diff options
Diffstat (limited to 'target/i386/tcg/svm_helper.c')
-rw-r--r-- | target/i386/tcg/svm_helper.c | 801 |
1 files changed, 801 insertions, 0 deletions
diff --git a/target/i386/tcg/svm_helper.c b/target/i386/tcg/svm_helper.c new file mode 100644 index 0000000000..097bb9b83d --- /dev/null +++ b/target/i386/tcg/svm_helper.c @@ -0,0 +1,801 @@ +/* + * x86 SVM helpers + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/helper-proto.h" +#include "exec/exec-all.h" +#include "exec/cpu_ldst.h" +#include "helper-tcg.h" + +/* Secure Virtual Machine helpers */ + +#if defined(CONFIG_USER_ONLY) + +void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend) +{ +} + +void helper_vmmcall(CPUX86State *env) +{ +} + +void helper_vmload(CPUX86State *env, int aflag) +{ +} + +void helper_vmsave(CPUX86State *env, int aflag) +{ +} + +void helper_stgi(CPUX86State *env) +{ +} + +void helper_clgi(CPUX86State *env) +{ +} + +void helper_skinit(CPUX86State *env) +{ +} + +void helper_invlpga(CPUX86State *env, int aflag) +{ +} + +void cpu_vmexit(CPUX86State *nenv, uint32_t exit_code, uint64_t exit_info_1, + uintptr_t retaddr) +{ + assert(0); +} + +void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type, + uint64_t param) +{ +} + +void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type, + uint64_t param, uintptr_t retaddr) +{ +} + +void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param, + uint32_t next_eip_addend) +{ +} +#else + +static inline void svm_save_seg(CPUX86State *env, hwaddr addr, + const SegmentCache *sc) +{ + CPUState *cs = env_cpu(env); + + x86_stw_phys(cs, addr + offsetof(struct vmcb_seg, selector), + sc->selector); + x86_stq_phys(cs, addr + offsetof(struct vmcb_seg, base), + sc->base); + x86_stl_phys(cs, addr + offsetof(struct vmcb_seg, limit), + sc->limit); + x86_stw_phys(cs, addr + offsetof(struct vmcb_seg, attrib), + ((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00)); +} + +static inline void svm_load_seg(CPUX86State *env, hwaddr addr, + SegmentCache *sc) +{ + CPUState *cs = env_cpu(env); + unsigned int flags; + + sc->selector = x86_lduw_phys(cs, + addr + offsetof(struct vmcb_seg, selector)); + sc->base = x86_ldq_phys(cs, addr + offsetof(struct vmcb_seg, base)); + sc->limit = x86_ldl_phys(cs, addr + offsetof(struct vmcb_seg, limit)); + flags = x86_lduw_phys(cs, addr + offsetof(struct vmcb_seg, attrib)); + sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12); +} + +static inline void svm_load_seg_cache(CPUX86State *env, hwaddr addr, + int seg_reg) +{ + SegmentCache sc1, *sc = &sc1; + + svm_load_seg(env, addr, sc); + cpu_x86_load_seg_cache(env, seg_reg, sc->selector, + sc->base, sc->limit, sc->flags); +} + +void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend) +{ + CPUState *cs = env_cpu(env); + target_ulong addr; + uint64_t nested_ctl; + uint32_t event_inj; + uint32_t int_ctl; + + cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0, GETPC()); + + if (aflag == 2) { + addr = env->regs[R_EAX]; + } else { + addr = (uint32_t)env->regs[R_EAX]; + } + + qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr); + + env->vm_vmcb = addr; + + /* save the current CPU state in the hsave page */ + x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), + env->gdt.base); + x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), + env->gdt.limit); + + x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.base), + env->idt.base); + x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), + env->idt.limit); + + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]); + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]); + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]); + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]); + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]); + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]); + + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer); + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.rflags), + cpu_compute_eflags(env)); + + svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.es), + &env->segs[R_ES]); + svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.cs), + &env->segs[R_CS]); + svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ss), + &env->segs[R_SS]); + svm_save_seg(env, env->vm_hsave + offsetof(struct vmcb, save.ds), + &env->segs[R_DS]); + + x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rip), + env->eip + next_eip_addend); + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); + x86_stq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); + + /* load the interception bitmaps so we do not need to access the + vmcb in svm mode */ + env->intercept = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + control.intercept)); + env->intercept_cr_read = x86_lduw_phys(cs, env->vm_vmcb + + offsetof(struct vmcb, + control.intercept_cr_read)); + env->intercept_cr_write = x86_lduw_phys(cs, env->vm_vmcb + + offsetof(struct vmcb, + control.intercept_cr_write)); + env->intercept_dr_read = x86_lduw_phys(cs, env->vm_vmcb + + offsetof(struct vmcb, + control.intercept_dr_read)); + env->intercept_dr_write = x86_lduw_phys(cs, env->vm_vmcb + + offsetof(struct vmcb, + control.intercept_dr_write)); + env->intercept_exceptions = x86_ldl_phys(cs, env->vm_vmcb + + offsetof(struct vmcb, + control.intercept_exceptions + )); + + nested_ctl = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + control.nested_ctl)); + + env->nested_pg_mode = 0; + + if (nested_ctl & SVM_NPT_ENABLED) { + env->nested_cr3 = x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, + control.nested_cr3)); + env->hflags2 |= HF2_NPT_MASK; + + if (env->cr[4] & CR4_PAE_MASK) { + env->nested_pg_mode |= SVM_NPT_PAE; + } + if (env->cr[4] & CR4_PSE_MASK) { + env->nested_pg_mode |= SVM_NPT_PSE; + } + if (env->hflags & HF_LMA_MASK) { + env->nested_pg_mode |= SVM_NPT_LMA; + } + if (env->efer & MSR_EFER_NXE) { + env->nested_pg_mode |= SVM_NPT_NXE; + } + } + + /* enable intercepts */ + env->hflags |= HF_GUEST_MASK; + + env->tsc_offset = x86_ldq_phys(cs, env->vm_vmcb + + offsetof(struct vmcb, control.tsc_offset)); + + env->gdt.base = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + save.gdtr.base)); + env->gdt.limit = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + save.gdtr.limit)); + + env->idt.base = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + save.idtr.base)); + env->idt.limit = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + save.idtr.limit)); + + /* clear exit_info_2 so we behave like the real hardware */ + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0); + + cpu_x86_update_cr0(env, x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, + save.cr0))); + cpu_x86_update_cr4(env, x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, + save.cr4))); + cpu_x86_update_cr3(env, x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, + save.cr3))); + env->cr[2] = x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.cr2)); + int_ctl = x86_ldl_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); + env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); + if (int_ctl & V_INTR_MASKING_MASK) { + env->v_tpr = int_ctl & V_TPR_MASK; + env->hflags2 |= HF2_VINTR_MASK; + if (env->eflags & IF_MASK) { + env->hflags2 |= HF2_HIF_MASK; + } + } + + cpu_load_efer(env, + x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.efer))); + env->eflags = 0; + cpu_load_eflags(env, x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, + save.rflags)), + ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); + + svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.es), + R_ES); + svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.cs), + R_CS); + svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ss), + R_SS); + svm_load_seg_cache(env, env->vm_vmcb + offsetof(struct vmcb, save.ds), + R_DS); + + env->eip = x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.rip)); + + env->regs[R_ESP] = x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.rsp)); + env->regs[R_EAX] = x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.rax)); + env->dr[7] = x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.dr7)); + env->dr[6] = x86_ldq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.dr6)); + + /* FIXME: guest state consistency checks */ + + switch (x86_ldub_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) { + case TLB_CONTROL_DO_NOTHING: + break; + case TLB_CONTROL_FLUSH_ALL_ASID: + /* FIXME: this is not 100% correct but should work for now */ + tlb_flush(cs); + break; + } + + env->hflags2 |= HF2_GIF_MASK; + + if (int_ctl & V_IRQ_MASK) { + CPUState *cs = env_cpu(env); + + cs->interrupt_request |= CPU_INTERRUPT_VIRQ; + } + + /* maybe we need to inject an event */ + event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + control.event_inj)); + if (event_inj & SVM_EVTINJ_VALID) { + uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK; + uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR; + uint32_t event_inj_err = x86_ldl_phys(cs, env->vm_vmcb + + offsetof(struct vmcb, + control.event_inj_err)); + + qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err); + /* FIXME: need to implement valid_err */ + switch (event_inj & SVM_EVTINJ_TYPE_MASK) { + case SVM_EVTINJ_TYPE_INTR: + cs->exception_index = vector; + env->error_code = event_inj_err; + env->exception_is_int = 0; + env->exception_next_eip = -1; + qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR"); + /* XXX: is it always correct? */ + do_interrupt_x86_hardirq(env, vector, 1); + break; + case SVM_EVTINJ_TYPE_NMI: + cs->exception_index = EXCP02_NMI; + env->error_code = event_inj_err; + env->exception_is_int = 0; + env->exception_next_eip = env->eip; + qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI"); + cpu_loop_exit(cs); + break; + case SVM_EVTINJ_TYPE_EXEPT: + cs->exception_index = vector; + env->error_code = event_inj_err; + env->exception_is_int = 0; + env->exception_next_eip = -1; + qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT"); + cpu_loop_exit(cs); + break; + case SVM_EVTINJ_TYPE_SOFT: + cs->exception_index = vector; + env->error_code = event_inj_err; + env->exception_is_int = 1; + env->exception_next_eip = env->eip; + qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT"); + cpu_loop_exit(cs); + break; + } + qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", cs->exception_index, + env->error_code); + } +} + +void helper_vmmcall(CPUX86State *env) +{ + cpu_svm_check_intercept_param(env, SVM_EXIT_VMMCALL, 0, GETPC()); + raise_exception(env, EXCP06_ILLOP); +} + +void helper_vmload(CPUX86State *env, int aflag) +{ + CPUState *cs = env_cpu(env); + target_ulong addr; + + cpu_svm_check_intercept_param(env, SVM_EXIT_VMLOAD, 0, GETPC()); + + if (aflag == 2) { + addr = env->regs[R_EAX]; + } else { + addr = (uint32_t)env->regs[R_EAX]; + } + + qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx + "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n", + addr, x86_ldq_phys(cs, addr + offsetof(struct vmcb, + save.fs.base)), + env->segs[R_FS].base); + + svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.fs), R_FS); + svm_load_seg_cache(env, addr + offsetof(struct vmcb, save.gs), R_GS); + svm_load_seg(env, addr + offsetof(struct vmcb, save.tr), &env->tr); + svm_load_seg(env, addr + offsetof(struct vmcb, save.ldtr), &env->ldt); + +#ifdef TARGET_X86_64 + env->kernelgsbase = x86_ldq_phys(cs, addr + offsetof(struct vmcb, + save.kernel_gs_base)); + env->lstar = x86_ldq_phys(cs, addr + offsetof(struct vmcb, save.lstar)); + env->cstar = x86_ldq_phys(cs, addr + offsetof(struct vmcb, save.cstar)); + env->fmask = x86_ldq_phys(cs, addr + offsetof(struct vmcb, save.sfmask)); +#endif + env->star = x86_ldq_phys(cs, addr + offsetof(struct vmcb, save.star)); + env->sysenter_cs = x86_ldq_phys(cs, + addr + offsetof(struct vmcb, save.sysenter_cs)); + env->sysenter_esp = x86_ldq_phys(cs, addr + offsetof(struct vmcb, + save.sysenter_esp)); + env->sysenter_eip = x86_ldq_phys(cs, addr + offsetof(struct vmcb, + save.sysenter_eip)); +} + +void helper_vmsave(CPUX86State *env, int aflag) +{ + CPUState *cs = env_cpu(env); + target_ulong addr; + + cpu_svm_check_intercept_param(env, SVM_EXIT_VMSAVE, 0, GETPC()); + + if (aflag == 2) { + addr = env->regs[R_EAX]; + } else { + addr = (uint32_t)env->regs[R_EAX]; + } + + qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx + "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n", + addr, x86_ldq_phys(cs, + addr + offsetof(struct vmcb, save.fs.base)), + env->segs[R_FS].base); + + svm_save_seg(env, addr + offsetof(struct vmcb, save.fs), + &env->segs[R_FS]); + svm_save_seg(env, addr + offsetof(struct vmcb, save.gs), + &env->segs[R_GS]); + svm_save_seg(env, addr + offsetof(struct vmcb, save.tr), + &env->tr); + svm_save_seg(env, addr + offsetof(struct vmcb, save.ldtr), + &env->ldt); + +#ifdef TARGET_X86_64 + x86_stq_phys(cs, addr + offsetof(struct vmcb, save.kernel_gs_base), + env->kernelgsbase); + x86_stq_phys(cs, addr + offsetof(struct vmcb, save.lstar), env->lstar); + x86_stq_phys(cs, addr + offsetof(struct vmcb, save.cstar), env->cstar); + x86_stq_phys(cs, addr + offsetof(struct vmcb, save.sfmask), env->fmask); +#endif + x86_stq_phys(cs, addr + offsetof(struct vmcb, save.star), env->star); + x86_stq_phys(cs, + addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs); + x86_stq_phys(cs, addr + offsetof(struct vmcb, save.sysenter_esp), + env->sysenter_esp); + x86_stq_phys(cs, addr + offsetof(struct vmcb, save.sysenter_eip), + env->sysenter_eip); +} + +void helper_stgi(CPUX86State *env) +{ + cpu_svm_check_intercept_param(env, SVM_EXIT_STGI, 0, GETPC()); + env->hflags2 |= HF2_GIF_MASK; +} + +void helper_clgi(CPUX86State *env) +{ + cpu_svm_check_intercept_param(env, SVM_EXIT_CLGI, 0, GETPC()); + env->hflags2 &= ~HF2_GIF_MASK; +} + +void helper_skinit(CPUX86State *env) +{ + cpu_svm_check_intercept_param(env, SVM_EXIT_SKINIT, 0, GETPC()); + /* XXX: not implemented */ + raise_exception(env, EXCP06_ILLOP); +} + +void helper_invlpga(CPUX86State *env, int aflag) +{ + X86CPU *cpu = env_archcpu(env); + target_ulong addr; + + cpu_svm_check_intercept_param(env, SVM_EXIT_INVLPGA, 0, GETPC()); + + if (aflag == 2) { + addr = env->regs[R_EAX]; + } else { + addr = (uint32_t)env->regs[R_EAX]; + } + + /* XXX: could use the ASID to see if it is needed to do the + flush */ + tlb_flush_page(CPU(cpu), addr); +} + +void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type, + uint64_t param, uintptr_t retaddr) +{ + CPUState *cs = env_cpu(env); + + if (likely(!(env->hflags & HF_GUEST_MASK))) { + return; + } + switch (type) { + case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8: + if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) { + cpu_vmexit(env, type, param, retaddr); + } + break; + case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8: + if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) { + cpu_vmexit(env, type, param, retaddr); + } + break; + case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7: + if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) { + cpu_vmexit(env, type, param, retaddr); + } + break; + case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7: + if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) { + cpu_vmexit(env, type, param, retaddr); + } + break; + case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31: + if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) { + cpu_vmexit(env, type, param, retaddr); + } + break; + case SVM_EXIT_MSR: + if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) { + /* FIXME: this should be read in at vmrun (faster this way?) */ + uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb + + offsetof(struct vmcb, + control.msrpm_base_pa)); + uint32_t t0, t1; + + switch ((uint32_t)env->regs[R_ECX]) { + case 0 ... 0x1fff: + t0 = (env->regs[R_ECX] * 2) % 8; + t1 = (env->regs[R_ECX] * 2) / 8; + break; + case 0xc0000000 ... 0xc0001fff: + t0 = (8192 + env->regs[R_ECX] - 0xc0000000) * 2; + t1 = (t0 / 8); + t0 %= 8; + break; + case 0xc0010000 ... 0xc0011fff: + t0 = (16384 + env->regs[R_ECX] - 0xc0010000) * 2; + t1 = (t0 / 8); + t0 %= 8; + break; + default: + cpu_vmexit(env, type, param, retaddr); + t0 = 0; + t1 = 0; + break; + } + if (x86_ldub_phys(cs, addr + t1) & ((1 << param) << t0)) { + cpu_vmexit(env, type, param, retaddr); + } + } + break; + default: + if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) { + cpu_vmexit(env, type, param, retaddr); + } + break; + } +} + +void helper_svm_check_intercept_param(CPUX86State *env, uint32_t type, + uint64_t param) +{ + cpu_svm_check_intercept_param(env, type, param, GETPC()); +} + +void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param, + uint32_t next_eip_addend) +{ + CPUState *cs = env_cpu(env); + + if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) { + /* FIXME: this should be read in at vmrun (faster this way?) */ + uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb + + offsetof(struct vmcb, control.iopm_base_pa)); + uint16_t mask = (1 << ((param >> 4) & 7)) - 1; + + if (x86_lduw_phys(cs, addr + port / 8) & (mask << (port & 7))) { + /* next env->eip */ + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), + env->eip + next_eip_addend); + cpu_vmexit(env, SVM_EXIT_IOIO, param | (port << 16), GETPC()); + } + } +} + +void cpu_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1, + uintptr_t retaddr) +{ + CPUState *cs = env_cpu(env); + + cpu_restore_state(cs, retaddr, true); + + qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" + PRIx64 ", " TARGET_FMT_lx ")!\n", + exit_code, exit_info_1, + x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + control.exit_info_2)), + env->eip); + + cs->exception_index = EXCP_VMEXIT + exit_code; + env->error_code = exit_info_1; + + /* remove any pending exception */ + env->old_exception = -1; + cpu_loop_exit(cs); +} + +void do_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1) +{ + CPUState *cs = env_cpu(env); + uint32_t int_ctl; + + if (env->hflags & HF_INHIBIT_IRQ_MASK) { + x86_stl_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.int_state), + SVM_INTERRUPT_SHADOW_MASK); + env->hflags &= ~HF_INHIBIT_IRQ_MASK; + } else { + x86_stl_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0); + } + env->hflags2 &= ~HF2_NPT_MASK; + + /* Save the VM state in the vmcb */ + svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.es), + &env->segs[R_ES]); + svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.cs), + &env->segs[R_CS]); + svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ss), + &env->segs[R_SS]); + svm_save_seg(env, env->vm_vmcb + offsetof(struct vmcb, save.ds), + &env->segs[R_DS]); + + x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base), + env->gdt.base); + x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit), + env->gdt.limit); + + x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base), + env->idt.base); + x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit), + env->idt.limit); + + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer); + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]); + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]); + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]); + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]); + + int_ctl = x86_ldl_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); + int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK); + int_ctl |= env->v_tpr & V_TPR_MASK; + if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { + int_ctl |= V_IRQ_MASK; + } + x86_stl_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl); + + x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rflags), + cpu_compute_eflags(env)); + x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rip), + env->eip); + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]); + x86_stq_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]); + x86_stb_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cpl), + env->hflags & HF_CPL_MASK); + + /* Reload the host state from vm_hsave */ + env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); + env->hflags &= ~HF_GUEST_MASK; + env->intercept = 0; + env->intercept_exceptions = 0; + cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ; + env->tsc_offset = 0; + + env->gdt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, + save.gdtr.base)); + env->gdt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb, + save.gdtr.limit)); + + env->idt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, + save.idtr.base)); + env->idt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb, + save.idtr.limit)); + + cpu_x86_update_cr0(env, x86_ldq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, + save.cr0)) | + CR0_PE_MASK); + cpu_x86_update_cr4(env, x86_ldq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, + save.cr4))); + cpu_x86_update_cr3(env, x86_ldq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, + save.cr3))); + /* we need to set the efer after the crs so the hidden flags get + set properly */ + cpu_load_efer(env, x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, + save.efer))); + env->eflags = 0; + cpu_load_eflags(env, x86_ldq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, + save.rflags)), + ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK | + VM_MASK)); + + svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.es), + R_ES); + svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.cs), + R_CS); + svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ss), + R_SS); + svm_load_seg_cache(env, env->vm_hsave + offsetof(struct vmcb, save.ds), + R_DS); + + env->eip = x86_ldq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.rip)); + env->regs[R_ESP] = x86_ldq_phys(cs, env->vm_hsave + + offsetof(struct vmcb, save.rsp)); + env->regs[R_EAX] = x86_ldq_phys(cs, env->vm_hsave + + offsetof(struct vmcb, save.rax)); + + env->dr[6] = x86_ldq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.dr6)); + env->dr[7] = x86_ldq_phys(cs, + env->vm_hsave + offsetof(struct vmcb, save.dr7)); + + /* other setups */ + x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_code), + exit_code); + x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1), + exit_info_1); + + x86_stl_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info), + x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + control.event_inj))); + x86_stl_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err), + x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, + control.event_inj_err))); + x86_stl_phys(cs, + env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0); + + env->hflags2 &= ~HF2_GIF_MASK; + /* FIXME: Resets the current ASID register to zero (host ASID). */ + + /* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */ + + /* Clears the TSC_OFFSET inside the processor. */ + + /* If the host is in PAE mode, the processor reloads the host's PDPEs + from the page table indicated the host's CR3. If the PDPEs contain + illegal state, the processor causes a shutdown. */ + + /* Disables all breakpoints in the host DR7 register. */ + + /* Checks the reloaded host state for consistency. */ + + /* If the host's rIP reloaded by #VMEXIT is outside the limit of the + host's code segment or non-canonical (in the case of long mode), a + #GP fault is delivered inside the host. */ +} + +#endif |