diff options
Diffstat (limited to 'target/i386/tcg/fpu_helper.c')
-rw-r--r-- | target/i386/tcg/fpu_helper.c | 3047 |
1 files changed, 3047 insertions, 0 deletions
diff --git a/target/i386/tcg/fpu_helper.c b/target/i386/tcg/fpu_helper.c new file mode 100644 index 0000000000..60ed93520a --- /dev/null +++ b/target/i386/tcg/fpu_helper.c @@ -0,0 +1,3047 @@ +/* + * x86 FPU, MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI helpers + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include <math.h> +#include "cpu.h" +#include "exec/helper-proto.h" +#include "qemu/host-utils.h" +#include "exec/exec-all.h" +#include "exec/cpu_ldst.h" +#include "fpu/softfloat.h" +#include "fpu/softfloat-macros.h" +#include "helper-tcg.h" + +#ifdef CONFIG_SOFTMMU +#include "hw/irq.h" +#endif + +/* float macros */ +#define FT0 (env->ft0) +#define ST0 (env->fpregs[env->fpstt].d) +#define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d) +#define ST1 ST(1) + +#define FPU_RC_MASK 0xc00 +#define FPU_RC_NEAR 0x000 +#define FPU_RC_DOWN 0x400 +#define FPU_RC_UP 0x800 +#define FPU_RC_CHOP 0xc00 + +#define MAXTAN 9223372036854775808.0 + +/* the following deal with x86 long double-precision numbers */ +#define MAXEXPD 0x7fff +#define EXPBIAS 16383 +#define EXPD(fp) (fp.l.upper & 0x7fff) +#define SIGND(fp) ((fp.l.upper) & 0x8000) +#define MANTD(fp) (fp.l.lower) +#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS + +#define FPUS_IE (1 << 0) +#define FPUS_DE (1 << 1) +#define FPUS_ZE (1 << 2) +#define FPUS_OE (1 << 3) +#define FPUS_UE (1 << 4) +#define FPUS_PE (1 << 5) +#define FPUS_SF (1 << 6) +#define FPUS_SE (1 << 7) +#define FPUS_B (1 << 15) + +#define FPUC_EM 0x3f + +#define floatx80_lg2 make_floatx80(0x3ffd, 0x9a209a84fbcff799LL) +#define floatx80_lg2_d make_floatx80(0x3ffd, 0x9a209a84fbcff798LL) +#define floatx80_l2e make_floatx80(0x3fff, 0xb8aa3b295c17f0bcLL) +#define floatx80_l2e_d make_floatx80(0x3fff, 0xb8aa3b295c17f0bbLL) +#define floatx80_l2t make_floatx80(0x4000, 0xd49a784bcd1b8afeLL) +#define floatx80_l2t_u make_floatx80(0x4000, 0xd49a784bcd1b8affLL) +#define floatx80_ln2_d make_floatx80(0x3ffe, 0xb17217f7d1cf79abLL) +#define floatx80_pi_d make_floatx80(0x4000, 0xc90fdaa22168c234LL) + +#if !defined(CONFIG_USER_ONLY) +static qemu_irq ferr_irq; + +void x86_register_ferr_irq(qemu_irq irq) +{ + ferr_irq = irq; +} + +static void cpu_clear_ignne(void) +{ + CPUX86State *env = &X86_CPU(first_cpu)->env; + env->hflags2 &= ~HF2_IGNNE_MASK; +} + +void cpu_set_ignne(void) +{ + CPUX86State *env = &X86_CPU(first_cpu)->env; + env->hflags2 |= HF2_IGNNE_MASK; + /* + * We get here in response to a write to port F0h. The chipset should + * deassert FP_IRQ and FERR# instead should stay signaled until FPSW_SE is + * cleared, because FERR# and FP_IRQ are two separate pins on real + * hardware. However, we don't model FERR# as a qemu_irq, so we just + * do directly what the chipset would do, i.e. deassert FP_IRQ. + */ + qemu_irq_lower(ferr_irq); +} +#endif + + +static inline void fpush(CPUX86State *env) +{ + env->fpstt = (env->fpstt - 1) & 7; + env->fptags[env->fpstt] = 0; /* validate stack entry */ +} + +static inline void fpop(CPUX86State *env) +{ + env->fptags[env->fpstt] = 1; /* invalidate stack entry */ + env->fpstt = (env->fpstt + 1) & 7; +} + +static inline floatx80 helper_fldt(CPUX86State *env, target_ulong ptr, + uintptr_t retaddr) +{ + CPU_LDoubleU temp; + + temp.l.lower = cpu_ldq_data_ra(env, ptr, retaddr); + temp.l.upper = cpu_lduw_data_ra(env, ptr + 8, retaddr); + return temp.d; +} + +static inline void helper_fstt(CPUX86State *env, floatx80 f, target_ulong ptr, + uintptr_t retaddr) +{ + CPU_LDoubleU temp; + + temp.d = f; + cpu_stq_data_ra(env, ptr, temp.l.lower, retaddr); + cpu_stw_data_ra(env, ptr + 8, temp.l.upper, retaddr); +} + +/* x87 FPU helpers */ + +static inline double floatx80_to_double(CPUX86State *env, floatx80 a) +{ + union { + float64 f64; + double d; + } u; + + u.f64 = floatx80_to_float64(a, &env->fp_status); + return u.d; +} + +static inline floatx80 double_to_floatx80(CPUX86State *env, double a) +{ + union { + float64 f64; + double d; + } u; + + u.d = a; + return float64_to_floatx80(u.f64, &env->fp_status); +} + +static void fpu_set_exception(CPUX86State *env, int mask) +{ + env->fpus |= mask; + if (env->fpus & (~env->fpuc & FPUC_EM)) { + env->fpus |= FPUS_SE | FPUS_B; + } +} + +static inline uint8_t save_exception_flags(CPUX86State *env) +{ + uint8_t old_flags = get_float_exception_flags(&env->fp_status); + set_float_exception_flags(0, &env->fp_status); + return old_flags; +} + +static void merge_exception_flags(CPUX86State *env, uint8_t old_flags) +{ + uint8_t new_flags = get_float_exception_flags(&env->fp_status); + float_raise(old_flags, &env->fp_status); + fpu_set_exception(env, + ((new_flags & float_flag_invalid ? FPUS_IE : 0) | + (new_flags & float_flag_divbyzero ? FPUS_ZE : 0) | + (new_flags & float_flag_overflow ? FPUS_OE : 0) | + (new_flags & float_flag_underflow ? FPUS_UE : 0) | + (new_flags & float_flag_inexact ? FPUS_PE : 0) | + (new_flags & float_flag_input_denormal ? FPUS_DE : 0))); +} + +static inline floatx80 helper_fdiv(CPUX86State *env, floatx80 a, floatx80 b) +{ + uint8_t old_flags = save_exception_flags(env); + floatx80 ret = floatx80_div(a, b, &env->fp_status); + merge_exception_flags(env, old_flags); + return ret; +} + +static void fpu_raise_exception(CPUX86State *env, uintptr_t retaddr) +{ + if (env->cr[0] & CR0_NE_MASK) { + raise_exception_ra(env, EXCP10_COPR, retaddr); + } +#if !defined(CONFIG_USER_ONLY) + else if (ferr_irq && !(env->hflags2 & HF2_IGNNE_MASK)) { + qemu_irq_raise(ferr_irq); + } +#endif +} + +void helper_flds_FT0(CPUX86State *env, uint32_t val) +{ + uint8_t old_flags = save_exception_flags(env); + union { + float32 f; + uint32_t i; + } u; + + u.i = val; + FT0 = float32_to_floatx80(u.f, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fldl_FT0(CPUX86State *env, uint64_t val) +{ + uint8_t old_flags = save_exception_flags(env); + union { + float64 f; + uint64_t i; + } u; + + u.i = val; + FT0 = float64_to_floatx80(u.f, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fildl_FT0(CPUX86State *env, int32_t val) +{ + FT0 = int32_to_floatx80(val, &env->fp_status); +} + +void helper_flds_ST0(CPUX86State *env, uint32_t val) +{ + uint8_t old_flags = save_exception_flags(env); + int new_fpstt; + union { + float32 f; + uint32_t i; + } u; + + new_fpstt = (env->fpstt - 1) & 7; + u.i = val; + env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status); + env->fpstt = new_fpstt; + env->fptags[new_fpstt] = 0; /* validate stack entry */ + merge_exception_flags(env, old_flags); +} + +void helper_fldl_ST0(CPUX86State *env, uint64_t val) +{ + uint8_t old_flags = save_exception_flags(env); + int new_fpstt; + union { + float64 f; + uint64_t i; + } u; + + new_fpstt = (env->fpstt - 1) & 7; + u.i = val; + env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status); + env->fpstt = new_fpstt; + env->fptags[new_fpstt] = 0; /* validate stack entry */ + merge_exception_flags(env, old_flags); +} + +void helper_fildl_ST0(CPUX86State *env, int32_t val) +{ + int new_fpstt; + + new_fpstt = (env->fpstt - 1) & 7; + env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status); + env->fpstt = new_fpstt; + env->fptags[new_fpstt] = 0; /* validate stack entry */ +} + +void helper_fildll_ST0(CPUX86State *env, int64_t val) +{ + int new_fpstt; + + new_fpstt = (env->fpstt - 1) & 7; + env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status); + env->fpstt = new_fpstt; + env->fptags[new_fpstt] = 0; /* validate stack entry */ +} + +uint32_t helper_fsts_ST0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + union { + float32 f; + uint32_t i; + } u; + + u.f = floatx80_to_float32(ST0, &env->fp_status); + merge_exception_flags(env, old_flags); + return u.i; +} + +uint64_t helper_fstl_ST0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + union { + float64 f; + uint64_t i; + } u; + + u.f = floatx80_to_float64(ST0, &env->fp_status); + merge_exception_flags(env, old_flags); + return u.i; +} + +int32_t helper_fist_ST0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + int32_t val; + + val = floatx80_to_int32(ST0, &env->fp_status); + if (val != (int16_t)val) { + set_float_exception_flags(float_flag_invalid, &env->fp_status); + val = -32768; + } + merge_exception_flags(env, old_flags); + return val; +} + +int32_t helper_fistl_ST0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + int32_t val; + + val = floatx80_to_int32(ST0, &env->fp_status); + if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) { + val = 0x80000000; + } + merge_exception_flags(env, old_flags); + return val; +} + +int64_t helper_fistll_ST0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + int64_t val; + + val = floatx80_to_int64(ST0, &env->fp_status); + if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) { + val = 0x8000000000000000ULL; + } + merge_exception_flags(env, old_flags); + return val; +} + +int32_t helper_fistt_ST0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + int32_t val; + + val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status); + if (val != (int16_t)val) { + set_float_exception_flags(float_flag_invalid, &env->fp_status); + val = -32768; + } + merge_exception_flags(env, old_flags); + return val; +} + +int32_t helper_fisttl_ST0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + int32_t val; + + val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status); + if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) { + val = 0x80000000; + } + merge_exception_flags(env, old_flags); + return val; +} + +int64_t helper_fisttll_ST0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + int64_t val; + + val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status); + if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) { + val = 0x8000000000000000ULL; + } + merge_exception_flags(env, old_flags); + return val; +} + +void helper_fldt_ST0(CPUX86State *env, target_ulong ptr) +{ + int new_fpstt; + + new_fpstt = (env->fpstt - 1) & 7; + env->fpregs[new_fpstt].d = helper_fldt(env, ptr, GETPC()); + env->fpstt = new_fpstt; + env->fptags[new_fpstt] = 0; /* validate stack entry */ +} + +void helper_fstt_ST0(CPUX86State *env, target_ulong ptr) +{ + helper_fstt(env, ST0, ptr, GETPC()); +} + +void helper_fpush(CPUX86State *env) +{ + fpush(env); +} + +void helper_fpop(CPUX86State *env) +{ + fpop(env); +} + +void helper_fdecstp(CPUX86State *env) +{ + env->fpstt = (env->fpstt - 1) & 7; + env->fpus &= ~0x4700; +} + +void helper_fincstp(CPUX86State *env) +{ + env->fpstt = (env->fpstt + 1) & 7; + env->fpus &= ~0x4700; +} + +/* FPU move */ + +void helper_ffree_STN(CPUX86State *env, int st_index) +{ + env->fptags[(env->fpstt + st_index) & 7] = 1; +} + +void helper_fmov_ST0_FT0(CPUX86State *env) +{ + ST0 = FT0; +} + +void helper_fmov_FT0_STN(CPUX86State *env, int st_index) +{ + FT0 = ST(st_index); +} + +void helper_fmov_ST0_STN(CPUX86State *env, int st_index) +{ + ST0 = ST(st_index); +} + +void helper_fmov_STN_ST0(CPUX86State *env, int st_index) +{ + ST(st_index) = ST0; +} + +void helper_fxchg_ST0_STN(CPUX86State *env, int st_index) +{ + floatx80 tmp; + + tmp = ST(st_index); + ST(st_index) = ST0; + ST0 = tmp; +} + +/* FPU operations */ + +static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500}; + +void helper_fcom_ST0_FT0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + FloatRelation ret; + + ret = floatx80_compare(ST0, FT0, &env->fp_status); + env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1]; + merge_exception_flags(env, old_flags); +} + +void helper_fucom_ST0_FT0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + FloatRelation ret; + + ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status); + env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1]; + merge_exception_flags(env, old_flags); +} + +static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; + +void helper_fcomi_ST0_FT0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + int eflags; + FloatRelation ret; + + ret = floatx80_compare(ST0, FT0, &env->fp_status); + eflags = cpu_cc_compute_all(env, CC_OP); + eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1]; + CC_SRC = eflags; + merge_exception_flags(env, old_flags); +} + +void helper_fucomi_ST0_FT0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + int eflags; + FloatRelation ret; + + ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status); + eflags = cpu_cc_compute_all(env, CC_OP); + eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1]; + CC_SRC = eflags; + merge_exception_flags(env, old_flags); +} + +void helper_fadd_ST0_FT0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + ST0 = floatx80_add(ST0, FT0, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fmul_ST0_FT0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + ST0 = floatx80_mul(ST0, FT0, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fsub_ST0_FT0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + ST0 = floatx80_sub(ST0, FT0, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fsubr_ST0_FT0(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + ST0 = floatx80_sub(FT0, ST0, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fdiv_ST0_FT0(CPUX86State *env) +{ + ST0 = helper_fdiv(env, ST0, FT0); +} + +void helper_fdivr_ST0_FT0(CPUX86State *env) +{ + ST0 = helper_fdiv(env, FT0, ST0); +} + +/* fp operations between STN and ST0 */ + +void helper_fadd_STN_ST0(CPUX86State *env, int st_index) +{ + uint8_t old_flags = save_exception_flags(env); + ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fmul_STN_ST0(CPUX86State *env, int st_index) +{ + uint8_t old_flags = save_exception_flags(env); + ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fsub_STN_ST0(CPUX86State *env, int st_index) +{ + uint8_t old_flags = save_exception_flags(env); + ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fsubr_STN_ST0(CPUX86State *env, int st_index) +{ + uint8_t old_flags = save_exception_flags(env); + ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fdiv_STN_ST0(CPUX86State *env, int st_index) +{ + floatx80 *p; + + p = &ST(st_index); + *p = helper_fdiv(env, *p, ST0); +} + +void helper_fdivr_STN_ST0(CPUX86State *env, int st_index) +{ + floatx80 *p; + + p = &ST(st_index); + *p = helper_fdiv(env, ST0, *p); +} + +/* misc FPU operations */ +void helper_fchs_ST0(CPUX86State *env) +{ + ST0 = floatx80_chs(ST0); +} + +void helper_fabs_ST0(CPUX86State *env) +{ + ST0 = floatx80_abs(ST0); +} + +void helper_fld1_ST0(CPUX86State *env) +{ + ST0 = floatx80_one; +} + +void helper_fldl2t_ST0(CPUX86State *env) +{ + switch (env->fpuc & FPU_RC_MASK) { + case FPU_RC_UP: + ST0 = floatx80_l2t_u; + break; + default: + ST0 = floatx80_l2t; + break; + } +} + +void helper_fldl2e_ST0(CPUX86State *env) +{ + switch (env->fpuc & FPU_RC_MASK) { + case FPU_RC_DOWN: + case FPU_RC_CHOP: + ST0 = floatx80_l2e_d; + break; + default: + ST0 = floatx80_l2e; + break; + } +} + +void helper_fldpi_ST0(CPUX86State *env) +{ + switch (env->fpuc & FPU_RC_MASK) { + case FPU_RC_DOWN: + case FPU_RC_CHOP: + ST0 = floatx80_pi_d; + break; + default: + ST0 = floatx80_pi; + break; + } +} + +void helper_fldlg2_ST0(CPUX86State *env) +{ + switch (env->fpuc & FPU_RC_MASK) { + case FPU_RC_DOWN: + case FPU_RC_CHOP: + ST0 = floatx80_lg2_d; + break; + default: + ST0 = floatx80_lg2; + break; + } +} + +void helper_fldln2_ST0(CPUX86State *env) +{ + switch (env->fpuc & FPU_RC_MASK) { + case FPU_RC_DOWN: + case FPU_RC_CHOP: + ST0 = floatx80_ln2_d; + break; + default: + ST0 = floatx80_ln2; + break; + } +} + +void helper_fldz_ST0(CPUX86State *env) +{ + ST0 = floatx80_zero; +} + +void helper_fldz_FT0(CPUX86State *env) +{ + FT0 = floatx80_zero; +} + +uint32_t helper_fnstsw(CPUX86State *env) +{ + return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; +} + +uint32_t helper_fnstcw(CPUX86State *env) +{ + return env->fpuc; +} + +void update_fp_status(CPUX86State *env) +{ + int rnd_type; + + /* set rounding mode */ + switch (env->fpuc & FPU_RC_MASK) { + default: + case FPU_RC_NEAR: + rnd_type = float_round_nearest_even; + break; + case FPU_RC_DOWN: + rnd_type = float_round_down; + break; + case FPU_RC_UP: + rnd_type = float_round_up; + break; + case FPU_RC_CHOP: + rnd_type = float_round_to_zero; + break; + } + set_float_rounding_mode(rnd_type, &env->fp_status); + switch ((env->fpuc >> 8) & 3) { + case 0: + rnd_type = 32; + break; + case 2: + rnd_type = 64; + break; + case 3: + default: + rnd_type = 80; + break; + } + set_floatx80_rounding_precision(rnd_type, &env->fp_status); +} + +void helper_fldcw(CPUX86State *env, uint32_t val) +{ + cpu_set_fpuc(env, val); +} + +void helper_fclex(CPUX86State *env) +{ + env->fpus &= 0x7f00; +} + +void helper_fwait(CPUX86State *env) +{ + if (env->fpus & FPUS_SE) { + fpu_raise_exception(env, GETPC()); + } +} + +void helper_fninit(CPUX86State *env) +{ + env->fpus = 0; + env->fpstt = 0; + cpu_set_fpuc(env, 0x37f); + env->fptags[0] = 1; + env->fptags[1] = 1; + env->fptags[2] = 1; + env->fptags[3] = 1; + env->fptags[4] = 1; + env->fptags[5] = 1; + env->fptags[6] = 1; + env->fptags[7] = 1; +} + +/* BCD ops */ + +void helper_fbld_ST0(CPUX86State *env, target_ulong ptr) +{ + floatx80 tmp; + uint64_t val; + unsigned int v; + int i; + + val = 0; + for (i = 8; i >= 0; i--) { + v = cpu_ldub_data_ra(env, ptr + i, GETPC()); + val = (val * 100) + ((v >> 4) * 10) + (v & 0xf); + } + tmp = int64_to_floatx80(val, &env->fp_status); + if (cpu_ldub_data_ra(env, ptr + 9, GETPC()) & 0x80) { + tmp = floatx80_chs(tmp); + } + fpush(env); + ST0 = tmp; +} + +void helper_fbst_ST0(CPUX86State *env, target_ulong ptr) +{ + uint8_t old_flags = save_exception_flags(env); + int v; + target_ulong mem_ref, mem_end; + int64_t val; + CPU_LDoubleU temp; + + temp.d = ST0; + + val = floatx80_to_int64(ST0, &env->fp_status); + mem_ref = ptr; + if (val >= 1000000000000000000LL || val <= -1000000000000000000LL) { + set_float_exception_flags(float_flag_invalid, &env->fp_status); + while (mem_ref < ptr + 7) { + cpu_stb_data_ra(env, mem_ref++, 0, GETPC()); + } + cpu_stb_data_ra(env, mem_ref++, 0xc0, GETPC()); + cpu_stb_data_ra(env, mem_ref++, 0xff, GETPC()); + cpu_stb_data_ra(env, mem_ref++, 0xff, GETPC()); + merge_exception_flags(env, old_flags); + return; + } + mem_end = mem_ref + 9; + if (SIGND(temp)) { + cpu_stb_data_ra(env, mem_end, 0x80, GETPC()); + val = -val; + } else { + cpu_stb_data_ra(env, mem_end, 0x00, GETPC()); + } + while (mem_ref < mem_end) { + if (val == 0) { + break; + } + v = val % 100; + val = val / 100; + v = ((v / 10) << 4) | (v % 10); + cpu_stb_data_ra(env, mem_ref++, v, GETPC()); + } + while (mem_ref < mem_end) { + cpu_stb_data_ra(env, mem_ref++, 0, GETPC()); + } + merge_exception_flags(env, old_flags); +} + +/* 128-bit significand of log(2). */ +#define ln2_sig_high 0xb17217f7d1cf79abULL +#define ln2_sig_low 0xc9e3b39803f2f6afULL + +/* + * Polynomial coefficients for an approximation to (2^x - 1) / x, on + * the interval [-1/64, 1/64]. + */ +#define f2xm1_coeff_0 make_floatx80(0x3ffe, 0xb17217f7d1cf79acULL) +#define f2xm1_coeff_0_low make_floatx80(0xbfbc, 0xd87edabf495b3762ULL) +#define f2xm1_coeff_1 make_floatx80(0x3ffc, 0xf5fdeffc162c7543ULL) +#define f2xm1_coeff_2 make_floatx80(0x3ffa, 0xe35846b82505fcc7ULL) +#define f2xm1_coeff_3 make_floatx80(0x3ff8, 0x9d955b7dd273b899ULL) +#define f2xm1_coeff_4 make_floatx80(0x3ff5, 0xaec3ff3c4ef4ac0cULL) +#define f2xm1_coeff_5 make_floatx80(0x3ff2, 0xa184897c3a7f0de9ULL) +#define f2xm1_coeff_6 make_floatx80(0x3fee, 0xffe634d0ec30d504ULL) +#define f2xm1_coeff_7 make_floatx80(0x3feb, 0xb160111d2db515e4ULL) + +struct f2xm1_data { + /* + * A value very close to a multiple of 1/32, such that 2^t and 2^t - 1 + * are very close to exact floatx80 values. + */ + floatx80 t; + /* The value of 2^t. */ + floatx80 exp2; + /* The value of 2^t - 1. */ + floatx80 exp2m1; +}; + +static const struct f2xm1_data f2xm1_table[65] = { + { make_floatx80_init(0xbfff, 0x8000000000000000ULL), + make_floatx80_init(0x3ffe, 0x8000000000000000ULL), + make_floatx80_init(0xbffe, 0x8000000000000000ULL) }, + { make_floatx80_init(0xbffe, 0xf800000000002e7eULL), + make_floatx80_init(0x3ffe, 0x82cd8698ac2b9160ULL), + make_floatx80_init(0xbffd, 0xfa64f2cea7a8dd40ULL) }, + { make_floatx80_init(0xbffe, 0xefffffffffffe960ULL), + make_floatx80_init(0x3ffe, 0x85aac367cc488345ULL), + make_floatx80_init(0xbffd, 0xf4aa7930676ef976ULL) }, + { make_floatx80_init(0xbffe, 0xe800000000006f10ULL), + make_floatx80_init(0x3ffe, 0x88980e8092da5c14ULL), + make_floatx80_init(0xbffd, 0xeecfe2feda4b47d8ULL) }, + { make_floatx80_init(0xbffe, 0xe000000000008a45ULL), + make_floatx80_init(0x3ffe, 0x8b95c1e3ea8ba2a5ULL), + make_floatx80_init(0xbffd, 0xe8d47c382ae8bab6ULL) }, + { make_floatx80_init(0xbffe, 0xd7ffffffffff8a9eULL), + make_floatx80_init(0x3ffe, 0x8ea4398b45cd8116ULL), + make_floatx80_init(0xbffd, 0xe2b78ce97464fdd4ULL) }, + { make_floatx80_init(0xbffe, 0xd0000000000019a0ULL), + make_floatx80_init(0x3ffe, 0x91c3d373ab11b919ULL), + make_floatx80_init(0xbffd, 0xdc785918a9dc8dceULL) }, + { make_floatx80_init(0xbffe, 0xc7ffffffffff14dfULL), + make_floatx80_init(0x3ffe, 0x94f4efa8fef76836ULL), + make_floatx80_init(0xbffd, 0xd61620ae02112f94ULL) }, + { make_floatx80_init(0xbffe, 0xc000000000006530ULL), + make_floatx80_init(0x3ffe, 0x9837f0518db87fbbULL), + make_floatx80_init(0xbffd, 0xcf901f5ce48f008aULL) }, + { make_floatx80_init(0xbffe, 0xb7ffffffffff1723ULL), + make_floatx80_init(0x3ffe, 0x9b8d39b9d54eb74cULL), + make_floatx80_init(0xbffd, 0xc8e58c8c55629168ULL) }, + { make_floatx80_init(0xbffe, 0xb00000000000b5e1ULL), + make_floatx80_init(0x3ffe, 0x9ef5326091a0c366ULL), + make_floatx80_init(0xbffd, 0xc2159b3edcbe7934ULL) }, + { make_floatx80_init(0xbffe, 0xa800000000006f8aULL), + make_floatx80_init(0x3ffe, 0xa27043030c49370aULL), + make_floatx80_init(0xbffd, 0xbb1f79f9e76d91ecULL) }, + { make_floatx80_init(0xbffe, 0x9fffffffffff816aULL), + make_floatx80_init(0x3ffe, 0xa5fed6a9b15171cfULL), + make_floatx80_init(0xbffd, 0xb40252ac9d5d1c62ULL) }, + { make_floatx80_init(0xbffe, 0x97ffffffffffb621ULL), + make_floatx80_init(0x3ffe, 0xa9a15ab4ea7c30e6ULL), + make_floatx80_init(0xbffd, 0xacbd4a962b079e34ULL) }, + { make_floatx80_init(0xbffe, 0x8fffffffffff162bULL), + make_floatx80_init(0x3ffe, 0xad583eea42a1b886ULL), + make_floatx80_init(0xbffd, 0xa54f822b7abc8ef4ULL) }, + { make_floatx80_init(0xbffe, 0x87ffffffffff4d34ULL), + make_floatx80_init(0x3ffe, 0xb123f581d2ac7b51ULL), + make_floatx80_init(0xbffd, 0x9db814fc5aa7095eULL) }, + { make_floatx80_init(0xbffe, 0x800000000000227dULL), + make_floatx80_init(0x3ffe, 0xb504f333f9de539dULL), + make_floatx80_init(0xbffd, 0x95f619980c4358c6ULL) }, + { make_floatx80_init(0xbffd, 0xefffffffffff3978ULL), + make_floatx80_init(0x3ffe, 0xb8fbaf4762fbd0a1ULL), + make_floatx80_init(0xbffd, 0x8e08a1713a085ebeULL) }, + { make_floatx80_init(0xbffd, 0xe00000000000df81ULL), + make_floatx80_init(0x3ffe, 0xbd08a39f580bfd8cULL), + make_floatx80_init(0xbffd, 0x85eeb8c14fe804e8ULL) }, + { make_floatx80_init(0xbffd, 0xd00000000000bccfULL), + make_floatx80_init(0x3ffe, 0xc12c4cca667062f6ULL), + make_floatx80_init(0xbffc, 0xfb4eccd6663e7428ULL) }, + { make_floatx80_init(0xbffd, 0xc00000000000eff0ULL), + make_floatx80_init(0x3ffe, 0xc5672a1155069abeULL), + make_floatx80_init(0xbffc, 0xea6357baabe59508ULL) }, + { make_floatx80_init(0xbffd, 0xb000000000000fe6ULL), + make_floatx80_init(0x3ffe, 0xc9b9bd866e2f234bULL), + make_floatx80_init(0xbffc, 0xd91909e6474372d4ULL) }, + { make_floatx80_init(0xbffd, 0x9fffffffffff2172ULL), + make_floatx80_init(0x3ffe, 0xce248c151f84bf00ULL), + make_floatx80_init(0xbffc, 0xc76dcfab81ed0400ULL) }, + { make_floatx80_init(0xbffd, 0x8fffffffffffafffULL), + make_floatx80_init(0x3ffe, 0xd2a81d91f12afb2bULL), + make_floatx80_init(0xbffc, 0xb55f89b83b541354ULL) }, + { make_floatx80_init(0xbffc, 0xffffffffffff81a3ULL), + make_floatx80_init(0x3ffe, 0xd744fccad69d7d5eULL), + make_floatx80_init(0xbffc, 0xa2ec0cd4a58a0a88ULL) }, + { make_floatx80_init(0xbffc, 0xdfffffffffff1568ULL), + make_floatx80_init(0x3ffe, 0xdbfbb797daf25a44ULL), + make_floatx80_init(0xbffc, 0x901121a0943696f0ULL) }, + { make_floatx80_init(0xbffc, 0xbfffffffffff68daULL), + make_floatx80_init(0x3ffe, 0xe0ccdeec2a94f811ULL), + make_floatx80_init(0xbffb, 0xf999089eab583f78ULL) }, + { make_floatx80_init(0xbffc, 0x9fffffffffff4690ULL), + make_floatx80_init(0x3ffe, 0xe5b906e77c83657eULL), + make_floatx80_init(0xbffb, 0xd237c8c41be4d410ULL) }, + { make_floatx80_init(0xbffb, 0xffffffffffff8aeeULL), + make_floatx80_init(0x3ffe, 0xeac0c6e7dd24427cULL), + make_floatx80_init(0xbffb, 0xa9f9c8c116ddec20ULL) }, + { make_floatx80_init(0xbffb, 0xbfffffffffff2d18ULL), + make_floatx80_init(0x3ffe, 0xefe4b99bdcdb06ebULL), + make_floatx80_init(0xbffb, 0x80da33211927c8a8ULL) }, + { make_floatx80_init(0xbffa, 0xffffffffffff8ccbULL), + make_floatx80_init(0x3ffe, 0xf5257d152486d0f4ULL), + make_floatx80_init(0xbffa, 0xada82eadb792f0c0ULL) }, + { make_floatx80_init(0xbff9, 0xffffffffffff11feULL), + make_floatx80_init(0x3ffe, 0xfa83b2db722a0846ULL), + make_floatx80_init(0xbff9, 0xaf89a491babef740ULL) }, + { floatx80_zero_init, + make_floatx80_init(0x3fff, 0x8000000000000000ULL), + floatx80_zero_init }, + { make_floatx80_init(0x3ff9, 0xffffffffffff2680ULL), + make_floatx80_init(0x3fff, 0x82cd8698ac2b9f6fULL), + make_floatx80_init(0x3ff9, 0xb361a62b0ae7dbc0ULL) }, + { make_floatx80_init(0x3ffb, 0x800000000000b500ULL), + make_floatx80_init(0x3fff, 0x85aac367cc488345ULL), + make_floatx80_init(0x3ffa, 0xb5586cf9891068a0ULL) }, + { make_floatx80_init(0x3ffb, 0xbfffffffffff4b67ULL), + make_floatx80_init(0x3fff, 0x88980e8092da7cceULL), + make_floatx80_init(0x3ffb, 0x8980e8092da7cce0ULL) }, + { make_floatx80_init(0x3ffb, 0xffffffffffffff57ULL), + make_floatx80_init(0x3fff, 0x8b95c1e3ea8bd6dfULL), + make_floatx80_init(0x3ffb, 0xb95c1e3ea8bd6df0ULL) }, + { make_floatx80_init(0x3ffc, 0x9fffffffffff811fULL), + make_floatx80_init(0x3fff, 0x8ea4398b45cd4780ULL), + make_floatx80_init(0x3ffb, 0xea4398b45cd47800ULL) }, + { make_floatx80_init(0x3ffc, 0xbfffffffffff9980ULL), + make_floatx80_init(0x3fff, 0x91c3d373ab11b919ULL), + make_floatx80_init(0x3ffc, 0x8e1e9b9d588dc8c8ULL) }, + { make_floatx80_init(0x3ffc, 0xdffffffffffff631ULL), + make_floatx80_init(0x3fff, 0x94f4efa8fef70864ULL), + make_floatx80_init(0x3ffc, 0xa7a77d47f7b84320ULL) }, + { make_floatx80_init(0x3ffc, 0xffffffffffff2499ULL), + make_floatx80_init(0x3fff, 0x9837f0518db892d4ULL), + make_floatx80_init(0x3ffc, 0xc1bf828c6dc496a0ULL) }, + { make_floatx80_init(0x3ffd, 0x8fffffffffff80fbULL), + make_floatx80_init(0x3fff, 0x9b8d39b9d54e3a79ULL), + make_floatx80_init(0x3ffc, 0xdc69cdceaa71d3c8ULL) }, + { make_floatx80_init(0x3ffd, 0x9fffffffffffbc23ULL), + make_floatx80_init(0x3fff, 0x9ef5326091a10313ULL), + make_floatx80_init(0x3ffc, 0xf7a993048d081898ULL) }, + { make_floatx80_init(0x3ffd, 0xafffffffffff20ecULL), + make_floatx80_init(0x3fff, 0xa27043030c49370aULL), + make_floatx80_init(0x3ffd, 0x89c10c0c3124dc28ULL) }, + { make_floatx80_init(0x3ffd, 0xc00000000000fd2cULL), + make_floatx80_init(0x3fff, 0xa5fed6a9b15171cfULL), + make_floatx80_init(0x3ffd, 0x97fb5aa6c545c73cULL) }, + { make_floatx80_init(0x3ffd, 0xd0000000000093beULL), + make_floatx80_init(0x3fff, 0xa9a15ab4ea7c30e6ULL), + make_floatx80_init(0x3ffd, 0xa6856ad3a9f0c398ULL) }, + { make_floatx80_init(0x3ffd, 0xe00000000000c2aeULL), + make_floatx80_init(0x3fff, 0xad583eea42a17876ULL), + make_floatx80_init(0x3ffd, 0xb560fba90a85e1d8ULL) }, + { make_floatx80_init(0x3ffd, 0xefffffffffff1e3fULL), + make_floatx80_init(0x3fff, 0xb123f581d2abef6cULL), + make_floatx80_init(0x3ffd, 0xc48fd6074aafbdb0ULL) }, + { make_floatx80_init(0x3ffd, 0xffffffffffff1c23ULL), + make_floatx80_init(0x3fff, 0xb504f333f9de2cadULL), + make_floatx80_init(0x3ffd, 0xd413cccfe778b2b4ULL) }, + { make_floatx80_init(0x3ffe, 0x8800000000006344ULL), + make_floatx80_init(0x3fff, 0xb8fbaf4762fbd0a1ULL), + make_floatx80_init(0x3ffd, 0xe3eebd1d8bef4284ULL) }, + { make_floatx80_init(0x3ffe, 0x9000000000005d67ULL), + make_floatx80_init(0x3fff, 0xbd08a39f580c668dULL), + make_floatx80_init(0x3ffd, 0xf4228e7d60319a34ULL) }, + { make_floatx80_init(0x3ffe, 0x9800000000009127ULL), + make_floatx80_init(0x3fff, 0xc12c4cca6670e042ULL), + make_floatx80_init(0x3ffe, 0x82589994cce1c084ULL) }, + { make_floatx80_init(0x3ffe, 0x9fffffffffff06f9ULL), + make_floatx80_init(0x3fff, 0xc5672a11550655c3ULL), + make_floatx80_init(0x3ffe, 0x8ace5422aa0cab86ULL) }, + { make_floatx80_init(0x3ffe, 0xa7fffffffffff80dULL), + make_floatx80_init(0x3fff, 0xc9b9bd866e2f234bULL), + make_floatx80_init(0x3ffe, 0x93737b0cdc5e4696ULL) }, + { make_floatx80_init(0x3ffe, 0xafffffffffff1470ULL), + make_floatx80_init(0x3fff, 0xce248c151f83fd69ULL), + make_floatx80_init(0x3ffe, 0x9c49182a3f07fad2ULL) }, + { make_floatx80_init(0x3ffe, 0xb800000000000e0aULL), + make_floatx80_init(0x3fff, 0xd2a81d91f12aec5cULL), + make_floatx80_init(0x3ffe, 0xa5503b23e255d8b8ULL) }, + { make_floatx80_init(0x3ffe, 0xc00000000000b7faULL), + make_floatx80_init(0x3fff, 0xd744fccad69dd630ULL), + make_floatx80_init(0x3ffe, 0xae89f995ad3bac60ULL) }, + { make_floatx80_init(0x3ffe, 0xc800000000003aa6ULL), + make_floatx80_init(0x3fff, 0xdbfbb797daf25a44ULL), + make_floatx80_init(0x3ffe, 0xb7f76f2fb5e4b488ULL) }, + { make_floatx80_init(0x3ffe, 0xd00000000000a6aeULL), + make_floatx80_init(0x3fff, 0xe0ccdeec2a954685ULL), + make_floatx80_init(0x3ffe, 0xc199bdd8552a8d0aULL) }, + { make_floatx80_init(0x3ffe, 0xd800000000004165ULL), + make_floatx80_init(0x3fff, 0xe5b906e77c837155ULL), + make_floatx80_init(0x3ffe, 0xcb720dcef906e2aaULL) }, + { make_floatx80_init(0x3ffe, 0xe00000000000582cULL), + make_floatx80_init(0x3fff, 0xeac0c6e7dd24713aULL), + make_floatx80_init(0x3ffe, 0xd5818dcfba48e274ULL) }, + { make_floatx80_init(0x3ffe, 0xe800000000001a5dULL), + make_floatx80_init(0x3fff, 0xefe4b99bdcdb06ebULL), + make_floatx80_init(0x3ffe, 0xdfc97337b9b60dd6ULL) }, + { make_floatx80_init(0x3ffe, 0xefffffffffffc1efULL), + make_floatx80_init(0x3fff, 0xf5257d152486a2faULL), + make_floatx80_init(0x3ffe, 0xea4afa2a490d45f4ULL) }, + { make_floatx80_init(0x3ffe, 0xf800000000001069ULL), + make_floatx80_init(0x3fff, 0xfa83b2db722a0e5cULL), + make_floatx80_init(0x3ffe, 0xf50765b6e4541cb8ULL) }, + { make_floatx80_init(0x3fff, 0x8000000000000000ULL), + make_floatx80_init(0x4000, 0x8000000000000000ULL), + make_floatx80_init(0x3fff, 0x8000000000000000ULL) }, +}; + +void helper_f2xm1(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + uint64_t sig = extractFloatx80Frac(ST0); + int32_t exp = extractFloatx80Exp(ST0); + bool sign = extractFloatx80Sign(ST0); + + if (floatx80_invalid_encoding(ST0)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_default_nan(&env->fp_status); + } else if (floatx80_is_any_nan(ST0)) { + if (floatx80_is_signaling_nan(ST0, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_silence_nan(ST0, &env->fp_status); + } + } else if (exp > 0x3fff || + (exp == 0x3fff && sig != (0x8000000000000000ULL))) { + /* Out of range for the instruction, treat as invalid. */ + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_default_nan(&env->fp_status); + } else if (exp == 0x3fff) { + /* Argument 1 or -1, exact result 1 or -0.5. */ + if (sign) { + ST0 = make_floatx80(0xbffe, 0x8000000000000000ULL); + } + } else if (exp < 0x3fb0) { + if (!floatx80_is_zero(ST0)) { + /* + * Multiplying the argument by an extra-precision version + * of log(2) is sufficiently precise. Zero arguments are + * returned unchanged. + */ + uint64_t sig0, sig1, sig2; + if (exp == 0) { + normalizeFloatx80Subnormal(sig, &exp, &sig); + } + mul128By64To192(ln2_sig_high, ln2_sig_low, sig, &sig0, &sig1, + &sig2); + /* This result is inexact. */ + sig1 |= 1; + ST0 = normalizeRoundAndPackFloatx80(80, sign, exp, sig0, sig1, + &env->fp_status); + } + } else { + floatx80 tmp, y, accum; + bool asign, bsign; + int32_t n, aexp, bexp; + uint64_t asig0, asig1, asig2, bsig0, bsig1; + FloatRoundMode save_mode = env->fp_status.float_rounding_mode; + signed char save_prec = env->fp_status.floatx80_rounding_precision; + env->fp_status.float_rounding_mode = float_round_nearest_even; + env->fp_status.floatx80_rounding_precision = 80; + + /* Find the nearest multiple of 1/32 to the argument. */ + tmp = floatx80_scalbn(ST0, 5, &env->fp_status); + n = 32 + floatx80_to_int32(tmp, &env->fp_status); + y = floatx80_sub(ST0, f2xm1_table[n].t, &env->fp_status); + + if (floatx80_is_zero(y)) { + /* + * Use the value of 2^t - 1 from the table, to avoid + * needing to special-case zero as a result of + * multiplication below. + */ + ST0 = f2xm1_table[n].t; + set_float_exception_flags(float_flag_inexact, &env->fp_status); + env->fp_status.float_rounding_mode = save_mode; + } else { + /* + * Compute the lower parts of a polynomial expansion for + * (2^y - 1) / y. + */ + accum = floatx80_mul(f2xm1_coeff_7, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_6, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_5, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_4, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_3, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_2, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_1, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_0_low, accum, &env->fp_status); + + /* + * The full polynomial expansion is f2xm1_coeff_0 + accum + * (where accum has much lower magnitude, and so, in + * particular, carry out of the addition is not possible). + * (This expansion is only accurate to about 70 bits, not + * 128 bits.) + */ + aexp = extractFloatx80Exp(f2xm1_coeff_0); + asign = extractFloatx80Sign(f2xm1_coeff_0); + shift128RightJamming(extractFloatx80Frac(accum), 0, + aexp - extractFloatx80Exp(accum), + &asig0, &asig1); + bsig0 = extractFloatx80Frac(f2xm1_coeff_0); + bsig1 = 0; + if (asign == extractFloatx80Sign(accum)) { + add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1); + } else { + sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1); + } + /* And thus compute an approximation to 2^y - 1. */ + mul128By64To192(asig0, asig1, extractFloatx80Frac(y), + &asig0, &asig1, &asig2); + aexp += extractFloatx80Exp(y) - 0x3ffe; + asign ^= extractFloatx80Sign(y); + if (n != 32) { + /* + * Multiply this by the precomputed value of 2^t and + * add that of 2^t - 1. + */ + mul128By64To192(asig0, asig1, + extractFloatx80Frac(f2xm1_table[n].exp2), + &asig0, &asig1, &asig2); + aexp += extractFloatx80Exp(f2xm1_table[n].exp2) - 0x3ffe; + bexp = extractFloatx80Exp(f2xm1_table[n].exp2m1); + bsig0 = extractFloatx80Frac(f2xm1_table[n].exp2m1); + bsig1 = 0; + if (bexp < aexp) { + shift128RightJamming(bsig0, bsig1, aexp - bexp, + &bsig0, &bsig1); + } else if (aexp < bexp) { + shift128RightJamming(asig0, asig1, bexp - aexp, + &asig0, &asig1); + aexp = bexp; + } + /* The sign of 2^t - 1 is always that of the result. */ + bsign = extractFloatx80Sign(f2xm1_table[n].exp2m1); + if (asign == bsign) { + /* Avoid possible carry out of the addition. */ + shift128RightJamming(asig0, asig1, 1, + &asig0, &asig1); + shift128RightJamming(bsig0, bsig1, 1, + &bsig0, &bsig1); + ++aexp; + add128(asig0, asig1, bsig0, bsig1, &asig0, &asig1); + } else { + sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1); + asign = bsign; + } + } + env->fp_status.float_rounding_mode = save_mode; + /* This result is inexact. */ + asig1 |= 1; + ST0 = normalizeRoundAndPackFloatx80(80, asign, aexp, asig0, asig1, + &env->fp_status); + } + + env->fp_status.floatx80_rounding_precision = save_prec; + } + merge_exception_flags(env, old_flags); +} + +void helper_fptan(CPUX86State *env) +{ + double fptemp = floatx80_to_double(env, ST0); + + if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) { + env->fpus |= 0x400; + } else { + fptemp = tan(fptemp); + ST0 = double_to_floatx80(env, fptemp); + fpush(env); + ST0 = floatx80_one; + env->fpus &= ~0x400; /* C2 <-- 0 */ + /* the above code is for |arg| < 2**52 only */ + } +} + +/* Values of pi/4, pi/2, 3pi/4 and pi, with 128-bit precision. */ +#define pi_4_exp 0x3ffe +#define pi_4_sig_high 0xc90fdaa22168c234ULL +#define pi_4_sig_low 0xc4c6628b80dc1cd1ULL +#define pi_2_exp 0x3fff +#define pi_2_sig_high 0xc90fdaa22168c234ULL +#define pi_2_sig_low 0xc4c6628b80dc1cd1ULL +#define pi_34_exp 0x4000 +#define pi_34_sig_high 0x96cbe3f9990e91a7ULL +#define pi_34_sig_low 0x9394c9e8a0a5159dULL +#define pi_exp 0x4000 +#define pi_sig_high 0xc90fdaa22168c234ULL +#define pi_sig_low 0xc4c6628b80dc1cd1ULL + +/* + * Polynomial coefficients for an approximation to atan(x), with only + * odd powers of x used, for x in the interval [-1/16, 1/16]. (Unlike + * for some other approximations, no low part is needed for the first + * coefficient here to achieve a sufficiently accurate result, because + * the coefficient in this minimax approximation is very close to + * exactly 1.) + */ +#define fpatan_coeff_0 make_floatx80(0x3fff, 0x8000000000000000ULL) +#define fpatan_coeff_1 make_floatx80(0xbffd, 0xaaaaaaaaaaaaaa43ULL) +#define fpatan_coeff_2 make_floatx80(0x3ffc, 0xccccccccccbfe4f8ULL) +#define fpatan_coeff_3 make_floatx80(0xbffc, 0x92492491fbab2e66ULL) +#define fpatan_coeff_4 make_floatx80(0x3ffb, 0xe38e372881ea1e0bULL) +#define fpatan_coeff_5 make_floatx80(0xbffb, 0xba2c0104bbdd0615ULL) +#define fpatan_coeff_6 make_floatx80(0x3ffb, 0x9baf7ebf898b42efULL) + +struct fpatan_data { + /* High and low parts of atan(x). */ + floatx80 atan_high, atan_low; +}; + +static const struct fpatan_data fpatan_table[9] = { + { floatx80_zero_init, + floatx80_zero_init }, + { make_floatx80_init(0x3ffb, 0xfeadd4d5617b6e33ULL), + make_floatx80_init(0xbfb9, 0xdda19d8305ddc420ULL) }, + { make_floatx80_init(0x3ffc, 0xfadbafc96406eb15ULL), + make_floatx80_init(0x3fbb, 0xdb8f3debef442fccULL) }, + { make_floatx80_init(0x3ffd, 0xb7b0ca0f26f78474ULL), + make_floatx80_init(0xbfbc, 0xeab9bdba460376faULL) }, + { make_floatx80_init(0x3ffd, 0xed63382b0dda7b45ULL), + make_floatx80_init(0x3fbc, 0xdfc88bd978751a06ULL) }, + { make_floatx80_init(0x3ffe, 0x8f005d5ef7f59f9bULL), + make_floatx80_init(0x3fbd, 0xb906bc2ccb886e90ULL) }, + { make_floatx80_init(0x3ffe, 0xa4bc7d1934f70924ULL), + make_floatx80_init(0x3fbb, 0xcd43f9522bed64f8ULL) }, + { make_floatx80_init(0x3ffe, 0xb8053e2bc2319e74ULL), + make_floatx80_init(0xbfbc, 0xd3496ab7bd6eef0cULL) }, + { make_floatx80_init(0x3ffe, 0xc90fdaa22168c235ULL), + make_floatx80_init(0xbfbc, 0xece675d1fc8f8cbcULL) }, +}; + +void helper_fpatan(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + uint64_t arg0_sig = extractFloatx80Frac(ST0); + int32_t arg0_exp = extractFloatx80Exp(ST0); + bool arg0_sign = extractFloatx80Sign(ST0); + uint64_t arg1_sig = extractFloatx80Frac(ST1); + int32_t arg1_exp = extractFloatx80Exp(ST1); + bool arg1_sign = extractFloatx80Sign(ST1); + + if (floatx80_is_signaling_nan(ST0, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_silence_nan(ST0, &env->fp_status); + } else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_silence_nan(ST1, &env->fp_status); + } else if (floatx80_invalid_encoding(ST0) || + floatx80_invalid_encoding(ST1)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_default_nan(&env->fp_status); + } else if (floatx80_is_any_nan(ST0)) { + ST1 = ST0; + } else if (floatx80_is_any_nan(ST1)) { + /* Pass this NaN through. */ + } else if (floatx80_is_zero(ST1) && !arg0_sign) { + /* Pass this zero through. */ + } else if (((floatx80_is_infinity(ST0) && !floatx80_is_infinity(ST1)) || + arg0_exp - arg1_exp >= 80) && + !arg0_sign) { + /* + * Dividing ST1 by ST0 gives the correct result up to + * rounding, and avoids spurious underflow exceptions that + * might result from passing some small values through the + * polynomial approximation, but if a finite nonzero result of + * division is exact, the result of fpatan is still inexact + * (and underflowing where appropriate). + */ + signed char save_prec = env->fp_status.floatx80_rounding_precision; + env->fp_status.floatx80_rounding_precision = 80; + ST1 = floatx80_div(ST1, ST0, &env->fp_status); + env->fp_status.floatx80_rounding_precision = save_prec; + if (!floatx80_is_zero(ST1) && + !(get_float_exception_flags(&env->fp_status) & + float_flag_inexact)) { + /* + * The mathematical result is very slightly closer to zero + * than this exact result. Round a value with the + * significand adjusted accordingly to get the correct + * exceptions, and possibly an adjusted result depending + * on the rounding mode. + */ + uint64_t sig = extractFloatx80Frac(ST1); + int32_t exp = extractFloatx80Exp(ST1); + bool sign = extractFloatx80Sign(ST1); + if (exp == 0) { + normalizeFloatx80Subnormal(sig, &exp, &sig); + } + ST1 = normalizeRoundAndPackFloatx80(80, sign, exp, sig - 1, + -1, &env->fp_status); + } + } else { + /* The result is inexact. */ + bool rsign = arg1_sign; + int32_t rexp; + uint64_t rsig0, rsig1; + if (floatx80_is_zero(ST1)) { + /* + * ST0 is negative. The result is pi with the sign of + * ST1. + */ + rexp = pi_exp; + rsig0 = pi_sig_high; + rsig1 = pi_sig_low; + } else if (floatx80_is_infinity(ST1)) { + if (floatx80_is_infinity(ST0)) { + if (arg0_sign) { + rexp = pi_34_exp; + rsig0 = pi_34_sig_high; + rsig1 = pi_34_sig_low; + } else { + rexp = pi_4_exp; + rsig0 = pi_4_sig_high; + rsig1 = pi_4_sig_low; + } + } else { + rexp = pi_2_exp; + rsig0 = pi_2_sig_high; + rsig1 = pi_2_sig_low; + } + } else if (floatx80_is_zero(ST0) || arg1_exp - arg0_exp >= 80) { + rexp = pi_2_exp; + rsig0 = pi_2_sig_high; + rsig1 = pi_2_sig_low; + } else if (floatx80_is_infinity(ST0) || arg0_exp - arg1_exp >= 80) { + /* ST0 is negative. */ + rexp = pi_exp; + rsig0 = pi_sig_high; + rsig1 = pi_sig_low; + } else { + /* + * ST0 and ST1 are finite, nonzero and with exponents not + * too far apart. + */ + int32_t adj_exp, num_exp, den_exp, xexp, yexp, n, texp, zexp, aexp; + int32_t azexp, axexp; + bool adj_sub, ysign, zsign; + uint64_t adj_sig0, adj_sig1, num_sig, den_sig, xsig0, xsig1; + uint64_t msig0, msig1, msig2, remsig0, remsig1, remsig2; + uint64_t ysig0, ysig1, tsig, zsig0, zsig1, asig0, asig1; + uint64_t azsig0, azsig1; + uint64_t azsig2, azsig3, axsig0, axsig1; + floatx80 x8; + FloatRoundMode save_mode = env->fp_status.float_rounding_mode; + signed char save_prec = env->fp_status.floatx80_rounding_precision; + env->fp_status.float_rounding_mode = float_round_nearest_even; + env->fp_status.floatx80_rounding_precision = 80; + + if (arg0_exp == 0) { + normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig); + } + if (arg1_exp == 0) { + normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig); + } + if (arg0_exp > arg1_exp || + (arg0_exp == arg1_exp && arg0_sig >= arg1_sig)) { + /* Work with abs(ST1) / abs(ST0). */ + num_exp = arg1_exp; + num_sig = arg1_sig; + den_exp = arg0_exp; + den_sig = arg0_sig; + if (arg0_sign) { + /* The result is subtracted from pi. */ + adj_exp = pi_exp; + adj_sig0 = pi_sig_high; + adj_sig1 = pi_sig_low; + adj_sub = true; + } else { + /* The result is used as-is. */ + adj_exp = 0; + adj_sig0 = 0; + adj_sig1 = 0; + adj_sub = false; + } + } else { + /* Work with abs(ST0) / abs(ST1). */ + num_exp = arg0_exp; + num_sig = arg0_sig; + den_exp = arg1_exp; + den_sig = arg1_sig; + /* The result is added to or subtracted from pi/2. */ + adj_exp = pi_2_exp; + adj_sig0 = pi_2_sig_high; + adj_sig1 = pi_2_sig_low; + adj_sub = !arg0_sign; + } + + /* + * Compute x = num/den, where 0 < x <= 1 and x is not too + * small. + */ + xexp = num_exp - den_exp + 0x3ffe; + remsig0 = num_sig; + remsig1 = 0; + if (den_sig <= remsig0) { + shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1); + ++xexp; + } + xsig0 = estimateDiv128To64(remsig0, remsig1, den_sig); + mul64To128(den_sig, xsig0, &msig0, &msig1); + sub128(remsig0, remsig1, msig0, msig1, &remsig0, &remsig1); + while ((int64_t) remsig0 < 0) { + --xsig0; + add128(remsig0, remsig1, 0, den_sig, &remsig0, &remsig1); + } + xsig1 = estimateDiv128To64(remsig1, 0, den_sig); + /* + * No need to correct any estimation error in xsig1; even + * with such error, it is accurate enough. + */ + + /* + * Split x as x = t + y, where t = n/8 is the nearest + * multiple of 1/8 to x. + */ + x8 = normalizeRoundAndPackFloatx80(80, false, xexp + 3, xsig0, + xsig1, &env->fp_status); + n = floatx80_to_int32(x8, &env->fp_status); + if (n == 0) { + ysign = false; + yexp = xexp; + ysig0 = xsig0; + ysig1 = xsig1; + texp = 0; + tsig = 0; + } else { + int shift = clz32(n) + 32; + texp = 0x403b - shift; + tsig = n; + tsig <<= shift; + if (texp == xexp) { + sub128(xsig0, xsig1, tsig, 0, &ysig0, &ysig1); + if ((int64_t) ysig0 >= 0) { + ysign = false; + if (ysig0 == 0) { + if (ysig1 == 0) { + yexp = 0; + } else { + shift = clz64(ysig1) + 64; + yexp = xexp - shift; + shift128Left(ysig0, ysig1, shift, + &ysig0, &ysig1); + } + } else { + shift = clz64(ysig0); + yexp = xexp - shift; + shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1); + } + } else { + ysign = true; + sub128(0, 0, ysig0, ysig1, &ysig0, &ysig1); + if (ysig0 == 0) { + shift = clz64(ysig1) + 64; + } else { + shift = clz64(ysig0); + } + yexp = xexp - shift; + shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1); + } + } else { + /* + * t's exponent must be greater than x's because t + * is positive and the nearest multiple of 1/8 to + * x, and if x has a greater exponent, the power + * of 2 with that exponent is also a multiple of + * 1/8. + */ + uint64_t usig0, usig1; + shift128RightJamming(xsig0, xsig1, texp - xexp, + &usig0, &usig1); + ysign = true; + sub128(tsig, 0, usig0, usig1, &ysig0, &ysig1); + if (ysig0 == 0) { + shift = clz64(ysig1) + 64; + } else { + shift = clz64(ysig0); + } + yexp = texp - shift; + shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1); + } + } + + /* + * Compute z = y/(1+tx), so arctan(x) = arctan(t) + + * arctan(z). + */ + zsign = ysign; + if (texp == 0 || yexp == 0) { + zexp = yexp; + zsig0 = ysig0; + zsig1 = ysig1; + } else { + /* + * t <= 1, x <= 1 and if both are 1 then y is 0, so tx < 1. + */ + int32_t dexp = texp + xexp - 0x3ffe; + uint64_t dsig0, dsig1, dsig2; + mul128By64To192(xsig0, xsig1, tsig, &dsig0, &dsig1, &dsig2); + /* + * dexp <= 0x3fff (and if equal, dsig0 has a leading 0 + * bit). Add 1 to produce the denominator 1+tx. + */ + shift128RightJamming(dsig0, dsig1, 0x3fff - dexp, + &dsig0, &dsig1); + dsig0 |= 0x8000000000000000ULL; + zexp = yexp - 1; + remsig0 = ysig0; + remsig1 = ysig1; + remsig2 = 0; + if (dsig0 <= remsig0) { + shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1); + ++zexp; + } + zsig0 = estimateDiv128To64(remsig0, remsig1, dsig0); + mul128By64To192(dsig0, dsig1, zsig0, &msig0, &msig1, &msig2); + sub192(remsig0, remsig1, remsig2, msig0, msig1, msig2, + &remsig0, &remsig1, &remsig2); + while ((int64_t) remsig0 < 0) { + --zsig0; + add192(remsig0, remsig1, remsig2, 0, dsig0, dsig1, + &remsig0, &remsig1, &remsig2); + } + zsig1 = estimateDiv128To64(remsig1, remsig2, dsig0); + /* No need to correct any estimation error in zsig1. */ + } + + if (zexp == 0) { + azexp = 0; + azsig0 = 0; + azsig1 = 0; + } else { + floatx80 z2, accum; + uint64_t z2sig0, z2sig1, z2sig2, z2sig3; + /* Compute z^2. */ + mul128To256(zsig0, zsig1, zsig0, zsig1, + &z2sig0, &z2sig1, &z2sig2, &z2sig3); + z2 = normalizeRoundAndPackFloatx80(80, false, + zexp + zexp - 0x3ffe, + z2sig0, z2sig1, + &env->fp_status); + + /* Compute the lower parts of the polynomial expansion. */ + accum = floatx80_mul(fpatan_coeff_6, z2, &env->fp_status); + accum = floatx80_add(fpatan_coeff_5, accum, &env->fp_status); + accum = floatx80_mul(accum, z2, &env->fp_status); + accum = floatx80_add(fpatan_coeff_4, accum, &env->fp_status); + accum = floatx80_mul(accum, z2, &env->fp_status); + accum = floatx80_add(fpatan_coeff_3, accum, &env->fp_status); + accum = floatx80_mul(accum, z2, &env->fp_status); + accum = floatx80_add(fpatan_coeff_2, accum, &env->fp_status); + accum = floatx80_mul(accum, z2, &env->fp_status); + accum = floatx80_add(fpatan_coeff_1, accum, &env->fp_status); + accum = floatx80_mul(accum, z2, &env->fp_status); + + /* + * The full polynomial expansion is z*(fpatan_coeff_0 + accum). + * fpatan_coeff_0 is 1, and accum is negative and much smaller. + */ + aexp = extractFloatx80Exp(fpatan_coeff_0); + shift128RightJamming(extractFloatx80Frac(accum), 0, + aexp - extractFloatx80Exp(accum), + &asig0, &asig1); + sub128(extractFloatx80Frac(fpatan_coeff_0), 0, asig0, asig1, + &asig0, &asig1); + /* Multiply by z to compute arctan(z). */ + azexp = aexp + zexp - 0x3ffe; + mul128To256(asig0, asig1, zsig0, zsig1, &azsig0, &azsig1, + &azsig2, &azsig3); + } + + /* Add arctan(t) (positive or zero) and arctan(z) (sign zsign). */ + if (texp == 0) { + /* z is positive. */ + axexp = azexp; + axsig0 = azsig0; + axsig1 = azsig1; + } else { + bool low_sign = extractFloatx80Sign(fpatan_table[n].atan_low); + int32_t low_exp = extractFloatx80Exp(fpatan_table[n].atan_low); + uint64_t low_sig0 = + extractFloatx80Frac(fpatan_table[n].atan_low); + uint64_t low_sig1 = 0; + axexp = extractFloatx80Exp(fpatan_table[n].atan_high); + axsig0 = extractFloatx80Frac(fpatan_table[n].atan_high); + axsig1 = 0; + shift128RightJamming(low_sig0, low_sig1, axexp - low_exp, + &low_sig0, &low_sig1); + if (low_sign) { + sub128(axsig0, axsig1, low_sig0, low_sig1, + &axsig0, &axsig1); + } else { + add128(axsig0, axsig1, low_sig0, low_sig1, + &axsig0, &axsig1); + } + if (azexp >= axexp) { + shift128RightJamming(axsig0, axsig1, azexp - axexp + 1, + &axsig0, &axsig1); + axexp = azexp + 1; + shift128RightJamming(azsig0, azsig1, 1, + &azsig0, &azsig1); + } else { + shift128RightJamming(axsig0, axsig1, 1, + &axsig0, &axsig1); + shift128RightJamming(azsig0, azsig1, axexp - azexp + 1, + &azsig0, &azsig1); + ++axexp; + } + if (zsign) { + sub128(axsig0, axsig1, azsig0, azsig1, + &axsig0, &axsig1); + } else { + add128(axsig0, axsig1, azsig0, azsig1, + &axsig0, &axsig1); + } + } + + if (adj_exp == 0) { + rexp = axexp; + rsig0 = axsig0; + rsig1 = axsig1; + } else { + /* + * Add or subtract arctan(x) (exponent axexp, + * significand axsig0 and axsig1, positive, not + * necessarily normalized) to the number given by + * adj_exp, adj_sig0 and adj_sig1, according to + * adj_sub. + */ + if (adj_exp >= axexp) { + shift128RightJamming(axsig0, axsig1, adj_exp - axexp + 1, + &axsig0, &axsig1); + rexp = adj_exp + 1; + shift128RightJamming(adj_sig0, adj_sig1, 1, + &adj_sig0, &adj_sig1); + } else { + shift128RightJamming(axsig0, axsig1, 1, + &axsig0, &axsig1); + shift128RightJamming(adj_sig0, adj_sig1, + axexp - adj_exp + 1, + &adj_sig0, &adj_sig1); + rexp = axexp + 1; + } + if (adj_sub) { + sub128(adj_sig0, adj_sig1, axsig0, axsig1, + &rsig0, &rsig1); + } else { + add128(adj_sig0, adj_sig1, axsig0, axsig1, + &rsig0, &rsig1); + } + } + + env->fp_status.float_rounding_mode = save_mode; + env->fp_status.floatx80_rounding_precision = save_prec; + } + /* This result is inexact. */ + rsig1 |= 1; + ST1 = normalizeRoundAndPackFloatx80(80, rsign, rexp, + rsig0, rsig1, &env->fp_status); + } + + fpop(env); + merge_exception_flags(env, old_flags); +} + +void helper_fxtract(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + CPU_LDoubleU temp; + + temp.d = ST0; + + if (floatx80_is_zero(ST0)) { + /* Easy way to generate -inf and raising division by 0 exception */ + ST0 = floatx80_div(floatx80_chs(floatx80_one), floatx80_zero, + &env->fp_status); + fpush(env); + ST0 = temp.d; + } else if (floatx80_invalid_encoding(ST0)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_default_nan(&env->fp_status); + fpush(env); + ST0 = ST1; + } else if (floatx80_is_any_nan(ST0)) { + if (floatx80_is_signaling_nan(ST0, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_silence_nan(ST0, &env->fp_status); + } + fpush(env); + ST0 = ST1; + } else if (floatx80_is_infinity(ST0)) { + fpush(env); + ST0 = ST1; + ST1 = floatx80_infinity; + } else { + int expdif; + + if (EXPD(temp) == 0) { + int shift = clz64(temp.l.lower); + temp.l.lower <<= shift; + expdif = 1 - EXPBIAS - shift; + float_raise(float_flag_input_denormal, &env->fp_status); + } else { + expdif = EXPD(temp) - EXPBIAS; + } + /* DP exponent bias */ + ST0 = int32_to_floatx80(expdif, &env->fp_status); + fpush(env); + BIASEXPONENT(temp); + ST0 = temp.d; + } + merge_exception_flags(env, old_flags); +} + +static void helper_fprem_common(CPUX86State *env, bool mod) +{ + uint8_t old_flags = save_exception_flags(env); + uint64_t quotient; + CPU_LDoubleU temp0, temp1; + int exp0, exp1, expdiff; + + temp0.d = ST0; + temp1.d = ST1; + exp0 = EXPD(temp0); + exp1 = EXPD(temp1); + + env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ + if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) || + exp0 == 0x7fff || exp1 == 0x7fff || + floatx80_invalid_encoding(ST0) || floatx80_invalid_encoding(ST1)) { + ST0 = floatx80_modrem(ST0, ST1, mod, "ient, &env->fp_status); + } else { + if (exp0 == 0) { + exp0 = 1 - clz64(temp0.l.lower); + } + if (exp1 == 0) { + exp1 = 1 - clz64(temp1.l.lower); + } + expdiff = exp0 - exp1; + if (expdiff < 64) { + ST0 = floatx80_modrem(ST0, ST1, mod, "ient, &env->fp_status); + env->fpus |= (quotient & 0x4) << (8 - 2); /* (C0) <-- q2 */ + env->fpus |= (quotient & 0x2) << (14 - 1); /* (C3) <-- q1 */ + env->fpus |= (quotient & 0x1) << (9 - 0); /* (C1) <-- q0 */ + } else { + /* + * Partial remainder. This choice of how many bits to + * process at once is specified in AMD instruction set + * manuals, and empirically is followed by Intel + * processors as well; it ensures that the final remainder + * operation in a loop does produce the correct low three + * bits of the quotient. AMD manuals specify that the + * flags other than C2 are cleared, and empirically Intel + * processors clear them as well. + */ + int n = 32 + (expdiff % 32); + temp1.d = floatx80_scalbn(temp1.d, expdiff - n, &env->fp_status); + ST0 = floatx80_mod(ST0, temp1.d, &env->fp_status); + env->fpus |= 0x400; /* C2 <-- 1 */ + } + } + merge_exception_flags(env, old_flags); +} + +void helper_fprem1(CPUX86State *env) +{ + helper_fprem_common(env, false); +} + +void helper_fprem(CPUX86State *env) +{ + helper_fprem_common(env, true); +} + +/* 128-bit significand of log2(e). */ +#define log2_e_sig_high 0xb8aa3b295c17f0bbULL +#define log2_e_sig_low 0xbe87fed0691d3e89ULL + +/* + * Polynomial coefficients for an approximation to log2((1+x)/(1-x)), + * with only odd powers of x used, for x in the interval [2*sqrt(2)-3, + * 3-2*sqrt(2)], which corresponds to logarithms of numbers in the + * interval [sqrt(2)/2, sqrt(2)]. + */ +#define fyl2x_coeff_0 make_floatx80(0x4000, 0xb8aa3b295c17f0bcULL) +#define fyl2x_coeff_0_low make_floatx80(0xbfbf, 0x834972fe2d7bab1bULL) +#define fyl2x_coeff_1 make_floatx80(0x3ffe, 0xf6384ee1d01febb8ULL) +#define fyl2x_coeff_2 make_floatx80(0x3ffe, 0x93bb62877cdfa2e3ULL) +#define fyl2x_coeff_3 make_floatx80(0x3ffd, 0xd30bb153d808f269ULL) +#define fyl2x_coeff_4 make_floatx80(0x3ffd, 0xa42589eaf451499eULL) +#define fyl2x_coeff_5 make_floatx80(0x3ffd, 0x864d42c0f8f17517ULL) +#define fyl2x_coeff_6 make_floatx80(0x3ffc, 0xe3476578adf26272ULL) +#define fyl2x_coeff_7 make_floatx80(0x3ffc, 0xc506c5f874e6d80fULL) +#define fyl2x_coeff_8 make_floatx80(0x3ffc, 0xac5cf50cc57d6372ULL) +#define fyl2x_coeff_9 make_floatx80(0x3ffc, 0xb1ed0066d971a103ULL) + +/* + * Compute an approximation of log2(1+arg), where 1+arg is in the + * interval [sqrt(2)/2, sqrt(2)]. It is assumed that when this + * function is called, rounding precision is set to 80 and the + * round-to-nearest mode is in effect. arg must not be exactly zero, + * and must not be so close to zero that underflow might occur. + */ +static void helper_fyl2x_common(CPUX86State *env, floatx80 arg, int32_t *exp, + uint64_t *sig0, uint64_t *sig1) +{ + uint64_t arg0_sig = extractFloatx80Frac(arg); + int32_t arg0_exp = extractFloatx80Exp(arg); + bool arg0_sign = extractFloatx80Sign(arg); + bool asign; + int32_t dexp, texp, aexp; + uint64_t dsig0, dsig1, tsig0, tsig1, rsig0, rsig1, rsig2; + uint64_t msig0, msig1, msig2, t2sig0, t2sig1, t2sig2, t2sig3; + uint64_t asig0, asig1, asig2, asig3, bsig0, bsig1; + floatx80 t2, accum; + + /* + * Compute an approximation of arg/(2+arg), with extra precision, + * as the argument to a polynomial approximation. The extra + * precision is only needed for the first term of the + * approximation, with subsequent terms being significantly + * smaller; the approximation only uses odd exponents, and the + * square of arg/(2+arg) is at most 17-12*sqrt(2) = 0.029.... + */ + if (arg0_sign) { + dexp = 0x3fff; + shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1); + sub128(0, 0, dsig0, dsig1, &dsig0, &dsig1); + } else { + dexp = 0x4000; + shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1); + dsig0 |= 0x8000000000000000ULL; + } + texp = arg0_exp - dexp + 0x3ffe; + rsig0 = arg0_sig; + rsig1 = 0; + rsig2 = 0; + if (dsig0 <= rsig0) { + shift128Right(rsig0, rsig1, 1, &rsig0, &rsig1); + ++texp; + } + tsig0 = estimateDiv128To64(rsig0, rsig1, dsig0); + mul128By64To192(dsig0, dsig1, tsig0, &msig0, &msig1, &msig2); + sub192(rsig0, rsig1, rsig2, msig0, msig1, msig2, + &rsig0, &rsig1, &rsig2); + while ((int64_t) rsig0 < 0) { + --tsig0; + add192(rsig0, rsig1, rsig2, 0, dsig0, dsig1, + &rsig0, &rsig1, &rsig2); + } + tsig1 = estimateDiv128To64(rsig1, rsig2, dsig0); + /* + * No need to correct any estimation error in tsig1; even with + * such error, it is accurate enough. Now compute the square of + * that approximation. + */ + mul128To256(tsig0, tsig1, tsig0, tsig1, + &t2sig0, &t2sig1, &t2sig2, &t2sig3); + t2 = normalizeRoundAndPackFloatx80(80, false, texp + texp - 0x3ffe, + t2sig0, t2sig1, &env->fp_status); + + /* Compute the lower parts of the polynomial expansion. */ + accum = floatx80_mul(fyl2x_coeff_9, t2, &env->fp_status); + accum = floatx80_add(fyl2x_coeff_8, accum, &env->fp_status); + accum = floatx80_mul(accum, t2, &env->fp_status); + accum = floatx80_add(fyl2x_coeff_7, accum, &env->fp_status); + accum = floatx80_mul(accum, t2, &env->fp_status); + accum = floatx80_add(fyl2x_coeff_6, accum, &env->fp_status); + accum = floatx80_mul(accum, t2, &env->fp_status); + accum = floatx80_add(fyl2x_coeff_5, accum, &env->fp_status); + accum = floatx80_mul(accum, t2, &env->fp_status); + accum = floatx80_add(fyl2x_coeff_4, accum, &env->fp_status); + accum = floatx80_mul(accum, t2, &env->fp_status); + accum = floatx80_add(fyl2x_coeff_3, accum, &env->fp_status); + accum = floatx80_mul(accum, t2, &env->fp_status); + accum = floatx80_add(fyl2x_coeff_2, accum, &env->fp_status); + accum = floatx80_mul(accum, t2, &env->fp_status); + accum = floatx80_add(fyl2x_coeff_1, accum, &env->fp_status); + accum = floatx80_mul(accum, t2, &env->fp_status); + accum = floatx80_add(fyl2x_coeff_0_low, accum, &env->fp_status); + + /* + * The full polynomial expansion is fyl2x_coeff_0 + accum (where + * accum has much lower magnitude, and so, in particular, carry + * out of the addition is not possible), multiplied by t. (This + * expansion is only accurate to about 70 bits, not 128 bits.) + */ + aexp = extractFloatx80Exp(fyl2x_coeff_0); + asign = extractFloatx80Sign(fyl2x_coeff_0); + shift128RightJamming(extractFloatx80Frac(accum), 0, + aexp - extractFloatx80Exp(accum), + &asig0, &asig1); + bsig0 = extractFloatx80Frac(fyl2x_coeff_0); + bsig1 = 0; + if (asign == extractFloatx80Sign(accum)) { + add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1); + } else { + sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1); + } + /* Multiply by t to compute the required result. */ + mul128To256(asig0, asig1, tsig0, tsig1, + &asig0, &asig1, &asig2, &asig3); + aexp += texp - 0x3ffe; + *exp = aexp; + *sig0 = asig0; + *sig1 = asig1; +} + +void helper_fyl2xp1(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + uint64_t arg0_sig = extractFloatx80Frac(ST0); + int32_t arg0_exp = extractFloatx80Exp(ST0); + bool arg0_sign = extractFloatx80Sign(ST0); + uint64_t arg1_sig = extractFloatx80Frac(ST1); + int32_t arg1_exp = extractFloatx80Exp(ST1); + bool arg1_sign = extractFloatx80Sign(ST1); + + if (floatx80_is_signaling_nan(ST0, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_silence_nan(ST0, &env->fp_status); + } else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_silence_nan(ST1, &env->fp_status); + } else if (floatx80_invalid_encoding(ST0) || + floatx80_invalid_encoding(ST1)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_default_nan(&env->fp_status); + } else if (floatx80_is_any_nan(ST0)) { + ST1 = ST0; + } else if (floatx80_is_any_nan(ST1)) { + /* Pass this NaN through. */ + } else if (arg0_exp > 0x3ffd || + (arg0_exp == 0x3ffd && arg0_sig > (arg0_sign ? + 0x95f619980c4336f7ULL : + 0xd413cccfe7799211ULL))) { + /* + * Out of range for the instruction (ST0 must have absolute + * value less than 1 - sqrt(2)/2 = 0.292..., according to + * Intel manuals; AMD manuals allow a range from sqrt(2)/2 - 1 + * to sqrt(2) - 1, which we allow here), treat as invalid. + */ + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_default_nan(&env->fp_status); + } else if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) || + arg1_exp == 0x7fff) { + /* + * One argument is zero, or multiplying by infinity; correct + * result is exact and can be obtained by multiplying the + * arguments. + */ + ST1 = floatx80_mul(ST0, ST1, &env->fp_status); + } else if (arg0_exp < 0x3fb0) { + /* + * Multiplying both arguments and an extra-precision version + * of log2(e) is sufficiently precise. + */ + uint64_t sig0, sig1, sig2; + int32_t exp; + if (arg0_exp == 0) { + normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig); + } + if (arg1_exp == 0) { + normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig); + } + mul128By64To192(log2_e_sig_high, log2_e_sig_low, arg0_sig, + &sig0, &sig1, &sig2); + exp = arg0_exp + 1; + mul128By64To192(sig0, sig1, arg1_sig, &sig0, &sig1, &sig2); + exp += arg1_exp - 0x3ffe; + /* This result is inexact. */ + sig1 |= 1; + ST1 = normalizeRoundAndPackFloatx80(80, arg0_sign ^ arg1_sign, exp, + sig0, sig1, &env->fp_status); + } else { + int32_t aexp; + uint64_t asig0, asig1, asig2; + FloatRoundMode save_mode = env->fp_status.float_rounding_mode; + signed char save_prec = env->fp_status.floatx80_rounding_precision; + env->fp_status.float_rounding_mode = float_round_nearest_even; + env->fp_status.floatx80_rounding_precision = 80; + + helper_fyl2x_common(env, ST0, &aexp, &asig0, &asig1); + /* + * Multiply by the second argument to compute the required + * result. + */ + if (arg1_exp == 0) { + normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig); + } + mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2); + aexp += arg1_exp - 0x3ffe; + /* This result is inexact. */ + asig1 |= 1; + env->fp_status.float_rounding_mode = save_mode; + ST1 = normalizeRoundAndPackFloatx80(80, arg0_sign ^ arg1_sign, aexp, + asig0, asig1, &env->fp_status); + env->fp_status.floatx80_rounding_precision = save_prec; + } + fpop(env); + merge_exception_flags(env, old_flags); +} + +void helper_fyl2x(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + uint64_t arg0_sig = extractFloatx80Frac(ST0); + int32_t arg0_exp = extractFloatx80Exp(ST0); + bool arg0_sign = extractFloatx80Sign(ST0); + uint64_t arg1_sig = extractFloatx80Frac(ST1); + int32_t arg1_exp = extractFloatx80Exp(ST1); + bool arg1_sign = extractFloatx80Sign(ST1); + + if (floatx80_is_signaling_nan(ST0, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_silence_nan(ST0, &env->fp_status); + } else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_silence_nan(ST1, &env->fp_status); + } else if (floatx80_invalid_encoding(ST0) || + floatx80_invalid_encoding(ST1)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_default_nan(&env->fp_status); + } else if (floatx80_is_any_nan(ST0)) { + ST1 = ST0; + } else if (floatx80_is_any_nan(ST1)) { + /* Pass this NaN through. */ + } else if (arg0_sign && !floatx80_is_zero(ST0)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_default_nan(&env->fp_status); + } else if (floatx80_is_infinity(ST1)) { + FloatRelation cmp = floatx80_compare(ST0, floatx80_one, + &env->fp_status); + switch (cmp) { + case float_relation_less: + ST1 = floatx80_chs(ST1); + break; + case float_relation_greater: + /* Result is infinity of the same sign as ST1. */ + break; + default: + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_default_nan(&env->fp_status); + break; + } + } else if (floatx80_is_infinity(ST0)) { + if (floatx80_is_zero(ST1)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_default_nan(&env->fp_status); + } else if (arg1_sign) { + ST1 = floatx80_chs(ST0); + } else { + ST1 = ST0; + } + } else if (floatx80_is_zero(ST0)) { + if (floatx80_is_zero(ST1)) { + float_raise(float_flag_invalid, &env->fp_status); + ST1 = floatx80_default_nan(&env->fp_status); + } else { + /* Result is infinity with opposite sign to ST1. */ + float_raise(float_flag_divbyzero, &env->fp_status); + ST1 = make_floatx80(arg1_sign ? 0x7fff : 0xffff, + 0x8000000000000000ULL); + } + } else if (floatx80_is_zero(ST1)) { + if (floatx80_lt(ST0, floatx80_one, &env->fp_status)) { + ST1 = floatx80_chs(ST1); + } + /* Otherwise, ST1 is already the correct result. */ + } else if (floatx80_eq(ST0, floatx80_one, &env->fp_status)) { + if (arg1_sign) { + ST1 = floatx80_chs(floatx80_zero); + } else { + ST1 = floatx80_zero; + } + } else { + int32_t int_exp; + floatx80 arg0_m1; + FloatRoundMode save_mode = env->fp_status.float_rounding_mode; + signed char save_prec = env->fp_status.floatx80_rounding_precision; + env->fp_status.float_rounding_mode = float_round_nearest_even; + env->fp_status.floatx80_rounding_precision = 80; + + if (arg0_exp == 0) { + normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig); + } + if (arg1_exp == 0) { + normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig); + } + int_exp = arg0_exp - 0x3fff; + if (arg0_sig > 0xb504f333f9de6484ULL) { + ++int_exp; + } + arg0_m1 = floatx80_sub(floatx80_scalbn(ST0, -int_exp, + &env->fp_status), + floatx80_one, &env->fp_status); + if (floatx80_is_zero(arg0_m1)) { + /* Exact power of 2; multiply by ST1. */ + env->fp_status.float_rounding_mode = save_mode; + ST1 = floatx80_mul(int32_to_floatx80(int_exp, &env->fp_status), + ST1, &env->fp_status); + } else { + bool asign = extractFloatx80Sign(arg0_m1); + int32_t aexp; + uint64_t asig0, asig1, asig2; + helper_fyl2x_common(env, arg0_m1, &aexp, &asig0, &asig1); + if (int_exp != 0) { + bool isign = (int_exp < 0); + int32_t iexp; + uint64_t isig; + int shift; + int_exp = isign ? -int_exp : int_exp; + shift = clz32(int_exp) + 32; + isig = int_exp; + isig <<= shift; + iexp = 0x403e - shift; + shift128RightJamming(asig0, asig1, iexp - aexp, + &asig0, &asig1); + if (asign == isign) { + add128(isig, 0, asig0, asig1, &asig0, &asig1); + } else { + sub128(isig, 0, asig0, asig1, &asig0, &asig1); + } + aexp = iexp; + asign = isign; + } + /* + * Multiply by the second argument to compute the required + * result. + */ + if (arg1_exp == 0) { + normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig); + } + mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2); + aexp += arg1_exp - 0x3ffe; + /* This result is inexact. */ + asig1 |= 1; + env->fp_status.float_rounding_mode = save_mode; + ST1 = normalizeRoundAndPackFloatx80(80, asign ^ arg1_sign, aexp, + asig0, asig1, &env->fp_status); + } + + env->fp_status.floatx80_rounding_precision = save_prec; + } + fpop(env); + merge_exception_flags(env, old_flags); +} + +void helper_fsqrt(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + if (floatx80_is_neg(ST0)) { + env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ + env->fpus |= 0x400; + } + ST0 = floatx80_sqrt(ST0, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fsincos(CPUX86State *env) +{ + double fptemp = floatx80_to_double(env, ST0); + + if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) { + env->fpus |= 0x400; + } else { + ST0 = double_to_floatx80(env, sin(fptemp)); + fpush(env); + ST0 = double_to_floatx80(env, cos(fptemp)); + env->fpus &= ~0x400; /* C2 <-- 0 */ + /* the above code is for |arg| < 2**63 only */ + } +} + +void helper_frndint(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + ST0 = floatx80_round_to_int(ST0, &env->fp_status); + merge_exception_flags(env, old_flags); +} + +void helper_fscale(CPUX86State *env) +{ + uint8_t old_flags = save_exception_flags(env); + if (floatx80_invalid_encoding(ST1) || floatx80_invalid_encoding(ST0)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_default_nan(&env->fp_status); + } else if (floatx80_is_any_nan(ST1)) { + if (floatx80_is_signaling_nan(ST0, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + } + ST0 = ST1; + if (floatx80_is_signaling_nan(ST0, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_silence_nan(ST0, &env->fp_status); + } + } else if (floatx80_is_infinity(ST1) && + !floatx80_invalid_encoding(ST0) && + !floatx80_is_any_nan(ST0)) { + if (floatx80_is_neg(ST1)) { + if (floatx80_is_infinity(ST0)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_default_nan(&env->fp_status); + } else { + ST0 = (floatx80_is_neg(ST0) ? + floatx80_chs(floatx80_zero) : + floatx80_zero); + } + } else { + if (floatx80_is_zero(ST0)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_default_nan(&env->fp_status); + } else { + ST0 = (floatx80_is_neg(ST0) ? + floatx80_chs(floatx80_infinity) : + floatx80_infinity); + } + } + } else { + int n; + signed char save = env->fp_status.floatx80_rounding_precision; + uint8_t save_flags = get_float_exception_flags(&env->fp_status); + set_float_exception_flags(0, &env->fp_status); + n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status); + set_float_exception_flags(save_flags, &env->fp_status); + env->fp_status.floatx80_rounding_precision = 80; + ST0 = floatx80_scalbn(ST0, n, &env->fp_status); + env->fp_status.floatx80_rounding_precision = save; + } + merge_exception_flags(env, old_flags); +} + +void helper_fsin(CPUX86State *env) +{ + double fptemp = floatx80_to_double(env, ST0); + + if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) { + env->fpus |= 0x400; + } else { + ST0 = double_to_floatx80(env, sin(fptemp)); + env->fpus &= ~0x400; /* C2 <-- 0 */ + /* the above code is for |arg| < 2**53 only */ + } +} + +void helper_fcos(CPUX86State *env) +{ + double fptemp = floatx80_to_double(env, ST0); + + if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) { + env->fpus |= 0x400; + } else { + ST0 = double_to_floatx80(env, cos(fptemp)); + env->fpus &= ~0x400; /* C2 <-- 0 */ + /* the above code is for |arg| < 2**63 only */ + } +} + +void helper_fxam_ST0(CPUX86State *env) +{ + CPU_LDoubleU temp; + int expdif; + + temp.d = ST0; + + env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */ + if (SIGND(temp)) { + env->fpus |= 0x200; /* C1 <-- 1 */ + } + + if (env->fptags[env->fpstt]) { + env->fpus |= 0x4100; /* Empty */ + return; + } + + expdif = EXPD(temp); + if (expdif == MAXEXPD) { + if (MANTD(temp) == 0x8000000000000000ULL) { + env->fpus |= 0x500; /* Infinity */ + } else if (MANTD(temp) & 0x8000000000000000ULL) { + env->fpus |= 0x100; /* NaN */ + } + } else if (expdif == 0) { + if (MANTD(temp) == 0) { + env->fpus |= 0x4000; /* Zero */ + } else { + env->fpus |= 0x4400; /* Denormal */ + } + } else if (MANTD(temp) & 0x8000000000000000ULL) { + env->fpus |= 0x400; + } +} + +static void do_fstenv(CPUX86State *env, target_ulong ptr, int data32, + uintptr_t retaddr) +{ + int fpus, fptag, exp, i; + uint64_t mant; + CPU_LDoubleU tmp; + + fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; + fptag = 0; + for (i = 7; i >= 0; i--) { + fptag <<= 2; + if (env->fptags[i]) { + fptag |= 3; + } else { + tmp.d = env->fpregs[i].d; + exp = EXPD(tmp); + mant = MANTD(tmp); + if (exp == 0 && mant == 0) { + /* zero */ + fptag |= 1; + } else if (exp == 0 || exp == MAXEXPD + || (mant & (1LL << 63)) == 0) { + /* NaNs, infinity, denormal */ + fptag |= 2; + } + } + } + if (data32) { + /* 32 bit */ + cpu_stl_data_ra(env, ptr, env->fpuc, retaddr); + cpu_stl_data_ra(env, ptr + 4, fpus, retaddr); + cpu_stl_data_ra(env, ptr + 8, fptag, retaddr); + cpu_stl_data_ra(env, ptr + 12, 0, retaddr); /* fpip */ + cpu_stl_data_ra(env, ptr + 16, 0, retaddr); /* fpcs */ + cpu_stl_data_ra(env, ptr + 20, 0, retaddr); /* fpoo */ + cpu_stl_data_ra(env, ptr + 24, 0, retaddr); /* fpos */ + } else { + /* 16 bit */ + cpu_stw_data_ra(env, ptr, env->fpuc, retaddr); + cpu_stw_data_ra(env, ptr + 2, fpus, retaddr); + cpu_stw_data_ra(env, ptr + 4, fptag, retaddr); + cpu_stw_data_ra(env, ptr + 6, 0, retaddr); + cpu_stw_data_ra(env, ptr + 8, 0, retaddr); + cpu_stw_data_ra(env, ptr + 10, 0, retaddr); + cpu_stw_data_ra(env, ptr + 12, 0, retaddr); + } +} + +void helper_fstenv(CPUX86State *env, target_ulong ptr, int data32) +{ + do_fstenv(env, ptr, data32, GETPC()); +} + +static void cpu_set_fpus(CPUX86State *env, uint16_t fpus) +{ + env->fpstt = (fpus >> 11) & 7; + env->fpus = fpus & ~0x3800 & ~FPUS_B; + env->fpus |= env->fpus & FPUS_SE ? FPUS_B : 0; +#if !defined(CONFIG_USER_ONLY) + if (!(env->fpus & FPUS_SE)) { + /* + * Here the processor deasserts FERR#; in response, the chipset deasserts + * IGNNE#. + */ + cpu_clear_ignne(); + } +#endif +} + +static void do_fldenv(CPUX86State *env, target_ulong ptr, int data32, + uintptr_t retaddr) +{ + int i, fpus, fptag; + + if (data32) { + cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr)); + fpus = cpu_lduw_data_ra(env, ptr + 4, retaddr); + fptag = cpu_lduw_data_ra(env, ptr + 8, retaddr); + } else { + cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr)); + fpus = cpu_lduw_data_ra(env, ptr + 2, retaddr); + fptag = cpu_lduw_data_ra(env, ptr + 4, retaddr); + } + cpu_set_fpus(env, fpus); + for (i = 0; i < 8; i++) { + env->fptags[i] = ((fptag & 3) == 3); + fptag >>= 2; + } +} + +void helper_fldenv(CPUX86State *env, target_ulong ptr, int data32) +{ + do_fldenv(env, ptr, data32, GETPC()); +} + +void helper_fsave(CPUX86State *env, target_ulong ptr, int data32) +{ + floatx80 tmp; + int i; + + do_fstenv(env, ptr, data32, GETPC()); + + ptr += (14 << data32); + for (i = 0; i < 8; i++) { + tmp = ST(i); + helper_fstt(env, tmp, ptr, GETPC()); + ptr += 10; + } + + /* fninit */ + env->fpus = 0; + env->fpstt = 0; + cpu_set_fpuc(env, 0x37f); + env->fptags[0] = 1; + env->fptags[1] = 1; + env->fptags[2] = 1; + env->fptags[3] = 1; + env->fptags[4] = 1; + env->fptags[5] = 1; + env->fptags[6] = 1; + env->fptags[7] = 1; +} + +void helper_frstor(CPUX86State *env, target_ulong ptr, int data32) +{ + floatx80 tmp; + int i; + + do_fldenv(env, ptr, data32, GETPC()); + ptr += (14 << data32); + + for (i = 0; i < 8; i++) { + tmp = helper_fldt(env, ptr, GETPC()); + ST(i) = tmp; + ptr += 10; + } +} + +#if defined(CONFIG_USER_ONLY) +void cpu_x86_fsave(CPUX86State *env, target_ulong ptr, int data32) +{ + helper_fsave(env, ptr, data32); +} + +void cpu_x86_frstor(CPUX86State *env, target_ulong ptr, int data32) +{ + helper_frstor(env, ptr, data32); +} +#endif + +#define XO(X) offsetof(X86XSaveArea, X) + +static void do_xsave_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + int fpus, fptag, i; + target_ulong addr; + + fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; + fptag = 0; + for (i = 0; i < 8; i++) { + fptag |= (env->fptags[i] << i); + } + + cpu_stw_data_ra(env, ptr + XO(legacy.fcw), env->fpuc, ra); + cpu_stw_data_ra(env, ptr + XO(legacy.fsw), fpus, ra); + cpu_stw_data_ra(env, ptr + XO(legacy.ftw), fptag ^ 0xff, ra); + + /* In 32-bit mode this is eip, sel, dp, sel. + In 64-bit mode this is rip, rdp. + But in either case we don't write actual data, just zeros. */ + cpu_stq_data_ra(env, ptr + XO(legacy.fpip), 0, ra); /* eip+sel; rip */ + cpu_stq_data_ra(env, ptr + XO(legacy.fpdp), 0, ra); /* edp+sel; rdp */ + + addr = ptr + XO(legacy.fpregs); + for (i = 0; i < 8; i++) { + floatx80 tmp = ST(i); + helper_fstt(env, tmp, addr, ra); + addr += 16; + } +} + +static void do_xsave_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + update_mxcsr_from_sse_status(env); + cpu_stl_data_ra(env, ptr + XO(legacy.mxcsr), env->mxcsr, ra); + cpu_stl_data_ra(env, ptr + XO(legacy.mxcsr_mask), 0x0000ffff, ra); +} + +static void do_xsave_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + int i, nb_xmm_regs; + target_ulong addr; + + if (env->hflags & HF_CS64_MASK) { + nb_xmm_regs = 16; + } else { + nb_xmm_regs = 8; + } + + addr = ptr + XO(legacy.xmm_regs); + for (i = 0; i < nb_xmm_regs; i++) { + cpu_stq_data_ra(env, addr, env->xmm_regs[i].ZMM_Q(0), ra); + cpu_stq_data_ra(env, addr + 8, env->xmm_regs[i].ZMM_Q(1), ra); + addr += 16; + } +} + +static void do_xsave_bndregs(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + target_ulong addr = ptr + offsetof(XSaveBNDREG, bnd_regs); + int i; + + for (i = 0; i < 4; i++, addr += 16) { + cpu_stq_data_ra(env, addr, env->bnd_regs[i].lb, ra); + cpu_stq_data_ra(env, addr + 8, env->bnd_regs[i].ub, ra); + } +} + +static void do_xsave_bndcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + cpu_stq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.cfgu), + env->bndcs_regs.cfgu, ra); + cpu_stq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.sts), + env->bndcs_regs.sts, ra); +} + +static void do_xsave_pkru(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + cpu_stq_data_ra(env, ptr, env->pkru, ra); +} + +void helper_fxsave(CPUX86State *env, target_ulong ptr) +{ + uintptr_t ra = GETPC(); + + /* The operand must be 16 byte aligned */ + if (ptr & 0xf) { + raise_exception_ra(env, EXCP0D_GPF, ra); + } + + do_xsave_fpu(env, ptr, ra); + + if (env->cr[4] & CR4_OSFXSR_MASK) { + do_xsave_mxcsr(env, ptr, ra); + /* Fast FXSAVE leaves out the XMM registers */ + if (!(env->efer & MSR_EFER_FFXSR) + || (env->hflags & HF_CPL_MASK) + || !(env->hflags & HF_LMA_MASK)) { + do_xsave_sse(env, ptr, ra); + } + } +} + +static uint64_t get_xinuse(CPUX86State *env) +{ + uint64_t inuse = -1; + + /* For the most part, we don't track XINUSE. We could calculate it + here for all components, but it's probably less work to simply + indicate in use. That said, the state of BNDREGS is important + enough to track in HFLAGS, so we might as well use that here. */ + if ((env->hflags & HF_MPX_IU_MASK) == 0) { + inuse &= ~XSTATE_BNDREGS_MASK; + } + return inuse; +} + +static void do_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm, + uint64_t inuse, uint64_t opt, uintptr_t ra) +{ + uint64_t old_bv, new_bv; + + /* The OS must have enabled XSAVE. */ + if (!(env->cr[4] & CR4_OSXSAVE_MASK)) { + raise_exception_ra(env, EXCP06_ILLOP, ra); + } + + /* The operand must be 64 byte aligned. */ + if (ptr & 63) { + raise_exception_ra(env, EXCP0D_GPF, ra); + } + + /* Never save anything not enabled by XCR0. */ + rfbm &= env->xcr0; + opt &= rfbm; + + if (opt & XSTATE_FP_MASK) { + do_xsave_fpu(env, ptr, ra); + } + if (rfbm & XSTATE_SSE_MASK) { + /* Note that saving MXCSR is not suppressed by XSAVEOPT. */ + do_xsave_mxcsr(env, ptr, ra); + } + if (opt & XSTATE_SSE_MASK) { + do_xsave_sse(env, ptr, ra); + } + if (opt & XSTATE_BNDREGS_MASK) { + do_xsave_bndregs(env, ptr + XO(bndreg_state), ra); + } + if (opt & XSTATE_BNDCSR_MASK) { + do_xsave_bndcsr(env, ptr + XO(bndcsr_state), ra); + } + if (opt & XSTATE_PKRU_MASK) { + do_xsave_pkru(env, ptr + XO(pkru_state), ra); + } + + /* Update the XSTATE_BV field. */ + old_bv = cpu_ldq_data_ra(env, ptr + XO(header.xstate_bv), ra); + new_bv = (old_bv & ~rfbm) | (inuse & rfbm); + cpu_stq_data_ra(env, ptr + XO(header.xstate_bv), new_bv, ra); +} + +void helper_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm) +{ + do_xsave(env, ptr, rfbm, get_xinuse(env), -1, GETPC()); +} + +void helper_xsaveopt(CPUX86State *env, target_ulong ptr, uint64_t rfbm) +{ + uint64_t inuse = get_xinuse(env); + do_xsave(env, ptr, rfbm, inuse, inuse, GETPC()); +} + +static void do_xrstor_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + int i, fpuc, fpus, fptag; + target_ulong addr; + + fpuc = cpu_lduw_data_ra(env, ptr + XO(legacy.fcw), ra); + fpus = cpu_lduw_data_ra(env, ptr + XO(legacy.fsw), ra); + fptag = cpu_lduw_data_ra(env, ptr + XO(legacy.ftw), ra); + cpu_set_fpuc(env, fpuc); + cpu_set_fpus(env, fpus); + fptag ^= 0xff; + for (i = 0; i < 8; i++) { + env->fptags[i] = ((fptag >> i) & 1); + } + + addr = ptr + XO(legacy.fpregs); + for (i = 0; i < 8; i++) { + floatx80 tmp = helper_fldt(env, addr, ra); + ST(i) = tmp; + addr += 16; + } +} + +static void do_xrstor_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + cpu_set_mxcsr(env, cpu_ldl_data_ra(env, ptr + XO(legacy.mxcsr), ra)); +} + +static void do_xrstor_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + int i, nb_xmm_regs; + target_ulong addr; + + if (env->hflags & HF_CS64_MASK) { + nb_xmm_regs = 16; + } else { + nb_xmm_regs = 8; + } + + addr = ptr + XO(legacy.xmm_regs); + for (i = 0; i < nb_xmm_regs; i++) { + env->xmm_regs[i].ZMM_Q(0) = cpu_ldq_data_ra(env, addr, ra); + env->xmm_regs[i].ZMM_Q(1) = cpu_ldq_data_ra(env, addr + 8, ra); + addr += 16; + } +} + +static void do_xrstor_bndregs(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + target_ulong addr = ptr + offsetof(XSaveBNDREG, bnd_regs); + int i; + + for (i = 0; i < 4; i++, addr += 16) { + env->bnd_regs[i].lb = cpu_ldq_data_ra(env, addr, ra); + env->bnd_regs[i].ub = cpu_ldq_data_ra(env, addr + 8, ra); + } +} + +static void do_xrstor_bndcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + /* FIXME: Extend highest implemented bit of linear address. */ + env->bndcs_regs.cfgu + = cpu_ldq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.cfgu), ra); + env->bndcs_regs.sts + = cpu_ldq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.sts), ra); +} + +static void do_xrstor_pkru(CPUX86State *env, target_ulong ptr, uintptr_t ra) +{ + env->pkru = cpu_ldq_data_ra(env, ptr, ra); +} + +void helper_fxrstor(CPUX86State *env, target_ulong ptr) +{ + uintptr_t ra = GETPC(); + + /* The operand must be 16 byte aligned */ + if (ptr & 0xf) { + raise_exception_ra(env, EXCP0D_GPF, ra); + } + + do_xrstor_fpu(env, ptr, ra); + + if (env->cr[4] & CR4_OSFXSR_MASK) { + do_xrstor_mxcsr(env, ptr, ra); + /* Fast FXRSTOR leaves out the XMM registers */ + if (!(env->efer & MSR_EFER_FFXSR) + || (env->hflags & HF_CPL_MASK) + || !(env->hflags & HF_LMA_MASK)) { + do_xrstor_sse(env, ptr, ra); + } + } +} + +#if defined(CONFIG_USER_ONLY) +void cpu_x86_fxsave(CPUX86State *env, target_ulong ptr) +{ + helper_fxsave(env, ptr); +} + +void cpu_x86_fxrstor(CPUX86State *env, target_ulong ptr) +{ + helper_fxrstor(env, ptr); +} +#endif + +void helper_xrstor(CPUX86State *env, target_ulong ptr, uint64_t rfbm) +{ + uintptr_t ra = GETPC(); + uint64_t xstate_bv, xcomp_bv, reserve0; + + rfbm &= env->xcr0; + + /* The OS must have enabled XSAVE. */ + if (!(env->cr[4] & CR4_OSXSAVE_MASK)) { + raise_exception_ra(env, EXCP06_ILLOP, ra); + } + + /* The operand must be 64 byte aligned. */ + if (ptr & 63) { + raise_exception_ra(env, EXCP0D_GPF, ra); + } + + xstate_bv = cpu_ldq_data_ra(env, ptr + XO(header.xstate_bv), ra); + + if ((int64_t)xstate_bv < 0) { + /* FIXME: Compact form. */ + raise_exception_ra(env, EXCP0D_GPF, ra); + } + + /* Standard form. */ + + /* The XSTATE_BV field must not set bits not present in XCR0. */ + if (xstate_bv & ~env->xcr0) { + raise_exception_ra(env, EXCP0D_GPF, ra); + } + + /* The XCOMP_BV field must be zero. Note that, as of the April 2016 + revision, the description of the XSAVE Header (Vol 1, Sec 13.4.2) + describes only XCOMP_BV, but the description of the standard form + of XRSTOR (Vol 1, Sec 13.8.1) checks bytes 23:8 for zero, which + includes the next 64-bit field. */ + xcomp_bv = cpu_ldq_data_ra(env, ptr + XO(header.xcomp_bv), ra); + reserve0 = cpu_ldq_data_ra(env, ptr + XO(header.reserve0), ra); + if (xcomp_bv || reserve0) { + raise_exception_ra(env, EXCP0D_GPF, ra); + } + + if (rfbm & XSTATE_FP_MASK) { + if (xstate_bv & XSTATE_FP_MASK) { + do_xrstor_fpu(env, ptr, ra); + } else { + helper_fninit(env); + memset(env->fpregs, 0, sizeof(env->fpregs)); + } + } + if (rfbm & XSTATE_SSE_MASK) { + /* Note that the standard form of XRSTOR loads MXCSR from memory + whether or not the XSTATE_BV bit is set. */ + do_xrstor_mxcsr(env, ptr, ra); + if (xstate_bv & XSTATE_SSE_MASK) { + do_xrstor_sse(env, ptr, ra); + } else { + /* ??? When AVX is implemented, we may have to be more + selective in the clearing. */ + memset(env->xmm_regs, 0, sizeof(env->xmm_regs)); + } + } + if (rfbm & XSTATE_BNDREGS_MASK) { + if (xstate_bv & XSTATE_BNDREGS_MASK) { + do_xrstor_bndregs(env, ptr + XO(bndreg_state), ra); + env->hflags |= HF_MPX_IU_MASK; + } else { + memset(env->bnd_regs, 0, sizeof(env->bnd_regs)); + env->hflags &= ~HF_MPX_IU_MASK; + } + } + if (rfbm & XSTATE_BNDCSR_MASK) { + if (xstate_bv & XSTATE_BNDCSR_MASK) { + do_xrstor_bndcsr(env, ptr + XO(bndcsr_state), ra); + } else { + memset(&env->bndcs_regs, 0, sizeof(env->bndcs_regs)); + } + cpu_sync_bndcs_hflags(env); + } + if (rfbm & XSTATE_PKRU_MASK) { + uint64_t old_pkru = env->pkru; + if (xstate_bv & XSTATE_PKRU_MASK) { + do_xrstor_pkru(env, ptr + XO(pkru_state), ra); + } else { + env->pkru = 0; + } + if (env->pkru != old_pkru) { + CPUState *cs = env_cpu(env); + tlb_flush(cs); + } + } +} + +#undef XO + +uint64_t helper_xgetbv(CPUX86State *env, uint32_t ecx) +{ + /* The OS must have enabled XSAVE. */ + if (!(env->cr[4] & CR4_OSXSAVE_MASK)) { + raise_exception_ra(env, EXCP06_ILLOP, GETPC()); + } + + switch (ecx) { + case 0: + return env->xcr0; + case 1: + if (env->features[FEAT_XSAVE] & CPUID_XSAVE_XGETBV1) { + return env->xcr0 & get_xinuse(env); + } + break; + } + raise_exception_ra(env, EXCP0D_GPF, GETPC()); +} + +void helper_xsetbv(CPUX86State *env, uint32_t ecx, uint64_t mask) +{ + uint32_t dummy, ena_lo, ena_hi; + uint64_t ena; + + /* The OS must have enabled XSAVE. */ + if (!(env->cr[4] & CR4_OSXSAVE_MASK)) { + raise_exception_ra(env, EXCP06_ILLOP, GETPC()); + } + + /* Only XCR0 is defined at present; the FPU may not be disabled. */ + if (ecx != 0 || (mask & XSTATE_FP_MASK) == 0) { + goto do_gpf; + } + + /* Disallow enabling unimplemented features. */ + cpu_x86_cpuid(env, 0x0d, 0, &ena_lo, &dummy, &dummy, &ena_hi); + ena = ((uint64_t)ena_hi << 32) | ena_lo; + if (mask & ~ena) { + goto do_gpf; + } + + /* Disallow enabling only half of MPX. */ + if ((mask ^ (mask * (XSTATE_BNDCSR_MASK / XSTATE_BNDREGS_MASK))) + & XSTATE_BNDCSR_MASK) { + goto do_gpf; + } + + env->xcr0 = mask; + cpu_sync_bndcs_hflags(env); + return; + + do_gpf: + raise_exception_ra(env, EXCP0D_GPF, GETPC()); +} + +/* MMX/SSE */ +/* XXX: optimize by storing fptt and fptags in the static cpu state */ + +#define SSE_DAZ 0x0040 +#define SSE_RC_MASK 0x6000 +#define SSE_RC_NEAR 0x0000 +#define SSE_RC_DOWN 0x2000 +#define SSE_RC_UP 0x4000 +#define SSE_RC_CHOP 0x6000 +#define SSE_FZ 0x8000 + +void update_mxcsr_status(CPUX86State *env) +{ + uint32_t mxcsr = env->mxcsr; + int rnd_type; + + /* set rounding mode */ + switch (mxcsr & SSE_RC_MASK) { + default: + case SSE_RC_NEAR: + rnd_type = float_round_nearest_even; + break; + case SSE_RC_DOWN: + rnd_type = float_round_down; + break; + case SSE_RC_UP: + rnd_type = float_round_up; + break; + case SSE_RC_CHOP: + rnd_type = float_round_to_zero; + break; + } + set_float_rounding_mode(rnd_type, &env->sse_status); + + /* Set exception flags. */ + set_float_exception_flags((mxcsr & FPUS_IE ? float_flag_invalid : 0) | + (mxcsr & FPUS_ZE ? float_flag_divbyzero : 0) | + (mxcsr & FPUS_OE ? float_flag_overflow : 0) | + (mxcsr & FPUS_UE ? float_flag_underflow : 0) | + (mxcsr & FPUS_PE ? float_flag_inexact : 0), + &env->sse_status); + + /* set denormals are zero */ + set_flush_inputs_to_zero((mxcsr & SSE_DAZ) ? 1 : 0, &env->sse_status); + + /* set flush to zero */ + set_flush_to_zero((mxcsr & SSE_FZ) ? 1 : 0, &env->sse_status); +} + +void update_mxcsr_from_sse_status(CPUX86State *env) +{ + uint8_t flags = get_float_exception_flags(&env->sse_status); + /* + * The MXCSR denormal flag has opposite semantics to + * float_flag_input_denormal (the softfloat code sets that flag + * only when flushing input denormals to zero, but SSE sets it + * only when not flushing them to zero), so is not converted + * here. + */ + env->mxcsr |= ((flags & float_flag_invalid ? FPUS_IE : 0) | + (flags & float_flag_divbyzero ? FPUS_ZE : 0) | + (flags & float_flag_overflow ? FPUS_OE : 0) | + (flags & float_flag_underflow ? FPUS_UE : 0) | + (flags & float_flag_inexact ? FPUS_PE : 0) | + (flags & float_flag_output_denormal ? FPUS_UE | FPUS_PE : + 0)); +} + +void helper_update_mxcsr(CPUX86State *env) +{ + update_mxcsr_from_sse_status(env); +} + +void helper_ldmxcsr(CPUX86State *env, uint32_t val) +{ + cpu_set_mxcsr(env, val); +} + +void helper_enter_mmx(CPUX86State *env) +{ + env->fpstt = 0; + *(uint32_t *)(env->fptags) = 0; + *(uint32_t *)(env->fptags + 4) = 0; +} + +void helper_emms(CPUX86State *env) +{ + /* set to empty state */ + *(uint32_t *)(env->fptags) = 0x01010101; + *(uint32_t *)(env->fptags + 4) = 0x01010101; +} + +/* XXX: suppress */ +void helper_movq(CPUX86State *env, void *d, void *s) +{ + *(uint64_t *)d = *(uint64_t *)s; +} + +#define SHIFT 0 +#include "ops_sse.h" + +#define SHIFT 1 +#include "ops_sse.h" |