t.f128 = float128_sub(xa->f128, xb->f128, &tstat); env->fp_status.float_exception_flags |= tstat.float_exception_flags; if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { float_invalid_op_addsub(env, 1, GETPC(), - float128_classify(xa.f128) | - float128_classify(xb.f128)); + float128_classify(xa->f128) | + float128_classify(xb->f128)); } - helper_compute_fprf_float128(env, xt.f128); - putVSR(rD(opcode) + 32, &xt, env); + helper_compute_fprf_float128(env, t.f128); + *xt = t; do_float_check_status(env, GETPC()); } diff --git a/target/ppc/helper.h b/target/ppc/helper.h index 02b67a333e..380c9b1e2a 100644 --- a/target/ppc/helper.h +++ b/target/ppc/helper.h @@ -108,6 +108,10 @@ DEF_HELPER_FLAGS_1(ftsqrt, TCG_CALL_NO_RWG_SE, i32, i64) #define dh_ctype_avr ppc_avr_t * #define dh_is_signed_avr dh_is_signed_ptr +#define dh_alias_vsr ptr +#define dh_ctype_vsr ppc_vsr_t * +#define dh_is_signed_vsr dh_is_signed_ptr + DEF_HELPER_3(vavgub, void, avr, avr, avr) DEF_HELPER_3(vavguh, void, avr, avr, avr) DEF_HELPER_3(vavguw, void, avr, avr, avr) @@ -275,10 +279,10 @@ DEF_HELPER_3(stvebx, void, env, avr, tl) DEF_HELPER_3(stvehx, void, env, avr, tl) DEF_HELPER_3(stvewx, void, env, avr, tl) #if defined(TARGET_PPC64) -DEF_HELPER_4(lxvl, void, env, tl, tl, tl) -DEF_HELPER_4(lxvll, void, env, tl, tl, tl) -DEF_HELPER_4(stxvl, void, env, tl, tl, tl) -DEF_HELPER_4(stxvll, void, env, tl, tl, tl) +DEF_HELPER_4(lxvl, void, env, tl, vsr, tl) +DEF_HELPER_4(lxvll, void, env, tl, vsr, tl) +DEF_HELPER_4(stxvl, void, env, tl, vsr, tl) +DEF_HELPER_4(stxvll, void, env, tl, vsr, tl) #endif DEF_HELPER_4(vsumsws, void, env, avr, avr, avr) DEF_HELPER_4(vsum2sws, void, env, avr, avr, avr) @@ -361,178 +365,162 @@ DEF_HELPER_4(bcdsr, i32, avr, avr, avr, i32) DEF_HELPER_4(bcdtrunc, i32, avr, avr, avr, i32) DEF_HELPER_4(bcdutrunc, i32, avr, avr, avr, i32) -DEF_HELPER_2(xsadddp, void, env, i32) -DEF_HELPER_2(xsaddqp, void, env, i32) -DEF_HELPER_2(xssubdp, void, env, i32) -DEF_HELPER_2(xsmuldp, void, env, i32) -DEF_HELPER_2(xsmulqp, void, env, i32) -DEF_HELPER_2(xsdivdp, void, env, i32) -DEF_HELPER_2(xsdivqp, void, env, i32) -DEF_HELPER_2(xsredp, void, env, i32) -DEF_HELPER_2(xssqrtdp, void, env, i32) -DEF_HELPER_2(xsrsqrtedp, void, env, i32) -DEF_HELPER_2(xstdivdp, void, env, i32) -DEF_HELPER_2(xstsqrtdp, void, env, i32) -DEF_HELPER_2(xsmaddadp, void, env, i32) -DEF_HELPER_2(xsmaddmdp, void, env, i32) -DEF_HELPER_2(xsmsubadp, void, env, i32) -DEF_HELPER_2(xsmsubmdp, void, env, i32) -DEF_HELPER_2(xsnmaddadp, void, env, i32) -DEF_HELPER_2(xsnmaddmdp, void, env, i32) -DEF_HELPER_2(xsnmsubadp, void, env, i32) -DEF_HELPER_2(xsnmsubmdp, void, env, i32) -DEF_HELPER_2(xscmpeqdp, void, env, i32) -DEF_HELPER_2(xscmpgtdp, void, env, i32) -DEF_HELPER_2(xscmpgedp, void, env, i32) -DEF_HELPER_2(xscmpnedp, void, env, i32) -DEF_HELPER_2(xscmpexpdp, void, env, i32) -DEF_HELPER_2(xscmpexpqp, void, env, i32) -DEF_HELPER_2(xscmpodp, void, env, i32) -DEF_HELPER_2(xscmpudp, void, env, i32) -DEF_HELPER_2(xscmpoqp, void, env, i32) -DEF_HELPER_2(xscmpuqp, void, env, i32) -DEF_HELPER_2(xsmaxdp, void, env, i32) -DEF_HELPER_2(xsmindp, void, env, i32) -DEF_HELPER_2(xsmaxcdp, void, env, i32) -DEF_HELPER_2(xsmincdp, void, env, i32) -DEF_HELPER_2(xsmaxjdp, void, env, i32) -DEF_HELPER_2(xsminjdp, void, env, i32) -DEF_HELPER_2(xscvdphp, void, env, i32) -DEF_HELPER_2(xscvdpqp, void, env, i32) -DEF_HELPER_2(xscvdpsp, void, env, i32) +DEF_HELPER_4(xsadddp, void, env, vsr, vsr, vsr) +DEF_HELPER_5(xsaddqp, void, env, i32, vsr, vsr, vsr) +DEF_HELPER_4(xssubdp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xsmuldp, void, env, vsr, vsr, vsr) +DEF_HELPER_5(xsmulqp, void, env, i32, vsr, vsr, vsr) +DEF_HELPER_4(xsdivdp, void, env, vsr, vsr, vsr) +DEF_HELPER_5(xsdivqp, void, env, i32, vsr, vsr, vsr) +DEF_HELPER_3(xsredp, void, env, vsr, vsr) +DEF_HELPER_3(xssqrtdp, void, env, vsr, vsr) +DEF_HELPER_3(xsrsqrtedp, void, env, vsr, vsr) +DEF_HELPER_4(xstdivdp, void, env, i32, vsr, vsr) +DEF_HELPER_3(xstsqrtdp, void, env, i32, vsr) +DEF_HELPER_5(xsmadddp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xsmsubdp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xsnmadddp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xsnmsubdp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_4(xscmpeqdp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xscmpgtdp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xscmpgedp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xscmpnedp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xscmpexpdp, void, env, i32, vsr, vsr) +DEF_HELPER_4(xscmpexpqp, void, env, i32, vsr, vsr) +DEF_HELPER_4(xscmpodp, void, env, i32, vsr, vsr) +DEF_HELPER_4(xscmpudp, void, env, i32, vsr, vsr) +DEF_HELPER_4(xscmpoqp, void, env, i32, vsr, vsr) +DEF_HELPER_4(xscmpuqp, void, env, i32, vsr, vsr) +DEF_HELPER_4(xsmaxdp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xsmindp, void, env, vsr, vsr, vsr) +DEF_HELPER_5(xsmaxcdp, void, env, i32, vsr, vsr, vsr) +DEF_HELPER_5(xsmincdp, void, env, i32, vsr, vsr, vsr) +DEF_HELPER_5(xsmaxjdp, void, env, i32, vsr, vsr, vsr) +DEF_HELPER_5(xsminjdp, void, env, i32, vsr, vsr, vsr) +DEF_HELPER_3(xscvdphp, void, env, vsr, vsr) +DEF_HELPER_4(xscvdpqp, void, env, i32, vsr, vsr) +DEF_HELPER_3(xscvdpsp, void, env, vsr, vsr) DEF_HELPER_2(xscvdpspn, i64, env, i64) -DEF_HELPER_2(xscvqpdp, void, env, i32) -DEF_HELPER_2(xscvqpsdz, void, env, i32) -DEF_HELPER_2(xscvqpswz, void, env, i32) -DEF_HELPER_2(xscvqpudz, void, env, i32) -DEF_HELPER_2(xscvqpuwz, void, env, i32) -DEF_HELPER_2(xscvhpdp, void, env, i32) -DEF_HELPER_2(xscvsdqp, void, env, i32) -DEF_HELPER_2(xscvspdp, void, env, i32) +DEF_HELPER_4(xscvqpdp, void, env, i32, vsr, vsr) +DEF_HELPER_4(xscvqpsdz, void, env, i32, vsr, vsr) +DEF_HELPER_4(xscvqpswz, void, env, i32, vsr, vsr) +DEF_HELPER_4(xscvqpudz, void, env, i32, vsr, vsr) +DEF_HELPER_4(xscvqpuwz, void, env, i32, vsr, vsr) +DEF_HELPER_3(xscvhpdp, void, env, vsr, vsr) +DEF_HELPER_4(xscvsdqp, void, env, i32, vsr, vsr) +DEF_HELPER_3(xscvspdp, void, env, vsr, vsr) DEF_HELPER_2(xscvspdpn, i64, env, i64) -DEF_HELPER_2(xscvdpsxds, void, env, i32) -DEF_HELPER_2(xscvdpsxws, void, env, i32) -DEF_HELPER_2(xscvdpuxds, void, env, i32) -DEF_HELPER_2(xscvdpuxws, void, env, i32) -DEF_HELPER_2(xscvsxddp, void, env, i32) -DEF_HELPER_2(xscvuxdsp, void, env, i32) -DEF_HELPER_2(xscvsxdsp, void, env, i32) -DEF_HELPER_2(xscvudqp, void, env, i32) -DEF_HELPER_2(xscvuxddp, void, env, i32) -DEF_HELPER_2(xststdcsp, void, env, i32) +DEF_HELPER_3(xscvdpsxds, void, env, vsr, vsr) +DEF_HELPER_3(xscvdpsxws, void, env, vsr, vsr) +DEF_HELPER_3(xscvdpuxds, void, env, vsr, vsr) +DEF_HELPER_3(xscvdpuxws, void, env, vsr, vsr) +DEF_HELPER_3(xscvsxddp, void, env, vsr, vsr) +DEF_HELPER_3(xscvuxdsp, void, env, vsr, vsr) +DEF_HELPER_3(xscvsxdsp, void, env, vsr, vsr) +DEF_HELPER_4(xscvudqp, void, env, i32, vsr, vsr) +DEF_HELPER_3(xscvuxddp, void, env, vsr, vsr) +DEF_HELPER_3(xststdcsp, void, env, i32, vsr) DEF_HELPER_2(xststdcdp, void, env, i32) DEF_HELPER_2(xststdcqp, void, env, i32) -DEF_HELPER_2(xsrdpi, void, env, i32) -DEF_HELPER_2(xsrdpic, void, env, i32) -DEF_HELPER_2(xsrdpim, void, env, i32) -DEF_HELPER_2(xsrdpip, void, env, i32) -DEF_HELPER_2(xsrdpiz, void, env, i32) -DEF_HELPER_2(xsrqpi, void, env, i32) -DEF_HELPER_2(xsrqpxp, void, env, i32) -DEF_HELPER_2(xssqrtqp, void, env, i32) -DEF_HELPER_2(xssubqp, void, env, i32) +DEF_HELPER_3(xsrdpi, void, env, vsr, vsr) +DEF_HELPER_3(xsrdpic, void, env, vsr, vsr) +DEF_HELPER_3(xsrdpim, void, env, vsr, vsr) +DEF_HELPER_3(xsrdpip, void, env, vsr, vsr) +DEF_HELPER_3(xsrdpiz, void, env, vsr, vsr) +DEF_HELPER_4(xsrqpi, void, env, i32, vsr, vsr) +DEF_HELPER_4(xsrqpxp, void, env, i32, vsr, vsr) +DEF_HELPER_4(xssqrtqp, void, env, i32, vsr, vsr) +DEF_HELPER_5(xssubqp, void, env, i32, vsr, vsr, vsr) -DEF_HELPER_2(xsaddsp, void, env, i32) -DEF_HELPER_2(xssubsp, void, env, i32) -DEF_HELPER_2(xsmulsp, void, env, i32) -DEF_HELPER_2(xsdivsp, void, env, i32) -DEF_HELPER_2(xsresp, void, env, i32) +DEF_HELPER_4(xsaddsp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xssubsp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xsmulsp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xsdivsp, void, env, vsr, vsr, vsr) +DEF_HELPER_3(xsresp, void, env, vsr, vsr) DEF_HELPER_2(xsrsp, i64, env, i64) -DEF_HELPER_2(xssqrtsp, void, env, i32) -DEF_HELPER_2(xsrsqrtesp, void, env, i32) -DEF_HELPER_2(xsmaddasp, void, env, i32) -DEF_HELPER_2(xsmaddmsp, void, env, i32) -DEF_HELPER_2(xsmsubasp, void, env, i32) -DEF_HELPER_2(xsmsubmsp, void, env, i32) -DEF_HELPER_2(xsnmaddasp, void, env, i32) -DEF_HELPER_2(xsnmaddmsp, void, env, i32) -DEF_HELPER_2(xsnmsubasp, void, env, i32) -DEF_HELPER_2(xsnmsubmsp, void, env, i32) +DEF_HELPER_3(xssqrtsp, void, env, vsr, vsr) +DEF_HELPER_3(xsrsqrtesp, void, env, vsr, vsr) +DEF_HELPER_5(xsmaddsp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xsmsubsp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xsnmaddsp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xsnmsubsp, void, env, vsr, vsr, vsr, vsr) -DEF_HELPER_2(xvadddp, void, env, i32) -DEF_HELPER_2(xvsubdp, void, env, i32) -DEF_HELPER_2(xvmuldp, void, env, i32) -DEF_HELPER_2(xvdivdp, void, env, i32) -DEF_HELPER_2(xvredp, void, env, i32) -DEF_HELPER_2(xvsqrtdp, void, env, i32) -DEF_HELPER_2(xvrsqrtedp, void, env, i32) -DEF_HELPER_2(xvtdivdp, void, env, i32) -DEF_HELPER_2(xvtsqrtdp, void, env, i32) -DEF_HELPER_2(xvmaddadp, void, env, i32) -DEF_HELPER_2(xvmaddmdp, void, env, i32) -DEF_HELPER_2(xvmsubadp, void, env, i32) -DEF_HELPER_2(xvmsubmdp, void, env, i32) -DEF_HELPER_2(xvnmaddadp, void, env, i32) -DEF_HELPER_2(xvnmaddmdp, void, env, i32) -DEF_HELPER_2(xvnmsubadp, void, env, i32) -DEF_HELPER_2(xvnmsubmdp, void, env, i32) -DEF_HELPER_2(xvmaxdp, void, env, i32) -DEF_HELPER_2(xvmindp, void, env, i32) -DEF_HELPER_2(xvcmpeqdp, void, env, i32) -DEF_HELPER_2(xvcmpgedp, void, env, i32) -DEF_HELPER_2(xvcmpgtdp, void, env, i32) -DEF_HELPER_2(xvcmpnedp, void, env, i32) -DEF_HELPER_2(xvcvdpsp, void, env, i32) -DEF_HELPER_2(xvcvdpsxds, void, env, i32) -DEF_HELPER_2(xvcvdpsxws, void, env, i32) -DEF_HELPER_2(xvcvdpuxds, void, env, i32) -DEF_HELPER_2(xvcvdpuxws, void, env, i32) -DEF_HELPER_2(xvcvsxddp, void, env, i32) -DEF_HELPER_2(xvcvuxddp, void, env, i32) -DEF_HELPER_2(xvcvsxwdp, void, env, i32) -DEF_HELPER_2(xvcvuxwdp, void, env, i32) -DEF_HELPER_2(xvrdpi, void, env, i32) -DEF_HELPER_2(xvrdpic, void, env, i32) -DEF_HELPER_2(xvrdpim, void, env, i32) -DEF_HELPER_2(xvrdpip, void, env, i32) -DEF_HELPER_2(xvrdpiz, void, env, i32) +DEF_HELPER_4(xvadddp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xvsubdp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xvmuldp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xvdivdp, void, env, vsr, vsr, vsr) +DEF_HELPER_3(xvredp, void, env, vsr, vsr) +DEF_HELPER_3(xvsqrtdp, void, env, vsr, vsr) +DEF_HELPER_3(xvrsqrtedp, void, env, vsr, vsr) +DEF_HELPER_4(xvtdivdp, void, env, i32, vsr, vsr) +DEF_HELPER_3(xvtsqrtdp, void, env, i32, vsr) +DEF_HELPER_5(xvmadddp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xvmsubdp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xvnmadddp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xvnmsubdp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_4(xvmaxdp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xvmindp, void, env, vsr, vsr, vsr) +DEF_HELPER_FLAGS_4(xvcmpeqdp, TCG_CALL_NO_RWG, i32, env, vsr, vsr, vsr) +DEF_HELPER_FLAGS_4(xvcmpgedp, TCG_CALL_NO_RWG, i32, env, vsr, vsr, vsr) +DEF_HELPER_FLAGS_4(xvcmpgtdp, TCG_CALL_NO_RWG, i32, env, vsr, vsr, vsr) +DEF_HELPER_FLAGS_4(xvcmpnedp, TCG_CALL_NO_RWG, i32, env, vsr, vsr, vsr) +DEF_HELPER_3(xvcvdpsp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvdpsxds, void, env, vsr, vsr) +DEF_HELPER_3(xvcvdpsxws, void, env, vsr, vsr) +DEF_HELPER_3(xvcvdpuxds, void, env, vsr, vsr) +DEF_HELPER_3(xvcvdpuxws, void, env, vsr, vsr) +DEF_HELPER_3(xvcvsxddp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvuxddp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvsxwdp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvuxwdp, void, env, vsr, vsr) +DEF_HELPER_3(xvrdpi, void, env, vsr, vsr) +DEF_HELPER_3(xvrdpic, void, env, vsr, vsr) +DEF_HELPER_3(xvrdpim, void, env, vsr, vsr) +DEF_HELPER_3(xvrdpip, void, env, vsr, vsr) +DEF_HELPER_3(xvrdpiz, void, env, vsr, vsr) -DEF_HELPER_2(xvaddsp, void, env, i32) -DEF_HELPER_2(xvsubsp, void, env, i32) -DEF_HELPER_2(xvmulsp, void, env, i32) -DEF_HELPER_2(xvdivsp, void, env, i32) -DEF_HELPER_2(xvresp, void, env, i32) -DEF_HELPER_2(xvsqrtsp, void, env, i32) -DEF_HELPER_2(xvrsqrtesp, void, env, i32) -DEF_HELPER_2(xvtdivsp, void, env, i32) -DEF_HELPER_2(xvtsqrtsp, void, env, i32) -DEF_HELPER_2(xvmaddasp, void, env, i32) -DEF_HELPER_2(xvmaddmsp, void, env, i32) -DEF_HELPER_2(xvmsubasp, void, env, i32) -DEF_HELPER_2(xvmsubmsp, void, env, i32) -DEF_HELPER_2(xvnmaddasp, void, env, i32) -DEF_HELPER_2(xvnmaddmsp, void, env, i32) -DEF_HELPER_2(xvnmsubasp, void, env, i32) -DEF_HELPER_2(xvnmsubmsp, void, env, i32) -DEF_HELPER_2(xvmaxsp, void, env, i32) -DEF_HELPER_2(xvminsp, void, env, i32) -DEF_HELPER_2(xvcmpeqsp, void, env, i32) -DEF_HELPER_2(xvcmpgesp, void, env, i32) -DEF_HELPER_2(xvcmpgtsp, void, env, i32) -DEF_HELPER_2(xvcmpnesp, void, env, i32) -DEF_HELPER_2(xvcvspdp, void, env, i32) -DEF_HELPER_2(xvcvsphp, void, env, i32) -DEF_HELPER_2(xvcvhpsp, void, env, i32) -DEF_HELPER_2(xvcvspsxds, void, env, i32) -DEF_HELPER_2(xvcvspsxws, void, env, i32) -DEF_HELPER_2(xvcvspuxds, void, env, i32) -DEF_HELPER_2(xvcvspuxws, void, env, i32) -DEF_HELPER_2(xvcvsxdsp, void, env, i32) -DEF_HELPER_2(xvcvuxdsp, void, env, i32) -DEF_HELPER_2(xvcvsxwsp, void, env, i32) -DEF_HELPER_2(xvcvuxwsp, void, env, i32) +DEF_HELPER_4(xvaddsp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xvsubsp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xvmulsp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xvdivsp, void, env, vsr, vsr, vsr) +DEF_HELPER_3(xvresp, void, env, vsr, vsr) +DEF_HELPER_3(xvsqrtsp, void, env, vsr, vsr) +DEF_HELPER_3(xvrsqrtesp, void, env, vsr, vsr) +DEF_HELPER_4(xvtdivsp, void, env, i32, vsr, vsr) +DEF_HELPER_3(xvtsqrtsp, void, env, i32, vsr) +DEF_HELPER_5(xvmaddsp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xvmsubsp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xvnmaddsp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_5(xvnmsubsp, void, env, vsr, vsr, vsr, vsr) +DEF_HELPER_4(xvmaxsp, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xvminsp, void, env, vsr, vsr, vsr) +DEF_HELPER_FLAGS_4(xvcmpeqsp, TCG_CALL_NO_RWG, i32, env, vsr, vsr, vsr) +DEF_HELPER_FLAGS_4(xvcmpgesp, TCG_CALL_NO_RWG, i32, env, vsr, vsr, vsr) +DEF_HELPER_FLAGS_4(xvcmpgtsp, TCG_CALL_NO_RWG, i32, env, vsr, vsr, vsr) +DEF_HELPER_FLAGS_4(xvcmpnesp, TCG_CALL_NO_RWG, i32, env, vsr, vsr, vsr) +DEF_HELPER_3(xvcvspdp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvsphp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvhpsp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvspsxds, void, env, vsr, vsr) +DEF_HELPER_3(xvcvspsxws, void, env, vsr, vsr) +DEF_HELPER_3(xvcvspuxds, void, env, vsr, vsr) +DEF_HELPER_3(xvcvspuxws, void, env, vsr, vsr) +DEF_HELPER_3(xvcvsxdsp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvuxdsp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvsxwsp, void, env, vsr, vsr) +DEF_HELPER_3(xvcvuxwsp, void, env, vsr, vsr) DEF_HELPER_2(xvtstdcsp, void, env, i32) DEF_HELPER_2(xvtstdcdp, void, env, i32) -DEF_HELPER_2(xvrspi, void, env, i32) -DEF_HELPER_2(xvrspic, void, env, i32) -DEF_HELPER_2(xvrspim, void, env, i32) -DEF_HELPER_2(xvrspip, void, env, i32) -DEF_HELPER_2(xvrspiz, void, env, i32) -DEF_HELPER_2(xxperm, void, env, i32) -DEF_HELPER_2(xxpermr, void, env, i32) -DEF_HELPER_4(xxextractuw, void, env, tl, tl, i32) -DEF_HELPER_4(xxinsertw, void, env, tl, tl, i32) -DEF_HELPER_2(xvxsigsp, void, env, i32) +DEF_HELPER_3(xvrspi, void, env, vsr, vsr) +DEF_HELPER_3(xvrspic, void, env, vsr, vsr) +DEF_HELPER_3(xvrspim, void, env, vsr, vsr) +DEF_HELPER_3(xvrspip, void, env, vsr, vsr) +DEF_HELPER_3(xvrspiz, void, env, vsr, vsr) +DEF_HELPER_4(xxperm, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xxpermr, void, env, vsr, vsr, vsr) +DEF_HELPER_4(xxextractuw, void, env, vsr, vsr, i32) +DEF_HELPER_4(xxinsertw, void, env, vsr, vsr, i32) +DEF_HELPER_3(xvxsigsp, void, env, vsr, vsr) DEF_HELPER_2(efscfsi, i32, env, i32) DEF_HELPER_2(efscfui, i32, env, i32) diff --git a/target/ppc/int_helper.c b/target/ppc/int_helper.c index 8ce89f2ad9..5c07ef3e4d 100644 --- a/target/ppc/int_helper.c +++ b/target/ppc/int_helper.c @@ -1899,41 +1899,35 @@ VEXTRACT(uw, u32) VEXTRACT(d, u64) #undef VEXTRACT -void helper_xxextractuw(CPUPPCState *env, target_ulong xtn, - target_ulong xbn, uint32_t index) +void helper_xxextractuw(CPUPPCState *env, ppc_vsr_t *xt, + ppc_vsr_t *xb, uint32_t index) { - ppc_vsr_t xt, xb; + ppc_vsr_t t = { }; size_t es = sizeof(uint32_t); uint32_t ext_index; int i; - getVSR(xbn, &xb, env); - memset(&xt, 0, sizeof(xt)); - ext_index = index; for (i = 0; i < es; i++, ext_index++) { - xt.VsrB(8 - es + i) = xb.VsrB(ext_index % 16); + t.VsrB(8 - es + i) = xb->VsrB(ext_index % 16); } - putVSR(xtn, &xt, env); + *xt = t; } -void helper_xxinsertw(CPUPPCState *env, target_ulong xtn, - target_ulong xbn, uint32_t index) +void helper_xxinsertw(CPUPPCState *env, ppc_vsr_t *xt, + ppc_vsr_t *xb, uint32_t index) { - ppc_vsr_t xt, xb; + ppc_vsr_t t = *xt; size_t es = sizeof(uint32_t); int ins_index, i = 0; - getVSR(xbn, &xb, env); - getVSR(xtn, &xt, env); - ins_index = index; for (i = 0; i < es && ins_index < 16; i++, ins_index++) { - xt.VsrB(ins_index) = xb.VsrB(8 - es + i); + t.VsrB(ins_index) = xb->VsrB(8 - es + i); } - putVSR(xtn, &xt, env); + *xt = t; } #define VEXT_SIGNED(name, element, cast) \ diff --git a/target/ppc/internal.h b/target/ppc/internal.h index fb6f64ed1e..d3d327e548 100644 --- a/target/ppc/internal.h +++ b/target/ppc/internal.h @@ -204,18 +204,6 @@ EXTRACT_HELPER(IMM8, 11, 8); EXTRACT_HELPER(DCMX, 16, 7); EXTRACT_HELPER_SPLIT_3(DCMX_XV, 5, 16, 0, 1, 2, 5, 1, 6, 6); -static inline void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) -{ - vsr->VsrD(0) = env->vsr[n].VsrD(0); - vsr->VsrD(1) = env->vsr[n].VsrD(1); -} - -static inline void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) -{ - env->vsr[n].VsrD(0) = vsr->VsrD(0); - env->vsr[n].VsrD(1) = vsr->VsrD(1); -} - void helper_compute_fprf_float16(CPUPPCState *env, float16 arg); void helper_compute_fprf_float32(CPUPPCState *env, float32 arg); void helper_compute_fprf_float128(CPUPPCState *env, float128 arg); diff --git a/target/ppc/kvm.c b/target/ppc/kvm.c index 4b4989c0af..8a06d3171e 100644 --- a/target/ppc/kvm.c +++ b/target/ppc/kvm.c @@ -2650,7 +2650,7 @@ int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) return -ENOENT; } - strncpy(args.name, function, sizeof(args.name)); + strncpy(args.name, function, sizeof(args.name) - 1); return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); } @@ -2944,3 +2944,12 @@ void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online) kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online); } } + +void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset) +{ + CPUState *cs = CPU(cpu); + + if (kvm_enabled()) { + kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset); + } +} diff --git a/target/ppc/kvm_ppc.h b/target/ppc/kvm_ppc.h index 45776cad79..98bd7d5da6 100644 --- a/target/ppc/kvm_ppc.h +++ b/target/ppc/kvm_ppc.h @@ -80,6 +80,7 @@ bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu); bool kvmppc_hpt_needs_host_contiguous_pages(void); void kvm_check_mmu(PowerPCCPU *cpu, Error **errp); void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online); +void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset); #else @@ -206,6 +207,10 @@ static inline void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, return; } +static inline void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset) +{ +} + #ifndef CONFIG_USER_ONLY static inline bool kvmppc_spapr_use_multitce(void) { @@ -394,6 +399,11 @@ static inline int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, return -ENOSYS; } +static inline bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu) +{ + return false; +} + #endif #ifndef CONFIG_KVM diff --git a/target/ppc/machine.c b/target/ppc/machine.c index 5ad7b40f45..e82f5de9db 100644 --- a/target/ppc/machine.c +++ b/target/ppc/machine.c @@ -378,11 +378,9 @@ static int cpu_post_load(void *opaque, int version_id) * receive the PVR it expects as a workaround. * */ -#if defined(CONFIG_KVM) if (kvmppc_pvr_workaround_required(cpu)) { env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; } -#endif env->lr = env->spr[SPR_LR]; env->ctr = env->spr[SPR_CTR]; diff --git a/target/ppc/mem_helper.c b/target/ppc/mem_helper.c index 5b0f9ee50d..6f4ffa3661 100644 --- a/target/ppc/mem_helper.c +++ b/target/ppc/mem_helper.c @@ -415,28 +415,28 @@ STVE(stvewx, cpu_stl_data_ra, bswap32, u32) #define VSX_LXVL(name, lj) \ void helper_##name(CPUPPCState *env, target_ulong addr, \ - target_ulong xt_num, target_ulong rb) \ + ppc_vsr_t *xt, target_ulong rb) \ { \ - int i; \ - ppc_vsr_t xt; \ + ppc_vsr_t t; \ uint64_t nb = GET_NB(rb); \ + int i; \ \ - xt.s128 = int128_zero(); \ + t.s128 = int128_zero(); \ if (nb) { \ nb = (nb >= 16) ? 16 : nb; \ if (msr_le && !lj) { \ for (i = 16; i > 16 - nb; i--) { \ - xt.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \ + t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \ addr = addr_add(env, addr, 1); \ } \ } else { \ for (i = 0; i < nb; i++) { \ - xt.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \ + t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \ addr = addr_add(env, addr, 1); \ } \ } \ } \ - putVSR(xt_num, &xt, env); \ + *xt = t; \ } VSX_LXVL(lxvl, 0) @@ -445,25 +445,24 @@ VSX_LXVL(lxvll, 1) #define VSX_STXVL(name, lj) \ void helper_##name(CPUPPCState *env, target_ulong addr, \ - target_ulong xt_num, target_ulong rb) \ + ppc_vsr_t *xt, target_ulong rb) \ { \ - int i; \ - ppc_vsr_t xt; \ target_ulong nb = GET_NB(rb); \ + int i; \ \ if (!nb) { \ return; \ } \ - getVSR(xt_num, &xt, env); \ + \ nb = (nb >= 16) ? 16 : nb; \ if (msr_le && !lj) { \ for (i = 16; i > 16 - nb; i--) { \ - cpu_stb_data_ra(env, addr, xt.VsrB(i - 1), GETPC()); \ + cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \ addr = addr_add(env, addr, 1); \ } \ } else { \ for (i = 0; i < nb; i++) { \ - cpu_stb_data_ra(env, addr, xt.VsrB(i), GETPC()); \ + cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \ addr = addr_add(env, addr, 1); \ } \ } \ diff --git a/target/ppc/translate/vsx-impl.inc.c b/target/ppc/translate/vsx-impl.inc.c index e9b7562f84..3922686ad6 100644 --- a/target/ppc/translate/vsx-impl.inc.c +++ b/target/ppc/translate/vsx-impl.inc.c @@ -20,6 +20,13 @@ static inline void set_cpu_vsrl(int n, TCGv_i64 src) tcg_gen_st_i64(src, cpu_env, vsr64_offset(n, false)); } +static inline TCGv_ptr gen_vsr_ptr(int reg) +{ + TCGv_ptr r = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(r, cpu_env, vsr_full_offset(reg)); + return r; +} + #define VSX_LOAD_SCALAR(name, operation) \ static void gen_##name(DisasContext *ctx) \ { \ @@ -337,29 +344,30 @@ VSX_VECTOR_STORE(stxv, st_i64, 0) VSX_VECTOR_STORE(stxvx, st_i64, 1) #ifdef TARGET_PPC64 -#define VSX_VECTOR_LOAD_STORE_LENGTH(name) \ -static void gen_##name(DisasContext *ctx) \ -{ \ - TCGv EA, xt; \ - \ - if (xT(ctx->opcode) < 32) { \ - if (unlikely(!ctx->vsx_enabled)) { \ - gen_exception(ctx, POWERPC_EXCP_VSXU); \ - return; \ - } \ - } else { \ - if (unlikely(!ctx->altivec_enabled)) { \ - gen_exception(ctx, POWERPC_EXCP_VPU); \ - return; \ - } \ - } \ - EA = tcg_temp_new(); \ - xt = tcg_const_tl(xT(ctx->opcode)); \ - gen_set_access_type(ctx, ACCESS_INT); \ - gen_addr_register(ctx, EA); \ - gen_helper_##name(cpu_env, EA, xt, cpu_gpr[rB(ctx->opcode)]); \ - tcg_temp_free(EA); \ - tcg_temp_free(xt); \ +#define VSX_VECTOR_LOAD_STORE_LENGTH(name) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv EA; \ + TCGv_ptr xt; \ + \ + if (xT(ctx->opcode) < 32) { \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + } else { \ + if (unlikely(!ctx->altivec_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VPU); \ + return; \ + } \ + } \ + EA = tcg_temp_new(); \ + xt = gen_vsr_ptr(xT(ctx->opcode)); \ + gen_set_access_type(ctx, ACCESS_INT); \ + gen_addr_register(ctx, EA); \ + gen_helper_##name(cpu_env, EA, xt, cpu_gpr[rB(ctx->opcode)]); \ + tcg_temp_free(EA); \ + tcg_temp_free_ptr(xt); \ } VSX_VECTOR_LOAD_STORE_LENGTH(lxvl) @@ -958,6 +966,57 @@ VSX_VECTOR_MOVE(xvnabssp, OP_NABS, SGN_MASK_SP) VSX_VECTOR_MOVE(xvnegsp, OP_NEG, SGN_MASK_SP) VSX_VECTOR_MOVE(xvcpsgnsp, OP_CPSGN, SGN_MASK_SP) +#define VSX_CMP(name, op1, op2, inval, type) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv_i32 ignored; \ + TCGv_ptr xt, xa, xb; \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + xt = gen_vsr_ptr(xT(ctx->opcode)); \ + xa = gen_vsr_ptr(xA(ctx->opcode)); \ + xb = gen_vsr_ptr(xB(ctx->opcode)); \ + if ((ctx->opcode >> (31 - 21)) & 1) { \ + gen_helper_##name(cpu_crf[6], cpu_env, xt, xa, xb); \ + } else { \ + ignored = tcg_temp_new_i32(); \ + gen_helper_##name(ignored, cpu_env, xt, xa, xb); \ + tcg_temp_free_i32(ignored); \ + } \ + gen_helper_float_check_status(cpu_env); \ + tcg_temp_free_ptr(xt); \ + tcg_temp_free_ptr(xa); \ + tcg_temp_free_ptr(xb); \ +} + +VSX_CMP(xvcmpeqdp, 0x0C, 0x0C, 0, PPC2_VSX) +VSX_CMP(xvcmpgedp, 0x0C, 0x0E, 0, PPC2_VSX) +VSX_CMP(xvcmpgtdp, 0x0C, 0x0D, 0, PPC2_VSX) +VSX_CMP(xvcmpnedp, 0x0C, 0x0F, 0, PPC2_ISA300) +VSX_CMP(xvcmpeqsp, 0x0C, 0x08, 0, PPC2_VSX) +VSX_CMP(xvcmpgesp, 0x0C, 0x0A, 0, PPC2_VSX) +VSX_CMP(xvcmpgtsp, 0x0C, 0x09, 0, PPC2_VSX) +VSX_CMP(xvcmpnesp, 0x0C, 0x0B, 0, PPC2_VSX) + +static void gen_xscvqpdp(DisasContext *ctx) +{ + TCGv_i32 opc; + TCGv_ptr xt, xb; + if (unlikely(!ctx->vsx_enabled)) { + gen_exception(ctx, POWERPC_EXCP_VSXU); + return; + } + opc = tcg_const_i32(ctx->opcode); + xt = gen_vsr_ptr(xT(ctx->opcode)); + xb = gen_vsr_ptr(xB(ctx->opcode)); + gen_helper_xscvqpdp(cpu_env, opc, xt, xb); + tcg_temp_free_i32(opc); + tcg_temp_free_ptr(xt); + tcg_temp_free_ptr(xb); +} + #define GEN_VSX_HELPER_2(name, op1, op2, inval, type) \ static void gen_##name(DisasContext *ctx) \ { \ @@ -971,6 +1030,128 @@ static void gen_##name(DisasContext *ctx) \ tcg_temp_free_i32(opc); \ } +#define GEN_VSX_HELPER_X3(name, op1, op2, inval, type) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv_ptr xt, xa, xb; \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + xt = gen_vsr_ptr(xT(ctx->opcode)); \ + xa = gen_vsr_ptr(xA(ctx->opcode)); \ + xb = gen_vsr_ptr(xB(ctx->opcode)); \ + gen_helper_##name(cpu_env, xt, xa, xb); \ + tcg_temp_free_ptr(xt); \ + tcg_temp_free_ptr(xa); \ + tcg_temp_free_ptr(xb); \ +} + +#define GEN_VSX_HELPER_X2(name, op1, op2, inval, type) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv_ptr xt, xb; \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + xt = gen_vsr_ptr(xT(ctx->opcode)); \ + xb = gen_vsr_ptr(xB(ctx->opcode)); \ + gen_helper_##name(cpu_env, xt, xb); \ + tcg_temp_free_ptr(xt); \ + tcg_temp_free_ptr(xb); \ +} + +#define GEN_VSX_HELPER_X2_AB(name, op1, op2, inval, type) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv_i32 opc; \ + TCGv_ptr xa, xb; \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + opc = tcg_const_i32(ctx->opcode); \ + xa = gen_vsr_ptr(xA(ctx->opcode)); \ + xb = gen_vsr_ptr(xB(ctx->opcode)); \ + gen_helper_##name(cpu_env, opc, xa, xb); \ + tcg_temp_free_i32(opc); \ + tcg_temp_free_ptr(xa); \ + tcg_temp_free_ptr(xb); \ +} + +#define GEN_VSX_HELPER_X1(name, op1, op2, inval, type) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv_i32 opc; \ + TCGv_ptr xb; \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + opc = tcg_const_i32(ctx->opcode); \ + xb = gen_vsr_ptr(xB(ctx->opcode)); \ + gen_helper_##name(cpu_env, opc, xb); \ + tcg_temp_free_i32(opc); \ + tcg_temp_free_ptr(xb); \ +} + +#define GEN_VSX_HELPER_R3(name, op1, op2, inval, type) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv_i32 opc; \ + TCGv_ptr xt, xa, xb; \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + opc = tcg_const_i32(ctx->opcode); \ + xt = gen_vsr_ptr(rD(ctx->opcode) + 32); \ + xa = gen_vsr_ptr(rA(ctx->opcode) + 32); \ + xb = gen_vsr_ptr(rB(ctx->opcode) + 32); \ + gen_helper_##name(cpu_env, opc, xt, xa, xb); \ + tcg_temp_free_i32(opc); \ + tcg_temp_free_ptr(xt); \ + tcg_temp_free_ptr(xa); \ + tcg_temp_free_ptr(xb); \ +} + +#define GEN_VSX_HELPER_R2(name, op1, op2, inval, type) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv_i32 opc; \ + TCGv_ptr xt, xb; \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + opc = tcg_const_i32(ctx->opcode); \ + xt = gen_vsr_ptr(rD(ctx->opcode) + 32); \ + xb = gen_vsr_ptr(rB(ctx->opcode) + 32); \ + gen_helper_##name(cpu_env, opc, xt, xb); \ + tcg_temp_free_i32(opc); \ + tcg_temp_free_ptr(xt); \ + tcg_temp_free_ptr(xb); \ +} + +#define GEN_VSX_HELPER_R2_AB(name, op1, op2, inval, type) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv_i32 opc; \ + TCGv_ptr xa, xb; \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + opc = tcg_const_i32(ctx->opcode); \ + xa = gen_vsr_ptr(rA(ctx->opcode) + 32); \ + xb = gen_vsr_ptr(rB(ctx->opcode) + 32); \ + gen_helper_##name(cpu_env, opc, xa, xb); \ + tcg_temp_free_i32(opc); \ + tcg_temp_free_ptr(xa); \ + tcg_temp_free_ptr(xb); \ +} + #define GEN_VSX_HELPER_XT_XB_ENV(name, op1, op2, inval, type) \ static void gen_##name(DisasContext *ctx) \ { \ @@ -989,176 +1170,180 @@ static void gen_##name(DisasContext *ctx) \ tcg_temp_free_i64(t1); \ } -GEN_VSX_HELPER_2(xsadddp, 0x00, 0x04, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsaddqp, 0x04, 0x00, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xssubdp, 0x00, 0x05, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsmuldp, 0x00, 0x06, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsmulqp, 0x04, 0x01, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xsdivdp, 0x00, 0x07, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsdivqp, 0x04, 0x11, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xsredp, 0x14, 0x05, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xssqrtdp, 0x16, 0x04, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsrsqrtedp, 0x14, 0x04, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xstdivdp, 0x14, 0x07, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xstsqrtdp, 0x14, 0x06, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsmaddadp, 0x04, 0x04, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsmaddmdp, 0x04, 0x05, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsmsubadp, 0x04, 0x06, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsmsubmdp, 0x04, 0x07, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsnmaddadp, 0x04, 0x14, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsnmaddmdp, 0x04, 0x15, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsnmsubadp, 0x04, 0x16, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsnmsubmdp, 0x04, 0x17, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscmpeqdp, 0x0C, 0x00, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xscmpgtdp, 0x0C, 0x01, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xscmpgedp, 0x0C, 0x02, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xscmpnedp, 0x0C, 0x03, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xscmpexpdp, 0x0C, 0x07, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xscmpexpqp, 0x04, 0x05, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xscmpodp, 0x0C, 0x05, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscmpudp, 0x0C, 0x04, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscmpoqp, 0x04, 0x04, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscmpuqp, 0x04, 0x14, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsmaxdp, 0x00, 0x14, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsmindp, 0x00, 0x15, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsmaxcdp, 0x00, 0x10, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xsmincdp, 0x00, 0x11, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xsmaxjdp, 0x00, 0x12, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xsminjdp, 0x00, 0x12, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvdphp, 0x16, 0x15, 0x11, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvdpsp, 0x12, 0x10, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscvdpqp, 0x04, 0x1A, 0x16, PPC2_ISA300) +GEN_VSX_HELPER_X3(xsadddp, 0x00, 0x04, 0, PPC2_VSX) +GEN_VSX_HELPER_R3(xsaddqp, 0x04, 0x00, 0, PPC2_ISA300) +GEN_VSX_HELPER_X3(xssubdp, 0x00, 0x05, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xsmuldp, 0x00, 0x06, 0, PPC2_VSX) +GEN_VSX_HELPER_R3(xsmulqp, 0x04, 0x01, 0, PPC2_ISA300) +GEN_VSX_HELPER_X3(xsdivdp, 0x00, 0x07, 0, PPC2_VSX) +GEN_VSX_HELPER_R3(xsdivqp, 0x04, 0x11, 0, PPC2_ISA300) +GEN_VSX_HELPER_X2(xsredp, 0x14, 0x05, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xssqrtdp, 0x16, 0x04, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xsrsqrtedp, 0x14, 0x04, 0, PPC2_VSX) +GEN_VSX_HELPER_X2_AB(xstdivdp, 0x14, 0x07, 0, PPC2_VSX) +GEN_VSX_HELPER_X1(xstsqrtdp, 0x14, 0x06, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xscmpeqdp, 0x0C, 0x00, 0, PPC2_ISA300) +GEN_VSX_HELPER_X3(xscmpgtdp, 0x0C, 0x01, 0, PPC2_ISA300) +GEN_VSX_HELPER_X3(xscmpgedp, 0x0C, 0x02, 0, PPC2_ISA300) +GEN_VSX_HELPER_X3(xscmpnedp, 0x0C, 0x03, 0, PPC2_ISA300) +GEN_VSX_HELPER_X2_AB(xscmpexpdp, 0x0C, 0x07, 0, PPC2_ISA300) +GEN_VSX_HELPER_R2_AB(xscmpexpqp, 0x04, 0x05, 0, PPC2_ISA300) +GEN_VSX_HELPER_X2_AB(xscmpodp, 0x0C, 0x05, 0, PPC2_VSX) +GEN_VSX_HELPER_X2_AB(xscmpudp, 0x0C, 0x04, 0, PPC2_VSX) +GEN_VSX_HELPER_R2_AB(xscmpoqp, 0x04, 0x04, 0, PPC2_VSX) +GEN_VSX_HELPER_R2_AB(xscmpuqp, 0x04, 0x14, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xsmaxdp, 0x00, 0x14, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xsmindp, 0x00, 0x15, 0, PPC2_VSX) +GEN_VSX_HELPER_R3(xsmaxcdp, 0x00, 0x10, 0, PPC2_ISA300) +GEN_VSX_HELPER_R3(xsmincdp, 0x00, 0x11, 0, PPC2_ISA300) +GEN_VSX_HELPER_R3(xsmaxjdp, 0x00, 0x12, 0, PPC2_ISA300) +GEN_VSX_HELPER_R3(xsminjdp, 0x00, 0x12, 0, PPC2_ISA300) +GEN_VSX_HELPER_X2(xscvdphp, 0x16, 0x15, 0x11, PPC2_ISA300) +GEN_VSX_HELPER_X2(xscvdpsp, 0x12, 0x10, 0, PPC2_VSX) +GEN_VSX_HELPER_R2(xscvdpqp, 0x04, 0x1A, 0x16, PPC2_ISA300) GEN_VSX_HELPER_XT_XB_ENV(xscvdpspn, 0x16, 0x10, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xscvqpdp, 0x04, 0x1A, 0x14, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvqpsdz, 0x04, 0x1A, 0x19, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvqpswz, 0x04, 0x1A, 0x09, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvqpudz, 0x04, 0x1A, 0x11, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvqpuwz, 0x04, 0x1A, 0x01, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvhpdp, 0x16, 0x15, 0x10, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvsdqp, 0x04, 0x1A, 0x0A, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvspdp, 0x12, 0x14, 0, PPC2_VSX) +GEN_VSX_HELPER_R2(xscvqpsdz, 0x04, 0x1A, 0x19, PPC2_ISA300) +GEN_VSX_HELPER_R2(xscvqpswz, 0x04, 0x1A, 0x09, PPC2_ISA300) +GEN_VSX_HELPER_R2(xscvqpudz, 0x04, 0x1A, 0x11, PPC2_ISA300) +GEN_VSX_HELPER_R2(xscvqpuwz, 0x04, 0x1A, 0x01, PPC2_ISA300) +GEN_VSX_HELPER_X2(xscvhpdp, 0x16, 0x15, 0x10, PPC2_ISA300) +GEN_VSX_HELPER_R2(xscvsdqp, 0x04, 0x1A, 0x0A, PPC2_ISA300) +GEN_VSX_HELPER_X2(xscvspdp, 0x12, 0x14, 0, PPC2_VSX) GEN_VSX_HELPER_XT_XB_ENV(xscvspdpn, 0x16, 0x14, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xscvdpsxds, 0x10, 0x15, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscvdpsxws, 0x10, 0x05, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscvdpuxds, 0x10, 0x14, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscvdpuxws, 0x10, 0x04, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscvsxddp, 0x10, 0x17, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xscvudqp, 0x04, 0x1A, 0x02, PPC2_ISA300) -GEN_VSX_HELPER_2(xscvuxddp, 0x10, 0x16, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsrdpi, 0x12, 0x04, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsrdpic, 0x16, 0x06, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsrdpim, 0x12, 0x07, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsrdpip, 0x12, 0x06, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xsrdpiz, 0x12, 0x05, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xscvdpsxds, 0x10, 0x15, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xscvdpsxws, 0x10, 0x05, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xscvdpuxds, 0x10, 0x14, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xscvdpuxws, 0x10, 0x04, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xscvsxddp, 0x10, 0x17, 0, PPC2_VSX) +GEN_VSX_HELPER_R2(xscvudqp, 0x04, 0x1A, 0x02, PPC2_ISA300) +GEN_VSX_HELPER_X2(xscvuxddp, 0x10, 0x16, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xsrdpi, 0x12, 0x04, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xsrdpic, 0x16, 0x06, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xsrdpim, 0x12, 0x07, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xsrdpip, 0x12, 0x06, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xsrdpiz, 0x12, 0x05, 0, PPC2_VSX) GEN_VSX_HELPER_XT_XB_ENV(xsrsp, 0x12, 0x11, 0, PPC2_VSX207) - -GEN_VSX_HELPER_2(xsrqpi, 0x05, 0x00, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xsrqpxp, 0x05, 0x01, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xssqrtqp, 0x04, 0x19, 0x1B, PPC2_ISA300) -GEN_VSX_HELPER_2(xssubqp, 0x04, 0x10, 0, PPC2_ISA300) - -GEN_VSX_HELPER_2(xsaddsp, 0x00, 0x00, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xssubsp, 0x00, 0x01, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsmulsp, 0x00, 0x02, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsdivsp, 0x00, 0x03, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsresp, 0x14, 0x01, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xssqrtsp, 0x16, 0x00, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsrsqrtesp, 0x14, 0x00, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsmaddasp, 0x04, 0x00, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsmaddmsp, 0x04, 0x01, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsmsubasp, 0x04, 0x02, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsmsubmsp, 0x04, 0x03, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsnmaddasp, 0x04, 0x10, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsnmaddmsp, 0x04, 0x11, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsnmsubasp, 0x04, 0x12, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xsnmsubmsp, 0x04, 0x13, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xscvsxdsp, 0x10, 0x13, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xscvuxdsp, 0x10, 0x12, 0, PPC2_VSX207) -GEN_VSX_HELPER_2(xststdcsp, 0x14, 0x12, 0, PPC2_ISA300) +GEN_VSX_HELPER_R2(xsrqpi, 0x05, 0x00, 0, PPC2_ISA300) +GEN_VSX_HELPER_R2(xsrqpxp, 0x05, 0x01, 0, PPC2_ISA300) +GEN_VSX_HELPER_R2(xssqrtqp, 0x04, 0x19, 0x1B, PPC2_ISA300) +GEN_VSX_HELPER_R3(xssubqp, 0x04, 0x10, 0, PPC2_ISA300) +GEN_VSX_HELPER_X3(xsaddsp, 0x00, 0x00, 0, PPC2_VSX207) +GEN_VSX_HELPER_X3(xssubsp, 0x00, 0x01, 0, PPC2_VSX207) +GEN_VSX_HELPER_X3(xsmulsp, 0x00, 0x02, 0, PPC2_VSX207) +GEN_VSX_HELPER_X3(xsdivsp, 0x00, 0x03, 0, PPC2_VSX207) +GEN_VSX_HELPER_X2(xsresp, 0x14, 0x01, 0, PPC2_VSX207) +GEN_VSX_HELPER_X2(xssqrtsp, 0x16, 0x00, 0, PPC2_VSX207) +GEN_VSX_HELPER_X2(xsrsqrtesp, 0x14, 0x00, 0, PPC2_VSX207) +GEN_VSX_HELPER_X2(xscvsxdsp, 0x10, 0x13, 0, PPC2_VSX207) +GEN_VSX_HELPER_X2(xscvuxdsp, 0x10, 0x12, 0, PPC2_VSX207) +GEN_VSX_HELPER_X1(xststdcsp, 0x14, 0x12, 0, PPC2_ISA300) GEN_VSX_HELPER_2(xststdcdp, 0x14, 0x16, 0, PPC2_ISA300) GEN_VSX_HELPER_2(xststdcqp, 0x04, 0x16, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xvadddp, 0x00, 0x0C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvsubdp, 0x00, 0x0D, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmuldp, 0x00, 0x0E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvdivdp, 0x00, 0x0F, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvredp, 0x14, 0x0D, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvsqrtdp, 0x16, 0x0C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrsqrtedp, 0x14, 0x0C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvtdivdp, 0x14, 0x0F, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvtsqrtdp, 0x14, 0x0E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmaddadp, 0x04, 0x0C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmaddmdp, 0x04, 0x0D, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmsubadp, 0x04, 0x0E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmsubmdp, 0x04, 0x0F, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvnmaddadp, 0x04, 0x1C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvnmaddmdp, 0x04, 0x1D, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvnmsubadp, 0x04, 0x1E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvnmsubmdp, 0x04, 0x1F, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmaxdp, 0x00, 0x1C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmindp, 0x00, 0x1D, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcmpeqdp, 0x0C, 0x0C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcmpgtdp, 0x0C, 0x0D, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcmpgedp, 0x0C, 0x0E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcmpnedp, 0x0C, 0x0F, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xvcvdpsp, 0x12, 0x18, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvdpsxds, 0x10, 0x1D, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvdpsxws, 0x10, 0x0D, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvdpuxds, 0x10, 0x1C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvdpuxws, 0x10, 0x0C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvsxddp, 0x10, 0x1F, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvuxddp, 0x10, 0x1E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvsxwdp, 0x10, 0x0F, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvuxwdp, 0x10, 0x0E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrdpi, 0x12, 0x0C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrdpic, 0x16, 0x0E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrdpim, 0x12, 0x0F, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrdpip, 0x12, 0x0E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrdpiz, 0x12, 0x0D, 0, PPC2_VSX) - -GEN_VSX_HELPER_2(xvaddsp, 0x00, 0x08, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvsubsp, 0x00, 0x09, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmulsp, 0x00, 0x0A, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvdivsp, 0x00, 0x0B, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvresp, 0x14, 0x09, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvsqrtsp, 0x16, 0x08, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrsqrtesp, 0x14, 0x08, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvtdivsp, 0x14, 0x0B, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvtsqrtsp, 0x14, 0x0A, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmaddasp, 0x04, 0x08, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmaddmsp, 0x04, 0x09, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmsubasp, 0x04, 0x0A, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmsubmsp, 0x04, 0x0B, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvnmaddasp, 0x04, 0x18, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvnmaddmsp, 0x04, 0x19, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvnmsubasp, 0x04, 0x1A, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvnmsubmsp, 0x04, 0x1B, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvmaxsp, 0x00, 0x18, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvminsp, 0x00, 0x19, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcmpeqsp, 0x0C, 0x08, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcmpgtsp, 0x0C, 0x09, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcmpgesp, 0x0C, 0x0A, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcmpnesp, 0x0C, 0x0B, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvspdp, 0x12, 0x1C, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvhpsp, 0x16, 0x1D, 0x18, PPC2_ISA300) -GEN_VSX_HELPER_2(xvcvsphp, 0x16, 0x1D, 0x19, PPC2_ISA300) -GEN_VSX_HELPER_2(xvcvspsxds, 0x10, 0x19, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvspsxws, 0x10, 0x09, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvspuxds, 0x10, 0x18, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvspuxws, 0x10, 0x08, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvsxdsp, 0x10, 0x1B, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvuxdsp, 0x10, 0x1A, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvsxwsp, 0x10, 0x0B, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvcvuxwsp, 0x10, 0x0A, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrspi, 0x12, 0x08, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrspic, 0x16, 0x0A, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrspim, 0x12, 0x0B, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrspip, 0x12, 0x0A, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xvrspiz, 0x12, 0x09, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvadddp, 0x00, 0x0C, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvsubdp, 0x00, 0x0D, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvmuldp, 0x00, 0x0E, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvdivdp, 0x00, 0x0F, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvredp, 0x14, 0x0D, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvsqrtdp, 0x16, 0x0C, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrsqrtedp, 0x14, 0x0C, 0, PPC2_VSX) +GEN_VSX_HELPER_X2_AB(xvtdivdp, 0x14, 0x0F, 0, PPC2_VSX) +GEN_VSX_HELPER_X1(xvtsqrtdp, 0x14, 0x0E, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvmaxdp, 0x00, 0x1C, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvmindp, 0x00, 0x1D, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvdpsp, 0x12, 0x18, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvdpsxds, 0x10, 0x1D, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvdpsxws, 0x10, 0x0D, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvdpuxds, 0x10, 0x1C, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvdpuxws, 0x10, 0x0C, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvsxddp, 0x10, 0x1F, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvuxddp, 0x10, 0x1E, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvsxwdp, 0x10, 0x0F, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvuxwdp, 0x10, 0x0E, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrdpi, 0x12, 0x0C, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrdpic, 0x16, 0x0E, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrdpim, 0x12, 0x0F, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrdpip, 0x12, 0x0E, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrdpiz, 0x12, 0x0D, 0, PPC2_VSX) + +GEN_VSX_HELPER_X3(xvaddsp, 0x00, 0x08, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvsubsp, 0x00, 0x09, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvmulsp, 0x00, 0x0A, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvdivsp, 0x00, 0x0B, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvresp, 0x14, 0x09, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvsqrtsp, 0x16, 0x08, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrsqrtesp, 0x14, 0x08, 0, PPC2_VSX) +GEN_VSX_HELPER_X2_AB(xvtdivsp, 0x14, 0x0B, 0, PPC2_VSX) +GEN_VSX_HELPER_X1(xvtsqrtsp, 0x14, 0x0A, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvmaxsp, 0x00, 0x18, 0, PPC2_VSX) +GEN_VSX_HELPER_X3(xvminsp, 0x00, 0x19, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvspdp, 0x12, 0x1C, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvhpsp, 0x16, 0x1D, 0x18, PPC2_ISA300) +GEN_VSX_HELPER_X2(xvcvsphp, 0x16, 0x1D, 0x19, PPC2_ISA300) +GEN_VSX_HELPER_X2(xvcvspsxds, 0x10, 0x19, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvspsxws, 0x10, 0x09, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvspuxds, 0x10, 0x18, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvspuxws, 0x10, 0x08, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvsxdsp, 0x10, 0x1B, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvuxdsp, 0x10, 0x1A, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvsxwsp, 0x10, 0x0B, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvcvuxwsp, 0x10, 0x0A, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrspi, 0x12, 0x08, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrspic, 0x16, 0x0A, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrspim, 0x12, 0x0B, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrspip, 0x12, 0x0A, 0, PPC2_VSX) +GEN_VSX_HELPER_X2(xvrspiz, 0x12, 0x09, 0, PPC2_VSX) GEN_VSX_HELPER_2(xvtstdcsp, 0x14, 0x1A, 0, PPC2_VSX) GEN_VSX_HELPER_2(xvtstdcdp, 0x14, 0x1E, 0, PPC2_VSX) -GEN_VSX_HELPER_2(xxperm, 0x08, 0x03, 0, PPC2_ISA300) -GEN_VSX_HELPER_2(xxpermr, 0x08, 0x07, 0, PPC2_ISA300) +GEN_VSX_HELPER_X3(xxperm, 0x08, 0x03, 0, PPC2_ISA300) +GEN_VSX_HELPER_X3(xxpermr, 0x08, 0x07, 0, PPC2_ISA300) + +#define GEN_VSX_HELPER_VSX_MADD(name, op1, aop, mop, inval, type) \ +static void gen_##name(DisasContext *ctx) \ +{ \ + TCGv_ptr xt, xa, b, c; \ + if (unlikely(!ctx->vsx_enabled)) { \ + gen_exception(ctx, POWERPC_EXCP_VSXU); \ + return; \ + } \ + xt = gen_vsr_ptr(xT(ctx->opcode)); \ + xa = gen_vsr_ptr(xA(ctx->opcode)); \ + if (ctx->opcode & PPC_BIT(25)) { \ + /* \ + * AxT + B \ + */ \ + b = gen_vsr_ptr(xT(ctx->opcode)); \ + c = gen_vsr_ptr(xB(ctx->opcode)); \ + } else { \ + /* \ + * AxB + T \ + */ \ + b = gen_vsr_ptr(xB(ctx->opcode)); \ + c = gen_vsr_ptr(xT(ctx->opcode)); \ + } \ + gen_helper_##name(cpu_env, xt, xa, b, c); \ + tcg_temp_free_ptr(xt); \ + tcg_temp_free_ptr(xa); \ + tcg_temp_free_ptr(b); \ + tcg_temp_free_ptr(c); \ +} + +GEN_VSX_HELPER_VSX_MADD(xsmadddp, 0x04, 0x04, 0x05, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xsmsubdp, 0x04, 0x06, 0x07, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xsnmadddp, 0x04, 0x14, 0x15, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xsnmsubdp, 0x04, 0x16, 0x17, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xsmaddsp, 0x04, 0x00, 0x01, 0, PPC2_VSX207) +GEN_VSX_HELPER_VSX_MADD(xsmsubsp, 0x04, 0x02, 0x03, 0, PPC2_VSX207) +GEN_VSX_HELPER_VSX_MADD(xsnmaddsp, 0x04, 0x10, 0x11, 0, PPC2_VSX207) +GEN_VSX_HELPER_VSX_MADD(xsnmsubsp, 0x04, 0x12, 0x13, 0, PPC2_VSX207) +GEN_VSX_HELPER_VSX_MADD(xvmadddp, 0x04, 0x0C, 0x0D, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xvmsubdp, 0x04, 0x0E, 0x0F, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xvnmadddp, 0x04, 0x1C, 0x1D, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xvnmsubdp, 0x04, 0x1E, 0x1F, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xvmaddsp, 0x04, 0x08, 0x09, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xvmsubsp, 0x04, 0x0A, 0x0B, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xvnmaddsp, 0x04, 0x18, 0x19, 0, PPC2_VSX) +GEN_VSX_HELPER_VSX_MADD(xvnmsubsp, 0x04, 0x1A, 0x1B, 0, PPC2_VSX) static void gen_xxbrd(DisasContext *ctx) { @@ -1460,7 +1645,7 @@ static void gen_xxsldwi(DisasContext *ctx) #define VSX_EXTRACT_INSERT(name) \ static void gen_##name(DisasContext *ctx) \ { \ - TCGv xt, xb; \ + TCGv_ptr xt, xb; \ TCGv_i32 t0; \ TCGv_i64 t1; \ uint8_t uimm = UIMM4(ctx->opcode); \ @@ -1469,8 +1654,8 @@ static void gen_##name(DisasContext *ctx) \ gen_exception(ctx, POWERPC_EXCP_VSXU); \ return; \ } \ - xt = tcg_const_tl(xT(ctx->opcode)); \ - xb = tcg_const_tl(xB(ctx->opcode)); \ + xt = gen_vsr_ptr(xT(ctx->opcode)); \ + xb = gen_vsr_ptr(xB(ctx->opcode)); \ t0 = tcg_temp_new_i32(); \ t1 = tcg_temp_new_i64(); \ /* \ @@ -1485,8 +1670,8 @@ static void gen_##name(DisasContext *ctx) \ } \ tcg_gen_movi_i32(t0, uimm); \ gen_helper_##name(cpu_env, xt, xb, t0); \ - tcg_temp_free(xb); \ - tcg_temp_free(xt); \ + tcg_temp_free_ptr(xb); \ + tcg_temp_free_ptr(xt); \ tcg_temp_free_i32(t0); \ tcg_temp_free_i64(t1); \ } @@ -1813,7 +1998,7 @@ static void gen_xvxexpdp(DisasContext *ctx) tcg_temp_free_i64(xbl); } -GEN_VSX_HELPER_2(xvxsigsp, 0x00, 0x04, 0, PPC2_ISA300) +GEN_VSX_HELPER_X2(xvxsigsp, 0x00, 0x04, 0, PPC2_ISA300) static void gen_xvxsigdp(DisasContext *ctx) { diff --git a/target/ppc/translate/vsx-ops.inc.c b/target/ppc/translate/vsx-ops.inc.c index 5030c4aceb..7fd3942b84 100644 --- a/target/ppc/translate/vsx-ops.inc.c +++ b/target/ppc/translate/vsx-ops.inc.c @@ -63,6 +63,12 @@ GEN_HANDLER2_E(name, #name, 0x3C, opc2 | 1, opc3, 0, PPC_NONE, fl2), \ GEN_HANDLER2_E(name, #name, 0x3C, opc2 | 2, opc3, 0, PPC_NONE, fl2), \ GEN_HANDLER2_E(name, #name, 0x3C, opc2 | 3, opc3, 0, PPC_NONE, fl2) +#define GEN_XX3FORM_NAME(name, opcname, opc2, opc3, fl2) \ +GEN_HANDLER2_E(name, opcname, 0x3C, opc2 | 0, opc3, 0, PPC_NONE, fl2), \ +GEN_HANDLER2_E(name, opcname, 0x3C, opc2 | 1, opc3, 0, PPC_NONE, fl2), \ +GEN_HANDLER2_E(name, opcname, 0x3C, opc2 | 2, opc3, 0, PPC_NONE, fl2), \ +GEN_HANDLER2_E(name, opcname, 0x3C, opc2 | 3, opc3, 0, PPC_NONE, fl2) + #define GEN_XX2IFORM(name, opc2, opc3, fl2) \ GEN_HANDLER2_E(name, #name, 0x3C, opc2 | 0, opc3, 1, PPC_NONE, fl2), \ GEN_HANDLER2_E(name, #name, 0x3C, opc2 | 1, opc3, 1, PPC_NONE, fl2), \ @@ -182,14 +188,14 @@ GEN_XX2FORM(xssqrtdp, 0x16, 0x04, PPC2_VSX), GEN_XX2FORM(xsrsqrtedp, 0x14, 0x04, PPC2_VSX), GEN_XX3FORM(xstdivdp, 0x14, 0x07, PPC2_VSX), GEN_XX2FORM(xstsqrtdp, 0x14, 0x06, PPC2_VSX), -GEN_XX3FORM(xsmaddadp, 0x04, 0x04, PPC2_VSX), -GEN_XX3FORM(xsmaddmdp, 0x04, 0x05, PPC2_VSX), -GEN_XX3FORM(xsmsubadp, 0x04, 0x06, PPC2_VSX), -GEN_XX3FORM(xsmsubmdp, 0x04, 0x07, PPC2_VSX), -GEN_XX3FORM(xsnmaddadp, 0x04, 0x14, PPC2_VSX), -GEN_XX3FORM(xsnmaddmdp, 0x04, 0x15, PPC2_VSX), -GEN_XX3FORM(xsnmsubadp, 0x04, 0x16, PPC2_VSX), -GEN_XX3FORM(xsnmsubmdp, 0x04, 0x17, PPC2_VSX), +GEN_XX3FORM_NAME(xsmadddp, "xsmaddadp", 0x04, 0x04, PPC2_VSX), +GEN_XX3FORM_NAME(xsmadddp, "xsmaddmdp", 0x04, 0x05, PPC2_VSX), +GEN_XX3FORM_NAME(xsmsubdp, "xsmsubadp", 0x04, 0x06, PPC2_VSX), +GEN_XX3FORM_NAME(xsmsubdp, "xsmsubmdp", 0x04, 0x07, PPC2_VSX), +GEN_XX3FORM_NAME(xsnmadddp, "xsnmaddadp", 0x04, 0x14, PPC2_VSX), +GEN_XX3FORM_NAME(xsnmadddp, "xsnmaddmdp", 0x04, 0x15, PPC2_VSX), +GEN_XX3FORM_NAME(xsnmsubdp, "xsnmsubadp", 0x04, 0x16, PPC2_VSX), +GEN_XX3FORM_NAME(xsnmsubdp, "xsnmsubmdp", 0x04, 0x17, PPC2_VSX), GEN_XX3FORM(xscmpeqdp, 0x0C, 0x00, PPC2_ISA300), GEN_XX3FORM(xscmpgtdp, 0x0C, 0x01, PPC2_ISA300), GEN_XX3FORM(xscmpgedp, 0x0C, 0x02, PPC2_ISA300), @@ -235,14 +241,14 @@ GEN_XX2FORM(xsresp, 0x14, 0x01, PPC2_VSX207), GEN_XX2FORM(xsrsp, 0x12, 0x11, PPC2_VSX207), GEN_XX2FORM(xssqrtsp, 0x16, 0x00, PPC2_VSX207), GEN_XX2FORM(xsrsqrtesp, 0x14, 0x00, PPC2_VSX207), -GEN_XX3FORM(xsmaddasp, 0x04, 0x00, PPC2_VSX207), -GEN_XX3FORM(xsmaddmsp, 0x04, 0x01, PPC2_VSX207), -GEN_XX3FORM(xsmsubasp, 0x04, 0x02, PPC2_VSX207), -GEN_XX3FORM(xsmsubmsp, 0x04, 0x03, PPC2_VSX207), -GEN_XX3FORM(xsnmaddasp, 0x04, 0x10, PPC2_VSX207), -GEN_XX3FORM(xsnmaddmsp, 0x04, 0x11, PPC2_VSX207), -GEN_XX3FORM(xsnmsubasp, 0x04, 0x12, PPC2_VSX207), -GEN_XX3FORM(xsnmsubmsp, 0x04, 0x13, PPC2_VSX207), +GEN_XX3FORM_NAME(xsmaddsp, "xsmaddasp", 0x04, 0x00, PPC2_VSX207), +GEN_XX3FORM_NAME(xsmaddsp, "xsmaddmsp", 0x04, 0x01, PPC2_VSX207), +GEN_XX3FORM_NAME(xsmsubsp, "xsmsubasp", 0x04, 0x02, PPC2_VSX207), +GEN_XX3FORM_NAME(xsmsubsp, "xsmsubmsp", 0x04, 0x03, PPC2_VSX207), +GEN_XX3FORM_NAME(xsnmaddsp, "xsnmaddasp", 0x04, 0x10, PPC2_VSX207), +GEN_XX3FORM_NAME(xsnmaddsp, "xsnmaddmsp", 0x04, 0x11, PPC2_VSX207), +GEN_XX3FORM_NAME(xsnmsubsp, "xsnmsubasp", 0x04, 0x12, PPC2_VSX207), +GEN_XX3FORM_NAME(xsnmsubsp, "xsnmsubmsp", 0x04, 0x13, PPC2_VSX207), GEN_XX2FORM(xscvsxdsp, 0x10, 0x13, PPC2_VSX207), GEN_XX2FORM(xscvuxdsp, 0x10, 0x12, PPC2_VSX207), @@ -255,14 +261,14 @@ GEN_XX2FORM(xvsqrtdp, 0x16, 0x0C, PPC2_VSX), GEN_XX2FORM(xvrsqrtedp, 0x14, 0x0C, PPC2_VSX), GEN_XX3FORM(xvtdivdp, 0x14, 0x0F, PPC2_VSX), GEN_XX2FORM(xvtsqrtdp, 0x14, 0x0E, PPC2_VSX), -GEN_XX3FORM(xvmaddadp, 0x04, 0x0C, PPC2_VSX), -GEN_XX3FORM(xvmaddmdp, 0x04, 0x0D, PPC2_VSX), -GEN_XX3FORM(xvmsubadp, 0x04, 0x0E, PPC2_VSX), -GEN_XX3FORM(xvmsubmdp, 0x04, 0x0F, PPC2_VSX), -GEN_XX3FORM(xvnmaddadp, 0x04, 0x1C, PPC2_VSX), -GEN_XX3FORM(xvnmaddmdp, 0x04, 0x1D, PPC2_VSX), -GEN_XX3FORM(xvnmsubadp, 0x04, 0x1E, PPC2_VSX), -GEN_XX3FORM(xvnmsubmdp, 0x04, 0x1F, PPC2_VSX), +GEN_XX3FORM_NAME(xvmadddp, "xvmaddadp", 0x04, 0x0C, PPC2_VSX), +GEN_XX3FORM_NAME(xvmadddp, "xvmaddmdp", 0x04, 0x0D, PPC2_VSX), +GEN_XX3FORM_NAME(xvmsubdp, "xvmsubadp", 0x04, 0x0E, PPC2_VSX), +GEN_XX3FORM_NAME(xvmsubdp, "xvmsubmdp", 0x04, 0x0F, PPC2_VSX), +GEN_XX3FORM_NAME(xvnmadddp, "xvnmaddadp", 0x04, 0x1C, PPC2_VSX), +GEN_XX3FORM_NAME(xvnmadddp, "xvnmaddmdp", 0x04, 0x1D, PPC2_VSX), +GEN_XX3FORM_NAME(xvnmsubdp, "xvnmsubadp", 0x04, 0x1E, PPC2_VSX), +GEN_XX3FORM_NAME(xvnmsubdp, "xvnmsubmdp", 0x04, 0x1F, PPC2_VSX), GEN_XX3FORM(xvmaxdp, 0x00, 0x1C, PPC2_VSX), GEN_XX3FORM(xvmindp, 0x00, 0x1D, PPC2_VSX), GEN_XX3_RC_FORM(xvcmpeqdp, 0x0C, 0x0C, PPC2_VSX), @@ -293,14 +299,14 @@ GEN_XX2FORM(xvsqrtsp, 0x16, 0x08, PPC2_VSX), GEN_XX2FORM(xvrsqrtesp, 0x14, 0x08, PPC2_VSX), GEN_XX3FORM(xvtdivsp, 0x14, 0x0B, PPC2_VSX), GEN_XX2FORM(xvtsqrtsp, 0x14, 0x0A, PPC2_VSX), -GEN_XX3FORM(xvmaddasp, 0x04, 0x08, PPC2_VSX), -GEN_XX3FORM(xvmaddmsp, 0x04, 0x09, PPC2_VSX), -GEN_XX3FORM(xvmsubasp, 0x04, 0x0A, PPC2_VSX), -GEN_XX3FORM(xvmsubmsp, 0x04, 0x0B, PPC2_VSX), -GEN_XX3FORM(xvnmaddasp, 0x04, 0x18, PPC2_VSX), -GEN_XX3FORM(xvnmaddmsp, 0x04, 0x19, PPC2_VSX), -GEN_XX3FORM(xvnmsubasp, 0x04, 0x1A, PPC2_VSX), -GEN_XX3FORM(xvnmsubmsp, 0x04, 0x1B, PPC2_VSX), +GEN_XX3FORM_NAME(xvmaddsp, "xvmaddasp", 0x04, 0x08, PPC2_VSX), +GEN_XX3FORM_NAME(xvmaddsp, "xvmaddmsp", 0x04, 0x09, PPC2_VSX), +GEN_XX3FORM_NAME(xvmsubsp, "xvmsubasp", 0x04, 0x0A, PPC2_VSX), +GEN_XX3FORM_NAME(xvmsubsp, "xvmsubmsp", 0x04, 0x0B, PPC2_VSX), +GEN_XX3FORM_NAME(xvnmaddsp, "xvnmaddasp", 0x04, 0x18, PPC2_VSX), +GEN_XX3FORM_NAME(xvnmaddsp, "xvnmaddmsp", 0x04, 0x19, PPC2_VSX), +GEN_XX3FORM_NAME(xvnmsubsp, "xvnmsubasp", 0x04, 0x1A, PPC2_VSX), +GEN_XX3FORM_NAME(xvnmsubsp, "xvnmsubmsp", 0x04, 0x1B, PPC2_VSX), GEN_XX3FORM(xvmaxsp, 0x00, 0x18, PPC2_VSX), GEN_XX3FORM(xvminsp, 0x00, 0x19, PPC2_VSX), GEN_XX3_RC_FORM(xvcmpeqsp, 0x0C, 0x08, PPC2_VSX), diff --git a/target/s390x/cpu_features.c b/target/s390x/cpu_features.c index f64f581c86..9f817e3cfa 100644 --- a/target/s390x/cpu_features.c +++ b/target/s390x/cpu_features.c @@ -2,8 +2,9 @@ * CPU features/facilities for s390x * * Copyright IBM Corp. 2016, 2018 + * Copyright Red Hat, Inc. 2019 * - * Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com> + * Author(s): David Hildenbrand <david@redhat.com> * * This work is licensed under the terms of the GNU GPL, version 2 or (at * your option) any later version. See the COPYING file in the top-level @@ -14,346 +15,17 @@ #include "qemu/module.h" #include "cpu_features.h" -#define FEAT_INIT(_name, _type, _bit, _desc) \ - { \ - .name = _name, \ - .type = _type, \ - .bit = _bit, \ - .desc = _desc, \ - } - -/* S390FeatDef.bit is not applicable as there is no feature block. */ -#define FEAT_INIT_MISC(_name, _desc) \ - FEAT_INIT(_name, S390_FEAT_TYPE_MISC, 0, _desc) - -/* indexed by feature number for easy lookup */ -static const S390FeatDef s390_features[] = { - FEAT_INIT("esan3", S390_FEAT_TYPE_STFL, 0, "Instructions marked as n3"), - FEAT_INIT("zarch", S390_FEAT_TYPE_STFL, 1, "z/Architecture architectural mode"), - FEAT_INIT("dateh", S390_FEAT_TYPE_STFL, 3, "DAT-enhancement facility"), - FEAT_INIT("idtes", S390_FEAT_TYPE_STFL, 4, "IDTE selective TLB segment-table clearing"), - FEAT_INIT("idter", S390_FEAT_TYPE_STFL, 5, "IDTE selective TLB region-table clearing"), - FEAT_INIT("asnlxr", S390_FEAT_TYPE_STFL, 6, "ASN-and-LX reuse facility"), - FEAT_INIT("stfle", S390_FEAT_TYPE_STFL, 7, "Store-facility-list-extended facility"), - FEAT_INIT("edat", S390_FEAT_TYPE_STFL, 8, "Enhanced-DAT facility"), - FEAT_INIT("srs", S390_FEAT_TYPE_STFL, 9, "Sense-running-status facility"), - FEAT_INIT("csske", S390_FEAT_TYPE_STFL, 10, "Conditional-SSKE facility"), - FEAT_INIT("ctop", S390_FEAT_TYPE_STFL, 11, "Configuration-topology facility"), - FEAT_INIT("apqci", S390_FEAT_TYPE_STFL, 12, "Query AP Configuration Information facility"), - FEAT_INIT("ipter", S390_FEAT_TYPE_STFL, 13, "IPTE-range facility"), - FEAT_INIT("nonqks", S390_FEAT_TYPE_STFL, 14, "Nonquiescing key-setting facility"), - FEAT_INIT("apft", S390_FEAT_TYPE_STFL, 15, "AP Facilities Test facility"), - FEAT_INIT("etf2", S390_FEAT_TYPE_STFL, 16, "Extended-translation facility 2"), - FEAT_INIT("msa-base", S390_FEAT_TYPE_STFL, 17, "Message-security-assist facility (excluding subfunctions)"), - FEAT_INIT("ldisp", S390_FEAT_TYPE_STFL, 18, "Long-displacement facility"), - FEAT_INIT("ldisphp", S390_FEAT_TYPE_STFL, 19, "Long-displacement facility has high performance"), - FEAT_INIT("hfpm", S390_FEAT_TYPE_STFL, 20, "HFP-multiply-add/subtract facility"), - FEAT_INIT("eimm", S390_FEAT_TYPE_STFL, 21, "Extended-immediate facility"), - FEAT_INIT("etf3", S390_FEAT_TYPE_STFL, 22, "Extended-translation facility 3"), - FEAT_INIT("hfpue", S390_FEAT_TYPE_STFL, 23, "HFP-unnormalized-extension facility"), - FEAT_INIT("etf2eh", S390_FEAT_TYPE_STFL, 24, "ETF2-enhancement facility"), - FEAT_INIT("stckf", S390_FEAT_TYPE_STFL, 25, "Store-clock-fast facility"), - FEAT_INIT("parseh", S390_FEAT_TYPE_STFL, 26, "Parsing-enhancement facility"), - FEAT_INIT("mvcos", S390_FEAT_TYPE_STFL, 27, "Move-with-optional-specification facility"), - FEAT_INIT("tods-base", S390_FEAT_TYPE_STFL, 28, "TOD-clock-steering facility (excluding subfunctions)"), - FEAT_INIT("etf3eh", S390_FEAT_TYPE_STFL, 30, "ETF3-enhancement facility"), - FEAT_INIT("ectg", S390_FEAT_TYPE_STFL, 31, "Extract-CPU-time facility"), - FEAT_INIT("csst", S390_FEAT_TYPE_STFL, 32, "Compare-and-swap-and-store facility"), - FEAT_INIT("csst2", S390_FEAT_TYPE_STFL, 33, "Compare-and-swap-and-store facility 2"), - FEAT_INIT("ginste", S390_FEAT_TYPE_STFL, 34, "General-instructions-extension facility"), - FEAT_INIT("exrl", S390_FEAT_TYPE_STFL, 35, "Execute-extensions facility"), - FEAT_INIT("emon", S390_FEAT_TYPE_STFL, 36, "Enhanced-monitor facility"), - FEAT_INIT("fpe", S390_FEAT_TYPE_STFL, 37, "Floating-point extension facility"), - FEAT_INIT("opc", S390_FEAT_TYPE_STFL, 38, "Order Preserving Compression facility"), - FEAT_INIT("sprogp", S390_FEAT_TYPE_STFL, 40, "Set-program-parameters facility"), - FEAT_INIT("fpseh", S390_FEAT_TYPE_STFL, 41, "Floating-point-support-enhancement facilities"), - FEAT_INIT("dfp", S390_FEAT_TYPE_STFL, 42, "DFP (decimal-floating-point) facility"), - FEAT_INIT("dfphp", S390_FEAT_TYPE_STFL, 43, "DFP (decimal-floating-point) facility has high performance"), - FEAT_INIT("pfpo", S390_FEAT_TYPE_STFL, 44, "PFPO instruction"), - FEAT_INIT("stfle45", S390_FEAT_TYPE_STFL, 45, "Various facilities introduced with z196"), - FEAT_INIT("cmpsceh", S390_FEAT_TYPE_STFL, 47, "CMPSC-enhancement facility"), - FEAT_INIT("dfpzc", S390_FEAT_TYPE_STFL, 48, "Decimal-floating-point zoned-conversion facility"), - FEAT_INIT("stfle49", S390_FEAT_TYPE_STFL, 49, "Various facilities introduced with zEC12"), - FEAT_INIT("cte", S390_FEAT_TYPE_STFL, 50, "Constrained transactional-execution facility"), - FEAT_INIT("ltlbc", S390_FEAT_TYPE_STFL, 51, "Local-TLB-clearing facility"), - FEAT_INIT("iacc2", S390_FEAT_TYPE_STFL, 52, "Interlocked-access facility 2"), - FEAT_INIT("stfle53", S390_FEAT_TYPE_STFL, 53, "Various facilities introduced with z13"), - FEAT_INIT("eec", S390_FEAT_TYPE_STFL, 54, "Entropy encoding compression facility"), - FEAT_INIT("msa5-base", S390_FEAT_TYPE_STFL, 57, "Message-security-assist-extension-5 facility (excluding subfunctions)"), - FEAT_INIT("minste2", S390_FEAT_TYPE_STFL, 58, "Miscellaneous-instruction-extensions facility 2"), - FEAT_INIT("sema", S390_FEAT_TYPE_STFL, 59, "Semaphore-assist facility"), - FEAT_INIT("tsi", S390_FEAT_TYPE_STFL, 60, "Time-slice Instrumentation facility"), - FEAT_INIT("minste3", S390_FEAT_TYPE_STFL, 61, "Miscellaneous-Instruction-Extensions Facility 3"), - FEAT_INIT("ri", S390_FEAT_TYPE_STFL, 64, "CPU runtime-instrumentation facility"), - FEAT_INIT("zpci", S390_FEAT_TYPE_STFL, 69, "z/PCI facility"), - FEAT_INIT("aen", S390_FEAT_TYPE_STFL, 71, "General-purpose-adapter-event-notification facility"), - FEAT_INIT("ais", S390_FEAT_TYPE_STFL, 72, "General-purpose-adapter-interruption-suppression facility"), - FEAT_INIT("te", S390_FEAT_TYPE_STFL, 73, "Transactional-execution facility"), - FEAT_INIT("sthyi", S390_FEAT_TYPE_STFL, 74, "Store-hypervisor-information facility"), - FEAT_INIT("aefsi", S390_FEAT_TYPE_STFL, 75, "Access-exception-fetch/store-indication facility"), - FEAT_INIT("msa3-base", S390_FEAT_TYPE_STFL, 76, "Message-security-assist-extension-3 facility (excluding subfunctions)"), - FEAT_INIT("msa4-base", S390_FEAT_TYPE_STFL, 77, "Message-security-assist-extension-4 facility (excluding subfunctions)"), - FEAT_INIT("edat2", S390_FEAT_TYPE_STFL, 78, "Enhanced-DAT facility 2"), - FEAT_INIT("dfppc", S390_FEAT_TYPE_STFL, 80, "Decimal-floating-point packed-conversion facility"), - FEAT_INIT("ppa15", S390_FEAT_TYPE_STFL, 81, "PPA15 is installed"), - FEAT_INIT("bpb", S390_FEAT_TYPE_STFL, 82, "Branch prediction blocking"), - FEAT_INIT("vx", S390_FEAT_TYPE_STFL, 129, "Vector facility"), - FEAT_INIT("iep", S390_FEAT_TYPE_STFL, 130, "Instruction-execution-protection facility"), - FEAT_INIT("sea_esop2", S390_FEAT_TYPE_STFL, 131, "Side-effect-access facility and Enhanced-suppression-on-protection facility 2"), - FEAT_INIT("gs", S390_FEAT_TYPE_STFL, 133, "Guarded-storage facility"), - FEAT_INIT("vxpd", S390_FEAT_TYPE_STFL, 134, "Vector packed decimal facility"), - FEAT_INIT("vxeh", S390_FEAT_TYPE_STFL, 135, "Vector enhancements facility"), - FEAT_INIT("mepoch", S390_FEAT_TYPE_STFL, 139, "Multiple-epoch facility"), - FEAT_INIT("tpei", S390_FEAT_TYPE_STFL, 144, "Test-pending-external-interruption facility"), - FEAT_INIT("irbm", S390_FEAT_TYPE_STFL, 145, "Insert-reference-bits-multiple facility"), - FEAT_INIT("msa8-base", S390_FEAT_TYPE_STFL, 146, "Message-security-assist-extension-8 facility (excluding subfunctions)"), - FEAT_INIT("cmmnt", S390_FEAT_TYPE_STFL, 147, "CMM: ESSA-enhancement (no translate) facility"), - FEAT_INIT("vxeh2", S390_FEAT_TYPE_STFL, 148, "Vector Enhancements facility 2"), - FEAT_INIT("esort-base", S390_FEAT_TYPE_STFL, 150, "Enhanced-sort facility (excluding subfunctions)"), - FEAT_INIT("deflate-base", S390_FEAT_TYPE_STFL, 151, "Deflate-conversion facility (excluding subfunctions)"), - FEAT_INIT("vxbeh", S390_FEAT_TYPE_STFL, 152, "Vector BCD enhancements facility 1"), - FEAT_INIT("msa9-base", S390_FEAT_TYPE_STFL, 155, "Message-security-assist-extension-9 facility (excluding subfunctions)"), - FEAT_INIT("etoken", S390_FEAT_TYPE_STFL, 156, "Etoken facility"), - - /* SCLP SCCB Byte 80 - 98 (bit numbers relative to byte-80) */ - FEAT_INIT("gsls", S390_FEAT_TYPE_SCLP_CONF_CHAR, 40, "SIE: Guest-storage-limit-suppression facility"), - FEAT_INIT("esop", S390_FEAT_TYPE_SCLP_CONF_CHAR, 46, "Enhanced-suppression-on-protection facility"), - FEAT_INIT("hpma2", S390_FEAT_TYPE_SCLP_CONF_CHAR, 90, "Host page management assist 2 Facility"), /* 91-2 */ - FEAT_INIT("kss", S390_FEAT_TYPE_SCLP_CONF_CHAR, 151, "SIE: Keyless-subset facility"), /* 98-7 */ - - /* SCLP SCCB Byte 116 - 119 (bit numbers relative to byte-116) */ - FEAT_INIT("64bscao", S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT, 0, "SIE: 64-bit-SCAO facility"), - FEAT_INIT("cmma", S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT, 1, "SIE: Collaborative-memory-management assist"), - FEAT_INIT("pfmfi", S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT, 9, "SIE: PFMF interpretation facility"), - FEAT_INIT("ibs", S390_FEAT_TYPE_SCLP_CONF_CHAR_EXT, 10, "SIE: Interlock-and-broadcast-suppression facility"), - - FEAT_INIT("sief2", S390_FEAT_TYPE_SCLP_CPU, 4, "SIE: interception format 2 (Virtual SIE)"), - FEAT_INIT("skey", S390_FEAT_TYPE_SCLP_CPU, 5, "SIE: Storage-key facility"), - FEAT_INIT("gpereh", S390_FEAT_TYPE_SCLP_CPU, 10, "SIE: Guest-PER enhancement facility"), - FEAT_INIT("siif", S390_FEAT_TYPE_SCLP_CPU, 11, "SIE: Shared IPTE-interlock facility"), - FEAT_INIT("sigpif", S390_FEAT_TYPE_SCLP_CPU, 12, "SIE: SIGP interpretation facility"), - FEAT_INIT("ib", S390_FEAT_TYPE_SCLP_CPU, 42, "SIE: Intervention bypass facility"), - FEAT_INIT("cei", S390_FEAT_TYPE_SCLP_CPU, 43, "SIE: Conditional-external-interception facility"), - - FEAT_INIT_MISC("dateh2", "DAT-enhancement facility 2"), - FEAT_INIT_MISC("cmm", "Collaborative-memory-management facility"), - FEAT_INIT_MISC("ap", "AP instructions installed"), - - FEAT_INIT("plo-cl", S390_FEAT_TYPE_PLO, 0, "PLO Compare and load (32 bit in general registers)"), - FEAT_INIT("plo-clg", S390_FEAT_TYPE_PLO, 1, "PLO Compare and load (64 bit in parameter list)"), - FEAT_INIT("plo-clgr", S390_FEAT_TYPE_PLO, 2, "PLO Compare and load (32 bit in general registers)"), - FEAT_INIT("plo-clx", S390_FEAT_TYPE_PLO, 3, "PLO Compare and load (128 bit in parameter list)"), - FEAT_INIT("plo-cs", S390_FEAT_TYPE_PLO, 4, "PLO Compare and swap (32 bit in general registers)"), - FEAT_INIT("plo-csg", S390_FEAT_TYPE_PLO, 5, "PLO Compare and swap (64 bit in parameter list)"), - FEAT_INIT("plo-csgr", S390_FEAT_TYPE_PLO, 6, "PLO Compare and swap (32 bit in general registers)"), - FEAT_INIT("plo-csx", S390_FEAT_TYPE_PLO, 7, "PLO Compare and swap (128 bit in parameter list)"), - FEAT_INIT("plo-dcs", S390_FEAT_TYPE_PLO, 8, "PLO Double compare and swap (32 bit in general registers)"), - FEAT_INIT("plo-dcsg", S390_FEAT_TYPE_PLO, 9, "PLO Double compare and swap (64 bit in parameter list)"), - FEAT_INIT("plo-dcsgr", S390_FEAT_TYPE_PLO, 10, "PLO Double compare and swap (32 bit in general registers)"), - FEAT_INIT("plo-dcsx", S390_FEAT_TYPE_PLO, 11, "PLO Double compare and swap (128 bit in parameter list)"), - FEAT_INIT("plo-csst", S390_FEAT_TYPE_PLO, 12, "PLO Compare and swap and store (32 bit in general registers)"), - FEAT_INIT("plo-csstg", S390_FEAT_TYPE_PLO, 13, "PLO Compare and swap and store (64 bit in parameter list)"), - FEAT_INIT("plo-csstgr", S390_FEAT_TYPE_PLO, 14, "PLO Compare and swap and store (32 bit in general registers)"), - FEAT_INIT("plo-csstx", S390_FEAT_TYPE_PLO, 15, "PLO Compare and swap and store (128 bit in parameter list)"), - FEAT_INIT("plo-csdst", S390_FEAT_TYPE_PLO, 16, "PLO Compare and swap and double store (32 bit in general registers)"), - FEAT_INIT("plo-csdstg", S390_FEAT_TYPE_PLO, 17, "PLO Compare and swap and double store (64 bit in parameter list)"), - FEAT_INIT("plo-csdstgr", S390_FEAT_TYPE_PLO, 18, "PLO Compare and swap and double store (32 bit in general registers)"), - FEAT_INIT("plo-csdstx", S390_FEAT_TYPE_PLO, 19, "PLO Compare and swap and double store (128 bit in parameter list)"), - FEAT_INIT("plo-cstst", S390_FEAT_TYPE_PLO, 20, "PLO Compare and swap and triple store (32 bit in general registers)"), - FEAT_INIT("plo-cststg", S390_FEAT_TYPE_PLO, 21, "PLO Compare and swap and triple store (64 bit in parameter list)"), - FEAT_INIT("plo-cststgr", S390_FEAT_TYPE_PLO, 22, "PLO Compare and swap and triple store (32 bit in general registers)"), - FEAT_INIT("plo-cststx", S390_FEAT_TYPE_PLO, 23, "PLO Compare and swap and triple store (128 bit in parameter list)"), - - FEAT_INIT("ptff-qto", S390_FEAT_TYPE_PTFF, 1, "PTFF Query TOD Offset"), - FEAT_INIT("ptff-qsi", S390_FEAT_TYPE_PTFF, 2, "PTFF Query Steering Information"), - FEAT_INIT("ptff-qpc", S390_FEAT_TYPE_PTFF, 3, "PTFF Query Physical Clock"), - FEAT_INIT("ptff-qui", S390_FEAT_TYPE_PTFF, 4, "PTFF Query UTC Information"), - FEAT_INIT("ptff-qtou", S390_FEAT_TYPE_PTFF, 5, "PTFF Query TOD Offset User"), - FEAT_INIT("ptff-qsie", S390_FEAT_TYPE_PTFF, 10, "PTFF Query Steering Information Extended"), - FEAT_INIT("ptff-qtoue", S390_FEAT_TYPE_PTFF, 13, "PTFF Query TOD Offset User Extended"), - FEAT_INIT("ptff-sto", S390_FEAT_TYPE_PTFF, 65, "PTFF Set TOD Offset"), - FEAT_INIT("ptff-stou", S390_FEAT_TYPE_PTFF, 69, "PTFF Set TOD Offset User"), - FEAT_INIT("ptff-stoe", S390_FEAT_TYPE_PTFF, 73, "PTFF Set TOD Offset Extended"), - FEAT_INIT("ptff-stoue", S390_FEAT_TYPE_PTFF, 77, "PTFF Set TOD Offset User Extended"), - - FEAT_INIT("kmac-dea", S390_FEAT_TYPE_KMAC, 1, "KMAC DEA"), - FEAT_INIT("kmac-tdea-128", S390_FEAT_TYPE_KMAC, 2, "KMAC TDEA-128"), - FEAT_INIT("kmac-tdea-192", S390_FEAT_TYPE_KMAC, 3, "KMAC TDEA-192"), - FEAT_INIT("kmac-edea", S390_FEAT_TYPE_KMAC, 9, "KMAC Encrypted-DEA"), - FEAT_INIT("kmac-etdea-128", S390_FEAT_TYPE_KMAC, 10, "KMAC Encrypted-TDEA-128"), - FEAT_INIT("kmac-etdea-192", S390_FEAT_TYPE_KMAC, 11, "KMAC Encrypted-TDEA-192"), - FEAT_INIT("kmac-aes-128", S390_FEAT_TYPE_KMAC, 18, "KMAC AES-128"), - FEAT_INIT("kmac-aes-192", S390_FEAT_TYPE_KMAC, 19, "KMAC AES-192"), - FEAT_INIT("kmac-aes-256", S390_FEAT_TYPE_KMAC, 20, "KMAC AES-256"), - FEAT_INIT("kmac-eaes-128", S390_FEAT_TYPE_KMAC, 26, "KMAC Encrypted-AES-128"), - FEAT_INIT("kmac-eaes-192", S390_FEAT_TYPE_KMAC, 27, "KMAC Encrypted-AES-192"), - FEAT_INIT("kmac-eaes-256", S390_FEAT_TYPE_KMAC, 28, "KMAC Encrypted-AES-256"), - - FEAT_INIT("kmc-dea", S390_FEAT_TYPE_KMC, 1, "KMC DEA"), - FEAT_INIT("kmc-tdea-128", S390_FEAT_TYPE_KMC, 2, "KMC TDEA-128"), - FEAT_INIT("kmc-tdea-192", S390_FEAT_TYPE_KMC, 3, "KMC TDEA-192"), - FEAT_INIT("kmc-edea", S390_FEAT_TYPE_KMC, 9, "KMC Encrypted-DEA"), - FEAT_INIT("kmc-etdea-128", S390_FEAT_TYPE_KMC, 10, "KMC Encrypted-TDEA-128"), - FEAT_INIT("kmc-etdea-192", S390_FEAT_TYPE_KMC, 11, "KMC Encrypted-TDEA-192"), - FEAT_INIT("kmc-aes-128", S390_FEAT_TYPE_KMC, 18, "KMC AES-128"), - FEAT_INIT("kmc-aes-192", S390_FEAT_TYPE_KMC, 19, "KMC AES-192"), - FEAT_INIT("kmc-aes-256", S390_FEAT_TYPE_KMC, 20, "KMC AES-256"), - FEAT_INIT("kmc-eaes-128", S390_FEAT_TYPE_KMC, 26, "KMC Encrypted-AES-128"), - FEAT_INIT("kmc-eaes-192", S390_FEAT_TYPE_KMC, 27, "KMC Encrypted-AES-192"), - FEAT_INIT("kmc-eaes-256", S390_FEAT_TYPE_KMC, 28, "KMC Encrypted-AES-256"), - FEAT_INIT("kmc-prng", S390_FEAT_TYPE_KMC, 67, "KMC PRNG"), - - FEAT_INIT("km-dea", S390_FEAT_TYPE_KM, 1, "KM DEA"), - FEAT_INIT("km-tdea-128", S390_FEAT_TYPE_KM, 2, "KM TDEA-128"), - FEAT_INIT("km-tdea-192", S390_FEAT_TYPE_KM, 3, "KM TDEA-192"), - FEAT_INIT("km-edea", S390_FEAT_TYPE_KM, 9, "KM Encrypted-DEA"), - FEAT_INIT("km-etdea-128", S390_FEAT_TYPE_KM, 10, "KM Encrypted-TDEA-128"), - FEAT_INIT("km-etdea-192", S390_FEAT_TYPE_KM, 11, "KM Encrypted-TDEA-192"), - FEAT_INIT("km-aes-128", S390_FEAT_TYPE_KM, 18, "KM AES-128"), - FEAT_INIT("km-aes-192", S390_FEAT_TYPE_KM, 19, "KM AES-192"), - FEAT_INIT("km-aes-256", S390_FEAT_TYPE_KM, 20, "KM AES-256"), - FEAT_INIT("km-eaes-128", S390_FEAT_TYPE_KM, 26, "KM Encrypted-AES-128"), - FEAT_INIT("km-eaes-192", S390_FEAT_TYPE_KM, 27, "KM Encrypted-AES-192"), - FEAT_INIT("km-eaes-256", S390_FEAT_TYPE_KM, 28, "KM Encrypted-AES-256"), - FEAT_INIT("km-xts-aes-128", S390_FEAT_TYPE_KM, 50, "KM XTS-AES-128"), - FEAT_INIT("km-xts-aes-256", S390_FEAT_TYPE_KM, 52, "KM XTS-AES-256"), - FEAT_INIT("km-xts-eaes-128", S390_FEAT_TYPE_KM, 58, "KM XTS-Encrypted-AES-128"), - FEAT_INIT("km-xts-eaes-256", S390_FEAT_TYPE_KM, 60, "KM XTS-Encrypted-AES-256"), - - FEAT_INIT("kimd-sha-1", S390_FEAT_TYPE_KIMD, 1, "KIMD SHA-1"), - FEAT_INIT("kimd-sha-256", S390_FEAT_TYPE_KIMD, 2, "KIMD SHA-256"), - FEAT_INIT("kimd-sha-512", S390_FEAT_TYPE_KIMD, 3, "KIMD SHA-512"), - FEAT_INIT("kimd-sha3-224", S390_FEAT_TYPE_KIMD, 32, "KIMD SHA3-224"), - FEAT_INIT("kimd-sha3-256", S390_FEAT_TYPE_KIMD, 33, "KIMD SHA3-256"), - FEAT_INIT("kimd-sha3-384", S390_FEAT_TYPE_KIMD, 34, "KIMD SHA3-384"), - FEAT_INIT("kimd-sha3-512", S390_FEAT_TYPE_KIMD, 35, "KIMD SHA3-512"), - FEAT_INIT("kimd-shake-128", S390_FEAT_TYPE_KIMD, 36, "KIMD SHAKE-128"), - FEAT_INIT("kimd-shake-256", S390_FEAT_TYPE_KIMD, 37, "KIMD SHAKE-256"), - FEAT_INIT("kimd-ghash", S390_FEAT_TYPE_KIMD, 65, "KIMD GHASH"), - - FEAT_INIT("klmd-sha-1", S390_FEAT_TYPE_KLMD, 1, "KLMD SHA-1"), - FEAT_INIT("klmd-sha-256", S390_FEAT_TYPE_KLMD, 2, "KLMD SHA-256"), - FEAT_INIT("klmd-sha-512", S390_FEAT_TYPE_KLMD, 3, "KLMD SHA-512"), - FEAT_INIT("klmd-sha3-224", S390_FEAT_TYPE_KLMD, 32, "KLMD SHA3-224"), - FEAT_INIT("klmd-sha3-256", S390_FEAT_TYPE_KLMD, 33, "KLMD SHA3-256"), - FEAT_INIT("klmd-sha3-384", S390_FEAT_TYPE_KLMD, 34, "KLMD SHA3-384"), - FEAT_INIT("klmd-sha3-512", S390_FEAT_TYPE_KLMD, 35, "KLMD SHA3-512"), - FEAT_INIT("klmd-shake-128", S390_FEAT_TYPE_KLMD, 36, "KLMD SHAKE-128"), - FEAT_INIT("klmd-shake-256", S390_FEAT_TYPE_KLMD, 37, "KLMD SHAKE-256"), - - FEAT_INIT("pckmo-edea", S390_FEAT_TYPE_PCKMO, 1, "PCKMO Encrypted-DEA-Key"), - FEAT_INIT("pckmo-etdea-128", S390_FEAT_TYPE_PCKMO, 2, "PCKMO Encrypted-TDEA-128-Key"), - FEAT_INIT("pckmo-etdea-192", S390_FEAT_TYPE_PCKMO, 3, "PCKMO Encrypted-TDEA-192-Key"), - FEAT_INIT("pckmo-aes-128", S390_FEAT_TYPE_PCKMO, 18, "PCKMO Encrypted-AES-128-Key"), - FEAT_INIT("pckmo-aes-192", S390_FEAT_TYPE_PCKMO, 19, "PCKMO Encrypted-AES-192-Key"), - FEAT_INIT("pckmo-aes-256", S390_FEAT_TYPE_PCKMO, 20, "PCKMO Encrypted-AES-256-Key"), - FEAT_INIT("pckmo-ecc-p256", S390_FEAT_TYPE_PCKMO, 32, "PCKMO Encrypt-ECC-P256-Key"), - FEAT_INIT("pckmo-ecc-p384", S390_FEAT_TYPE_PCKMO, 33, "PCKMO Encrypt-ECC-P384-Key"), - FEAT_INIT("pckmo-ecc-p521", S390_FEAT_TYPE_PCKMO, 34, "PCKMO Encrypt-ECC-P521-Key"), - FEAT_INIT("pckmo-ecc-ed25519", S390_FEAT_TYPE_PCKMO, 40 , "PCKMO Encrypt-ECC-Ed25519-Key"), - FEAT_INIT("pckmo-ecc-ed448", S390_FEAT_TYPE_PCKMO, 41 , "PCKMO Encrypt-ECC-Ed448-Key"), - - FEAT_INIT("kmctr-dea", S390_FEAT_TYPE_KMCTR, 1, "KMCTR DEA"), - FEAT_INIT("kmctr-tdea-128", S390_FEAT_TYPE_KMCTR, 2, "KMCTR TDEA-128"), - FEAT_INIT("kmctr-tdea-192", S390_FEAT_TYPE_KMCTR, 3, "KMCTR TDEA-192"), - FEAT_INIT("kmctr-edea", S390_FEAT_TYPE_KMCTR, 9, "KMCTR Encrypted-DEA"), - FEAT_INIT("kmctr-etdea-128", S390_FEAT_TYPE_KMCTR, 10, "KMCTR Encrypted-TDEA-128"), - FEAT_INIT("kmctr-etdea-192", S390_FEAT_TYPE_KMCTR, 11, "KMCTR Encrypted-TDEA-192"), - FEAT_INIT("kmctr-aes-128", S390_FEAT_TYPE_KMCTR, 18, "KMCTR AES-128"), - FEAT_INIT("kmctr-aes-192", S390_FEAT_TYPE_KMCTR, 19, "KMCTR AES-192"), - FEAT_INIT("kmctr-aes-256", S390_FEAT_TYPE_KMCTR, 20, "KMCTR AES-256"), - FEAT_INIT("kmctr-eaes-128", S390_FEAT_TYPE_KMCTR, 26, "KMCTR Encrypted-AES-128"), - FEAT_INIT("kmctr-eaes-192", S390_FEAT_TYPE_KMCTR, 27, "KMCTR Encrypted-AES-192"), - FEAT_INIT("kmctr-eaes-256", S390_FEAT_TYPE_KMCTR, 28, "KMCTR Encrypted-AES-256"), - - FEAT_INIT("kmf-dea", S390_FEAT_TYPE_KMF, 1, "KMF DEA"), - FEAT_INIT("kmf-tdea-128", S390_FEAT_TYPE_KMF, 2, "KMF TDEA-128"), - FEAT_INIT("kmf-tdea-192", S390_FEAT_TYPE_KMF, 3, "KMF TDEA-192"), - FEAT_INIT("kmf-edea", S390_FEAT_TYPE_KMF, 9, "KMF Encrypted-DEA"), - FEAT_INIT("kmf-etdea-128", S390_FEAT_TYPE_KMF, 10, "KMF Encrypted-TDEA-128"), - FEAT_INIT("kmf-etdea-192", S390_FEAT_TYPE_KMF, 11, "KMF Encrypted-TDEA-192"), - FEAT_INIT("kmf-aes-128", S390_FEAT_TYPE_KMF, 18, "KMF AES-128"), - FEAT_INIT("kmf-aes-192", S390_FEAT_TYPE_KMF, 19, "KMF AES-192"), - FEAT_INIT("kmf-aes-256", S390_FEAT_TYPE_KMF, 20, "KMF AES-256"), - FEAT_INIT("kmf-eaes-128", S390_FEAT_TYPE_KMF, 26, "KMF Encrypted-AES-128"), - FEAT_INIT("kmf-eaes-192", S390_FEAT_TYPE_KMF, 27, "KMF Encrypted-AES-192"), - FEAT_INIT("kmf-eaes-256", S390_FEAT_TYPE_KMF, 28, "KMF Encrypted-AES-256"), - - FEAT_INIT("kmo-dea", S390_FEAT_TYPE_KMO, 1, "KMO DEA"), - FEAT_INIT("kmo-tdea-128", S390_FEAT_TYPE_KMO, 2, "KMO TDEA-128"), - FEAT_INIT("kmo-tdea-192", S390_FEAT_TYPE_KMO, 3, "KMO TDEA-192"), - FEAT_INIT("kmo-edea", S390_FEAT_TYPE_KMO, 9, "KMO Encrypted-DEA"), - FEAT_INIT("kmo-etdea-128", S390_FEAT_TYPE_KMO, 10, "KMO Encrypted-TDEA-128"), - FEAT_INIT("kmo-etdea-192", S390_FEAT_TYPE_KMO, 11, "KMO Encrypted-TDEA-192"), - FEAT_INIT("kmo-aes-128", S390_FEAT_TYPE_KMO, 18, "KMO AES-128"), - FEAT_INIT("kmo-aes-192", S390_FEAT_TYPE_KMO, 19, "KMO AES-192"), - FEAT_INIT("kmo-aes-256", S390_FEAT_TYPE_KMO, 20, "KMO AES-256"), - FEAT_INIT("kmo-eaes-128", S390_FEAT_TYPE_KMO, 26, "KMO Encrypted-AES-128"), - FEAT_INIT("kmo-eaes-192", S390_FEAT_TYPE_KMO, 27, "KMO Encrypted-AES-192"), - FEAT_INIT("kmo-eaes-256", S390_FEAT_TYPE_KMO, 28, "KMO Encrypted-AES-256"), - - FEAT_INIT("pcc-cmac-dea", S390_FEAT_TYPE_PCC, 1, "PCC Compute-Last-Block-CMAC-Using-DEA"), - FEAT_INIT("pcc-cmac-tdea-128", S390_FEAT_TYPE_PCC, 2, "PCC Compute-Last-Block-CMAC-Using-TDEA-128"), - FEAT_INIT("pcc-cmac-tdea-192", S390_FEAT_TYPE_PCC, 3, "PCC Compute-Last-Block-CMAC-Using-TDEA-192"), - FEAT_INIT("pcc-cmac-edea", S390_FEAT_TYPE_PCC, 9, "PCC Compute-Last-Block-CMAC-Using-Encrypted-DEA"), - FEAT_INIT("pcc-cmac-etdea-128", S390_FEAT_TYPE_PCC, 10, "PCC Compute-Last-Block-CMAC-Using-Encrypted-TDEA-128"), - FEAT_INIT("pcc-cmac-etdea-192", S390_FEAT_TYPE_PCC, 11, "PCC Compute-Last-Block-CMAC-Using-EncryptedTDEA-192"), - FEAT_INIT("pcc-cmac-aes-128", S390_FEAT_TYPE_PCC, 18, "PCC Compute-Last-Block-CMAC-Using-AES-128"), - FEAT_INIT("pcc-cmac-aes-192", S390_FEAT_TYPE_PCC, 19, "PCC Compute-Last-Block-CMAC-Using-AES-192"), - FEAT_INIT("pcc-cmac-eaes-256", S390_FEAT_TYPE_PCC, 20, "PCC Compute-Last-Block-CMAC-Using-AES-256"), - FEAT_INIT("pcc-cmac-eaes-128", S390_FEAT_TYPE_PCC, 26, "PCC Compute-Last-Block-CMAC-Using-Encrypted-AES-128"), - FEAT_INIT("pcc-cmac-eaes-192", S390_FEAT_TYPE_PCC, 27, "PCC Compute-Last-Block-CMAC-Using-Encrypted-AES-192"), - FEAT_INIT("pcc-cmac-eaes-256", S390_FEAT_TYPE_PCC, 28, "PCC Compute-Last-Block-CMAC-Using-Encrypted-AES-256"), - FEAT_INIT("pcc-xts-aes-128", S390_FEAT_TYPE_PCC, 50, "PCC Compute-XTS-Parameter-Using-AES-128"), - FEAT_INIT("pcc-xts-aes-256", S390_FEAT_TYPE_PCC, 52, "PCC Compute-XTS-Parameter-Using-AES-256"), - FEAT_INIT("pcc-xts-eaes-128", S390_FEAT_TYPE_PCC, 58, "PCC Compute-XTS-Parameter-Using-Encrypted-AES-128"), - FEAT_INIT("pcc-xts-eaes-256", S390_FEAT_TYPE_PCC, 60, "PCC Compute-XTS-Parameter-Using-Encrypted-AES-256"), - FEAT_INIT("pcc-scalar-mult-p256", S390_FEAT_TYPE_PCC, 64, "PCC Scalar-Multiply-P256"), - FEAT_INIT("pcc-scalar-mult-p384", S390_FEAT_TYPE_PCC, 65, "PCC Scalar-Multiply-P384"), - FEAT_INIT("pcc-scalar-mult-p521", S390_FEAT_TYPE_PCC, 66, "PCC Scalar-Multiply-P521"), - FEAT_INIT("pcc-scalar-mult-ed25519", S390_FEAT_TYPE_PCC, 72, "PCC Scalar-Multiply-Ed25519"), - FEAT_INIT("pcc-scalar-mult-ed448", S390_FEAT_TYPE_PCC, 73, "PCC Scalar-Multiply-Ed448"), - FEAT_INIT("pcc-scalar-mult-x25519", S390_FEAT_TYPE_PCC, 80, "PCC Scalar-Multiply-X25519"), - FEAT_INIT("pcc-scalar-mult-x448", S390_FEAT_TYPE_PCC, 81, "PCC Scalar-Multiply-X448"), - - FEAT_INIT("ppno-sha-512-drng", S390_FEAT_TYPE_PPNO, 3, "PPNO SHA-512-DRNG"), - FEAT_INIT("prno-trng-qrtcr", S390_FEAT_TYPE_PPNO, 112, "PRNO TRNG-Query-Raw-to-Conditioned-Ratio"), - FEAT_INIT("prno-trng", S390_FEAT_TYPE_PPNO, 114, "PRNO TRNG"), - - FEAT_INIT("kma-gcm-aes-128", S390_FEAT_TYPE_KMA, 18, "KMA GCM-AES-128"), - FEAT_INIT("kma-gcm-aes-192", S390_FEAT_TYPE_KMA, 19, "KMA GCM-AES-192"), - FEAT_INIT("kma-gcm-aes-256", S390_FEAT_TYPE_KMA, 20, "KMA GCM-AES-256"), - FEAT_INIT("kma-gcm-eaes-128", S390_FEAT_TYPE_KMA, 26, "KMA GCM-Encrypted-AES-128"), - FEAT_INIT("kma-gcm-eaes-192", S390_FEAT_TYPE_KMA, 27, "KMA GCM-Encrypted-AES-192"), - FEAT_INIT("kma-gcm-eaes-256", S390_FEAT_TYPE_KMA, 28, "KMA GCM-Encrypted-AES-256"), - - FEAT_INIT("kdsa-ecdsa-verify-p256", S390_FEAT_TYPE_KDSA, 1, "KDSA ECDSA-Verify-P256"), - FEAT_INIT("kdsa-ecdsa-verify-p384", S390_FEAT_TYPE_KDSA, 2, "KDSA ECDSA-Verify-P384"), - FEAT_INIT("kdsa-ecdsa-verify-p521", S390_FEAT_TYPE_KDSA, 3, "KDSA ECDSA-Verify-P521"), - FEAT_INIT("kdsa-ecdsa-sign-p256", S390_FEAT_TYPE_KDSA, 9, "KDSA ECDSA-Sign-P256"), - FEAT_INIT("kdsa-ecdsa-sign-p384", S390_FEAT_TYPE_KDSA, 10, "KDSA ECDSA-Sign-P384"), - FEAT_INIT("kdsa-ecdsa-sign-p521", S390_FEAT_TYPE_KDSA, 11, "KDSA ECDSA-Sign-P521"), - FEAT_INIT("kdsa-eecdsa-sign-p256", S390_FEAT_TYPE_KDSA, 17, "KDSA Encrypted-ECDSA-Sign-P256"), - FEAT_INIT("kdsa-eecdsa-sign-p384", S390_FEAT_TYPE_KDSA, 18, "KDSA Encrypted-ECDSA-Sign-P384"), - FEAT_INIT("kdsa-eecdsa-sign-p521", S390_FEAT_TYPE_KDSA, 19, "KDSA Encrypted-ECDSA-Sign-P521"), - FEAT_INIT("kdsa-eddsa-verify-ed25519", S390_FEAT_TYPE_KDSA, 32, "KDSA EdDSA-Verify-Ed25519"), - FEAT_INIT("kdsa-eddsa-verify-ed448", S390_FEAT_TYPE_KDSA, 36, "KDSA EdDSA-Verify-Ed448"), - FEAT_INIT("kdsa-eddsa-sign-ed25519", S390_FEAT_TYPE_KDSA, 40, "KDSA EdDSA-Sign-Ed25519"), - FEAT_INIT("kdsa-eddsa-sign-ed448", S390_FEAT_TYPE_KDSA, 44, "KDSA EdDSA-Sign-Ed448"), - FEAT_INIT("kdsa-eeddsa-sign-ed25519", S390_FEAT_TYPE_KDSA, 48, "KDSA Encrypted-EdDSA-Sign-Ed25519"), - FEAT_INIT("kdsa-eeddsa-sign-ed448", S390_FEAT_TYPE_KDSA, 52, "KDSA Encrypted-EdDSA-Sign-Ed448"), - - FEAT_INIT("sortl-sflr", S390_FEAT_TYPE_SORTL, 1, "SORTL SFLR"), - FEAT_INIT("sortl-svlr", S390_FEAT_TYPE_SORTL, 2, "SORTL SVLR"), - FEAT_INIT("sortl-32", S390_FEAT_TYPE_SORTL, 130, "SORTL 32 input lists"), - FEAT_INIT("sortl-128", S390_FEAT_TYPE_SORTL, 132, "SORTL 128 input lists"), - FEAT_INIT("sortl-f0", S390_FEAT_TYPE_SORTL, 192, "SORTL format 0 parameter-block"), - - FEAT_INIT("dfltcc-gdht", S390_FEAT_TYPE_DFLTCC, 1, "DFLTCC GDHT"), - FEAT_INIT("dfltcc-cmpr", S390_FEAT_TYPE_DFLTCC, 2, "DFLTCC CMPR"), - FEAT_INIT("dfltcc-xpnd", S390_FEAT_TYPE_DFLTCC, 4, "DFLTCC XPND"), - FEAT_INIT("dfltcc-f0", S390_FEAT_TYPE_DFLTCC, 192, "DFLTCC format 0 parameter-block"), +#define DEF_FEAT(_FEAT, _NAME, _TYPE, _BIT, _DESC) \ + [S390_FEAT_##_FEAT] = { \ + .name = _NAME, \ + .type = S390_FEAT_TYPE_##_TYPE, \ + .bit = _BIT, \ + .desc = _DESC, \ + }, +static const S390FeatDef s390_features[S390_FEAT_MAX] = { + #include "cpu_features_def.inc.h" }; +#undef DEF_FEAT const S390FeatDef *s390_feat_def(S390Feat feat) { diff --git a/target/s390x/cpu_features_def.h b/target/s390x/cpu_features_def.h index 292b17b35d..412d356feb 100644 --- a/target/s390x/cpu_features_def.h +++ b/target/s390x/cpu_features_def.h @@ -2,9 +2,10 @@ * CPU features/facilities for s390 * * Copyright IBM Corp. 2016, 2018 + * Copyright Red Hat, Inc. 2019 * * Author(s): Michael Mueller <mimu@linux.vnet.ibm.com> - * David Hildenbrand <dahi@linux.vnet.ibm.com> + * David Hildenbrand <david@redhat.com> * * This work is licensed under the terms of the GNU GPL, version 2 or (at * your option) any later version. See the COPYING file in the top-level @@ -14,354 +15,11 @@ #ifndef TARGET_S390X_CPU_FEATURES_DEF_H #define TARGET_S390X_CPU_FEATURES_DEF_H +#define DEF_FEAT(_FEAT, ...) S390_FEAT_##_FEAT, typedef enum { - /* Stfle */ - S390_FEAT_ESAN3 = 0, - S390_FEAT_ZARCH, - S390_FEAT_DAT_ENH, - S390_FEAT_IDTE_SEGMENT, - S390_FEAT_IDTE_REGION, - S390_FEAT_ASN_LX_REUSE, - S390_FEAT_STFLE, - S390_FEAT_EDAT, - S390_FEAT_SENSE_RUNNING_STATUS, - S390_FEAT_CONDITIONAL_SSKE, - S390_FEAT_CONFIGURATION_TOPOLOGY, - S390_FEAT_AP_QUERY_CONFIG_INFO, - S390_FEAT_IPTE_RANGE, - S390_FEAT_NONQ_KEY_SETTING, - S390_FEAT_AP_FACILITIES_TEST, - S390_FEAT_EXTENDED_TRANSLATION_2, - S390_FEAT_MSA, - S390_FEAT_LONG_DISPLACEMENT, - S390_FEAT_LONG_DISPLACEMENT_FAST, - S390_FEAT_HFP_MADDSUB, - S390_FEAT_EXTENDED_IMMEDIATE, - S390_FEAT_EXTENDED_TRANSLATION_3, - S390_FEAT_HFP_UNNORMALIZED_EXT, - S390_FEAT_ETF2_ENH, - S390_FEAT_STORE_CLOCK_FAST, - S390_FEAT_PARSING_ENH, - S390_FEAT_MOVE_WITH_OPTIONAL_SPEC, - S390_FEAT_TOD_CLOCK_STEERING, - S390_FEAT_ETF3_ENH, - S390_FEAT_EXTRACT_CPU_TIME, - S390_FEAT_COMPARE_AND_SWAP_AND_STORE, - S390_FEAT_COMPARE_AND_SWAP_AND_STORE_2, - S390_FEAT_GENERAL_INSTRUCTIONS_EXT, - S390_FEAT_EXECUTE_EXT, - S390_FEAT_ENHANCED_MONITOR, - S390_FEAT_FLOATING_POINT_EXT, - S390_FEAT_ORDER_PRESERVING_COMPRESSION, - S390_FEAT_SET_PROGRAM_PARAMETERS, - S390_FEAT_FLOATING_POINT_SUPPPORT_ENH, - S390_FEAT_DFP, - S390_FEAT_DFP_FAST, - S390_FEAT_PFPO, - S390_FEAT_STFLE_45, - S390_FEAT_CMPSC_ENH, - S390_FEAT_DFP_ZONED_CONVERSION, - S390_FEAT_STFLE_49, - S390_FEAT_CONSTRAINT_TRANSACTIONAL_EXE, - S390_FEAT_LOCAL_TLB_CLEARING, - S390_FEAT_INTERLOCKED_ACCESS_2, - S390_FEAT_STFLE_53, - S390_FEAT_ENTROPY_ENC_COMP, - S390_FEAT_MSA_EXT_5, - S390_FEAT_MISC_INSTRUCTION_EXT, - S390_FEAT_SEMAPHORE_ASSIST, - S390_FEAT_TIME_SLICE_INSTRUMENTATION, - S390_FEAT_MISC_INSTRUCTION_EXT3, - S390_FEAT_RUNTIME_INSTRUMENTATION, - S390_FEAT_ZPCI, - S390_FEAT_ADAPTER_EVENT_NOTIFICATION, - S390_FEAT_ADAPTER_INT_SUPPRESSION, - S390_FEAT_TRANSACTIONAL_EXE, - S390_FEAT_STORE_HYPERVISOR_INFO, - S390_FEAT_ACCESS_EXCEPTION_FS_INDICATION, - S390_FEAT_MSA_EXT_3, - S390_FEAT_MSA_EXT_4, - S390_FEAT_EDAT_2, - S390_FEAT_DFP_PACKED_CONVERSION, - S390_FEAT_PPA15, - S390_FEAT_BPB, - S390_FEAT_VECTOR, - S390_FEAT_INSTRUCTION_EXEC_PROT, - S390_FEAT_SIDE_EFFECT_ACCESS_ESOP2, - S390_FEAT_GUARDED_STORAGE, - S390_FEAT_VECTOR_PACKED_DECIMAL, - S390_FEAT_VECTOR_ENH, - S390_FEAT_MULTIPLE_EPOCH, - S390_FEAT_TEST_PENDING_EXT_INTERRUPTION, - S390_FEAT_INSERT_REFERENCE_BITS_MULT, - S390_FEAT_MSA_EXT_8, - S390_FEAT_CMM_NT, - S390_FEAT_VECTOR_ENH2, - S390_FEAT_ESORT_BASE, - S390_FEAT_DEFLATE_BASE, - S390_FEAT_VECTOR_BCD_ENH, - S390_FEAT_MSA_EXT_9, - S390_FEAT_ETOKEN, - - /* Sclp Conf Char */ - S390_FEAT_SIE_GSLS, - S390_FEAT_ESOP, - S390_FEAT_HPMA2, - S390_FEAT_SIE_KSS, - - /* Sclp Conf Char Ext */ - S390_FEAT_SIE_64BSCAO, - S390_FEAT_SIE_CMMA, - S390_FEAT_SIE_PFMFI, - S390_FEAT_SIE_IBS, - - /* Sclp Cpu */ - S390_FEAT_SIE_F2, - S390_FEAT_SIE_SKEY, - S390_FEAT_SIE_GPERE, - S390_FEAT_SIE_SIIF, - S390_FEAT_SIE_SIGPIF, - S390_FEAT_SIE_IB, - S390_FEAT_SIE_CEI, - - /* Misc */ - S390_FEAT_DAT_ENH_2, - S390_FEAT_CMM, - S390_FEAT_AP, - - /* PLO */ - S390_FEAT_PLO_CL, - S390_FEAT_PLO_CLG, - S390_FEAT_PLO_CLGR, - S390_FEAT_PLO_CLX, - S390_FEAT_PLO_CS, - S390_FEAT_PLO_CSG, - S390_FEAT_PLO_CSGR, - S390_FEAT_PLO_CSX, - S390_FEAT_PLO_DCS, - S390_FEAT_PLO_DCSG, - S390_FEAT_PLO_DCSGR, - S390_FEAT_PLO_DCSX, - S390_FEAT_PLO_CSST, - S390_FEAT_PLO_CSSTG, - S390_FEAT_PLO_CSSTGR, - S390_FEAT_PLO_CSSTX, - S390_FEAT_PLO_CSDST, - S390_FEAT_PLO_CSDSTG, - S390_FEAT_PLO_CSDSTGR, - S390_FEAT_PLO_CSDSTX, - S390_FEAT_PLO_CSTST, - S390_FEAT_PLO_CSTSTG, - S390_FEAT_PLO_CSTSTGR, - S390_FEAT_PLO_CSTSTX, - - /* PTFF */ - S390_FEAT_PTFF_QTO, - S390_FEAT_PTFF_QSI, - S390_FEAT_PTFF_QPT, - S390_FEAT_PTFF_QUI, - S390_FEAT_PTFF_QTOU, - S390_FEAT_PTFF_QSIE, - S390_FEAT_PTFF_QTOUE, - S390_FEAT_PTFF_STO, - S390_FEAT_PTFF_STOU, - S390_FEAT_PTFF_STOE, - S390_FEAT_PTFF_STOUE, - - /* KMAC */ - S390_FEAT_KMAC_DEA, - S390_FEAT_KMAC_TDEA_128, - S390_FEAT_KMAC_TDEA_192, - S390_FEAT_KMAC_EDEA, - S390_FEAT_KMAC_ETDEA_128, - S390_FEAT_KMAC_ETDEA_192, - S390_FEAT_KMAC_AES_128, - S390_FEAT_KMAC_AES_192, - S390_FEAT_KMAC_AES_256, - S390_FEAT_KMAC_EAES_128, - S390_FEAT_KMAC_EAES_192, - S390_FEAT_KMAC_EAES_256, - - /* KMC */ - S390_FEAT_KMC_DEA, - S390_FEAT_KMC_TDEA_128, - S390_FEAT_KMC_TDEA_192, - S390_FEAT_KMC_EDEA, - S390_FEAT_KMC_ETDEA_128, - S390_FEAT_KMC_ETDEA_192, - S390_FEAT_KMC_AES_128, - S390_FEAT_KMC_AES_192, - S390_FEAT_KMC_AES_256, - S390_FEAT_KMC_EAES_128, - S390_FEAT_KMC_EAES_192, - S390_FEAT_KMC_EAES_256, - S390_FEAT_KMC_PRNG, - - /* KM */ - S390_FEAT_KM_DEA, - S390_FEAT_KM_TDEA_128, - S390_FEAT_KM_TDEA_192, - S390_FEAT_KM_EDEA, - S390_FEAT_KM_ETDEA_128, - S390_FEAT_KM_ETDEA_192, - S390_FEAT_KM_AES_128, - S390_FEAT_KM_AES_192, - S390_FEAT_KM_AES_256, - S390_FEAT_KM_EAES_128, - S390_FEAT_KM_EAES_192, - S390_FEAT_KM_EAES_256, - S390_FEAT_KM_XTS_AES_128, - S390_FEAT_KM_XTS_AES_256, - S390_FEAT_KM_XTS_EAES_128, - S390_FEAT_KM_XTS_EAES_256, - - /* KIMD */ - S390_FEAT_KIMD_SHA_1, - S390_FEAT_KIMD_SHA_256, - S390_FEAT_KIMD_SHA_512, - S390_FEAT_KIMD_SHA3_224, - S390_FEAT_KIMD_SHA3_256, - S390_FEAT_KIMD_SHA3_384, - S390_FEAT_KIMD_SHA3_512, - S390_FEAT_KIMD_SHAKE_128, - S390_FEAT_KIMD_SHAKE_256, - S390_FEAT_KIMD_GHASH, - - /* KLMD */ - S390_FEAT_KLMD_SHA_1, - S390_FEAT_KLMD_SHA_256, - S390_FEAT_KLMD_SHA_512, - S390_FEAT_KLMD_SHA3_224, - S390_FEAT_KLMD_SHA3_256, - S390_FEAT_KLMD_SHA3_384, - S390_FEAT_KLMD_SHA3_512, - S390_FEAT_KLMD_SHAKE_128, - S390_FEAT_KLMD_SHAKE_256, - - /* PCKMO */ - S390_FEAT_PCKMO_EDEA, - S390_FEAT_PCKMO_ETDEA_128, - S390_FEAT_PCKMO_ETDEA_256, - S390_FEAT_PCKMO_AES_128, - S390_FEAT_PCKMO_AES_192, - S390_FEAT_PCKMO_AES_256, - S390_FEAT_PCKMO_ECC_P256, - S390_FEAT_PCKMO_ECC_P384, - S390_FEAT_PCKMO_ECC_P521, - S390_FEAT_PCKMO_ECC_ED25519, - S390_FEAT_PCKMO_ECC_ED448, - - /* KMCTR */ - S390_FEAT_KMCTR_DEA, - S390_FEAT_KMCTR_TDEA_128, - S390_FEAT_KMCTR_TDEA_192, - S390_FEAT_KMCTR_EDEA, - S390_FEAT_KMCTR_ETDEA_128, - S390_FEAT_KMCTR_ETDEA_192, - S390_FEAT_KMCTR_AES_128, - S390_FEAT_KMCTR_AES_192, - S390_FEAT_KMCTR_AES_256, - S390_FEAT_KMCTR_EAES_128, - S390_FEAT_KMCTR_EAES_192, - S390_FEAT_KMCTR_EAES_256, - - /* KMF */ - S390_FEAT_KMF_DEA, - S390_FEAT_KMF_TDEA_128, - S390_FEAT_KMF_TDEA_192, - S390_FEAT_KMF_EDEA, - S390_FEAT_KMF_ETDEA_128, - S390_FEAT_KMF_ETDEA_192, - S390_FEAT_KMF_AES_128, - S390_FEAT_KMF_AES_192, - S390_FEAT_KMF_AES_256, - S390_FEAT_KMF_EAES_128, - S390_FEAT_KMF_EAES_192, - S390_FEAT_KMF_EAES_256, - - /* KMO */ - S390_FEAT_KMO_DEA, - S390_FEAT_KMO_TDEA_128, - S390_FEAT_KMO_TDEA_192, - S390_FEAT_KMO_EDEA, - S390_FEAT_KMO_ETDEA_128, - S390_FEAT_KMO_ETDEA_192, - S390_FEAT_KMO_AES_128, - S390_FEAT_KMO_AES_192, - S390_FEAT_KMO_AES_256, - S390_FEAT_KMO_EAES_128, - S390_FEAT_KMO_EAES_192, - S390_FEAT_KMO_EAES_256, - - /* PCC */ - S390_FEAT_PCC_CMAC_DEA, - S390_FEAT_PCC_CMAC_TDEA_128, - S390_FEAT_PCC_CMAC_TDEA_192, - S390_FEAT_PCC_CMAC_ETDEA_128, - S390_FEAT_PCC_CMAC_ETDEA_192, - S390_FEAT_PCC_CMAC_TDEA, - S390_FEAT_PCC_CMAC_AES_128, - S390_FEAT_PCC_CMAC_AES_192, - S390_FEAT_PCC_CMAC_AES_256, - S390_FEAT_PCC_CMAC_EAES_128, - S390_FEAT_PCC_CMAC_EAES_192, - S390_FEAT_PCC_CMAC_EAES_256, - S390_FEAT_PCC_XTS_AES_128, - S390_FEAT_PCC_XTS_AES_256, - S390_FEAT_PCC_XTS_EAES_128, - S390_FEAT_PCC_XTS_EAES_256, - S390_FEAT_PCC_SCALAR_MULT_P256, - S390_FEAT_PCC_SCALAR_MULT_P384, - S390_FEAT_PCC_SCALAR_MULT_P512, - S390_FEAT_PCC_SCALAR_MULT_ED25519, - S390_FEAT_PCC_SCALAR_MULT_ED448, - S390_FEAT_PCC_SCALAR_MULT_X25519, - S390_FEAT_PCC_SCALAR_MULT_X448, - - /* PPNO/PRNO */ - S390_FEAT_PPNO_SHA_512_DRNG, - S390_FEAT_PRNO_TRNG_QRTCR, - S390_FEAT_PRNO_TRNG, - - /* KMA */ - S390_FEAT_KMA_GCM_AES_128, - S390_FEAT_KMA_GCM_AES_192, - S390_FEAT_KMA_GCM_AES_256 , - S390_FEAT_KMA_GCM_EAES_128, - S390_FEAT_KMA_GCM_EAES_192, - S390_FEAT_KMA_GCM_EAES_256, - - /* KDSA */ - S390_FEAT_ECDSA_VERIFY_P256, - S390_FEAT_ECDSA_VERIFY_P384, - S390_FEAT_ECDSA_VERIFY_P512, - S390_FEAT_ECDSA_SIGN_P256, - S390_FEAT_ECDSA_SIGN_P384, - S390_FEAT_ECDSA_SIGN_P512, - S390_FEAT_EECDSA_SIGN_P256, - S390_FEAT_EECDSA_SIGN_P384, - S390_FEAT_EECDSA_SIGN_P512, - S390_FEAT_EDDSA_VERIFY_ED25519, - S390_FEAT_EDDSA_VERIFY_ED448, - S390_FEAT_EDDSA_SIGN_ED25519, - S390_FEAT_EDDSA_SIGN_ED448, - S390_FEAT_EEDDSA_SIGN_ED25519, - S390_FEAT_EEDDSA_SIGN_ED448, - - /* SORTL */ - S390_FEAT_SORTL_SFLR, - S390_FEAT_SORTL_SVLR, - S390_FEAT_SORTL_32, - S390_FEAT_SORTL_128, - S390_FEAT_SORTL_F0, - - /* DEFLATE */ - S390_FEAT_DEFLATE_GHDT, - S390_FEAT_DEFLATE_CMPR, - S390_FEAT_DEFLATE_XPND, - S390_FEAT_DEFLATE_F0, - + #include "cpu_features_def.inc.h" S390_FEAT_MAX, } S390Feat; +#undef DEF_FEAT #endif /* TARGET_S390X_CPU_FEATURES_DEF_H */ diff --git a/target/s390x/cpu_features_def.inc.h b/target/s390x/cpu_features_def.inc.h new file mode 100644 index 0000000000..c20c780f2e --- /dev/null +++ b/target/s390x/cpu_features_def.inc.h @@ -0,0 +1,369 @@ +/* + * RAW s390x CPU feature definitions: + * + * DEF_FEAT(_FEAT, _NAME, _TYPE, _BIT, _DESC): + * - _FEAT: Feature (enum) name used internally (S390_FEAT_##_FEAT) + * - _NAME: Feature name exposed to the user. + * - _TYPE: Feature type (S390_FEAT_TYPE_##_TYPE). + * - _BIT: Feature bit number within feature type block (unused for MISC). + * - _DESC: Feature description, exposed to the user. + * + * Copyright IBM Corp. 2016, 2018 + * Copyright Red Hat, Inc. 2019 + * + * Author(s): Michael Mueller <mimu@linux.vnet.ibm.com> + * David Hildenbrand <david@redhat.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or (at + * your option) any later version. See the COPYING file in the top-level + * directory. + */ + +/* Features exposed via the STFL(E) instruction. */ +DEF_FEAT(ESAN3, "esan3", STFL, 0, "Instructions marked as n3") +DEF_FEAT(ZARCH, "zarch", STFL, 1, "z/Architecture architectural mode") +DEF_FEAT(DAT_ENH, "dateh", STFL, 3, "DAT-enhancement facility") +DEF_FEAT(IDTE_SEGMENT, "idtes", STFL, 4, "IDTE selective TLB segment-table clearing") +DEF_FEAT(IDTE_REGION, "idter", STFL, 5, "IDTE selective TLB region-table clearing") +DEF_FEAT(ASN_LX_REUSE, "asnlxr", STFL, 6, "ASN-and-LX reuse facility") +DEF_FEAT(STFLE, "stfle", STFL, 7, "Store-facility-list-extended facility") +DEF_FEAT(EDAT, "edat", STFL, 8, "Enhanced-DAT facility") +DEF_FEAT(SENSE_RUNNING_STATUS, "srs", STFL, 9, "Sense-running-status facility") +DEF_FEAT(CONDITIONAL_SSKE, "csske", STFL, 10, "Conditional-SSKE facility") +DEF_FEAT(CONFIGURATION_TOPOLOGY, "ctop", STFL, 11, "Configuration-topology facility") +DEF_FEAT(AP_QUERY_CONFIG_INFO, "apqci", STFL, 12, "Query AP Configuration Information facility") +DEF_FEAT(IPTE_RANGE, "ipter", STFL, 13, "IPTE-range facility") +DEF_FEAT(NONQ_KEY_SETTING, "nonqks", STFL, 14, "Nonquiescing key-setting facility") +DEF_FEAT(AP_FACILITIES_TEST, "apft", STFL, 15, "AP Facilities Test facility") +DEF_FEAT(EXTENDED_TRANSLATION_2, "etf2", STFL, 16, "Extended-translation facility 2") +DEF_FEAT(MSA, "msa-base", STFL, 17, "Message-security-assist facility (excluding subfunctions)") +DEF_FEAT(LONG_DISPLACEMENT, "ldisp", STFL, 18, "Long-displacement facility") +DEF_FEAT(LONG_DISPLACEMENT_FAST, "ldisphp", STFL, 19, "Long-displacement facility has high performance") +DEF_FEAT(HFP_MADDSUB, "hfpm", STFL, 20, "HFP-multiply-add/subtract facility") +DEF_FEAT(EXTENDED_IMMEDIATE, "eimm", STFL, 21, "Extended-immediate facility") +DEF_FEAT(EXTENDED_TRANSLATION_3, "etf3", STFL, 22, "Extended-translation facility 3") +DEF_FEAT(HFP_UNNORMALIZED_EXT, "hfpue", STFL, 23, "HFP-unnormalized-extension facility") +DEF_FEAT(ETF2_ENH, "etf2eh", STFL, 24, "ETF2-enhancement facility") +DEF_FEAT(STORE_CLOCK_FAST, "stckf", STFL, 25, "Store-clock-fast facility") +DEF_FEAT(PARSING_ENH, "parseh", STFL, 26, "Parsing-enhancement facility") +DEF_FEAT(MOVE_WITH_OPTIONAL_SPEC, "mvcos", STFL, 27, "Move-with-optional-specification facility") +DEF_FEAT(TOD_CLOCK_STEERING, "tods-base", STFL, 28, "TOD-clock-steering facility (excluding subfunctions)") +DEF_FEAT(ETF3_ENH, "etf3eh", STFL, 30, "ETF3-enhancement facility") +DEF_FEAT(EXTRACT_CPU_TIME, "ectg", STFL, 31, "Extract-CPU-time facility") +DEF_FEAT(COMPARE_AND_SWAP_AND_STORE, "csst", STFL, 32, "Compare-and-swap-and-store facility") +DEF_FEAT(COMPARE_AND_SWAP_AND_STORE_2, "csst2", STFL, 33, "Compare-and-swap-and-store facility 2") +DEF_FEAT(GENERAL_INSTRUCTIONS_EXT, "ginste", STFL, 34, "General-instructions-extension facility") +DEF_FEAT(EXECUTE_EXT, "exrl", STFL, 35, "Execute-extensions facility") +DEF_FEAT(ENHANCED_MONITOR, "emon", STFL, 36, "Enhanced-monitor facility") +DEF_FEAT(FLOATING_POINT_EXT, "fpe", STFL, 37, "Floating-point extension facility") +DEF_FEAT(ORDER_PRESERVING_COMPRESSION, "opc", STFL, 38, "Order Preserving Compression facility") +DEF_FEAT(SET_PROGRAM_PARAMETERS, "sprogp", STFL, 40, "Set-program-parameters facility") +DEF_FEAT(FLOATING_POINT_SUPPPORT_ENH, "fpseh", STFL, 41, "Floating-point-support-enhancement facilities") +DEF_FEAT(DFP, "dfp", STFL, 42, "DFP (decimal-floating-point) facility") +DEF_FEAT(DFP_FAST, "dfphp", STFL, 43, "DFP (decimal-floating-point) facility has high performance") +DEF_FEAT(PFPO, "pfpo", STFL, 44, "PFPO instruction") +DEF_FEAT(STFLE_45, "stfle45", STFL, 45, "Various facilities introduced with z196") +DEF_FEAT(CMPSC_ENH, "cmpsceh", STFL, 47, "CMPSC-enhancement facility") +DEF_FEAT(DFP_ZONED_CONVERSION, "dfpzc", STFL, 48, "Decimal-floating-point zoned-conversion facility") +DEF_FEAT(STFLE_49, "stfle49", STFL, 49, "Various facilities introduced with zEC12") +DEF_FEAT(CONSTRAINT_TRANSACTIONAL_EXE, "cte", STFL, 50, "Constrained transactional-execution facility") +DEF_FEAT(LOCAL_TLB_CLEARING, "ltlbc", STFL, 51, "Local-TLB-clearing facility") +DEF_FEAT(INTERLOCKED_ACCESS_2, "iacc2", STFL, 52, "Interlocked-access facility 2") +DEF_FEAT(STFLE_53, "stfle53", STFL, 53, "Various facilities introduced with z13") +DEF_FEAT(ENTROPY_ENC_COMP, "eec", STFL, 54, "Entropy encoding compression facility") +DEF_FEAT(MSA_EXT_5, "msa5-base", STFL, 57, "Message-security-assist-extension-5 facility (excluding subfunctions)") +DEF_FEAT(MISC_INSTRUCTION_EXT, "minste2", STFL, 58, "Miscellaneous-instruction-extensions facility 2") +DEF_FEAT(SEMAPHORE_ASSIST, "sema", STFL, 59, "Semaphore-assist facility") +DEF_FEAT(TIME_SLICE_INSTRUMENTATION, "tsi", STFL, 60, "Time-slice Instrumentation facility") +DEF_FEAT(MISC_INSTRUCTION_EXT3, "minste3", STFL, 61, "Miscellaneous-Instruction-Extensions Facility 3") +DEF_FEAT(RUNTIME_INSTRUMENTATION, "ri", STFL, 64, "CPU runtime-instrumentation facility") +DEF_FEAT(ZPCI, "zpci", STFL, 69, "z/PCI facility") +DEF_FEAT(ADAPTER_EVENT_NOTIFICATION, "aen", STFL, 71, "General-purpose-adapter-event-notification facility") +DEF_FEAT(ADAPTER_INT_SUPPRESSION, "ais", STFL, 72, "General-purpose-adapter-interruption-suppression facility") +DEF_FEAT(TRANSACTIONAL_EXE, "te", STFL, 73, "Transactional-execution facility") +DEF_FEAT(STORE_HYPERVISOR_INFO, "sthyi", STFL, 74, "Store-hypervisor-information facility") +DEF_FEAT(ACCESS_EXCEPTION_FS_INDICATION, "aefsi", STFL, 75, "Access-exception-fetch/store-indication facility") +DEF_FEAT(MSA_EXT_3, "msa3-base", STFL, 76, "Message-security-assist-extension-3 facility (excluding subfunctions)") +DEF_FEAT(MSA_EXT_4, "msa4-base", STFL, 77, "Message-security-assist-extension-4 facility (excluding subfunctions)") +DEF_FEAT(EDAT_2, "edat2", STFL, 78, "Enhanced-DAT facility 2") +DEF_FEAT(DFP_PACKED_CONVERSION, "dfppc", STFL, 80, "Decimal-floating-point packed-conversion facility") +DEF_FEAT(PPA15, "ppa15", STFL, 81, "PPA15 is installed") +DEF_FEAT(BPB, "bpb", STFL, 82, "Branch prediction blocking") +DEF_FEAT(VECTOR, "vx", STFL, 129, "Vector facility") +DEF_FEAT(INSTRUCTION_EXEC_PROT, "iep", STFL, 130, "Instruction-execution-protection facility") +DEF_FEAT(SIDE_EFFECT_ACCESS_ESOP2, "sea_esop2", STFL, 131, "Side-effect-access facility and Enhanced-suppression-on-protection facility 2") +DEF_FEAT(GUARDED_STORAGE, "gs", STFL, 133, "Guarded-storage facility") +DEF_FEAT(VECTOR_PACKED_DECIMAL, "vxpd", STFL, 134, "Vector packed decimal facility") +DEF_FEAT(VECTOR_ENH, "vxeh", STFL, 135, "Vector enhancements facility") +DEF_FEAT(MULTIPLE_EPOCH, "mepoch", STFL, 139, "Multiple-epoch facility") +DEF_FEAT(TEST_PENDING_EXT_INTERRUPTION, "tpei", STFL, 144, "Test-pending-external-interruption facility") +DEF_FEAT(INSERT_REFERENCE_BITS_MULT, "irbm", STFL, 145, "Insert-reference-bits-multiple facility") +DEF_FEAT(MSA_EXT_8, "msa8-base", STFL, 146, "Message-security-assist-extension-8 facility (excluding subfunctions)") +DEF_FEAT(CMM_NT, "cmmnt", STFL, 147, "CMM: ESSA-enhancement (no translate) facility") +DEF_FEAT(VECTOR_ENH2, "vxeh2", STFL, 148, "Vector Enhancements facility 2") +DEF_FEAT(ESORT_BASE, "esort-base", STFL, 150, "Enhanced-sort facility (excluding subfunctions)") +DEF_FEAT(DEFLATE_BASE, "deflate-base", STFL, 151, "Deflate-conversion facility (excluding subfunctions)") +DEF_FEAT(VECTOR_BCD_ENH, "vxbeh", STFL, 152, "Vector BCD enhancements facility 1") +DEF_FEAT(MSA_EXT_9, "msa9-base", STFL, 155, "Message-security-assist-extension-9 facility (excluding subfunctions)") +DEF_FEAT(ETOKEN, "etoken", STFL, 156, "Etoken facility") + +/* Features exposed via SCLP SCCB Byte 80 - 98 (bit numbers relative to byte-80) */ +DEF_FEAT(SIE_GSLS, "gsls", SCLP_CONF_CHAR, 40, "SIE: Guest-storage-limit-suppression facility") +DEF_FEAT(ESOP, "esop", SCLP_CONF_CHAR, 46, "Enhanced-suppression-on-protection facility") +DEF_FEAT(HPMA2, "hpma2", SCLP_CONF_CHAR, 90, "Host page management assist 2 Facility") /* 91-2 */ +DEF_FEAT(SIE_KSS, "kss", SCLP_CONF_CHAR, 151, "SIE: Keyless-subset facility") /* 98-7 */ + +/* Features exposed via SCLP SCCB Byte 116 - 119 (bit numbers relative to byte-116) */ +DEF_FEAT(SIE_64BSCAO, "64bscao", SCLP_CONF_CHAR_EXT, 0, "SIE: 64-bit-SCAO facility") +DEF_FEAT(SIE_CMMA, "cmma", SCLP_CONF_CHAR_EXT, 1, "SIE: Collaborative-memory-management assist") +DEF_FEAT(SIE_PFMFI, "pfmfi", SCLP_CONF_CHAR_EXT, 9, "SIE: PFMF interpretation facility") +DEF_FEAT(SIE_IBS, "ibs", SCLP_CONF_CHAR_EXT, 10, "SIE: Interlock-and-broadcast-suppression facility") + +/* Features exposed via SCLP CPU info. */ +DEF_FEAT(SIE_F2, "sief2", SCLP_CPU, 4, "SIE: interception format 2 (Virtual SIE)") +DEF_FEAT(SIE_SKEY, "skey", SCLP_CPU, 5, "SIE: Storage-key facility") +DEF_FEAT(SIE_GPERE, "gpereh", SCLP_CPU, 10, "SIE: Guest-PER enhancement facility") +DEF_FEAT(SIE_SIIF, "siif", SCLP_CPU, 11, "SIE: Shared IPTE-interlock facility") +DEF_FEAT(SIE_SIGPIF, "sigpif", SCLP_CPU, 12, "SIE: SIGP interpretation facility") +DEF_FEAT(SIE_IB, "ib", SCLP_CPU, 42, "SIE: Intervention bypass facility") +DEF_FEAT(SIE_CEI, "cei", SCLP_CPU, 43, "SIE: Conditional-external-interception facility") + +/* + * Features exposed via no feature bit (but e.g., instruction sensing) + * -> the feature bit number is irrelavant + */ +DEF_FEAT(DAT_ENH_2, "dateh2", MISC, 0, "DAT-enhancement facility 2") +DEF_FEAT(CMM, "cmm", MISC, 0, "Collaborative-memory-management facility") +DEF_FEAT(AP, "ap", MISC, 0, "AP instructions installed") + +/* Features exposed via the PLO instruction. */ +DEF_FEAT(PLO_CL, "plo-cl", PLO, 0, "PLO Compare and load (32 bit in general registers)") +DEF_FEAT(PLO_CLG, "plo-clg", PLO, 1, "PLO Compare and load (64 bit in parameter list)") +DEF_FEAT(PLO_CLGR, "plo-clgr", PLO, 2, "PLO Compare and load (32 bit in general registers)") +DEF_FEAT(PLO_CLX, "plo-clx", PLO, 3, "PLO Compare and load (128 bit in parameter list)") +DEF_FEAT(PLO_CS, "plo-cs", PLO, 4, "PLO Compare and swap (32 bit in general registers)") +DEF_FEAT(PLO_CSG, "plo-csg", PLO, 5, "PLO Compare and swap (64 bit in parameter list)") +DEF_FEAT(PLO_CSGR, "plo-csgr", PLO, 6, "PLO Compare and swap (32 bit in general registers)") +DEF_FEAT(PLO_CSX, "plo-csx", PLO, 7, "PLO Compare and swap (128 bit in parameter list)") +DEF_FEAT(PLO_DCS, "plo-dcs", PLO, 8, "PLO Double compare and swap (32 bit in general registers)") +DEF_FEAT(PLO_DCSG, "plo-dcsg", PLO, 9, "PLO Double compare and swap (64 bit in parameter list)") +DEF_FEAT(PLO_DCSGR, "plo-dcsgr", PLO, 10, "PLO Double compare and swap (32 bit in general registers)") +DEF_FEAT(PLO_DCSX, "plo-dcsx", PLO, 11, "PLO Double compare and swap (128 bit in parameter list)") +DEF_FEAT(PLO_CSST, "plo-csst", PLO, 12, "PLO Compare and swap and store (32 bit in general registers)") +DEF_FEAT(PLO_CSSTG, "plo-csstg", PLO, 13, "PLO Compare and swap and store (64 bit in parameter list)") +DEF_FEAT(PLO_CSSTGR, "plo-csstgr", PLO, 14, "PLO Compare and swap and store (32 bit in general registers)") +DEF_FEAT(PLO_CSSTX, "plo-csstx", PLO, 15, "PLO Compare and swap and store (128 bit in parameter list)") +DEF_FEAT(PLO_CSDST, "plo-csdst", PLO, 16, "PLO Compare and swap and double store (32 bit in general registers)") +DEF_FEAT(PLO_CSDSTG, "plo-csdstg", PLO, 17, "PLO Compare and swap and double store (64 bit in parameter list)") +DEF_FEAT(PLO_CSDSTGR, "plo-csdstgr", PLO, 18, "PLO Compare and swap and double store (32 bit in general registers)") +DEF_FEAT(PLO_CSDSTX, "plo-csdstx", PLO, 19, "PLO Compare and swap and double store (128 bit in parameter list)") +DEF_FEAT(PLO_CSTST, "plo-cstst", PLO, 20, "PLO Compare and swap and triple store (32 bit in general registers)") +DEF_FEAT(PLO_CSTSTG, "plo-cststg", PLO, 21, "PLO Compare and swap and triple store (64 bit in parameter list)") +DEF_FEAT(PLO_CSTSTGR, "plo-cststgr", PLO, 22, "PLO Compare and swap and triple store (32 bit in general registers)") +DEF_FEAT(PLO_CSTSTX, "plo-cststx", PLO, 23, "PLO Compare and swap and triple store (128 bit in parameter list)") + +/* Features exposed via the PTFF instruction. */ +DEF_FEAT(PTFF_QTO, "ptff-qto", PTFF, 1, "PTFF Query TOD Offset") +DEF_FEAT(PTFF_QSI, "ptff-qsi", PTFF, 2, "PTFF Query Steering Information") +DEF_FEAT(PTFF_QPT, "ptff-qpc", PTFF, 3, "PTFF Query Physical Clock") +DEF_FEAT(PTFF_QUI, "ptff-qui", PTFF, 4, "PTFF Query UTC Information") +DEF_FEAT(PTFF_QTOU, "ptff-qtou", PTFF, 5, "PTFF Query TOD Offset User") +DEF_FEAT(PTFF_QSIE, "ptff-qsie", PTFF, 10, "PTFF Query Steering Information Extended") +DEF_FEAT(PTFF_QTOUE, "ptff-qtoue", PTFF, 13, "PTFF Query TOD Offset User Extended") +DEF_FEAT(PTFF_STO, "ptff-sto", PTFF, 65, "PTFF Set TOD Offset") +DEF_FEAT(PTFF_STOU, "ptff-stou", PTFF, 69, "PTFF Set TOD Offset User") +DEF_FEAT(PTFF_STOE, "ptff-stoe", PTFF, 73, "PTFF Set TOD Offset Extended") +DEF_FEAT(PTFF_STOUE, "ptff-stoue", PTFF, 77, "PTFF Set TOD Offset User Extended") + +/* Features exposed via the KMAC instruction. */ +DEF_FEAT(KMAC_DEA, "kmac-dea", KMAC, 1, "KMAC DEA") +DEF_FEAT(KMAC_TDEA_128, "kmac-tdea-128", KMAC, 2, "KMAC TDEA-128") +DEF_FEAT(KMAC_TDEA_192, "kmac-tdea-192", KMAC, 3, "KMAC TDEA-192") +DEF_FEAT(KMAC_EDEA, "kmac-edea", KMAC, 9, "KMAC Encrypted-DEA") +DEF_FEAT(KMAC_ETDEA_128, "kmac-etdea-128", KMAC, 10, "KMAC Encrypted-TDEA-128") +DEF_FEAT(KMAC_ETDEA_192, "kmac-etdea-192", KMAC, 11, "KMAC Encrypted-TDEA-192") +DEF_FEAT(KMAC_AES_128, "kmac-aes-128", KMAC, 18, "KMAC AES-128") +DEF_FEAT(KMAC_AES_192, "kmac-aes-192", KMAC, 19, "KMAC AES-192") +DEF_FEAT(KMAC_AES_256, "kmac-aes-256", KMAC, 20, "KMAC AES-256") +DEF_FEAT(KMAC_EAES_128, "kmac-eaes-128", KMAC, 26, "KMAC Encrypted-AES-128") +DEF_FEAT(KMAC_EAES_192, "kmac-eaes-192", KMAC, 27, "KMAC Encrypted-AES-192") +DEF_FEAT(KMAC_EAES_256, "kmac-eaes-256", KMAC, 28, "KMAC Encrypted-AES-256") + +/* Features exposed via the KMC instruction. */ +DEF_FEAT(KMC_DEA, "kmc-dea", KMC, 1, "KMC DEA") +DEF_FEAT(KMC_TDEA_128, "kmc-tdea-128", KMC, 2, "KMC TDEA-128") +DEF_FEAT(KMC_TDEA_192, "kmc-tdea-192", KMC, 3, "KMC TDEA-192") +DEF_FEAT(KMC_EDEA, "kmc-edea", KMC, 9, "KMC Encrypted-DEA") +DEF_FEAT(KMC_ETDEA_128, "kmc-etdea-128", KMC, 10, "KMC Encrypted-TDEA-128") +DEF_FEAT(KMC_ETDEA_192, "kmc-etdea-192", KMC, 11, "KMC Encrypted-TDEA-192") +DEF_FEAT(KMC_AES_128, "kmc-aes-128", KMC, 18, "KMC AES-128") +DEF_FEAT(KMC_AES_192, "kmc-aes-192", KMC, 19, "KMC AES-192") +DEF_FEAT(KMC_AES_256, "kmc-aes-256", KMC, 20, "KMC AES-256") +DEF_FEAT(KMC_EAES_128, "kmc-eaes-128", KMC, 26, "KMC Encrypted-AES-128") +DEF_FEAT(KMC_EAES_192, "kmc-eaes-192", KMC, 27, "KMC Encrypted-AES-192") +DEF_FEAT(KMC_EAES_256, "kmc-eaes-256", KMC, 28, "KMC Encrypted-AES-256") +DEF_FEAT(KMC_PRNG, "kmc-prng", KMC, 67, "KMC PRNG") + +/* Features exposed via the KM instruction. */ +DEF_FEAT(KM_DEA, "km-dea", KM, 1, "KM DEA") +DEF_FEAT(KM_TDEA_128, "km-tdea-128", KM, 2, "KM TDEA-128") +DEF_FEAT(KM_TDEA_192, "km-tdea-192", KM, 3, "KM TDEA-192") +DEF_FEAT(KM_EDEA, "km-edea", KM, 9, "KM Encrypted-DEA") +DEF_FEAT(KM_ETDEA_128, "km-etdea-128", KM, 10, "KM Encrypted-TDEA-128") +DEF_FEAT(KM_ETDEA_192, "km-etdea-192", KM, 11, "KM Encrypted-TDEA-192") +DEF_FEAT(KM_AES_128, "km-aes-128", KM, 18, "KM AES-128") +DEF_FEAT(KM_AES_192, "km-aes-192", KM, 19, "KM AES-192") +DEF_FEAT(KM_AES_256, "km-aes-256", KM, 20, "KM AES-256") +DEF_FEAT(KM_EAES_128, "km-eaes-128", KM, 26, "KM Encrypted-AES-128") +DEF_FEAT(KM_EAES_192, "km-eaes-192", KM, 27, "KM Encrypted-AES-192") +DEF_FEAT(KM_EAES_256, "km-eaes-256", KM, 28, "KM Encrypted-AES-256") +DEF_FEAT(KM_XTS_AES_128, "km-xts-aes-128", KM, 50, "KM XTS-AES-128") +DEF_FEAT(KM_XTS_AES_256, "km-xts-aes-256", KM, 52, "KM XTS-AES-256") +DEF_FEAT(KM_XTS_EAES_128, "km-xts-eaes-128", KM, 58, "KM XTS-Encrypted-AES-128") +DEF_FEAT(KM_XTS_EAES_256, "km-xts-eaes-256", KM, 60, "KM XTS-Encrypted-AES-256") + +/* Features exposed via the KIMD instruction. */ +DEF_FEAT(KIMD_SHA_1, "kimd-sha-1", KIMD, 1, "KIMD SHA-1") +DEF_FEAT(KIMD_SHA_256, "kimd-sha-256", KIMD, 2, "KIMD SHA-256") +DEF_FEAT(KIMD_SHA_512, "kimd-sha-512", KIMD, 3, "KIMD SHA-512") +DEF_FEAT(KIMD_SHA3_224, "kimd-sha3-224", KIMD, 32, "KIMD SHA3-224") +DEF_FEAT(KIMD_SHA3_256, "kimd-sha3-256", KIMD, 33, "KIMD SHA3-256") +DEF_FEAT(KIMD_SHA3_384, "kimd-sha3-384", KIMD, 34, "KIMD SHA3-384") +DEF_FEAT(KIMD_SHA3_512, "kimd-sha3-512", KIMD, 35, "KIMD SHA3-512") +DEF_FEAT(KIMD_SHAKE_128, "kimd-shake-128", KIMD, 36, "KIMD SHAKE-128") +DEF_FEAT(KIMD_SHAKE_256, "kimd-shake-256", KIMD, 37, "KIMD SHAKE-256") +DEF_FEAT(KIMD_GHASH, "kimd-ghash", KIMD, 65, "KIMD GHASH") + +/* Features exposed via the KLMD instruction. */ +DEF_FEAT(KLMD_SHA_1, "klmd-sha-1", KLMD, 1, "KLMD SHA-1") +DEF_FEAT(KLMD_SHA_256, "klmd-sha-256", KLMD, 2, "KLMD SHA-256") +DEF_FEAT(KLMD_SHA_512, "klmd-sha-512", KLMD, 3, "KLMD SHA-512") +DEF_FEAT(KLMD_SHA3_224, "klmd-sha3-224", KLMD, 32, "KLMD SHA3-224") +DEF_FEAT(KLMD_SHA3_256, "klmd-sha3-256", KLMD, 33, "KLMD SHA3-256") +DEF_FEAT(KLMD_SHA3_384, "klmd-sha3-384", KLMD, 34, "KLMD SHA3-384") +DEF_FEAT(KLMD_SHA3_512, "klmd-sha3-512", KLMD, 35, "KLMD SHA3-512") +DEF_FEAT(KLMD_SHAKE_128, "klmd-shake-128", KLMD, 36, "KLMD SHAKE-128") +DEF_FEAT(KLMD_SHAKE_256, "klmd-shake-256", KLMD, 37, "KLMD SHAKE-256") + +/* Features exposed via the PCKMO instruction. */ +DEF_FEAT(PCKMO_EDEA, "pckmo-edea", PCKMO, 1, "PCKMO Encrypted-DEA-Key") +DEF_FEAT(PCKMO_ETDEA_128, "pckmo-etdea-128", PCKMO, 2, "PCKMO Encrypted-TDEA-128-Key") +DEF_FEAT(PCKMO_ETDEA_256, "pckmo-etdea-192", PCKMO, 3, "PCKMO Encrypted-TDEA-192-Key") +DEF_FEAT(PCKMO_AES_128, "pckmo-aes-128", PCKMO, 18, "PCKMO Encrypted-AES-128-Key") +DEF_FEAT(PCKMO_AES_192, "pckmo-aes-192", PCKMO, 19, "PCKMO Encrypted-AES-192-Key") +DEF_FEAT(PCKMO_AES_256, "pckmo-aes-256", PCKMO, 20, "PCKMO Encrypted-AES-256-Key") +DEF_FEAT(PCKMO_ECC_P256, "pckmo-ecc-p256", PCKMO, 32, "PCKMO Encrypt-ECC-P256-Key") +DEF_FEAT(PCKMO_ECC_P384, "pckmo-ecc-p384", PCKMO, 33, "PCKMO Encrypt-ECC-P384-Key") +DEF_FEAT(PCKMO_ECC_P521, "pckmo-ecc-p521", PCKMO, 34, "PCKMO Encrypt-ECC-P521-Key") +DEF_FEAT(PCKMO_ECC_ED25519, "pckmo-ecc-ed25519", PCKMO, 40 , "PCKMO Encrypt-ECC-Ed25519-Key") +DEF_FEAT(PCKMO_ECC_ED448, "pckmo-ecc-ed448", PCKMO, 41 , "PCKMO Encrypt-ECC-Ed448-Key") + +/* Features exposed via the KMCTR instruction. */ +DEF_FEAT(KMCTR_DEA, "kmctr-dea", KMCTR, 1, "KMCTR DEA") +DEF_FEAT(KMCTR_TDEA_128, "kmctr-tdea-128", KMCTR, 2, "KMCTR TDEA-128") +DEF_FEAT(KMCTR_TDEA_192, "kmctr-tdea-192", KMCTR, 3, "KMCTR TDEA-192") +DEF_FEAT(KMCTR_EDEA, "kmctr-edea", KMCTR, 9, "KMCTR Encrypted-DEA") +DEF_FEAT(KMCTR_ETDEA_128, "kmctr-etdea-128", KMCTR, 10, "KMCTR Encrypted-TDEA-128") +DEF_FEAT(KMCTR_ETDEA_192, "kmctr-etdea-192", KMCTR, 11, "KMCTR Encrypted-TDEA-192") +DEF_FEAT(KMCTR_AES_128, "kmctr-aes-128", KMCTR, 18, "KMCTR AES-128") +DEF_FEAT(KMCTR_AES_192, "kmctr-aes-192", KMCTR, 19, "KMCTR AES-192") +DEF_FEAT(KMCTR_AES_256, "kmctr-aes-256", KMCTR, 20, "KMCTR AES-256") +DEF_FEAT(KMCTR_EAES_128, "kmctr-eaes-128", KMCTR, 26, "KMCTR Encrypted-AES-128") +DEF_FEAT(KMCTR_EAES_192, "kmctr-eaes-192", KMCTR, 27, "KMCTR Encrypted-AES-192") +DEF_FEAT(KMCTR_EAES_256, "kmctr-eaes-256", KMCTR, 28, "KMCTR Encrypted-AES-256") + +/* Features exposed via the KMF instruction. */ +DEF_FEAT(KMF_DEA, "kmf-dea", KMF, 1, "KMF DEA") +DEF_FEAT(KMF_TDEA_128, "kmf-tdea-128", KMF, 2, "KMF TDEA-128") +DEF_FEAT(KMF_TDEA_192, "kmf-tdea-192", KMF, 3, "KMF TDEA-192") +DEF_FEAT(KMF_EDEA, "kmf-edea", KMF, 9, "KMF Encrypted-DEA") +DEF_FEAT(KMF_ETDEA_128, "kmf-etdea-128", KMF, 10, "KMF Encrypted-TDEA-128") +DEF_FEAT(KMF_ETDEA_192, "kmf-etdea-192", KMF, 11, "KMF Encrypted-TDEA-192") +DEF_FEAT(KMF_AES_128, "kmf-aes-128", KMF, 18, "KMF AES-128") +DEF_FEAT(KMF_AES_192, "kmf-aes-192", KMF, 19, "KMF AES-192") +DEF_FEAT(KMF_AES_256, "kmf-aes-256", KMF, 20, "KMF AES-256") +DEF_FEAT(KMF_EAES_128, "kmf-eaes-128", KMF, 26, "KMF Encrypted-AES-128") +DEF_FEAT(KMF_EAES_192, "kmf-eaes-192", KMF, 27, "KMF Encrypted-AES-192") +DEF_FEAT(KMF_EAES_256, "kmf-eaes-256", KMF, 28, "KMF Encrypted-AES-256") + +/* Features exposed via the KMO instruction. */ +DEF_FEAT(KMO_DEA, "kmo-dea", KMO, 1, "KMO DEA") +DEF_FEAT(KMO_TDEA_128, "kmo-tdea-128", KMO, 2, "KMO TDEA-128") +DEF_FEAT(KMO_TDEA_192, "kmo-tdea-192", KMO, 3, "KMO TDEA-192") +DEF_FEAT(KMO_EDEA, "kmo-edea", KMO, 9, "KMO Encrypted-DEA") +DEF_FEAT(KMO_ETDEA_128, "kmo-etdea-128", KMO, 10, "KMO Encrypted-TDEA-128") +DEF_FEAT(KMO_ETDEA_192, "kmo-etdea-192", KMO, 11, "KMO Encrypted-TDEA-192") +DEF_FEAT(KMO_AES_128, "kmo-aes-128", KMO, 18, "KMO AES-128") +DEF_FEAT(KMO_AES_192, "kmo-aes-192", KMO, 19, "KMO AES-192") +DEF_FEAT(KMO_AES_256, "kmo-aes-256", KMO, 20, "KMO AES-256") +DEF_FEAT(KMO_EAES_128, "kmo-eaes-128", KMO, 26, "KMO Encrypted-AES-128") +DEF_FEAT(KMO_EAES_192, "kmo-eaes-192", KMO, 27, "KMO Encrypted-AES-192") +DEF_FEAT(KMO_EAES_256, "kmo-eaes-256", KMO, 28, "KMO Encrypted-AES-256") + +/* Features exposed via the PCC instruction. */ +DEF_FEAT(PCC_CMAC_DEA, "pcc-cmac-dea", PCC, 1, "PCC Compute-Last-Block-CMAC-Using-DEA") +DEF_FEAT(PCC_CMAC_TDEA_128, "pcc-cmac-tdea-128", PCC, 2, "PCC Compute-Last-Block-CMAC-Using-TDEA-128") +DEF_FEAT(PCC_CMAC_TDEA_192, "pcc-cmac-tdea-192", PCC, 3, "PCC Compute-Last-Block-CMAC-Using-TDEA-192") +DEF_FEAT(PCC_CMAC_ETDEA_128, "pcc-cmac-edea", PCC, 9, "PCC Compute-Last-Block-CMAC-Using-Encrypted-DEA") +DEF_FEAT(PCC_CMAC_ETDEA_192, "pcc-cmac-etdea-128", PCC, 10, "PCC Compute-Last-Block-CMAC-Using-Encrypted-TDEA-128") +DEF_FEAT(PCC_CMAC_TDEA, "pcc-cmac-etdea-192", PCC, 11, "PCC Compute-Last-Block-CMAC-Using-EncryptedTDEA-192") +DEF_FEAT(PCC_CMAC_AES_128, "pcc-cmac-aes-128", PCC, 18, "PCC Compute-Last-Block-CMAC-Using-AES-128") +DEF_FEAT(PCC_CMAC_AES_192, "pcc-cmac-aes-192", PCC, 19, "PCC Compute-Last-Block-CMAC-Using-AES-192") +DEF_FEAT(PCC_CMAC_AES_256, "pcc-cmac-eaes-256", PCC, 20, "PCC Compute-Last-Block-CMAC-Using-AES-256") +DEF_FEAT(PCC_CMAC_EAES_128, "pcc-cmac-eaes-128", PCC, 26, "PCC Compute-Last-Block-CMAC-Using-Encrypted-AES-128") +DEF_FEAT(PCC_CMAC_EAES_192, "pcc-cmac-eaes-192", PCC, 27, "PCC Compute-Last-Block-CMAC-Using-Encrypted-AES-192") +DEF_FEAT(PCC_CMAC_EAES_256, "pcc-cmac-eaes-256", PCC, 28, "PCC Compute-Last-Block-CMAC-Using-Encrypted-AES-256") +DEF_FEAT(PCC_XTS_AES_128, "pcc-xts-aes-128", PCC, 50, "PCC Compute-XTS-Parameter-Using-AES-128") +DEF_FEAT(PCC_XTS_AES_256, "pcc-xts-aes-256", PCC, 52, "PCC Compute-XTS-Parameter-Using-AES-256") +DEF_FEAT(PCC_XTS_EAES_128, "pcc-xts-eaes-128", PCC, 58, "PCC Compute-XTS-Parameter-Using-Encrypted-AES-128") +DEF_FEAT(PCC_XTS_EAES_256, "pcc-xts-eaes-256", PCC, 60, "PCC Compute-XTS-Parameter-Using-Encrypted-AES-256") +DEF_FEAT(PCC_SCALAR_MULT_P256, "pcc-scalar-mult-p256", PCC, 64, "PCC Scalar-Multiply-P256") +DEF_FEAT(PCC_SCALAR_MULT_P384, "pcc-scalar-mult-p384", PCC, 65, "PCC Scalar-Multiply-P384") +DEF_FEAT(PCC_SCALAR_MULT_P512, "pcc-scalar-mult-p521", PCC, 66, "PCC Scalar-Multiply-P521") +DEF_FEAT(PCC_SCALAR_MULT_ED25519, "pcc-scalar-mult-ed25519", PCC, 72, "PCC Scalar-Multiply-Ed25519") +DEF_FEAT(PCC_SCALAR_MULT_ED448, "pcc-scalar-mult-ed448", PCC, 73, "PCC Scalar-Multiply-Ed448") +DEF_FEAT(PCC_SCALAR_MULT_X25519, "pcc-scalar-mult-x25519", PCC, 80, "PCC Scalar-Multiply-X25519") +DEF_FEAT(PCC_SCALAR_MULT_X448, "pcc-scalar-mult-x448", PCC, 81, "PCC Scalar-Multiply-X448") + +/* Features exposed via the PPNO/PRNO instruction. */ +DEF_FEAT(PPNO_SHA_512_DRNG, "ppno-sha-512-drng", PPNO, 3, "PPNO SHA-512-DRNG") +DEF_FEAT(PRNO_TRNG_QRTCR, "prno-trng-qrtcr", PPNO, 112, "PRNO TRNG-Query-Raw-to-Conditioned-Ratio") +DEF_FEAT(PRNO_TRNG, "prno-trng", PPNO, 114, "PRNO TRNG") + +/* Features exposed via the KMA instruction. */ +DEF_FEAT(KMA_GCM_AES_128, "kma-gcm-aes-128", KMA, 18, "KMA GCM-AES-128") +DEF_FEAT(KMA_GCM_AES_192, "kma-gcm-aes-192", KMA, 19, "KMA GCM-AES-192") +DEF_FEAT(KMA_GCM_AES_256, "kma-gcm-aes-256", KMA, 20, "KMA GCM-AES-256") +DEF_FEAT(KMA_GCM_EAES_128, "kma-gcm-eaes-128", KMA, 26, "KMA GCM-Encrypted-AES-128") +DEF_FEAT(KMA_GCM_EAES_192, "kma-gcm-eaes-192", KMA, 27, "KMA GCM-Encrypted-AES-192") +DEF_FEAT(KMA_GCM_EAES_256, "kma-gcm-eaes-256", KMA, 28, "KMA GCM-Encrypted-AES-256") + +/* Features exposed via the KDSA instruction. */ +DEF_FEAT(KDSA_ECDSA_VERIFY_P256, "kdsa-ecdsa-verify-p256", KDSA, 1, "KDSA ECDSA-Verify-P256") +DEF_FEAT(KDSA_ECDSA_VERIFY_P384, "kdsa-ecdsa-verify-p384", KDSA, 2, "KDSA ECDSA-Verify-P384") +DEF_FEAT(KDSA_ECDSA_VERIFY_P512, "kdsa-ecdsa-verify-p521", KDSA, 3, "KDSA ECDSA-Verify-P521") +DEF_FEAT(KDSA_ECDSA_SIGN_P256, "kdsa-ecdsa-sign-p256", KDSA, 9, "KDSA ECDSA-Sign-P256") +DEF_FEAT(KDSA_ECDSA_SIGN_P384, "kdsa-ecdsa-sign-p384", KDSA, 10, "KDSA ECDSA-Sign-P384") +DEF_FEAT(KDSA_ECDSA_SIGN_P512, "kdsa-ecdsa-sign-p521", KDSA, 11, "KDSA ECDSA-Sign-P521") +DEF_FEAT(KDSA_EECDSA_SIGN_P256, "kdsa-eecdsa-sign-p256", KDSA, 17, "KDSA Encrypted-ECDSA-Sign-P256") +DEF_FEAT(KDSA_EECDSA_SIGN_P384, "kdsa-eecdsa-sign-p384", KDSA, 18, "KDSA Encrypted-ECDSA-Sign-P384") +DEF_FEAT(KDSA_EECDSA_SIGN_P512, "kdsa-eecdsa-sign-p521", KDSA, 19, "KDSA Encrypted-ECDSA-Sign-P521") +DEF_FEAT(KDSA_EDDSA_VERIFY_ED25519, "kdsa-eddsa-verify-ed25519", KDSA, 32, "KDSA EdDSA-Verify-Ed25519") +DEF_FEAT(KDSA_EDDSA_VERIFY_ED448, "kdsa-eddsa-verify-ed448", KDSA, 36, "KDSA EdDSA-Verify-Ed448") +DEF_FEAT(KDSA_EDDSA_SIGN_ED25519, "kdsa-eddsa-sign-ed25519", KDSA, 40, "KDSA EdDSA-Sign-Ed25519") +DEF_FEAT(KDSA_EDDSA_SIGN_ED448, "kdsa-eddsa-sign-ed448", KDSA, 44, "KDSA EdDSA-Sign-Ed448") +DEF_FEAT(KDSA_EEDDSA_SIGN_ED25519, "kdsa-eeddsa-sign-ed25519", KDSA, 48, "KDSA Encrypted-EdDSA-Sign-Ed25519") +DEF_FEAT(KDSA_EEDDSA_SIGN_ED448, "kdsa-eeddsa-sign-ed448", KDSA, 52, "KDSA Encrypted-EdDSA-Sign-Ed448") + +/* Features exposed via the SORTL instruction. */ +DEF_FEAT(SORTL_SFLR, "sortl-sflr", SORTL, 1, "SORTL SFLR") +DEF_FEAT(SORTL_SVLR, "sortl-svlr", SORTL, 2, "SORTL SVLR") +DEF_FEAT(SORTL_32, "sortl-32", SORTL, 130, "SORTL 32 input lists") +DEF_FEAT(SORTL_128, "sortl-128", SORTL, 132, "SORTL 128 input lists") +DEF_FEAT(SORTL_F0, "sortl-f0", SORTL, 192, "SORTL format 0 parameter-block") + +/* Features exposed via the DEFLATE instruction. */ +DEF_FEAT(DEFLATE_GHDT, "dfltcc-gdht", DFLTCC, 1, "DFLTCC GDHT") +DEF_FEAT(DEFLATE_CMPR, "dfltcc-cmpr", DFLTCC, 2, "DFLTCC CMPR") +DEF_FEAT(DEFLATE_XPND, "dfltcc-xpnd", DFLTCC, 4, "DFLTCC XPND") +DEF_FEAT(DEFLATE_F0, "dfltcc-f0", DFLTCC, 192, "DFLTCC format 0 parameter-block") diff --git a/target/s390x/gen-features.c b/target/s390x/gen-features.c index dc320a06c2..af06be3e3b 100644 --- a/target/s390x/gen-features.c +++ b/target/s390x/gen-features.c @@ -216,21 +216,21 @@ #define S390_FEAT_GROUP_MSA_EXT_9 \ S390_FEAT_MSA_EXT_9, \ - S390_FEAT_ECDSA_VERIFY_P256, \ - S390_FEAT_ECDSA_VERIFY_P384, \ - S390_FEAT_ECDSA_VERIFY_P512, \ - S390_FEAT_ECDSA_SIGN_P256, \ - S390_FEAT_ECDSA_SIGN_P384, \ - S390_FEAT_ECDSA_SIGN_P512, \ - S390_FEAT_EECDSA_SIGN_P256, \ - S390_FEAT_EECDSA_SIGN_P384, \ - S390_FEAT_EECDSA_SIGN_P512, \ - S390_FEAT_EDDSA_VERIFY_ED25519, \ - S390_FEAT_EDDSA_VERIFY_ED448, \ - S390_FEAT_EDDSA_SIGN_ED25519, \ - S390_FEAT_EDDSA_SIGN_ED448, \ - S390_FEAT_EEDDSA_SIGN_ED25519, \ - S390_FEAT_EEDDSA_SIGN_ED448, \ + S390_FEAT_KDSA_ECDSA_VERIFY_P256, \ + S390_FEAT_KDSA_ECDSA_VERIFY_P384, \ + S390_FEAT_KDSA_ECDSA_VERIFY_P512, \ + S390_FEAT_KDSA_ECDSA_SIGN_P256, \ + S390_FEAT_KDSA_ECDSA_SIGN_P384, \ + S390_FEAT_KDSA_ECDSA_SIGN_P512, \ + S390_FEAT_KDSA_EECDSA_SIGN_P256, \ + S390_FEAT_KDSA_EECDSA_SIGN_P384, \ + S390_FEAT_KDSA_EECDSA_SIGN_P512, \ + S390_FEAT_KDSA_EDDSA_VERIFY_ED25519, \ + S390_FEAT_KDSA_EDDSA_VERIFY_ED448, \ + S390_FEAT_KDSA_EDDSA_SIGN_ED25519, \ + S390_FEAT_KDSA_EDDSA_SIGN_ED448, \ + S390_FEAT_KDSA_EEDDSA_SIGN_ED25519, \ + S390_FEAT_KDSA_EEDDSA_SIGN_ED448, \ S390_FEAT_PCC_SCALAR_MULT_P256, \ S390_FEAT_PCC_SCALAR_MULT_P384, \ S390_FEAT_PCC_SCALAR_MULT_P512, \ |