aboutsummaryrefslogtreecommitdiff
path: root/target/i386/whpx/whpx-all.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/i386/whpx/whpx-all.c')
-rw-r--r--target/i386/whpx/whpx-all.c779
1 files changed, 760 insertions, 19 deletions
diff --git a/target/i386/whpx/whpx-all.c b/target/i386/whpx/whpx-all.c
index 03ba52da89..b625ad5bbb 100644
--- a/target/i386/whpx/whpx-all.c
+++ b/target/i386/whpx/whpx-all.c
@@ -12,7 +12,7 @@
#include "cpu.h"
#include "exec/address-spaces.h"
#include "exec/ioport.h"
-#include "qemu-common.h"
+#include "exec/gdbstub.h"
#include "qemu/accel.h"
#include "sysemu/whpx.h"
#include "sysemu/cpus.h"
@@ -148,6 +148,87 @@ struct whpx_register_set {
WHV_REGISTER_VALUE values[RTL_NUMBER_OF(whpx_register_names)];
};
+/*
+ * The current implementation of instruction stepping sets the TF flag
+ * in RFLAGS, causing the CPU to raise an INT1 after each instruction.
+ * This corresponds to the WHvX64ExceptionTypeDebugTrapOrFault exception.
+ *
+ * This approach has a few limitations:
+ * 1. Stepping over a PUSHF/SAHF instruction will save the TF flag
+ * along with the other flags, possibly restoring it later. It would
+ * result in another INT1 when the flags are restored, triggering
+ * a stop in gdb that could be cleared by doing another step.
+ *
+ * Stepping over a POPF/LAHF instruction will let it overwrite the
+ * TF flags, ending the stepping mode.
+ *
+ * 2. Stepping over an instruction raising an exception (e.g. INT, DIV,
+ * or anything that could result in a page fault) will save the flags
+ * to the stack, clear the TF flag, and let the guest execute the
+ * handler. Normally, the guest will restore the original flags,
+ * that will continue single-stepping.
+ *
+ * 3. Debuggers running on the guest may wish to set TF to do instruction
+ * stepping. INT1 events generated by it would be intercepted by us,
+ * as long as the gdb is connected to QEMU.
+ *
+ * In practice this means that:
+ * 1. Stepping through flags-modifying instructions may cause gdb to
+ * continue or stop in unexpected places. This will be fully recoverable
+ * and will not crash the target.
+ *
+ * 2. Stepping over an instruction that triggers an exception will step
+ * over the exception handler, not into it.
+ *
+ * 3. Debugging the guest via gdb, while running debugger on the guest
+ * at the same time may lead to unexpected effects. Removing all
+ * breakpoints set via QEMU will prevent any further interference
+ * with the guest-level debuggers.
+ *
+ * The limitations can be addressed as shown below:
+ * 1. PUSHF/SAHF/POPF/LAHF/IRET instructions can be emulated instead of
+ * stepping through them. The exact semantics of the instructions is
+ * defined in the "Combined Volume Set of Intel 64 and IA-32
+ * Architectures Software Developer's Manuals", however it involves a
+ * fair amount of corner cases due to compatibility with real mode,
+ * virtual 8086 mode, and differences between 64-bit and 32-bit modes.
+ *
+ * 2. We could step into the guest's exception handlers using the following
+ * sequence:
+ * a. Temporarily enable catching of all exception types via
+ * whpx_set_exception_exit_bitmap().
+ * b. Once an exception is intercepted, read the IDT/GDT and locate
+ * the original handler.
+ * c. Patch the original handler, injecting an INT3 at the beginning.
+ * d. Update the exception exit bitmap to only catch the
+ * WHvX64ExceptionTypeBreakpointTrap exception.
+ * e. Let the affected CPU run in the exclusive mode.
+ * f. Restore the original handler and the exception exit bitmap.
+ * Note that handling all corner cases related to IDT/GDT is harder
+ * than it may seem. See x86_cpu_get_phys_page_attrs_debug() for a
+ * rough idea.
+ *
+ * 3. In order to properly support guest-level debugging in parallel with
+ * the QEMU-level debugging, we would need to be able to pass some INT1
+ * events to the guest. This could be done via the following methods:
+ * a. Using the WHvRegisterPendingEvent register. As of Windows 21H1,
+ * it seems to only work for interrupts and not software
+ * exceptions.
+ * b. Locating and patching the original handler by parsing IDT/GDT.
+ * This involves relatively complex logic outlined in the previous
+ * paragraph.
+ * c. Emulating the exception invocation (i.e. manually updating RIP,
+ * RFLAGS, and pushing the old values to stack). This is even more
+ * complicated than the previous option, since it involves checking
+ * CPL, gate attributes, and doing various adjustments depending
+ * on the current CPU mode, whether the CPL is changing, etc.
+ */
+typedef enum WhpxStepMode {
+ WHPX_STEP_NONE = 0,
+ /* Halt other VCPUs */
+ WHPX_STEP_EXCLUSIVE,
+} WhpxStepMode;
+
struct whpx_vcpu {
WHV_EMULATOR_HANDLE emulator;
bool window_registered;
@@ -786,6 +867,517 @@ static int whpx_handle_portio(CPUState *cpu,
return 0;
}
+/*
+ * Controls whether we should intercept various exceptions on the guest,
+ * namely breakpoint/single-step events.
+ *
+ * The 'exceptions' argument accepts a bitmask, e.g:
+ * (1 << WHvX64ExceptionTypeDebugTrapOrFault) | (...)
+ */
+static HRESULT whpx_set_exception_exit_bitmap(UINT64 exceptions)
+{
+ struct whpx_state *whpx = &whpx_global;
+ WHV_PARTITION_PROPERTY prop = { 0, };
+ HRESULT hr;
+
+ if (exceptions == whpx->exception_exit_bitmap) {
+ return S_OK;
+ }
+
+ prop.ExceptionExitBitmap = exceptions;
+
+ hr = whp_dispatch.WHvSetPartitionProperty(
+ whpx->partition,
+ WHvPartitionPropertyCodeExceptionExitBitmap,
+ &prop,
+ sizeof(WHV_PARTITION_PROPERTY));
+
+ if (SUCCEEDED(hr)) {
+ whpx->exception_exit_bitmap = exceptions;
+ }
+
+ return hr;
+}
+
+
+/*
+ * This function is called before/after stepping over a single instruction.
+ * It will update the CPU registers to arm/disarm the instruction stepping
+ * accordingly.
+ */
+static HRESULT whpx_vcpu_configure_single_stepping(CPUState *cpu,
+ bool set,
+ uint64_t *exit_context_rflags)
+{
+ WHV_REGISTER_NAME reg_name;
+ WHV_REGISTER_VALUE reg_value;
+ HRESULT hr;
+ struct whpx_state *whpx = &whpx_global;
+
+ /*
+ * If we are trying to step over a single instruction, we need to set the
+ * TF bit in rflags. Otherwise, clear it.
+ */
+ reg_name = WHvX64RegisterRflags;
+ hr = whp_dispatch.WHvGetVirtualProcessorRegisters(
+ whpx->partition,
+ cpu->cpu_index,
+ &reg_name,
+ 1,
+ &reg_value);
+
+ if (FAILED(hr)) {
+ error_report("WHPX: Failed to get rflags, hr=%08lx", hr);
+ return hr;
+ }
+
+ if (exit_context_rflags) {
+ assert(*exit_context_rflags == reg_value.Reg64);
+ }
+
+ if (set) {
+ /* Raise WHvX64ExceptionTypeDebugTrapOrFault after each instruction */
+ reg_value.Reg64 |= TF_MASK;
+ } else {
+ reg_value.Reg64 &= ~TF_MASK;
+ }
+
+ if (exit_context_rflags) {
+ *exit_context_rflags = reg_value.Reg64;
+ }
+
+ hr = whp_dispatch.WHvSetVirtualProcessorRegisters(
+ whpx->partition,
+ cpu->cpu_index,
+ &reg_name,
+ 1,
+ &reg_value);
+
+ if (FAILED(hr)) {
+ error_report("WHPX: Failed to set rflags,"
+ " hr=%08lx",
+ hr);
+ return hr;
+ }
+
+ reg_name = WHvRegisterInterruptState;
+ reg_value.Reg64 = 0;
+
+ /* Suspend delivery of hardware interrupts during single-stepping. */
+ reg_value.InterruptState.InterruptShadow = set != 0;
+
+ hr = whp_dispatch.WHvSetVirtualProcessorRegisters(
+ whpx->partition,
+ cpu->cpu_index,
+ &reg_name,
+ 1,
+ &reg_value);
+
+ if (FAILED(hr)) {
+ error_report("WHPX: Failed to set InterruptState,"
+ " hr=%08lx",
+ hr);
+ return hr;
+ }
+
+ if (!set) {
+ /*
+ * We have just finished stepping over a single instruction,
+ * and intercepted the INT1 generated by it.
+ * We need to now hide the INT1 from the guest,
+ * as it would not be expecting it.
+ */
+
+ reg_name = WHvX64RegisterPendingDebugException;
+ hr = whp_dispatch.WHvGetVirtualProcessorRegisters(
+ whpx->partition,
+ cpu->cpu_index,
+ &reg_name,
+ 1,
+ &reg_value);
+
+ if (FAILED(hr)) {
+ error_report("WHPX: Failed to get pending debug exceptions,"
+ "hr=%08lx", hr);
+ return hr;
+ }
+
+ if (reg_value.PendingDebugException.SingleStep) {
+ reg_value.PendingDebugException.SingleStep = 0;
+
+ hr = whp_dispatch.WHvSetVirtualProcessorRegisters(
+ whpx->partition,
+ cpu->cpu_index,
+ &reg_name,
+ 1,
+ &reg_value);
+
+ if (FAILED(hr)) {
+ error_report("WHPX: Failed to clear pending debug exceptions,"
+ "hr=%08lx", hr);
+ return hr;
+ }
+ }
+
+ }
+
+ return S_OK;
+}
+
+/* Tries to find a breakpoint at the specified address. */
+static struct whpx_breakpoint *whpx_lookup_breakpoint_by_addr(uint64_t address)
+{
+ struct whpx_state *whpx = &whpx_global;
+ int i;
+
+ if (whpx->breakpoints.breakpoints) {
+ for (i = 0; i < whpx->breakpoints.breakpoints->used; i++) {
+ if (address == whpx->breakpoints.breakpoints->data[i].address) {
+ return &whpx->breakpoints.breakpoints->data[i];
+ }
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Linux uses int3 (0xCC) during startup (see int3_selftest()) and for
+ * debugging user-mode applications. Since the WHPX API does not offer
+ * an easy way to pass the intercepted exception back to the guest, we
+ * resort to using INT1 instead, and let the guest always handle INT3.
+ */
+static const uint8_t whpx_breakpoint_instruction = 0xF1;
+
+/*
+ * The WHPX QEMU backend implements breakpoints by writing the INT1
+ * instruction into memory (ignoring the DRx registers). This raises a few
+ * issues that need to be carefully handled:
+ *
+ * 1. Although unlikely, other parts of QEMU may set multiple breakpoints
+ * at the same location, and later remove them in arbitrary order.
+ * This should not cause memory corruption, and should only remove the
+ * physical breakpoint instruction when the last QEMU breakpoint is gone.
+ *
+ * 2. Writing arbitrary virtual memory may fail if it's not mapped to a valid
+ * physical location. Hence, physically adding/removing a breakpoint can
+ * theoretically fail at any time. We need to keep track of it.
+ *
+ * The function below rebuilds a list of low-level breakpoints (one per
+ * address, tracking the original instruction and any errors) from the list of
+ * high-level breakpoints (set via cpu_breakpoint_insert()).
+ *
+ * In order to optimize performance, this function stores the list of
+ * high-level breakpoints (a.k.a. CPU breakpoints) used to compute the
+ * low-level ones, so that it won't be re-invoked until these breakpoints
+ * change.
+ *
+ * Note that this function decides which breakpoints should be inserted into,
+ * memory, but doesn't actually do it. The memory accessing is done in
+ * whpx_apply_breakpoints().
+ */
+static void whpx_translate_cpu_breakpoints(
+ struct whpx_breakpoints *breakpoints,
+ CPUState *cpu,
+ int cpu_breakpoint_count)
+{
+ CPUBreakpoint *bp;
+ int cpu_bp_index = 0;
+
+ breakpoints->original_addresses =
+ g_renew(vaddr, breakpoints->original_addresses, cpu_breakpoint_count);
+
+ breakpoints->original_address_count = cpu_breakpoint_count;
+
+ int max_breakpoints = cpu_breakpoint_count +
+ (breakpoints->breakpoints ? breakpoints->breakpoints->used : 0);
+
+ struct whpx_breakpoint_collection *new_breakpoints =
+ (struct whpx_breakpoint_collection *)g_malloc0(
+ sizeof(struct whpx_breakpoint_collection) +
+ max_breakpoints * sizeof(struct whpx_breakpoint));
+
+ new_breakpoints->allocated = max_breakpoints;
+ new_breakpoints->used = 0;
+
+ /*
+ * 1. Preserve all old breakpoints that could not be automatically
+ * cleared when the CPU got stopped.
+ */
+ if (breakpoints->breakpoints) {
+ int i;
+ for (i = 0; i < breakpoints->breakpoints->used; i++) {
+ if (breakpoints->breakpoints->data[i].state != WHPX_BP_CLEARED) {
+ new_breakpoints->data[new_breakpoints->used++] =
+ breakpoints->breakpoints->data[i];
+ }
+ }
+ }
+
+ /* 2. Map all CPU breakpoints to WHPX breakpoints */
+ QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
+ int i;
+ bool found = false;
+
+ /* This will be used to detect changed CPU breakpoints later. */
+ breakpoints->original_addresses[cpu_bp_index++] = bp->pc;
+
+ for (i = 0; i < new_breakpoints->used; i++) {
+ /*
+ * WARNING: This loop has O(N^2) complexity, where N is the
+ * number of breakpoints. It should not be a bottleneck in
+ * real-world scenarios, since it only needs to run once after
+ * the breakpoints have been modified.
+ * If this ever becomes a concern, it can be optimized by storing
+ * high-level breakpoint objects in a tree or hash map.
+ */
+
+ if (new_breakpoints->data[i].address == bp->pc) {
+ /* There was already a breakpoint at this address. */
+ if (new_breakpoints->data[i].state == WHPX_BP_CLEAR_PENDING) {
+ new_breakpoints->data[i].state = WHPX_BP_SET;
+ } else if (new_breakpoints->data[i].state == WHPX_BP_SET) {
+ new_breakpoints->data[i].state = WHPX_BP_SET_PENDING;
+ }
+
+ found = true;
+ break;
+ }
+ }
+
+ if (!found && new_breakpoints->used < new_breakpoints->allocated) {
+ /* No WHPX breakpoint at this address. Create one. */
+ new_breakpoints->data[new_breakpoints->used].address = bp->pc;
+ new_breakpoints->data[new_breakpoints->used].state =
+ WHPX_BP_SET_PENDING;
+ new_breakpoints->used++;
+ }
+ }
+
+ if (breakpoints->breakpoints) {
+ /*
+ * Free the previous breakpoint list. This can be optimized by keeping
+ * it as shadow buffer for the next computation instead of freeing
+ * it immediately.
+ */
+ g_free(breakpoints->breakpoints);
+ }
+
+ breakpoints->breakpoints = new_breakpoints;
+}
+
+/*
+ * Physically inserts/removes the breakpoints by reading and writing the
+ * physical memory, keeping a track of the failed attempts.
+ *
+ * Passing resuming=true will try to set all previously unset breakpoints.
+ * Passing resuming=false will remove all inserted ones.
+ */
+static void whpx_apply_breakpoints(
+ struct whpx_breakpoint_collection *breakpoints,
+ CPUState *cpu,
+ bool resuming)
+{
+ int i, rc;
+ if (!breakpoints) {
+ return;
+ }
+
+ for (i = 0; i < breakpoints->used; i++) {
+ /* Decide what to do right now based on the last known state. */
+ WhpxBreakpointState state = breakpoints->data[i].state;
+ switch (state) {
+ case WHPX_BP_CLEARED:
+ if (resuming) {
+ state = WHPX_BP_SET_PENDING;
+ }
+ break;
+ case WHPX_BP_SET_PENDING:
+ if (!resuming) {
+ state = WHPX_BP_CLEARED;
+ }
+ break;
+ case WHPX_BP_SET:
+ if (!resuming) {
+ state = WHPX_BP_CLEAR_PENDING;
+ }
+ break;
+ case WHPX_BP_CLEAR_PENDING:
+ if (resuming) {
+ state = WHPX_BP_SET;
+ }
+ break;
+ }
+
+ if (state == WHPX_BP_SET_PENDING) {
+ /* Remember the original instruction. */
+ rc = cpu_memory_rw_debug(cpu,
+ breakpoints->data[i].address,
+ &breakpoints->data[i].original_instruction,
+ 1,
+ false);
+
+ if (!rc) {
+ /* Write the breakpoint instruction. */
+ rc = cpu_memory_rw_debug(cpu,
+ breakpoints->data[i].address,
+ (void *)&whpx_breakpoint_instruction,
+ 1,
+ true);
+ }
+
+ if (!rc) {
+ state = WHPX_BP_SET;
+ }
+
+ }
+
+ if (state == WHPX_BP_CLEAR_PENDING) {
+ /* Restore the original instruction. */
+ rc = cpu_memory_rw_debug(cpu,
+ breakpoints->data[i].address,
+ &breakpoints->data[i].original_instruction,
+ 1,
+ true);
+
+ if (!rc) {
+ state = WHPX_BP_CLEARED;
+ }
+ }
+
+ breakpoints->data[i].state = state;
+ }
+}
+
+/*
+ * This function is called when the a VCPU is about to start and no other
+ * VCPUs have been started so far. Since the VCPU start order could be
+ * arbitrary, it doesn't have to be VCPU#0.
+ *
+ * It is used to commit the breakpoints into memory, and configure WHPX
+ * to intercept debug exceptions.
+ *
+ * Note that whpx_set_exception_exit_bitmap() cannot be called if one or
+ * more VCPUs are already running, so this is the best place to do it.
+ */
+static int whpx_first_vcpu_starting(CPUState *cpu)
+{
+ struct whpx_state *whpx = &whpx_global;
+ HRESULT hr;
+
+ g_assert(qemu_mutex_iothread_locked());
+
+ if (!QTAILQ_EMPTY(&cpu->breakpoints) ||
+ (whpx->breakpoints.breakpoints &&
+ whpx->breakpoints.breakpoints->used)) {
+ CPUBreakpoint *bp;
+ int i = 0;
+ bool update_pending = false;
+
+ QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
+ if (i >= whpx->breakpoints.original_address_count ||
+ bp->pc != whpx->breakpoints.original_addresses[i]) {
+ update_pending = true;
+ }
+
+ i++;
+ }
+
+ if (i != whpx->breakpoints.original_address_count) {
+ update_pending = true;
+ }
+
+ if (update_pending) {
+ /*
+ * The CPU breakpoints have changed since the last call to
+ * whpx_translate_cpu_breakpoints(). WHPX breakpoints must
+ * now be recomputed.
+ */
+ whpx_translate_cpu_breakpoints(&whpx->breakpoints, cpu, i);
+ }
+
+ /* Actually insert the breakpoints into the memory. */
+ whpx_apply_breakpoints(whpx->breakpoints.breakpoints, cpu, true);
+ }
+
+ uint64_t exception_mask;
+ if (whpx->step_pending ||
+ (whpx->breakpoints.breakpoints &&
+ whpx->breakpoints.breakpoints->used)) {
+ /*
+ * We are either attempting to single-step one or more CPUs, or
+ * have one or more breakpoints enabled. Both require intercepting
+ * the WHvX64ExceptionTypeBreakpointTrap exception.
+ */
+
+ exception_mask = 1UL << WHvX64ExceptionTypeDebugTrapOrFault;
+ } else {
+ /* Let the guest handle all exceptions. */
+ exception_mask = 0;
+ }
+
+ hr = whpx_set_exception_exit_bitmap(exception_mask);
+ if (!SUCCEEDED(hr)) {
+ error_report("WHPX: Failed to update exception exit mask,"
+ "hr=%08lx.", hr);
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * This function is called when the last VCPU has finished running.
+ * It is used to remove any previously set breakpoints from memory.
+ */
+static int whpx_last_vcpu_stopping(CPUState *cpu)
+{
+ whpx_apply_breakpoints(whpx_global.breakpoints.breakpoints, cpu, false);
+ return 0;
+}
+
+/* Returns the address of the next instruction that is about to be executed. */
+static vaddr whpx_vcpu_get_pc(CPUState *cpu, bool exit_context_valid)
+{
+ if (cpu->vcpu_dirty) {
+ /* The CPU registers have been modified by other parts of QEMU. */
+ CPUArchState *env = (CPUArchState *)(cpu->env_ptr);
+ return env->eip;
+ } else if (exit_context_valid) {
+ /*
+ * The CPU registers have not been modified by neither other parts
+ * of QEMU, nor this port by calling WHvSetVirtualProcessorRegisters().
+ * This is the most common case.
+ */
+ struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu);
+ return vcpu->exit_ctx.VpContext.Rip;
+ } else {
+ /*
+ * The CPU registers have been modified by a call to
+ * WHvSetVirtualProcessorRegisters() and must be re-queried from
+ * the target.
+ */
+ WHV_REGISTER_VALUE reg_value;
+ WHV_REGISTER_NAME reg_name = WHvX64RegisterRip;
+ HRESULT hr;
+ struct whpx_state *whpx = &whpx_global;
+
+ hr = whp_dispatch.WHvGetVirtualProcessorRegisters(
+ whpx->partition,
+ cpu->cpu_index,
+ &reg_name,
+ 1,
+ &reg_value);
+
+ if (FAILED(hr)) {
+ error_report("WHPX: Failed to get PC, hr=%08lx", hr);
+ return 0;
+ }
+
+ return reg_value.Reg64;
+ }
+}
+
static int whpx_handle_halt(CPUState *cpu)
{
CPUX86State *env = cpu->env_ptr;
@@ -997,17 +1589,75 @@ static int whpx_vcpu_run(CPUState *cpu)
HRESULT hr;
struct whpx_state *whpx = &whpx_global;
struct whpx_vcpu *vcpu = get_whpx_vcpu(cpu);
+ struct whpx_breakpoint *stepped_over_bp = NULL;
+ WhpxStepMode exclusive_step_mode = WHPX_STEP_NONE;
int ret;
- whpx_vcpu_process_async_events(cpu);
- if (cpu->halted && !whpx_apic_in_platform()) {
- cpu->exception_index = EXCP_HLT;
- qatomic_set(&cpu->exit_request, false);
- return 0;
+ g_assert(qemu_mutex_iothread_locked());
+
+ if (whpx->running_cpus++ == 0) {
+ /* Insert breakpoints into memory, update exception exit bitmap. */
+ ret = whpx_first_vcpu_starting(cpu);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ if (whpx->breakpoints.breakpoints &&
+ whpx->breakpoints.breakpoints->used > 0)
+ {
+ uint64_t pc = whpx_vcpu_get_pc(cpu, true);
+ stepped_over_bp = whpx_lookup_breakpoint_by_addr(pc);
+ if (stepped_over_bp && stepped_over_bp->state != WHPX_BP_SET) {
+ stepped_over_bp = NULL;
+ }
+
+ if (stepped_over_bp) {
+ /*
+ * We are trying to run the instruction overwritten by an active
+ * breakpoint. We will temporarily disable the breakpoint, suspend
+ * other CPUs, and step over the instruction.
+ */
+ exclusive_step_mode = WHPX_STEP_EXCLUSIVE;
+ }
+ }
+
+ if (exclusive_step_mode == WHPX_STEP_NONE) {
+ whpx_vcpu_process_async_events(cpu);
+ if (cpu->halted && !whpx_apic_in_platform()) {
+ cpu->exception_index = EXCP_HLT;
+ qatomic_set(&cpu->exit_request, false);
+ return 0;
+ }
}
qemu_mutex_unlock_iothread();
- cpu_exec_start(cpu);
+
+ if (exclusive_step_mode != WHPX_STEP_NONE) {
+ start_exclusive();
+ g_assert(cpu == current_cpu);
+ g_assert(!cpu->running);
+ cpu->running = true;
+
+ hr = whpx_set_exception_exit_bitmap(
+ 1UL << WHvX64ExceptionTypeDebugTrapOrFault);
+ if (!SUCCEEDED(hr)) {
+ error_report("WHPX: Failed to update exception exit mask, "
+ "hr=%08lx.", hr);
+ return 1;
+ }
+
+ if (stepped_over_bp) {
+ /* Temporarily disable the triggered breakpoint. */
+ cpu_memory_rw_debug(cpu,
+ stepped_over_bp->address,
+ &stepped_over_bp->original_instruction,
+ 1,
+ true);
+ }
+ } else {
+ cpu_exec_start(cpu);
+ }
do {
if (cpu->vcpu_dirty) {
@@ -1015,10 +1665,16 @@ static int whpx_vcpu_run(CPUState *cpu)
cpu->vcpu_dirty = false;
}
- whpx_vcpu_pre_run(cpu);
+ if (exclusive_step_mode == WHPX_STEP_NONE) {
+ whpx_vcpu_pre_run(cpu);
+
+ if (qatomic_read(&cpu->exit_request)) {
+ whpx_vcpu_kick(cpu);
+ }
+ }
- if (qatomic_read(&cpu->exit_request)) {
- whpx_vcpu_kick(cpu);
+ if (exclusive_step_mode != WHPX_STEP_NONE || cpu->singlestep_enabled) {
+ whpx_vcpu_configure_single_stepping(cpu, true, NULL);
}
hr = whp_dispatch.WHvRunVirtualProcessor(
@@ -1032,6 +1688,12 @@ static int whpx_vcpu_run(CPUState *cpu)
break;
}
+ if (exclusive_step_mode != WHPX_STEP_NONE || cpu->singlestep_enabled) {
+ whpx_vcpu_configure_single_stepping(cpu,
+ false,
+ &vcpu->exit_ctx.VpContext.Rflags);
+ }
+
whpx_vcpu_post_run(cpu);
switch (vcpu->exit_ctx.ExitReason) {
@@ -1055,6 +1717,10 @@ static int whpx_vcpu_run(CPUState *cpu)
break;
case WHvRunVpExitReasonX64Halt:
+ /*
+ * WARNING: as of build 19043.1526 (21H1), this exit reason is no
+ * longer used.
+ */
ret = whpx_handle_halt(cpu);
break;
@@ -1153,10 +1819,19 @@ static int whpx_vcpu_run(CPUState *cpu)
}
case WHvRunVpExitReasonCanceled:
- cpu->exception_index = EXCP_INTERRUPT;
- ret = 1;
+ if (exclusive_step_mode != WHPX_STEP_NONE) {
+ /*
+ * We are trying to step over a single instruction, and
+ * likely got a request to stop from another thread.
+ * Delay it until we are done stepping
+ * over.
+ */
+ ret = 0;
+ } else {
+ cpu->exception_index = EXCP_INTERRUPT;
+ ret = 1;
+ }
break;
-
case WHvRunVpExitReasonX64MsrAccess: {
WHV_REGISTER_VALUE reg_values[3] = {0};
WHV_REGISTER_NAME reg_names[3];
@@ -1260,11 +1935,36 @@ static int whpx_vcpu_run(CPUState *cpu)
ret = 0;
break;
}
+ case WHvRunVpExitReasonException:
+ whpx_get_registers(cpu);
+
+ if ((vcpu->exit_ctx.VpException.ExceptionType ==
+ WHvX64ExceptionTypeDebugTrapOrFault) &&
+ (vcpu->exit_ctx.VpException.InstructionByteCount >= 1) &&
+ (vcpu->exit_ctx.VpException.InstructionBytes[0] ==
+ whpx_breakpoint_instruction)) {
+ /* Stopped at a software breakpoint. */
+ cpu->exception_index = EXCP_DEBUG;
+ } else if ((vcpu->exit_ctx.VpException.ExceptionType ==
+ WHvX64ExceptionTypeDebugTrapOrFault) &&
+ !cpu->singlestep_enabled) {
+ /*
+ * Just finished stepping over a breakpoint, but the
+ * gdb does not expect us to do single-stepping.
+ * Don't do anything special.
+ */
+ cpu->exception_index = EXCP_INTERRUPT;
+ } else {
+ /* Another exception or debug event. Report it to GDB. */
+ cpu->exception_index = EXCP_DEBUG;
+ }
+
+ ret = 1;
+ break;
case WHvRunVpExitReasonNone:
case WHvRunVpExitReasonUnrecoverableException:
case WHvRunVpExitReasonInvalidVpRegisterValue:
case WHvRunVpExitReasonUnsupportedFeature:
- case WHvRunVpExitReasonException:
default:
error_report("WHPX: Unexpected VP exit code %d",
vcpu->exit_ctx.ExitReason);
@@ -1277,10 +1977,32 @@ static int whpx_vcpu_run(CPUState *cpu)
} while (!ret);
- cpu_exec_end(cpu);
+ if (stepped_over_bp) {
+ /* Restore the breakpoint we stepped over */
+ cpu_memory_rw_debug(cpu,
+ stepped_over_bp->address,
+ (void *)&whpx_breakpoint_instruction,
+ 1,
+ true);
+ }
+
+ if (exclusive_step_mode != WHPX_STEP_NONE) {
+ g_assert(cpu_in_exclusive_context(cpu));
+ cpu->running = false;
+ end_exclusive();
+
+ exclusive_step_mode = WHPX_STEP_NONE;
+ } else {
+ cpu_exec_end(cpu);
+ }
+
qemu_mutex_lock_iothread();
current_cpu = cpu;
+ if (--whpx->running_cpus == 0) {
+ whpx_last_vcpu_stopping(cpu);
+ }
+
qatomic_set(&cpu->exit_request, false);
return ret < 0;
@@ -1340,6 +2062,11 @@ void whpx_cpu_synchronize_pre_loadvm(CPUState *cpu)
run_on_cpu(cpu, do_whpx_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
}
+void whpx_cpu_synchronize_pre_resume(bool step_pending)
+{
+ whpx_global.step_pending = step_pending;
+}
+
/*
* Vcpu support.
*/
@@ -1572,15 +2299,15 @@ static void whpx_process_section(MemoryRegionSection *section, int add)
return;
}
- delta = qemu_real_host_page_size - (start_pa & ~qemu_real_host_page_mask);
- delta &= ~qemu_real_host_page_mask;
+ delta = qemu_real_host_page_size() - (start_pa & ~qemu_real_host_page_mask());
+ delta &= ~qemu_real_host_page_mask();
if (delta > size) {
return;
}
start_pa += delta;
size -= delta;
- size &= qemu_real_host_page_mask;
- if (!size || (start_pa & ~qemu_real_host_page_mask)) {
+ size &= qemu_real_host_page_mask();
+ if (!size || (start_pa & ~qemu_real_host_page_mask())) {
return;
}
@@ -1839,6 +2566,7 @@ static int whpx_accel_init(MachineState *ms)
memset(&prop, 0, sizeof(WHV_PARTITION_PROPERTY));
prop.ExtendedVmExits.X64MsrExit = 1;
prop.ExtendedVmExits.X64CpuidExit = 1;
+ prop.ExtendedVmExits.ExceptionExit = 1;
if (whpx_apic_in_platform()) {
prop.ExtendedVmExits.X64ApicInitSipiExitTrap = 1;
}
@@ -1867,6 +2595,19 @@ static int whpx_accel_init(MachineState *ms)
goto error;
}
+ /*
+ * We do not want to intercept any exceptions from the guest,
+ * until we actually start debugging with gdb.
+ */
+ whpx->exception_exit_bitmap = -1;
+ hr = whpx_set_exception_exit_bitmap(0);
+
+ if (FAILED(hr)) {
+ error_report("WHPX: Failed to set exception exit bitmap, hr=%08lx", hr);
+ ret = -EINVAL;
+ goto error;
+ }
+
hr = whp_dispatch.WHvSetupPartition(whpx->partition);
if (FAILED(hr)) {
error_report("WHPX: Failed to setup partition, hr=%08lx", hr);