diff options
Diffstat (limited to 'target/i386/kvm/kvm.c')
-rw-r--r-- | target/i386/kvm/kvm.c | 4766 |
1 files changed, 4766 insertions, 0 deletions
diff --git a/target/i386/kvm/kvm.c b/target/i386/kvm/kvm.c new file mode 100644 index 0000000000..bcfa4b03e0 --- /dev/null +++ b/target/i386/kvm/kvm.c @@ -0,0 +1,4766 @@ +/* + * QEMU KVM support + * + * Copyright (C) 2006-2008 Qumranet Technologies + * Copyright IBM, Corp. 2008 + * + * Authors: + * Anthony Liguori <aliguori@us.ibm.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + */ + +#include "qemu/osdep.h" +#include "qapi/qapi-events-run-state.h" +#include "qapi/error.h" +#include <sys/ioctl.h> +#include <sys/utsname.h> + +#include <linux/kvm.h> +#include "standard-headers/asm-x86/kvm_para.h" + +#include "cpu.h" +#include "sysemu/sysemu.h" +#include "sysemu/hw_accel.h" +#include "sysemu/kvm_int.h" +#include "sysemu/runstate.h" +#include "kvm_i386.h" +#include "hyperv.h" +#include "hyperv-proto.h" + +#include "exec/gdbstub.h" +#include "qemu/host-utils.h" +#include "qemu/main-loop.h" +#include "qemu/config-file.h" +#include "qemu/error-report.h" +#include "hw/i386/x86.h" +#include "hw/i386/apic.h" +#include "hw/i386/apic_internal.h" +#include "hw/i386/apic-msidef.h" +#include "hw/i386/intel_iommu.h" +#include "hw/i386/x86-iommu.h" +#include "hw/i386/e820_memory_layout.h" + +#include "hw/pci/pci.h" +#include "hw/pci/msi.h" +#include "hw/pci/msix.h" +#include "migration/blocker.h" +#include "exec/memattrs.h" +#include "trace.h" + +//#define DEBUG_KVM + +#ifdef DEBUG_KVM +#define DPRINTF(fmt, ...) \ + do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) +#else +#define DPRINTF(fmt, ...) \ + do { } while (0) +#endif + +/* From arch/x86/kvm/lapic.h */ +#define KVM_APIC_BUS_CYCLE_NS 1 +#define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) + +#define MSR_KVM_WALL_CLOCK 0x11 +#define MSR_KVM_SYSTEM_TIME 0x12 + +/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus + * 255 kvm_msr_entry structs */ +#define MSR_BUF_SIZE 4096 + +static void kvm_init_msrs(X86CPU *cpu); + +const KVMCapabilityInfo kvm_arch_required_capabilities[] = { + KVM_CAP_INFO(SET_TSS_ADDR), + KVM_CAP_INFO(EXT_CPUID), + KVM_CAP_INFO(MP_STATE), + KVM_CAP_LAST_INFO +}; + +static bool has_msr_star; +static bool has_msr_hsave_pa; +static bool has_msr_tsc_aux; +static bool has_msr_tsc_adjust; +static bool has_msr_tsc_deadline; +static bool has_msr_feature_control; +static bool has_msr_misc_enable; +static bool has_msr_smbase; +static bool has_msr_bndcfgs; +static int lm_capable_kernel; +static bool has_msr_hv_hypercall; +static bool has_msr_hv_crash; +static bool has_msr_hv_reset; +static bool has_msr_hv_vpindex; +static bool hv_vpindex_settable; +static bool has_msr_hv_runtime; +static bool has_msr_hv_synic; +static bool has_msr_hv_stimer; +static bool has_msr_hv_frequencies; +static bool has_msr_hv_reenlightenment; +static bool has_msr_xss; +static bool has_msr_umwait; +static bool has_msr_spec_ctrl; +static bool has_msr_tsx_ctrl; +static bool has_msr_virt_ssbd; +static bool has_msr_smi_count; +static bool has_msr_arch_capabs; +static bool has_msr_core_capabs; +static bool has_msr_vmx_vmfunc; +static bool has_msr_ucode_rev; +static bool has_msr_vmx_procbased_ctls2; +static bool has_msr_perf_capabs; + +static uint32_t has_architectural_pmu_version; +static uint32_t num_architectural_pmu_gp_counters; +static uint32_t num_architectural_pmu_fixed_counters; + +static int has_xsave; +static int has_xcrs; +static int has_pit_state2; +static int has_exception_payload; + +static bool has_msr_mcg_ext_ctl; + +static struct kvm_cpuid2 *cpuid_cache; +static struct kvm_msr_list *kvm_feature_msrs; + +int kvm_has_pit_state2(void) +{ + return has_pit_state2; +} + +bool kvm_has_smm(void) +{ + return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); +} + +bool kvm_has_adjust_clock_stable(void) +{ + int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); + + return (ret == KVM_CLOCK_TSC_STABLE); +} + +bool kvm_has_adjust_clock(void) +{ + return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); +} + +bool kvm_has_exception_payload(void) +{ + return has_exception_payload; +} + +static bool kvm_x2apic_api_set_flags(uint64_t flags) +{ + KVMState *s = KVM_STATE(current_accel()); + + return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); +} + +#define MEMORIZE(fn, _result) \ + ({ \ + static bool _memorized; \ + \ + if (_memorized) { \ + return _result; \ + } \ + _memorized = true; \ + _result = fn; \ + }) + +static bool has_x2apic_api; + +bool kvm_has_x2apic_api(void) +{ + return has_x2apic_api; +} + +bool kvm_enable_x2apic(void) +{ + return MEMORIZE( + kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | + KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), + has_x2apic_api); +} + +bool kvm_hv_vpindex_settable(void) +{ + return hv_vpindex_settable; +} + +static int kvm_get_tsc(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + struct { + struct kvm_msrs info; + struct kvm_msr_entry entries[1]; + } msr_data = {}; + int ret; + + if (env->tsc_valid) { + return 0; + } + + memset(&msr_data, 0, sizeof(msr_data)); + msr_data.info.nmsrs = 1; + msr_data.entries[0].index = MSR_IA32_TSC; + env->tsc_valid = !runstate_is_running(); + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); + if (ret < 0) { + return ret; + } + + assert(ret == 1); + env->tsc = msr_data.entries[0].data; + return 0; +} + +static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) +{ + kvm_get_tsc(cpu); +} + +void kvm_synchronize_all_tsc(void) +{ + CPUState *cpu; + + if (kvm_enabled()) { + CPU_FOREACH(cpu) { + run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); + } + } +} + +static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) +{ + struct kvm_cpuid2 *cpuid; + int r, size; + + size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); + cpuid = g_malloc0(size); + cpuid->nent = max; + r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); + if (r == 0 && cpuid->nent >= max) { + r = -E2BIG; + } + if (r < 0) { + if (r == -E2BIG) { + g_free(cpuid); + return NULL; + } else { + fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", + strerror(-r)); + exit(1); + } + } + return cpuid; +} + +/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough + * for all entries. + */ +static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) +{ + struct kvm_cpuid2 *cpuid; + int max = 1; + + if (cpuid_cache != NULL) { + return cpuid_cache; + } + while ((cpuid = try_get_cpuid(s, max)) == NULL) { + max *= 2; + } + cpuid_cache = cpuid; + return cpuid; +} + +static bool host_tsx_broken(void) +{ + int family, model, stepping;\ + char vendor[CPUID_VENDOR_SZ + 1]; + + host_vendor_fms(vendor, &family, &model, &stepping); + + /* Check if we are running on a Haswell host known to have broken TSX */ + return !strcmp(vendor, CPUID_VENDOR_INTEL) && + (family == 6) && + ((model == 63 && stepping < 4) || + model == 60 || model == 69 || model == 70); +} + +/* Returns the value for a specific register on the cpuid entry + */ +static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) +{ + uint32_t ret = 0; + switch (reg) { + case R_EAX: + ret = entry->eax; + break; + case R_EBX: + ret = entry->ebx; + break; + case R_ECX: + ret = entry->ecx; + break; + case R_EDX: + ret = entry->edx; + break; + } + return ret; +} + +/* Find matching entry for function/index on kvm_cpuid2 struct + */ +static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, + uint32_t function, + uint32_t index) +{ + int i; + for (i = 0; i < cpuid->nent; ++i) { + if (cpuid->entries[i].function == function && + cpuid->entries[i].index == index) { + return &cpuid->entries[i]; + } + } + /* not found: */ + return NULL; +} + +uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, + uint32_t index, int reg) +{ + struct kvm_cpuid2 *cpuid; + uint32_t ret = 0; + uint32_t cpuid_1_edx; + + cpuid = get_supported_cpuid(s); + + struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); + if (entry) { + ret = cpuid_entry_get_reg(entry, reg); + } + + /* Fixups for the data returned by KVM, below */ + + if (function == 1 && reg == R_EDX) { + /* KVM before 2.6.30 misreports the following features */ + ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; + } else if (function == 1 && reg == R_ECX) { + /* We can set the hypervisor flag, even if KVM does not return it on + * GET_SUPPORTED_CPUID + */ + ret |= CPUID_EXT_HYPERVISOR; + /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it + * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, + * and the irqchip is in the kernel. + */ + if (kvm_irqchip_in_kernel() && + kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { + ret |= CPUID_EXT_TSC_DEADLINE_TIMER; + } + + /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled + * without the in-kernel irqchip + */ + if (!kvm_irqchip_in_kernel()) { + ret &= ~CPUID_EXT_X2APIC; + } + + if (enable_cpu_pm) { + int disable_exits = kvm_check_extension(s, + KVM_CAP_X86_DISABLE_EXITS); + + if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { + ret |= CPUID_EXT_MONITOR; + } + } + } else if (function == 6 && reg == R_EAX) { + ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ + } else if (function == 7 && index == 0 && reg == R_EBX) { + if (host_tsx_broken()) { + ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); + } + } else if (function == 7 && index == 0 && reg == R_EDX) { + /* + * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. + * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is + * returned by KVM_GET_MSR_INDEX_LIST. + */ + if (!has_msr_arch_capabs) { + ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; + } + } else if (function == 0x80000001 && reg == R_ECX) { + /* + * It's safe to enable TOPOEXT even if it's not returned by + * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows + * us to keep CPU models including TOPOEXT runnable on older kernels. + */ + ret |= CPUID_EXT3_TOPOEXT; + } else if (function == 0x80000001 && reg == R_EDX) { + /* On Intel, kvm returns cpuid according to the Intel spec, + * so add missing bits according to the AMD spec: + */ + cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); + ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; + } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { + /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't + * be enabled without the in-kernel irqchip + */ + if (!kvm_irqchip_in_kernel()) { + ret &= ~(1U << KVM_FEATURE_PV_UNHALT); + } + if (kvm_irqchip_is_split()) { + ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID; + } + } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { + ret |= 1U << KVM_HINTS_REALTIME; + } + + return ret; +} + +uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) +{ + struct { + struct kvm_msrs info; + struct kvm_msr_entry entries[1]; + } msr_data = {}; + uint64_t value; + uint32_t ret, can_be_one, must_be_one; + + if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ + return 0; + } + + /* Check if requested MSR is supported feature MSR */ + int i; + for (i = 0; i < kvm_feature_msrs->nmsrs; i++) + if (kvm_feature_msrs->indices[i] == index) { + break; + } + if (i == kvm_feature_msrs->nmsrs) { + return 0; /* if the feature MSR is not supported, simply return 0 */ + } + + msr_data.info.nmsrs = 1; + msr_data.entries[0].index = index; + + ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); + if (ret != 1) { + error_report("KVM get MSR (index=0x%x) feature failed, %s", + index, strerror(-ret)); + exit(1); + } + + value = msr_data.entries[0].data; + switch (index) { + case MSR_IA32_VMX_PROCBASED_CTLS2: + if (!has_msr_vmx_procbased_ctls2) { + /* KVM forgot to add these bits for some time, do this ourselves. */ + if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & + CPUID_XSAVE_XSAVES) { + value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; + } + if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & + CPUID_EXT_RDRAND) { + value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; + } + if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & + CPUID_7_0_EBX_INVPCID) { + value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; + } + if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & + CPUID_7_0_EBX_RDSEED) { + value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; + } + if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & + CPUID_EXT2_RDTSCP) { + value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; + } + } + /* fall through */ + case MSR_IA32_VMX_TRUE_PINBASED_CTLS: + case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: + case MSR_IA32_VMX_TRUE_ENTRY_CTLS: + case MSR_IA32_VMX_TRUE_EXIT_CTLS: + /* + * Return true for bits that can be one, but do not have to be one. + * The SDM tells us which bits could have a "must be one" setting, + * so we can do the opposite transformation in make_vmx_msr_value. + */ + must_be_one = (uint32_t)value; + can_be_one = (uint32_t)(value >> 32); + return can_be_one & ~must_be_one; + + default: + return value; + } +} + +static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, + int *max_banks) +{ + int r; + + r = kvm_check_extension(s, KVM_CAP_MCE); + if (r > 0) { + *max_banks = r; + return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); + } + return -ENOSYS; +} + +static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | + MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; + uint64_t mcg_status = MCG_STATUS_MCIP; + int flags = 0; + + if (code == BUS_MCEERR_AR) { + status |= MCI_STATUS_AR | 0x134; + mcg_status |= MCG_STATUS_EIPV; + } else { + status |= 0xc0; + mcg_status |= MCG_STATUS_RIPV; + } + + flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; + /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the + * guest kernel back into env->mcg_ext_ctl. + */ + cpu_synchronize_state(cs); + if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { + mcg_status |= MCG_STATUS_LMCE; + flags = 0; + } + + cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, + (MCM_ADDR_PHYS << 6) | 0xc, flags); +} + +static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) +{ + MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; + + qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, + &mff); +} + +static void hardware_memory_error(void *host_addr) +{ + emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); + error_report("QEMU got Hardware memory error at addr %p", host_addr); + exit(1); +} + +void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) +{ + X86CPU *cpu = X86_CPU(c); + CPUX86State *env = &cpu->env; + ram_addr_t ram_addr; + hwaddr paddr; + + /* If we get an action required MCE, it has been injected by KVM + * while the VM was running. An action optional MCE instead should + * be coming from the main thread, which qemu_init_sigbus identifies + * as the "early kill" thread. + */ + assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); + + if ((env->mcg_cap & MCG_SER_P) && addr) { + ram_addr = qemu_ram_addr_from_host(addr); + if (ram_addr != RAM_ADDR_INVALID && + kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { + kvm_hwpoison_page_add(ram_addr); + kvm_mce_inject(cpu, paddr, code); + + /* + * Use different logging severity based on error type. + * If there is additional MCE reporting on the hypervisor, QEMU VA + * could be another source to identify the PA and MCE details. + */ + if (code == BUS_MCEERR_AR) { + error_report("Guest MCE Memory Error at QEMU addr %p and " + "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", + addr, paddr, "BUS_MCEERR_AR"); + } else { + warn_report("Guest MCE Memory Error at QEMU addr %p and " + "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", + addr, paddr, "BUS_MCEERR_AO"); + } + + return; + } + + if (code == BUS_MCEERR_AO) { + warn_report("Hardware memory error at addr %p of type %s " + "for memory used by QEMU itself instead of guest system!", + addr, "BUS_MCEERR_AO"); + } + } + + if (code == BUS_MCEERR_AR) { + hardware_memory_error(addr); + } + + /* Hope we are lucky for AO MCE, just notify a event */ + emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); +} + +static void kvm_reset_exception(CPUX86State *env) +{ + env->exception_nr = -1; + env->exception_pending = 0; + env->exception_injected = 0; + env->exception_has_payload = false; + env->exception_payload = 0; +} + +static void kvm_queue_exception(CPUX86State *env, + int32_t exception_nr, + uint8_t exception_has_payload, + uint64_t exception_payload) +{ + assert(env->exception_nr == -1); + assert(!env->exception_pending); + assert(!env->exception_injected); + assert(!env->exception_has_payload); + + env->exception_nr = exception_nr; + + if (has_exception_payload) { + env->exception_pending = 1; + + env->exception_has_payload = exception_has_payload; + env->exception_payload = exception_payload; + } else { + env->exception_injected = 1; + + if (exception_nr == EXCP01_DB) { + assert(exception_has_payload); + env->dr[6] = exception_payload; + } else if (exception_nr == EXCP0E_PAGE) { + assert(exception_has_payload); + env->cr[2] = exception_payload; + } else { + assert(!exception_has_payload); + } + } +} + +static int kvm_inject_mce_oldstyle(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + + if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) { + unsigned int bank, bank_num = env->mcg_cap & 0xff; + struct kvm_x86_mce mce; + + kvm_reset_exception(env); + + /* + * There must be at least one bank in use if an MCE is pending. + * Find it and use its values for the event injection. + */ + for (bank = 0; bank < bank_num; bank++) { + if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { + break; + } + } + assert(bank < bank_num); + + mce.bank = bank; + mce.status = env->mce_banks[bank * 4 + 1]; + mce.mcg_status = env->mcg_status; + mce.addr = env->mce_banks[bank * 4 + 2]; + mce.misc = env->mce_banks[bank * 4 + 3]; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); + } + return 0; +} + +static void cpu_update_state(void *opaque, int running, RunState state) +{ + CPUX86State *env = opaque; + + if (running) { + env->tsc_valid = false; + } +} + +unsigned long kvm_arch_vcpu_id(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + return cpu->apic_id; +} + +#ifndef KVM_CPUID_SIGNATURE_NEXT +#define KVM_CPUID_SIGNATURE_NEXT 0x40000100 +#endif + +static bool hyperv_enabled(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && + ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || + cpu->hyperv_features || cpu->hyperv_passthrough); +} + +/* + * Check whether target_freq is within conservative + * ntp correctable bounds (250ppm) of freq + */ +static inline bool freq_within_bounds(int freq, int target_freq) +{ + int max_freq = freq + (freq * 250 / 1000000); + int min_freq = freq - (freq * 250 / 1000000); + + if (target_freq >= min_freq && target_freq <= max_freq) { + return true; + } + + return false; +} + +static int kvm_arch_set_tsc_khz(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + int r, cur_freq; + bool set_ioctl = false; + + if (!env->tsc_khz) { + return 0; + } + + cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? + kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; + + /* + * If TSC scaling is supported, attempt to set TSC frequency. + */ + if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { + set_ioctl = true; + } + + /* + * If desired TSC frequency is within bounds of NTP correction, + * attempt to set TSC frequency. + */ + if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { + set_ioctl = true; + } + + r = set_ioctl ? + kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : + -ENOTSUP; + + if (r < 0) { + /* When KVM_SET_TSC_KHZ fails, it's an error only if the current + * TSC frequency doesn't match the one we want. + */ + cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? + kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : + -ENOTSUP; + if (cur_freq <= 0 || cur_freq != env->tsc_khz) { + warn_report("TSC frequency mismatch between " + "VM (%" PRId64 " kHz) and host (%d kHz), " + "and TSC scaling unavailable", + env->tsc_khz, cur_freq); + return r; + } + } + + return 0; +} + +static bool tsc_is_stable_and_known(CPUX86State *env) +{ + if (!env->tsc_khz) { + return false; + } + return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) + || env->user_tsc_khz; +} + +static struct { + const char *desc; + struct { + uint32_t fw; + uint32_t bits; + } flags[2]; + uint64_t dependencies; +} kvm_hyperv_properties[] = { + [HYPERV_FEAT_RELAXED] = { + .desc = "relaxed timing (hv-relaxed)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_HYPERCALL_AVAILABLE}, + {.fw = FEAT_HV_RECOMM_EAX, + .bits = HV_RELAXED_TIMING_RECOMMENDED} + } + }, + [HYPERV_FEAT_VAPIC] = { + .desc = "virtual APIC (hv-vapic)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE}, + {.fw = FEAT_HV_RECOMM_EAX, + .bits = HV_APIC_ACCESS_RECOMMENDED} + } + }, + [HYPERV_FEAT_TIME] = { + .desc = "clocksources (hv-time)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE | + HV_REFERENCE_TSC_AVAILABLE} + } + }, + [HYPERV_FEAT_CRASH] = { + .desc = "crash MSRs (hv-crash)", + .flags = { + {.fw = FEAT_HYPERV_EDX, + .bits = HV_GUEST_CRASH_MSR_AVAILABLE} + } + }, + [HYPERV_FEAT_RESET] = { + .desc = "reset MSR (hv-reset)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_RESET_AVAILABLE} + } + }, + [HYPERV_FEAT_VPINDEX] = { + .desc = "VP_INDEX MSR (hv-vpindex)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_VP_INDEX_AVAILABLE} + } + }, + [HYPERV_FEAT_RUNTIME] = { + .desc = "VP_RUNTIME MSR (hv-runtime)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_VP_RUNTIME_AVAILABLE} + } + }, + [HYPERV_FEAT_SYNIC] = { + .desc = "synthetic interrupt controller (hv-synic)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_SYNIC_AVAILABLE} + } + }, + [HYPERV_FEAT_STIMER] = { + .desc = "synthetic timers (hv-stimer)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_SYNTIMERS_AVAILABLE} + }, + .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) + }, + [HYPERV_FEAT_FREQUENCIES] = { + .desc = "frequency MSRs (hv-frequencies)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_ACCESS_FREQUENCY_MSRS}, + {.fw = FEAT_HYPERV_EDX, + .bits = HV_FREQUENCY_MSRS_AVAILABLE} + } + }, + [HYPERV_FEAT_REENLIGHTENMENT] = { + .desc = "reenlightenment MSRs (hv-reenlightenment)", + .flags = { + {.fw = FEAT_HYPERV_EAX, + .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} + } + }, + [HYPERV_FEAT_TLBFLUSH] = { + .desc = "paravirtualized TLB flush (hv-tlbflush)", + .flags = { + {.fw = FEAT_HV_RECOMM_EAX, + .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | + HV_EX_PROCESSOR_MASKS_RECOMMENDED} + }, + .dependencies = BIT(HYPERV_FEAT_VPINDEX) + }, + [HYPERV_FEAT_EVMCS] = { + .desc = "enlightened VMCS (hv-evmcs)", + .flags = { + {.fw = FEAT_HV_RECOMM_EAX, + .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} + }, + .dependencies = BIT(HYPERV_FEAT_VAPIC) + }, + [HYPERV_FEAT_IPI] = { + .desc = "paravirtualized IPI (hv-ipi)", + .flags = { + {.fw = FEAT_HV_RECOMM_EAX, + .bits = HV_CLUSTER_IPI_RECOMMENDED | + HV_EX_PROCESSOR_MASKS_RECOMMENDED} + }, + .dependencies = BIT(HYPERV_FEAT_VPINDEX) + }, + [HYPERV_FEAT_STIMER_DIRECT] = { + .desc = "direct mode synthetic timers (hv-stimer-direct)", + .flags = { + {.fw = FEAT_HYPERV_EDX, + .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} + }, + .dependencies = BIT(HYPERV_FEAT_STIMER) + }, +}; + +static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max) +{ + struct kvm_cpuid2 *cpuid; + int r, size; + + size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); + cpuid = g_malloc0(size); + cpuid->nent = max; + + r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); + if (r == 0 && cpuid->nent >= max) { + r = -E2BIG; + } + if (r < 0) { + if (r == -E2BIG) { + g_free(cpuid); + return NULL; + } else { + fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", + strerror(-r)); + exit(1); + } + } + return cpuid; +} + +/* + * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough + * for all entries. + */ +static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) +{ + struct kvm_cpuid2 *cpuid; + int max = 7; /* 0x40000000..0x40000005, 0x4000000A */ + + /* + * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with + * -E2BIG, however, it doesn't report back the right size. Keep increasing + * it and re-trying until we succeed. + */ + while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) { + max++; + } + return cpuid; +} + +/* + * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature + * leaves from KVM_CAP_HYPERV* and present MSRs data. + */ +static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + struct kvm_cpuid2 *cpuid; + struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; + + /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ + cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); + cpuid->nent = 2; + + /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ + entry_feat = &cpuid->entries[0]; + entry_feat->function = HV_CPUID_FEATURES; + + entry_recomm = &cpuid->entries[1]; + entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; + entry_recomm->ebx = cpu->hyperv_spinlock_attempts; + + if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { + entry_feat->eax |= HV_HYPERCALL_AVAILABLE; + entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; + entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; + entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; + entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; + } + + if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { + entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; + entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; + } + + if (has_msr_hv_frequencies) { + entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; + entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; + } + + if (has_msr_hv_crash) { + entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; + } + + if (has_msr_hv_reenlightenment) { + entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; + } + + if (has_msr_hv_reset) { + entry_feat->eax |= HV_RESET_AVAILABLE; + } + + if (has_msr_hv_vpindex) { + entry_feat->eax |= HV_VP_INDEX_AVAILABLE; + } + + if (has_msr_hv_runtime) { + entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; + } + + if (has_msr_hv_synic) { + unsigned int cap = cpu->hyperv_synic_kvm_only ? + KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; + + if (kvm_check_extension(cs->kvm_state, cap) > 0) { + entry_feat->eax |= HV_SYNIC_AVAILABLE; + } + } + + if (has_msr_hv_stimer) { + entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; + } + + if (kvm_check_extension(cs->kvm_state, + KVM_CAP_HYPERV_TLBFLUSH) > 0) { + entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; + entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; + } + + if (kvm_check_extension(cs->kvm_state, + KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { + entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; + } + + if (kvm_check_extension(cs->kvm_state, + KVM_CAP_HYPERV_SEND_IPI) > 0) { + entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; + entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; + } + + return cpuid; +} + +static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r) +{ + struct kvm_cpuid_entry2 *entry; + uint32_t func; + int reg; + + switch (fw) { + case FEAT_HYPERV_EAX: + reg = R_EAX; + func = HV_CPUID_FEATURES; + break; + case FEAT_HYPERV_EDX: + reg = R_EDX; + func = HV_CPUID_FEATURES; + break; + case FEAT_HV_RECOMM_EAX: + reg = R_EAX; + func = HV_CPUID_ENLIGHTMENT_INFO; + break; + default: + return -EINVAL; + } + + entry = cpuid_find_entry(cpuid, func, 0); + if (!entry) { + return -ENOENT; + } + + switch (reg) { + case R_EAX: + *r = entry->eax; + break; + case R_EDX: + *r = entry->edx; + break; + default: + return -EINVAL; + } + + return 0; +} + +static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid, + int feature) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + uint32_t r, fw, bits; + uint64_t deps; + int i, dep_feat; + + if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) { + return 0; + } + + deps = kvm_hyperv_properties[feature].dependencies; + while (deps) { + dep_feat = ctz64(deps); + if (!(hyperv_feat_enabled(cpu, dep_feat))) { + fprintf(stderr, + "Hyper-V %s requires Hyper-V %s\n", + kvm_hyperv_properties[feature].desc, + kvm_hyperv_properties[dep_feat].desc); + return 1; + } + deps &= ~(1ull << dep_feat); + } + + for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { + fw = kvm_hyperv_properties[feature].flags[i].fw; + bits = kvm_hyperv_properties[feature].flags[i].bits; + + if (!fw) { + continue; + } + + if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) { + if (hyperv_feat_enabled(cpu, feature)) { + fprintf(stderr, + "Hyper-V %s is not supported by kernel\n", + kvm_hyperv_properties[feature].desc); + return 1; + } else { + return 0; + } + } + + env->features[fw] |= bits; + } + + if (cpu->hyperv_passthrough) { + cpu->hyperv_features |= BIT(feature); + } + + return 0; +} + +/* + * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in + * case of success, errno < 0 in case of failure and 0 when no Hyper-V + * extentions are enabled. + */ +static int hyperv_handle_properties(CPUState *cs, + struct kvm_cpuid_entry2 *cpuid_ent) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + struct kvm_cpuid2 *cpuid; + struct kvm_cpuid_entry2 *c; + uint32_t signature[3]; + uint32_t cpuid_i = 0; + int r; + + if (!hyperv_enabled(cpu)) + return 0; + + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) || + cpu->hyperv_passthrough) { + uint16_t evmcs_version; + + r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, + (uintptr_t)&evmcs_version); + + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) { + fprintf(stderr, "Hyper-V %s is not supported by kernel\n", + kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); + return -ENOSYS; + } + + if (!r) { + env->features[FEAT_HV_RECOMM_EAX] |= + HV_ENLIGHTENED_VMCS_RECOMMENDED; + env->features[FEAT_HV_NESTED_EAX] = evmcs_version; + } + } + + if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { + cpuid = get_supported_hv_cpuid(cs); + } else { + cpuid = get_supported_hv_cpuid_legacy(cs); + } + + if (cpu->hyperv_passthrough) { + memcpy(cpuid_ent, &cpuid->entries[0], + cpuid->nent * sizeof(cpuid->entries[0])); + + c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0); + if (c) { + env->features[FEAT_HYPERV_EAX] = c->eax; + env->features[FEAT_HYPERV_EBX] = c->ebx; + env->features[FEAT_HYPERV_EDX] = c->edx; + } + c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); + if (c) { + env->features[FEAT_HV_RECOMM_EAX] = c->eax; + + /* hv-spinlocks may have been overriden */ + if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) { + c->ebx = cpu->hyperv_spinlock_attempts; + } + } + c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0); + if (c) { + env->features[FEAT_HV_NESTED_EAX] = c->eax; + } + } + + if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { + env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING; + } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { + c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0); + if (c) { + env->features[FEAT_HV_RECOMM_EAX] |= + c->eax & HV_NO_NONARCH_CORESHARING; + } + } + + /* Features */ + r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI); + r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT); + + /* Additional dependencies not covered by kvm_hyperv_properties[] */ + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && + !cpu->hyperv_synic_kvm_only && + !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { + fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n", + kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, + kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); + r |= 1; + } + + /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ + env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; + + if (r) { + r = -ENOSYS; + goto free; + } + + if (cpu->hyperv_passthrough) { + /* We already copied all feature words from KVM as is */ + r = cpuid->nent; + goto free; + } + + c = &cpuid_ent[cpuid_i++]; + c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; + if (!cpu->hyperv_vendor_id) { + memcpy(signature, "Microsoft Hv", 12); + } else { + size_t len = strlen(cpu->hyperv_vendor_id); + + if (len > 12) { + error_report("hv-vendor-id truncated to 12 characters"); + len = 12; + } + memset(signature, 0, 12); + memcpy(signature, cpu->hyperv_vendor_id, len); + } + c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? + HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; + c->ebx = signature[0]; + c->ecx = signature[1]; + c->edx = signature[2]; + + c = &cpuid_ent[cpuid_i++]; + c->function = HV_CPUID_INTERFACE; + memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); + c->eax = signature[0]; + c->ebx = 0; + c->ecx = 0; + c->edx = 0; + + c = &cpuid_ent[cpuid_i++]; + c->function = HV_CPUID_VERSION; + c->eax = 0x00001bbc; + c->ebx = 0x00060001; + + c = &cpuid_ent[cpuid_i++]; + c->function = HV_CPUID_FEATURES; + c->eax = env->features[FEAT_HYPERV_EAX]; + c->ebx = env->features[FEAT_HYPERV_EBX]; + c->edx = env->features[FEAT_HYPERV_EDX]; + + c = &cpuid_ent[cpuid_i++]; + c->function = HV_CPUID_ENLIGHTMENT_INFO; + c->eax = env->features[FEAT_HV_RECOMM_EAX]; + c->ebx = cpu->hyperv_spinlock_attempts; + + c = &cpuid_ent[cpuid_i++]; + c->function = HV_CPUID_IMPLEMENT_LIMITS; + c->eax = cpu->hv_max_vps; + c->ebx = 0x40; + + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { + __u32 function; + + /* Create zeroed 0x40000006..0x40000009 leaves */ + for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; + function < HV_CPUID_NESTED_FEATURES; function++) { + c = &cpuid_ent[cpuid_i++]; + c->function = function; + } + + c = &cpuid_ent[cpuid_i++]; + c->function = HV_CPUID_NESTED_FEATURES; + c->eax = env->features[FEAT_HV_NESTED_EAX]; + } + r = cpuid_i; + +free: + g_free(cpuid); + + return r; +} + +static Error *hv_passthrough_mig_blocker; +static Error *hv_no_nonarch_cs_mig_blocker; + +static int hyperv_init_vcpu(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + Error *local_err = NULL; + int ret; + + if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { + error_setg(&hv_passthrough_mig_blocker, + "'hv-passthrough' CPU flag prevents migration, use explicit" + " set of hv-* flags instead"); + ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err); + if (local_err) { + error_report_err(local_err); + error_free(hv_passthrough_mig_blocker); + return ret; + } + } + + if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && + hv_no_nonarch_cs_mig_blocker == NULL) { + error_setg(&hv_no_nonarch_cs_mig_blocker, + "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" + " use explicit 'hv-no-nonarch-coresharing=on' instead (but" + " make sure SMT is disabled and/or that vCPUs are properly" + " pinned)"); + ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err); + if (local_err) { + error_report_err(local_err); + error_free(hv_no_nonarch_cs_mig_blocker); + return ret; + } + } + + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { + /* + * the kernel doesn't support setting vp_index; assert that its value + * is in sync + */ + struct { + struct kvm_msrs info; + struct kvm_msr_entry entries[1]; + } msr_data = { + .info.nmsrs = 1, + .entries[0].index = HV_X64_MSR_VP_INDEX, + }; + + ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data); + if (ret < 0) { + return ret; + } + assert(ret == 1); + + if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) { + error_report("kernel's vp_index != QEMU's vp_index"); + return -ENXIO; + } + } + + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { + uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? + KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; + ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); + if (ret < 0) { + error_report("failed to turn on HyperV SynIC in KVM: %s", + strerror(-ret)); + return ret; + } + + if (!cpu->hyperv_synic_kvm_only) { + ret = hyperv_x86_synic_add(cpu); + if (ret < 0) { + error_report("failed to create HyperV SynIC: %s", + strerror(-ret)); + return ret; + } + } + } + + return 0; +} + +static Error *invtsc_mig_blocker; + +#define KVM_MAX_CPUID_ENTRIES 100 + +int kvm_arch_init_vcpu(CPUState *cs) +{ + struct { + struct kvm_cpuid2 cpuid; + struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; + } cpuid_data; + /* + * The kernel defines these structs with padding fields so there + * should be no extra padding in our cpuid_data struct. + */ + QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != + sizeof(struct kvm_cpuid2) + + sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); + + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + uint32_t limit, i, j, cpuid_i; + uint32_t unused; + struct kvm_cpuid_entry2 *c; + uint32_t signature[3]; + int kvm_base = KVM_CPUID_SIGNATURE; + int max_nested_state_len; + int r; + Error *local_err = NULL; + + memset(&cpuid_data, 0, sizeof(cpuid_data)); + + cpuid_i = 0; + + r = kvm_arch_set_tsc_khz(cs); + if (r < 0) { + return r; + } + + /* vcpu's TSC frequency is either specified by user, or following + * the value used by KVM if the former is not present. In the + * latter case, we query it from KVM and record in env->tsc_khz, + * so that vcpu's TSC frequency can be migrated later via this field. + */ + if (!env->tsc_khz) { + r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? + kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : + -ENOTSUP; + if (r > 0) { + env->tsc_khz = r; + } + } + + env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; + + /* Paravirtualization CPUIDs */ + r = hyperv_handle_properties(cs, cpuid_data.entries); + if (r < 0) { + return r; + } else if (r > 0) { + cpuid_i = r; + kvm_base = KVM_CPUID_SIGNATURE_NEXT; + has_msr_hv_hypercall = true; + } + + if (cpu->expose_kvm) { + memcpy(signature, "KVMKVMKVM\0\0\0", 12); + c = &cpuid_data.entries[cpuid_i++]; + c->function = KVM_CPUID_SIGNATURE | kvm_base; + c->eax = KVM_CPUID_FEATURES | kvm_base; + c->ebx = signature[0]; + c->ecx = signature[1]; + c->edx = signature[2]; + + c = &cpuid_data.entries[cpuid_i++]; + c->function = KVM_CPUID_FEATURES | kvm_base; + c->eax = env->features[FEAT_KVM]; + c->edx = env->features[FEAT_KVM_HINTS]; + } + + cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); + + for (i = 0; i <= limit; i++) { + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "unsupported level value: 0x%x\n", limit); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + + switch (i) { + case 2: { + /* Keep reading function 2 till all the input is received */ + int times; + + c->function = i; + c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | + KVM_CPUID_FLAG_STATE_READ_NEXT; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + times = c->eax & 0xff; + + for (j = 1; j < times; ++j) { + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "cpuid_data is full, no space for " + "cpuid(eax:2):eax & 0xf = 0x%x\n", times); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + c->function = i; + c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + } + break; + } + case 0x1f: + if (env->nr_dies < 2) { + break; + } + /* fallthrough */ + case 4: + case 0xb: + case 0xd: + for (j = 0; ; j++) { + if (i == 0xd && j == 64) { + break; + } + + if (i == 0x1f && j == 64) { + break; + } + + c->function = i; + c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + c->index = j; + cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); + + if (i == 4 && c->eax == 0) { + break; + } + if (i == 0xb && !(c->ecx & 0xff00)) { + break; + } + if (i == 0x1f && !(c->ecx & 0xff00)) { + break; + } + if (i == 0xd && c->eax == 0) { + continue; + } + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "cpuid_data is full, no space for " + "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + } + break; + case 0x7: + case 0x14: { + uint32_t times; + + c->function = i; + c->index = 0; + c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + times = c->eax; + + for (j = 1; j <= times; ++j) { + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "cpuid_data is full, no space for " + "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + c->function = i; + c->index = j; + c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); + } + break; + } + default: + c->function = i; + c->flags = 0; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + if (!c->eax && !c->ebx && !c->ecx && !c->edx) { + /* + * KVM already returns all zeroes if a CPUID entry is missing, + * so we can omit it and avoid hitting KVM's 80-entry limit. + */ + cpuid_i--; + } + break; + } + } + + if (limit >= 0x0a) { + uint32_t eax, edx; + + cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); + + has_architectural_pmu_version = eax & 0xff; + if (has_architectural_pmu_version > 0) { + num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; + + /* Shouldn't be more than 32, since that's the number of bits + * available in EBX to tell us _which_ counters are available. + * Play it safe. + */ + if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { + num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; + } + + if (has_architectural_pmu_version > 1) { + num_architectural_pmu_fixed_counters = edx & 0x1f; + + if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { + num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; + } + } + } + } + + cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); + + for (i = 0x80000000; i <= limit; i++) { + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + + switch (i) { + case 0x8000001d: + /* Query for all AMD cache information leaves */ + for (j = 0; ; j++) { + c->function = i; + c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + c->index = j; + cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); + + if (c->eax == 0) { + break; + } + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "cpuid_data is full, no space for " + "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + } + break; + default: + c->function = i; + c->flags = 0; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + if (!c->eax && !c->ebx && !c->ecx && !c->edx) { + /* + * KVM already returns all zeroes if a CPUID entry is missing, + * so we can omit it and avoid hitting KVM's 80-entry limit. + */ + cpuid_i--; + } + break; + } + } + + /* Call Centaur's CPUID instructions they are supported. */ + if (env->cpuid_xlevel2 > 0) { + cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); + + for (i = 0xC0000000; i <= limit; i++) { + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + + c->function = i; + c->flags = 0; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + } + } + + cpuid_data.cpuid.nent = cpuid_i; + + if (((env->cpuid_version >> 8)&0xF) >= 6 + && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == + (CPUID_MCE | CPUID_MCA) + && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { + uint64_t mcg_cap, unsupported_caps; + int banks; + int ret; + + ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); + if (ret < 0) { + fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); + return ret; + } + + if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { + error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", + (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); + return -ENOTSUP; + } + + unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); + if (unsupported_caps) { + if (unsupported_caps & MCG_LMCE_P) { + error_report("kvm: LMCE not supported"); + return -ENOTSUP; + } + warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, + unsupported_caps); + } + + env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; + ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); + if (ret < 0) { + fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); + return ret; + } + } + + cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); + + c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); + if (c) { + has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || + !!(c->ecx & CPUID_EXT_SMX); + } + + if (env->mcg_cap & MCG_LMCE_P) { + has_msr_mcg_ext_ctl = has_msr_feature_control = true; + } + + if (!env->user_tsc_khz) { + if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && + invtsc_mig_blocker == NULL) { + error_setg(&invtsc_mig_blocker, + "State blocked by non-migratable CPU device" + " (invtsc flag)"); + r = migrate_add_blocker(invtsc_mig_blocker, &local_err); + if (local_err) { + error_report_err(local_err); + error_free(invtsc_mig_blocker); + return r; + } + } + } + + if (cpu->vmware_cpuid_freq + /* Guests depend on 0x40000000 to detect this feature, so only expose + * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ + && cpu->expose_kvm + && kvm_base == KVM_CPUID_SIGNATURE + /* TSC clock must be stable and known for this feature. */ + && tsc_is_stable_and_known(env)) { + + c = &cpuid_data.entries[cpuid_i++]; + c->function = KVM_CPUID_SIGNATURE | 0x10; + c->eax = env->tsc_khz; + c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ + c->ecx = c->edx = 0; + + c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); + c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); + } + + cpuid_data.cpuid.nent = cpuid_i; + + cpuid_data.cpuid.padding = 0; + r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); + if (r) { + goto fail; + } + + if (has_xsave) { + env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); + memset(env->xsave_buf, 0, sizeof(struct kvm_xsave)); + } + + max_nested_state_len = kvm_max_nested_state_length(); + if (max_nested_state_len > 0) { + assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); + + if (cpu_has_vmx(env) || cpu_has_svm(env)) { + struct kvm_vmx_nested_state_hdr *vmx_hdr; + + env->nested_state = g_malloc0(max_nested_state_len); + env->nested_state->size = max_nested_state_len; + + if (cpu_has_vmx(env)) { + env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; + vmx_hdr = &env->nested_state->hdr.vmx; + vmx_hdr->vmxon_pa = -1ull; + vmx_hdr->vmcs12_pa = -1ull; + } else { + env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; + } + } + } + + cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); + + if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { + has_msr_tsc_aux = false; + } + + kvm_init_msrs(cpu); + + r = hyperv_init_vcpu(cpu); + if (r) { + goto fail; + } + + return 0; + + fail: + migrate_del_blocker(invtsc_mig_blocker); + + return r; +} + +int kvm_arch_destroy_vcpu(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + + if (cpu->kvm_msr_buf) { + g_free(cpu->kvm_msr_buf); + cpu->kvm_msr_buf = NULL; + } + + if (env->nested_state) { + g_free(env->nested_state); + env->nested_state = NULL; + } + + qemu_del_vm_change_state_handler(cpu->vmsentry); + + return 0; +} + +void kvm_arch_reset_vcpu(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + + env->xcr0 = 1; + if (kvm_irqchip_in_kernel()) { + env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : + KVM_MP_STATE_UNINITIALIZED; + } else { + env->mp_state = KVM_MP_STATE_RUNNABLE; + } + + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { + int i; + for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { + env->msr_hv_synic_sint[i] = HV_SINT_MASKED; + } + + hyperv_x86_synic_reset(cpu); + } + /* enabled by default */ + env->poll_control_msr = 1; +} + +void kvm_arch_do_init_vcpu(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + + /* APs get directly into wait-for-SIPI state. */ + if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { + env->mp_state = KVM_MP_STATE_INIT_RECEIVED; + } +} + +static int kvm_get_supported_feature_msrs(KVMState *s) +{ + int ret = 0; + + if (kvm_feature_msrs != NULL) { + return 0; + } + + if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { + return 0; + } + + struct kvm_msr_list msr_list; + + msr_list.nmsrs = 0; + ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); + if (ret < 0 && ret != -E2BIG) { + error_report("Fetch KVM feature MSR list failed: %s", + strerror(-ret)); + return ret; + } + + assert(msr_list.nmsrs > 0); + kvm_feature_msrs = (struct kvm_msr_list *) \ + g_malloc0(sizeof(msr_list) + + msr_list.nmsrs * sizeof(msr_list.indices[0])); + + kvm_feature_msrs->nmsrs = msr_list.nmsrs; + ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); + + if (ret < 0) { + error_report("Fetch KVM feature MSR list failed: %s", + strerror(-ret)); + g_free(kvm_feature_msrs); + kvm_feature_msrs = NULL; + return ret; + } + + return 0; +} + +static int kvm_get_supported_msrs(KVMState *s) +{ + int ret = 0; + struct kvm_msr_list msr_list, *kvm_msr_list; + + /* + * Obtain MSR list from KVM. These are the MSRs that we must + * save/restore. + */ + msr_list.nmsrs = 0; + ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); + if (ret < 0 && ret != -E2BIG) { + return ret; + } + /* + * Old kernel modules had a bug and could write beyond the provided + * memory. Allocate at least a safe amount of 1K. + */ + kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + + msr_list.nmsrs * + sizeof(msr_list.indices[0]))); + + kvm_msr_list->nmsrs = msr_list.nmsrs; + ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); + if (ret >= 0) { + int i; + + for (i = 0; i < kvm_msr_list->nmsrs; i++) { + switch (kvm_msr_list->indices[i]) { + case MSR_STAR: + has_msr_star = true; + break; + case MSR_VM_HSAVE_PA: + has_msr_hsave_pa = true; + break; + case MSR_TSC_AUX: + has_msr_tsc_aux = true; + break; + case MSR_TSC_ADJUST: + has_msr_tsc_adjust = true; + break; + case MSR_IA32_TSCDEADLINE: + has_msr_tsc_deadline = true; + break; + case MSR_IA32_SMBASE: + has_msr_smbase = true; + break; + case MSR_SMI_COUNT: + has_msr_smi_count = true; + break; + case MSR_IA32_MISC_ENABLE: + has_msr_misc_enable = true; + break; + case MSR_IA32_BNDCFGS: + has_msr_bndcfgs = true; + break; + case MSR_IA32_XSS: + has_msr_xss = true; + break; + case MSR_IA32_UMWAIT_CONTROL: + has_msr_umwait = true; + break; + case HV_X64_MSR_CRASH_CTL: + has_msr_hv_crash = true; + break; + case HV_X64_MSR_RESET: + has_msr_hv_reset = true; + break; + case HV_X64_MSR_VP_INDEX: + has_msr_hv_vpindex = true; + break; + case HV_X64_MSR_VP_RUNTIME: + has_msr_hv_runtime = true; + break; + case HV_X64_MSR_SCONTROL: + has_msr_hv_synic = true; + break; + case HV_X64_MSR_STIMER0_CONFIG: + has_msr_hv_stimer = true; + break; + case HV_X64_MSR_TSC_FREQUENCY: + has_msr_hv_frequencies = true; + break; + case HV_X64_MSR_REENLIGHTENMENT_CONTROL: + has_msr_hv_reenlightenment = true; + break; + case MSR_IA32_SPEC_CTRL: + has_msr_spec_ctrl = true; + break; + case MSR_IA32_TSX_CTRL: + has_msr_tsx_ctrl = true; + break; + case MSR_VIRT_SSBD: + has_msr_virt_ssbd = true; + break; + case MSR_IA32_ARCH_CAPABILITIES: + has_msr_arch_capabs = true; + break; + case MSR_IA32_CORE_CAPABILITY: + has_msr_core_capabs = true; + break; + case MSR_IA32_PERF_CAPABILITIES: + has_msr_perf_capabs = true; + break; + case MSR_IA32_VMX_VMFUNC: + has_msr_vmx_vmfunc = true; + break; + case MSR_IA32_UCODE_REV: + has_msr_ucode_rev = true; + break; + case MSR_IA32_VMX_PROCBASED_CTLS2: + has_msr_vmx_procbased_ctls2 = true; + break; + } + } + } + + g_free(kvm_msr_list); + + return ret; +} + +static Notifier smram_machine_done; +static KVMMemoryListener smram_listener; +static AddressSpace smram_address_space; +static MemoryRegion smram_as_root; +static MemoryRegion smram_as_mem; + +static void register_smram_listener(Notifier *n, void *unused) +{ + MemoryRegion *smram = + (MemoryRegion *) object_resolve_path("/machine/smram", NULL); + + /* Outer container... */ + memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); + memory_region_set_enabled(&smram_as_root, true); + + /* ... with two regions inside: normal system memory with low + * priority, and... + */ + memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", + get_system_memory(), 0, ~0ull); + memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); + memory_region_set_enabled(&smram_as_mem, true); + + if (smram) { + /* ... SMRAM with higher priority */ + memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); + memory_region_set_enabled(smram, true); + } + + address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); + kvm_memory_listener_register(kvm_state, &smram_listener, + &smram_address_space, 1); +} + +int kvm_arch_init(MachineState *ms, KVMState *s) +{ + uint64_t identity_base = 0xfffbc000; + uint64_t shadow_mem; + int ret; + struct utsname utsname; + + if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { + error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM"); + return -ENOTSUP; + } + + has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); + has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); + has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); + + hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); + + has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); + if (has_exception_payload) { + ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); + if (ret < 0) { + error_report("kvm: Failed to enable exception payload cap: %s", + strerror(-ret)); + return ret; + } + } + + ret = kvm_get_supported_msrs(s); + if (ret < 0) { + return ret; + } + + kvm_get_supported_feature_msrs(s); + + uname(&utsname); + lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; + + /* + * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. + * In order to use vm86 mode, an EPT identity map and a TSS are needed. + * Since these must be part of guest physical memory, we need to allocate + * them, both by setting their start addresses in the kernel and by + * creating a corresponding e820 entry. We need 4 pages before the BIOS. + * + * Older KVM versions may not support setting the identity map base. In + * that case we need to stick with the default, i.e. a 256K maximum BIOS + * size. + */ + if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { + /* Allows up to 16M BIOSes. */ + identity_base = 0xfeffc000; + + ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); + if (ret < 0) { + return ret; + } + } + + /* Set TSS base one page after EPT identity map. */ + ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); + if (ret < 0) { + return ret; + } + + /* Tell fw_cfg to notify the BIOS to reserve the range. */ + ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); + if (ret < 0) { + fprintf(stderr, "e820_add_entry() table is full\n"); + return ret; + } + + shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort); + if (shadow_mem != -1) { + shadow_mem /= 4096; + ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); + if (ret < 0) { + return ret; + } + } + + if (kvm_check_extension(s, KVM_CAP_X86_SMM) && + object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && + x86_machine_is_smm_enabled(X86_MACHINE(ms))) { + smram_machine_done.notify = register_smram_listener; + qemu_add_machine_init_done_notifier(&smram_machine_done); + } + + if (enable_cpu_pm) { + int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); + int ret; + +/* Work around for kernel header with a typo. TODO: fix header and drop. */ +#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT) +#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL +#endif + if (disable_exits) { + disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | + KVM_X86_DISABLE_EXITS_HLT | + KVM_X86_DISABLE_EXITS_PAUSE | + KVM_X86_DISABLE_EXITS_CSTATE); + } + + ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, + disable_exits); + if (ret < 0) { + error_report("kvm: guest stopping CPU not supported: %s", + strerror(-ret)); + } + } + + return 0; +} + +static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) +{ + lhs->selector = rhs->selector; + lhs->base = rhs->base; + lhs->limit = rhs->limit; + lhs->type = 3; + lhs->present = 1; + lhs->dpl = 3; + lhs->db = 0; + lhs->s = 1; + lhs->l = 0; + lhs->g = 0; + lhs->avl = 0; + lhs->unusable = 0; +} + +static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) +{ + unsigned flags = rhs->flags; + lhs->selector = rhs->selector; + lhs->base = rhs->base; + lhs->limit = rhs->limit; + lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; + lhs->present = (flags & DESC_P_MASK) != 0; + lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; + lhs->db = (flags >> DESC_B_SHIFT) & 1; + lhs->s = (flags & DESC_S_MASK) != 0; + lhs->l = (flags >> DESC_L_SHIFT) & 1; + lhs->g = (flags & DESC_G_MASK) != 0; + lhs->avl = (flags & DESC_AVL_MASK) != 0; + lhs->unusable = !lhs->present; + lhs->padding = 0; +} + +static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) +{ + lhs->selector = rhs->selector; + lhs->base = rhs->base; + lhs->limit = rhs->limit; + lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | + ((rhs->present && !rhs->unusable) * DESC_P_MASK) | + (rhs->dpl << DESC_DPL_SHIFT) | + (rhs->db << DESC_B_SHIFT) | + (rhs->s * DESC_S_MASK) | + (rhs->l << DESC_L_SHIFT) | + (rhs->g * DESC_G_MASK) | + (rhs->avl * DESC_AVL_MASK); +} + +static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) +{ + if (set) { + *kvm_reg = *qemu_reg; + } else { + *qemu_reg = *kvm_reg; + } +} + +static int kvm_getput_regs(X86CPU *cpu, int set) +{ + CPUX86State *env = &cpu->env; + struct kvm_regs regs; + int ret = 0; + + if (!set) { + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); + if (ret < 0) { + return ret; + } + } + + kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); + kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); + kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); + kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); + kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); + kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); + kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); + kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); +#ifdef TARGET_X86_64 + kvm_getput_reg(®s.r8, &env->regs[8], set); + kvm_getput_reg(®s.r9, &env->regs[9], set); + kvm_getput_reg(®s.r10, &env->regs[10], set); + kvm_getput_reg(®s.r11, &env->regs[11], set); + kvm_getput_reg(®s.r12, &env->regs[12], set); + kvm_getput_reg(®s.r13, &env->regs[13], set); + kvm_getput_reg(®s.r14, &env->regs[14], set); + kvm_getput_reg(®s.r15, &env->regs[15], set); +#endif + + kvm_getput_reg(®s.rflags, &env->eflags, set); + kvm_getput_reg(®s.rip, &env->eip, set); + + if (set) { + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); + } + + return ret; +} + +static int kvm_put_fpu(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_fpu fpu; + int i; + + memset(&fpu, 0, sizeof fpu); + fpu.fsw = env->fpus & ~(7 << 11); + fpu.fsw |= (env->fpstt & 7) << 11; + fpu.fcw = env->fpuc; + fpu.last_opcode = env->fpop; + fpu.last_ip = env->fpip; + fpu.last_dp = env->fpdp; + for (i = 0; i < 8; ++i) { + fpu.ftwx |= (!env->fptags[i]) << i; + } + memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); + for (i = 0; i < CPU_NB_REGS; i++) { + stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); + stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); + } + fpu.mxcsr = env->mxcsr; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); +} + +#define XSAVE_FCW_FSW 0 +#define XSAVE_FTW_FOP 1 +#define XSAVE_CWD_RIP 2 +#define XSAVE_CWD_RDP 4 +#define XSAVE_MXCSR 6 +#define XSAVE_ST_SPACE 8 +#define XSAVE_XMM_SPACE 40 +#define XSAVE_XSTATE_BV 128 +#define XSAVE_YMMH_SPACE 144 +#define XSAVE_BNDREGS 240 +#define XSAVE_BNDCSR 256 +#define XSAVE_OPMASK 272 +#define XSAVE_ZMM_Hi256 288 +#define XSAVE_Hi16_ZMM 416 +#define XSAVE_PKRU 672 + +#define XSAVE_BYTE_OFFSET(word_offset) \ + ((word_offset) * sizeof_field(struct kvm_xsave, region[0])) + +#define ASSERT_OFFSET(word_offset, field) \ + QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ + offsetof(X86XSaveArea, field)) + +ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); +ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); +ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); +ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); +ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); +ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); +ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); +ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); +ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); +ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); +ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); +ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); +ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); +ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); +ASSERT_OFFSET(XSAVE_PKRU, pkru_state); + +static int kvm_put_xsave(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + X86XSaveArea *xsave = env->xsave_buf; + + if (!has_xsave) { + return kvm_put_fpu(cpu); + } + x86_cpu_xsave_all_areas(cpu, xsave); + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); +} + +static int kvm_put_xcrs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_xcrs xcrs = {}; + + if (!has_xcrs) { + return 0; + } + + xcrs.nr_xcrs = 1; + xcrs.flags = 0; + xcrs.xcrs[0].xcr = 0; + xcrs.xcrs[0].value = env->xcr0; + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); +} + +static int kvm_put_sregs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_sregs sregs; + + memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); + if (env->interrupt_injected >= 0) { + sregs.interrupt_bitmap[env->interrupt_injected / 64] |= + (uint64_t)1 << (env->interrupt_injected % 64); + } + + if ((env->eflags & VM_MASK)) { + set_v8086_seg(&sregs.cs, &env->segs[R_CS]); + set_v8086_seg(&sregs.ds, &env->segs[R_DS]); + set_v8086_seg(&sregs.es, &env->segs[R_ES]); + set_v8086_seg(&sregs.fs, &env->segs[R_FS]); + set_v8086_seg(&sregs.gs, &env->segs[R_GS]); + set_v8086_seg(&sregs.ss, &env->segs[R_SS]); + } else { + set_seg(&sregs.cs, &env->segs[R_CS]); + set_seg(&sregs.ds, &env->segs[R_DS]); + set_seg(&sregs.es, &env->segs[R_ES]); + set_seg(&sregs.fs, &env->segs[R_FS]); + set_seg(&sregs.gs, &env->segs[R_GS]); + set_seg(&sregs.ss, &env->segs[R_SS]); + } + + set_seg(&sregs.tr, &env->tr); + set_seg(&sregs.ldt, &env->ldt); + + sregs.idt.limit = env->idt.limit; + sregs.idt.base = env->idt.base; + memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); + sregs.gdt.limit = env->gdt.limit; + sregs.gdt.base = env->gdt.base; + memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); + + sregs.cr0 = env->cr[0]; + sregs.cr2 = env->cr[2]; + sregs.cr3 = env->cr[3]; + sregs.cr4 = env->cr[4]; + + sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); + sregs.apic_base = cpu_get_apic_base(cpu->apic_state); + + sregs.efer = env->efer; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); +} + +static void kvm_msr_buf_reset(X86CPU *cpu) +{ + memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); +} + +static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) +{ + struct kvm_msrs *msrs = cpu->kvm_msr_buf; + void *limit = ((void *)msrs) + MSR_BUF_SIZE; + struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; + + assert((void *)(entry + 1) <= limit); + + entry->index = index; + entry->reserved = 0; + entry->data = value; + msrs->nmsrs++; +} + +static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) +{ + kvm_msr_buf_reset(cpu); + kvm_msr_entry_add(cpu, index, value); + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); +} + +void kvm_put_apicbase(X86CPU *cpu, uint64_t value) +{ + int ret; + + ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); + assert(ret == 1); +} + +static int kvm_put_tscdeadline_msr(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + int ret; + + if (!has_msr_tsc_deadline) { + return 0; + } + + ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); + if (ret < 0) { + return ret; + } + + assert(ret == 1); + return 0; +} + +/* + * Provide a separate write service for the feature control MSR in order to + * kick the VCPU out of VMXON or even guest mode on reset. This has to be done + * before writing any other state because forcibly leaving nested mode + * invalidates the VCPU state. + */ +static int kvm_put_msr_feature_control(X86CPU *cpu) +{ + int ret; + + if (!has_msr_feature_control) { + return 0; + } + + ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, + cpu->env.msr_ia32_feature_control); + if (ret < 0) { + return ret; + } + + assert(ret == 1); + return 0; +} + +static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) +{ + uint32_t default1, can_be_one, can_be_zero; + uint32_t must_be_one; + + switch (index) { + case MSR_IA32_VMX_TRUE_PINBASED_CTLS: + default1 = 0x00000016; + break; + case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: + default1 = 0x0401e172; + break; + case MSR_IA32_VMX_TRUE_ENTRY_CTLS: + default1 = 0x000011ff; + break; + case MSR_IA32_VMX_TRUE_EXIT_CTLS: + default1 = 0x00036dff; + break; + case MSR_IA32_VMX_PROCBASED_CTLS2: + default1 = 0; + break; + default: + abort(); + } + + /* If a feature bit is set, the control can be either set or clear. + * Otherwise the value is limited to either 0 or 1 by default1. + */ + can_be_one = features | default1; + can_be_zero = features | ~default1; + must_be_one = ~can_be_zero; + + /* + * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). + * Bit 32:63 -> 1 if the control bit can be one. + */ + return must_be_one | (((uint64_t)can_be_one) << 32); +} + +#define VMCS12_MAX_FIELD_INDEX (0x17) + +static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) +{ + uint64_t kvm_vmx_basic = + kvm_arch_get_supported_msr_feature(kvm_state, + MSR_IA32_VMX_BASIC); + + if (!kvm_vmx_basic) { + /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), + * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. + */ + return; + } + + uint64_t kvm_vmx_misc = + kvm_arch_get_supported_msr_feature(kvm_state, + MSR_IA32_VMX_MISC); + uint64_t kvm_vmx_ept_vpid = + kvm_arch_get_supported_msr_feature(kvm_state, + MSR_IA32_VMX_EPT_VPID_CAP); + + /* + * If the guest is 64-bit, a value of 1 is allowed for the host address + * space size vmexit control. + */ + uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM + ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; + + /* + * Bits 0-30, 32-44 and 50-53 come from the host. KVM should + * not change them for backwards compatibility. + */ + uint64_t fixed_vmx_basic = kvm_vmx_basic & + (MSR_VMX_BASIC_VMCS_REVISION_MASK | + MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | + MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); + + /* + * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can + * change in the future but are always zero for now, clear them to be + * future proof. Bits 32-63 in theory could change, though KVM does + * not support dual-monitor treatment and probably never will; mask + * them out as well. + */ + uint64_t fixed_vmx_misc = kvm_vmx_misc & + (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | + MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); + + /* + * EPT memory types should not change either, so we do not bother + * adding features for them. + */ + uint64_t fixed_vmx_ept_mask = + (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? + MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); + uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; + + kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, + make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, + f[FEAT_VMX_PROCBASED_CTLS])); + kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, + make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, + f[FEAT_VMX_PINBASED_CTLS])); + kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, + make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, + f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); + kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, + make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, + f[FEAT_VMX_ENTRY_CTLS])); + kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, + make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, + f[FEAT_VMX_SECONDARY_CTLS])); + kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, + f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); + kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, + f[FEAT_VMX_BASIC] | fixed_vmx_basic); + kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, + f[FEAT_VMX_MISC] | fixed_vmx_misc); + if (has_msr_vmx_vmfunc) { + kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); + } + + /* + * Just to be safe, write these with constant values. The CRn_FIXED1 + * MSRs are generated by KVM based on the vCPU's CPUID. + */ + kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, + CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); + kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, + CR4_VMXE_MASK); + kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, + VMCS12_MAX_FIELD_INDEX << 1); +} + +static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) +{ + uint64_t kvm_perf_cap = + kvm_arch_get_supported_msr_feature(kvm_state, + MSR_IA32_PERF_CAPABILITIES); + + if (kvm_perf_cap) { + kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, + kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); + } +} + +static int kvm_buf_set_msrs(X86CPU *cpu) +{ + int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); + if (ret < 0) { + return ret; + } + + if (ret < cpu->kvm_msr_buf->nmsrs) { + struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; + error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, + (uint32_t)e->index, (uint64_t)e->data); + } + + assert(ret == cpu->kvm_msr_buf->nmsrs); + return 0; +} + +static void kvm_init_msrs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + + kvm_msr_buf_reset(cpu); + if (has_msr_arch_capabs) { + kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, + env->features[FEAT_ARCH_CAPABILITIES]); + } + + if (has_msr_core_capabs) { + kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, + env->features[FEAT_CORE_CAPABILITY]); + } + + if (has_msr_perf_capabs && cpu->enable_pmu) { + kvm_msr_entry_add_perf(cpu, env->features); + } + + if (has_msr_ucode_rev) { + kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); + } + + /* + * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but + * all kernels with MSR features should have them. + */ + if (kvm_feature_msrs && cpu_has_vmx(env)) { + kvm_msr_entry_add_vmx(cpu, env->features); + } + + assert(kvm_buf_set_msrs(cpu) == 0); +} + +static int kvm_put_msrs(X86CPU *cpu, int level) +{ + CPUX86State *env = &cpu->env; + int i; + + kvm_msr_buf_reset(cpu); + + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); + kvm_msr_entry_add(cpu, MSR_PAT, env->pat); + if (has_msr_star) { + kvm_msr_entry_add(cpu, MSR_STAR, env->star); + } + if (has_msr_hsave_pa) { + kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); + } + if (has_msr_tsc_aux) { + kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); + } + if (has_msr_tsc_adjust) { + kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); + } + if (has_msr_misc_enable) { + kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, + env->msr_ia32_misc_enable); + } + if (has_msr_smbase) { + kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); + } + if (has_msr_smi_count) { + kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); + } + if (has_msr_bndcfgs) { + kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); + } + if (has_msr_xss) { + kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); + } + if (has_msr_umwait) { + kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); + } + if (has_msr_spec_ctrl) { + kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); + } + if (has_msr_tsx_ctrl) { + kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); + } + if (has_msr_virt_ssbd) { + kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); + } + +#ifdef TARGET_X86_64 + if (lm_capable_kernel) { + kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); + kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); + kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); + kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); + } +#endif + + /* + * The following MSRs have side effects on the guest or are too heavy + * for normal writeback. Limit them to reset or full state updates. + */ + if (level >= KVM_PUT_RESET_STATE) { + kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); + kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); + kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { + kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { + kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { + kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { + kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); + } + + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { + kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); + } + + if (has_architectural_pmu_version > 0) { + if (has_architectural_pmu_version > 1) { + /* Stop the counter. */ + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); + } + + /* Set the counter values. */ + for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, + env->msr_fixed_counters[i]); + } + for (i = 0; i < num_architectural_pmu_gp_counters; i++) { + kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, + env->msr_gp_counters[i]); + kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, + env->msr_gp_evtsel[i]); + } + if (has_architectural_pmu_version > 1) { + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, + env->msr_global_status); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, + env->msr_global_ovf_ctrl); + + /* Now start the PMU. */ + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, + env->msr_fixed_ctr_ctrl); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, + env->msr_global_ctrl); + } + } + /* + * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, + * only sync them to KVM on the first cpu + */ + if (current_cpu == first_cpu) { + if (has_msr_hv_hypercall) { + kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, + env->msr_hv_guest_os_id); + kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, + env->msr_hv_hypercall); + } + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { + kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, + env->msr_hv_tsc); + } + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { + kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, + env->msr_hv_reenlightenment_control); + kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, + env->msr_hv_tsc_emulation_control); + kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, + env->msr_hv_tsc_emulation_status); + } + } + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { + kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, + env->msr_hv_vapic); + } + if (has_msr_hv_crash) { + int j; + + for (j = 0; j < HV_CRASH_PARAMS; j++) + kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, + env->msr_hv_crash_params[j]); + + kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); + } + if (has_msr_hv_runtime) { + kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); + } + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) + && hv_vpindex_settable) { + kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, + hyperv_vp_index(CPU(cpu))); + } + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { + int j; + + kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); + + kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, + env->msr_hv_synic_control); + kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, + env->msr_hv_synic_evt_page); + kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, + env->msr_hv_synic_msg_page); + + for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { + kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, + env->msr_hv_synic_sint[j]); + } + } + if (has_msr_hv_stimer) { + int j; + + for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { + kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, + env->msr_hv_stimer_config[j]); + } + + for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { + kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, + env->msr_hv_stimer_count[j]); + } + } + if (env->features[FEAT_1_EDX] & CPUID_MTRR) { + uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); + + kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); + kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); + kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); + kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); + for (i = 0; i < MSR_MTRRcap_VCNT; i++) { + /* The CPU GPs if we write to a bit above the physical limit of + * the host CPU (and KVM emulates that) + */ + uint64_t mask = env->mtrr_var[i].mask; + mask &= phys_mask; + + kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), + env->mtrr_var[i].base); + kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); + } + } + if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { + int addr_num = kvm_arch_get_supported_cpuid(kvm_state, + 0x14, 1, R_EAX) & 0x7; + + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, + env->msr_rtit_ctrl); + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, + env->msr_rtit_status); + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, + env->msr_rtit_output_base); + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, + env->msr_rtit_output_mask); + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, + env->msr_rtit_cr3_match); + for (i = 0; i < addr_num; i++) { + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, + env->msr_rtit_addrs[i]); + } + } + + /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see + * kvm_put_msr_feature_control. */ + } + + if (env->mcg_cap) { + int i; + + kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); + kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); + if (has_msr_mcg_ext_ctl) { + kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); + } + for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { + kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); + } + } + + return kvm_buf_set_msrs(cpu); +} + + +static int kvm_get_fpu(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_fpu fpu; + int i, ret; + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); + if (ret < 0) { + return ret; + } + + env->fpstt = (fpu.fsw >> 11) & 7; + env->fpus = fpu.fsw; + env->fpuc = fpu.fcw; + env->fpop = fpu.last_opcode; + env->fpip = fpu.last_ip; + env->fpdp = fpu.last_dp; + for (i = 0; i < 8; ++i) { + env->fptags[i] = !((fpu.ftwx >> i) & 1); + } + memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); + for (i = 0; i < CPU_NB_REGS; i++) { + env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); + env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); + } + env->mxcsr = fpu.mxcsr; + + return 0; +} + +static int kvm_get_xsave(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + X86XSaveArea *xsave = env->xsave_buf; + int ret; + + if (!has_xsave) { + return kvm_get_fpu(cpu); + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); + if (ret < 0) { + return ret; + } + x86_cpu_xrstor_all_areas(cpu, xsave); + + return 0; +} + +static int kvm_get_xcrs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + int i, ret; + struct kvm_xcrs xcrs; + + if (!has_xcrs) { + return 0; + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); + if (ret < 0) { + return ret; + } + + for (i = 0; i < xcrs.nr_xcrs; i++) { + /* Only support xcr0 now */ + if (xcrs.xcrs[i].xcr == 0) { + env->xcr0 = xcrs.xcrs[i].value; + break; + } + } + return 0; +} + +static int kvm_get_sregs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_sregs sregs; + int bit, i, ret; + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); + if (ret < 0) { + return ret; + } + + /* There can only be one pending IRQ set in the bitmap at a time, so try + to find it and save its number instead (-1 for none). */ + env->interrupt_injected = -1; + for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { + if (sregs.interrupt_bitmap[i]) { + bit = ctz64(sregs.interrupt_bitmap[i]); + env->interrupt_injected = i * 64 + bit; + break; + } + } + + get_seg(&env->segs[R_CS], &sregs.cs); + get_seg(&env->segs[R_DS], &sregs.ds); + get_seg(&env->segs[R_ES], &sregs.es); + get_seg(&env->segs[R_FS], &sregs.fs); + get_seg(&env->segs[R_GS], &sregs.gs); + get_seg(&env->segs[R_SS], &sregs.ss); + + get_seg(&env->tr, &sregs.tr); + get_seg(&env->ldt, &sregs.ldt); + + env->idt.limit = sregs.idt.limit; + env->idt.base = sregs.idt.base; + env->gdt.limit = sregs.gdt.limit; + env->gdt.base = sregs.gdt.base; + + env->cr[0] = sregs.cr0; + env->cr[2] = sregs.cr2; + env->cr[3] = sregs.cr3; + env->cr[4] = sregs.cr4; + + env->efer = sregs.efer; + + /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ + x86_update_hflags(env); + + return 0; +} + +static int kvm_get_msrs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; + int ret, i; + uint64_t mtrr_top_bits; + + kvm_msr_buf_reset(cpu); + + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); + kvm_msr_entry_add(cpu, MSR_PAT, 0); + if (has_msr_star) { + kvm_msr_entry_add(cpu, MSR_STAR, 0); + } + if (has_msr_hsave_pa) { + kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); + } + if (has_msr_tsc_aux) { + kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); + } + if (has_msr_tsc_adjust) { + kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); + } + if (has_msr_tsc_deadline) { + kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); + } + if (has_msr_misc_enable) { + kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); + } + if (has_msr_smbase) { + kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); + } + if (has_msr_smi_count) { + kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); + } + if (has_msr_feature_control) { + kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); + } + if (has_msr_bndcfgs) { + kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); + } + if (has_msr_xss) { + kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); + } + if (has_msr_umwait) { + kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); + } + if (has_msr_spec_ctrl) { + kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); + } + if (has_msr_tsx_ctrl) { + kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); + } + if (has_msr_virt_ssbd) { + kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); + } + if (!env->tsc_valid) { + kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); + env->tsc_valid = !runstate_is_running(); + } + +#ifdef TARGET_X86_64 + if (lm_capable_kernel) { + kvm_msr_entry_add(cpu, MSR_CSTAR, 0); + kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); + kvm_msr_entry_add(cpu, MSR_FMASK, 0); + kvm_msr_entry_add(cpu, MSR_LSTAR, 0); + } +#endif + kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); + kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) { + kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { + kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { + kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { + kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) { + kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); + } + if (has_architectural_pmu_version > 0) { + if (has_architectural_pmu_version > 1) { + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); + } + for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); + } + for (i = 0; i < num_architectural_pmu_gp_counters; i++) { + kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); + kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); + } + } + + if (env->mcg_cap) { + kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); + kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); + if (has_msr_mcg_ext_ctl) { + kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); + } + for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { + kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); + } + } + + if (has_msr_hv_hypercall) { + kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); + kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); + } + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { + kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); + } + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { + kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); + } + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { + kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); + kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); + kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); + } + if (has_msr_hv_crash) { + int j; + + for (j = 0; j < HV_CRASH_PARAMS; j++) { + kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); + } + } + if (has_msr_hv_runtime) { + kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); + } + if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { + uint32_t msr; + + kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); + kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); + kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); + for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { + kvm_msr_entry_add(cpu, msr, 0); + } + } + if (has_msr_hv_stimer) { + uint32_t msr; + + for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; + msr++) { + kvm_msr_entry_add(cpu, msr, 0); + } + } + if (env->features[FEAT_1_EDX] & CPUID_MTRR) { + kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); + for (i = 0; i < MSR_MTRRcap_VCNT; i++) { + kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); + kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); + } + } + + if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { + int addr_num = + kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; + + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); + for (i = 0; i < addr_num; i++) { + kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); + } + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); + if (ret < 0) { + return ret; + } + + if (ret < cpu->kvm_msr_buf->nmsrs) { + struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; + error_report("error: failed to get MSR 0x%" PRIx32, + (uint32_t)e->index); + } + + assert(ret == cpu->kvm_msr_buf->nmsrs); + /* + * MTRR masks: Each mask consists of 5 parts + * a 10..0: must be zero + * b 11 : valid bit + * c n-1.12: actual mask bits + * d 51..n: reserved must be zero + * e 63.52: reserved must be zero + * + * 'n' is the number of physical bits supported by the CPU and is + * apparently always <= 52. We know our 'n' but don't know what + * the destinations 'n' is; it might be smaller, in which case + * it masks (c) on loading. It might be larger, in which case + * we fill 'd' so that d..c is consistent irrespetive of the 'n' + * we're migrating to. + */ + + if (cpu->fill_mtrr_mask) { + QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); + assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); + mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); + } else { + mtrr_top_bits = 0; + } + + for (i = 0; i < ret; i++) { + uint32_t index = msrs[i].index; + switch (index) { + case MSR_IA32_SYSENTER_CS: + env->sysenter_cs = msrs[i].data; + break; + case MSR_IA32_SYSENTER_ESP: + env->sysenter_esp = msrs[i].data; + break; + case MSR_IA32_SYSENTER_EIP: + env->sysenter_eip = msrs[i].data; + break; + case MSR_PAT: + env->pat = msrs[i].data; + break; + case MSR_STAR: + env->star = msrs[i].data; + break; +#ifdef TARGET_X86_64 + case MSR_CSTAR: + env->cstar = msrs[i].data; + break; + case MSR_KERNELGSBASE: + env->kernelgsbase = msrs[i].data; + break; + case MSR_FMASK: + env->fmask = msrs[i].data; + break; + case MSR_LSTAR: + env->lstar = msrs[i].data; + break; +#endif + case MSR_IA32_TSC: + env->tsc = msrs[i].data; + break; + case MSR_TSC_AUX: + env->tsc_aux = msrs[i].data; + break; + case MSR_TSC_ADJUST: + env->tsc_adjust = msrs[i].data; + break; + case MSR_IA32_TSCDEADLINE: + env->tsc_deadline = msrs[i].data; + break; + case MSR_VM_HSAVE_PA: + env->vm_hsave = msrs[i].data; + break; + case MSR_KVM_SYSTEM_TIME: + env->system_time_msr = msrs[i].data; + break; + case MSR_KVM_WALL_CLOCK: + env->wall_clock_msr = msrs[i].data; + break; + case MSR_MCG_STATUS: + env->mcg_status = msrs[i].data; + break; + case MSR_MCG_CTL: + env->mcg_ctl = msrs[i].data; + break; + case MSR_MCG_EXT_CTL: + env->mcg_ext_ctl = msrs[i].data; + break; + case MSR_IA32_MISC_ENABLE: + env->msr_ia32_misc_enable = msrs[i].data; + break; + case MSR_IA32_SMBASE: + env->smbase = msrs[i].data; + break; + case MSR_SMI_COUNT: + env->msr_smi_count = msrs[i].data; + break; + case MSR_IA32_FEATURE_CONTROL: + env->msr_ia32_feature_control = msrs[i].data; + break; + case MSR_IA32_BNDCFGS: + env->msr_bndcfgs = msrs[i].data; + break; + case MSR_IA32_XSS: + env->xss = msrs[i].data; + break; + case MSR_IA32_UMWAIT_CONTROL: + env->umwait = msrs[i].data; + break; + default: + if (msrs[i].index >= MSR_MC0_CTL && + msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { + env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; + } + break; + case MSR_KVM_ASYNC_PF_EN: + env->async_pf_en_msr = msrs[i].data; + break; + case MSR_KVM_ASYNC_PF_INT: + env->async_pf_int_msr = msrs[i].data; + break; + case MSR_KVM_PV_EOI_EN: + env->pv_eoi_en_msr = msrs[i].data; + break; + case MSR_KVM_STEAL_TIME: + env->steal_time_msr = msrs[i].data; + break; + case MSR_KVM_POLL_CONTROL: { + env->poll_control_msr = msrs[i].data; + break; + } + case MSR_CORE_PERF_FIXED_CTR_CTRL: + env->msr_fixed_ctr_ctrl = msrs[i].data; + break; + case MSR_CORE_PERF_GLOBAL_CTRL: + env->msr_global_ctrl = msrs[i].data; + break; + case MSR_CORE_PERF_GLOBAL_STATUS: + env->msr_global_status = msrs[i].data; + break; + case MSR_CORE_PERF_GLOBAL_OVF_CTRL: + env->msr_global_ovf_ctrl = msrs[i].data; + break; + case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: + env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; + break; + case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: + env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; + break; + case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: + env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; + break; + case HV_X64_MSR_HYPERCALL: + env->msr_hv_hypercall = msrs[i].data; + break; + case HV_X64_MSR_GUEST_OS_ID: + env->msr_hv_guest_os_id = msrs[i].data; + break; + case HV_X64_MSR_APIC_ASSIST_PAGE: + env->msr_hv_vapic = msrs[i].data; + break; + case HV_X64_MSR_REFERENCE_TSC: + env->msr_hv_tsc = msrs[i].data; + break; + case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: + env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; + break; + case HV_X64_MSR_VP_RUNTIME: + env->msr_hv_runtime = msrs[i].data; + break; + case HV_X64_MSR_SCONTROL: + env->msr_hv_synic_control = msrs[i].data; + break; + case HV_X64_MSR_SIEFP: + env->msr_hv_synic_evt_page = msrs[i].data; + break; + case HV_X64_MSR_SIMP: + env->msr_hv_synic_msg_page = msrs[i].data; + break; + case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: + env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; + break; + case HV_X64_MSR_STIMER0_CONFIG: + case HV_X64_MSR_STIMER1_CONFIG: + case HV_X64_MSR_STIMER2_CONFIG: + case HV_X64_MSR_STIMER3_CONFIG: + env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = + msrs[i].data; + break; + case HV_X64_MSR_STIMER0_COUNT: + case HV_X64_MSR_STIMER1_COUNT: + case HV_X64_MSR_STIMER2_COUNT: + case HV_X64_MSR_STIMER3_COUNT: + env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = + msrs[i].data; + break; + case HV_X64_MSR_REENLIGHTENMENT_CONTROL: + env->msr_hv_reenlightenment_control = msrs[i].data; + break; + case HV_X64_MSR_TSC_EMULATION_CONTROL: + env->msr_hv_tsc_emulation_control = msrs[i].data; + break; + case HV_X64_MSR_TSC_EMULATION_STATUS: + env->msr_hv_tsc_emulation_status = msrs[i].data; + break; + case MSR_MTRRdefType: + env->mtrr_deftype = msrs[i].data; + break; + case MSR_MTRRfix64K_00000: + env->mtrr_fixed[0] = msrs[i].data; + break; + case MSR_MTRRfix16K_80000: + env->mtrr_fixed[1] = msrs[i].data; + break; + case MSR_MTRRfix16K_A0000: + env->mtrr_fixed[2] = msrs[i].data; + break; + case MSR_MTRRfix4K_C0000: + env->mtrr_fixed[3] = msrs[i].data; + break; + case MSR_MTRRfix4K_C8000: + env->mtrr_fixed[4] = msrs[i].data; + break; + case MSR_MTRRfix4K_D0000: + env->mtrr_fixed[5] = msrs[i].data; + break; + case MSR_MTRRfix4K_D8000: + env->mtrr_fixed[6] = msrs[i].data; + break; + case MSR_MTRRfix4K_E0000: + env->mtrr_fixed[7] = msrs[i].data; + break; + case MSR_MTRRfix4K_E8000: + env->mtrr_fixed[8] = msrs[i].data; + break; + case MSR_MTRRfix4K_F0000: + env->mtrr_fixed[9] = msrs[i].data; + break; + case MSR_MTRRfix4K_F8000: + env->mtrr_fixed[10] = msrs[i].data; + break; + case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): + if (index & 1) { + env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | + mtrr_top_bits; + } else { + env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; + } + break; + case MSR_IA32_SPEC_CTRL: + env->spec_ctrl = msrs[i].data; + break; + case MSR_IA32_TSX_CTRL: + env->tsx_ctrl = msrs[i].data; + break; + case MSR_VIRT_SSBD: + env->virt_ssbd = msrs[i].data; + break; + case MSR_IA32_RTIT_CTL: + env->msr_rtit_ctrl = msrs[i].data; + break; + case MSR_IA32_RTIT_STATUS: + env->msr_rtit_status = msrs[i].data; + break; + case MSR_IA32_RTIT_OUTPUT_BASE: + env->msr_rtit_output_base = msrs[i].data; + break; + case MSR_IA32_RTIT_OUTPUT_MASK: + env->msr_rtit_output_mask = msrs[i].data; + break; + case MSR_IA32_RTIT_CR3_MATCH: + env->msr_rtit_cr3_match = msrs[i].data; + break; + case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: + env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; + break; + } + } + + return 0; +} + +static int kvm_put_mp_state(X86CPU *cpu) +{ + struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); +} + +static int kvm_get_mp_state(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + struct kvm_mp_state mp_state; + int ret; + + ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); + if (ret < 0) { + return ret; + } + env->mp_state = mp_state.mp_state; + if (kvm_irqchip_in_kernel()) { + cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); + } + return 0; +} + +static int kvm_get_apic(X86CPU *cpu) +{ + DeviceState *apic = cpu->apic_state; + struct kvm_lapic_state kapic; + int ret; + + if (apic && kvm_irqchip_in_kernel()) { + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); + if (ret < 0) { + return ret; + } + + kvm_get_apic_state(apic, &kapic); + } + return 0; +} + +static int kvm_put_vcpu_events(X86CPU *cpu, int level) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + struct kvm_vcpu_events events = {}; + + if (!kvm_has_vcpu_events()) { + return 0; + } + + events.flags = 0; + + if (has_exception_payload) { + events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; + events.exception.pending = env->exception_pending; + events.exception_has_payload = env->exception_has_payload; + events.exception_payload = env->exception_payload; + } + events.exception.nr = env->exception_nr; + events.exception.injected = env->exception_injected; + events.exception.has_error_code = env->has_error_code; + events.exception.error_code = env->error_code; + + events.interrupt.injected = (env->interrupt_injected >= 0); + events.interrupt.nr = env->interrupt_injected; + events.interrupt.soft = env->soft_interrupt; + + events.nmi.injected = env->nmi_injected; + events.nmi.pending = env->nmi_pending; + events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); + + events.sipi_vector = env->sipi_vector; + + if (has_msr_smbase) { + events.smi.smm = !!(env->hflags & HF_SMM_MASK); + events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); + if (kvm_irqchip_in_kernel()) { + /* As soon as these are moved to the kernel, remove them + * from cs->interrupt_request. + */ + events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; + events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; + cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); + } else { + /* Keep these in cs->interrupt_request. */ + events.smi.pending = 0; + events.smi.latched_init = 0; + } + /* Stop SMI delivery on old machine types to avoid a reboot + * on an inward migration of an old VM. + */ + if (!cpu->kvm_no_smi_migration) { + events.flags |= KVM_VCPUEVENT_VALID_SMM; + } + } + + if (level >= KVM_PUT_RESET_STATE) { + events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; + if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { + events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; + } + } + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); +} + +static int kvm_get_vcpu_events(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_vcpu_events events; + int ret; + + if (!kvm_has_vcpu_events()) { + return 0; + } + + memset(&events, 0, sizeof(events)); + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); + if (ret < 0) { + return ret; + } + + if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { + env->exception_pending = events.exception.pending; + env->exception_has_payload = events.exception_has_payload; + env->exception_payload = events.exception_payload; + } else { + env->exception_pending = 0; + env->exception_has_payload = false; + } + env->exception_injected = events.exception.injected; + env->exception_nr = + (env->exception_pending || env->exception_injected) ? + events.exception.nr : -1; + env->has_error_code = events.exception.has_error_code; + env->error_code = events.exception.error_code; + + env->interrupt_injected = + events.interrupt.injected ? events.interrupt.nr : -1; + env->soft_interrupt = events.interrupt.soft; + + env->nmi_injected = events.nmi.injected; + env->nmi_pending = events.nmi.pending; + if (events.nmi.masked) { + env->hflags2 |= HF2_NMI_MASK; + } else { + env->hflags2 &= ~HF2_NMI_MASK; + } + + if (events.flags & KVM_VCPUEVENT_VALID_SMM) { + if (events.smi.smm) { + env->hflags |= HF_SMM_MASK; + } else { + env->hflags &= ~HF_SMM_MASK; + } + if (events.smi.pending) { + cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); + } else { + cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); + } + if (events.smi.smm_inside_nmi) { + env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; + } else { + env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; + } + if (events.smi.latched_init) { + cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); + } else { + cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); + } + } + + env->sipi_vector = events.sipi_vector; + + return 0; +} + +static int kvm_guest_debug_workarounds(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + int ret = 0; + unsigned long reinject_trap = 0; + + if (!kvm_has_vcpu_events()) { + if (env->exception_nr == EXCP01_DB) { + reinject_trap = KVM_GUESTDBG_INJECT_DB; + } else if (env->exception_injected == EXCP03_INT3) { + reinject_trap = KVM_GUESTDBG_INJECT_BP; + } + kvm_reset_exception(env); + } + + /* + * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF + * injected via SET_GUEST_DEBUG while updating GP regs. Work around this + * by updating the debug state once again if single-stepping is on. + * Another reason to call kvm_update_guest_debug here is a pending debug + * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to + * reinject them via SET_GUEST_DEBUG. + */ + if (reinject_trap || + (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { + ret = kvm_update_guest_debug(cs, reinject_trap); + } + return ret; +} + +static int kvm_put_debugregs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_debugregs dbgregs; + int i; + + if (!kvm_has_debugregs()) { + return 0; + } + + memset(&dbgregs, 0, sizeof(dbgregs)); + for (i = 0; i < 4; i++) { + dbgregs.db[i] = env->dr[i]; + } + dbgregs.dr6 = env->dr[6]; + dbgregs.dr7 = env->dr[7]; + dbgregs.flags = 0; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); +} + +static int kvm_get_debugregs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_debugregs dbgregs; + int i, ret; + + if (!kvm_has_debugregs()) { + return 0; + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); + if (ret < 0) { + return ret; + } + for (i = 0; i < 4; i++) { + env->dr[i] = dbgregs.db[i]; + } + env->dr[4] = env->dr[6] = dbgregs.dr6; + env->dr[5] = env->dr[7] = dbgregs.dr7; + + return 0; +} + +static int kvm_put_nested_state(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + int max_nested_state_len = kvm_max_nested_state_length(); + + if (!env->nested_state) { + return 0; + } + + /* + * Copy flags that are affected by reset from env->hflags and env->hflags2. + */ + if (env->hflags & HF_GUEST_MASK) { + env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; + } else { + env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; + } + + /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ + if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { + env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; + } else { + env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; + } + + assert(env->nested_state->size <= max_nested_state_len); + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); +} + +static int kvm_get_nested_state(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + int max_nested_state_len = kvm_max_nested_state_length(); + int ret; + + if (!env->nested_state) { + return 0; + } + + /* + * It is possible that migration restored a smaller size into + * nested_state->hdr.size than what our kernel support. + * We preserve migration origin nested_state->hdr.size for + * call to KVM_SET_NESTED_STATE but wish that our next call + * to KVM_GET_NESTED_STATE will use max size our kernel support. + */ + env->nested_state->size = max_nested_state_len; + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); + if (ret < 0) { + return ret; + } + + /* + * Copy flags that are affected by reset to env->hflags and env->hflags2. + */ + if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { + env->hflags |= HF_GUEST_MASK; + } else { + env->hflags &= ~HF_GUEST_MASK; + } + + /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ + if (cpu_has_svm(env)) { + if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { + env->hflags2 |= HF2_GIF_MASK; + } else { + env->hflags2 &= ~HF2_GIF_MASK; + } + } + + return ret; +} + +int kvm_arch_put_registers(CPUState *cpu, int level) +{ + X86CPU *x86_cpu = X86_CPU(cpu); + int ret; + + assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); + + /* must be before kvm_put_nested_state so that EFER.SVME is set */ + ret = kvm_put_sregs(x86_cpu); + if (ret < 0) { + return ret; + } + + if (level >= KVM_PUT_RESET_STATE) { + ret = kvm_put_nested_state(x86_cpu); + if (ret < 0) { + return ret; + } + + ret = kvm_put_msr_feature_control(x86_cpu); + if (ret < 0) { + return ret; + } + } + + if (level == KVM_PUT_FULL_STATE) { + /* We don't check for kvm_arch_set_tsc_khz() errors here, + * because TSC frequency mismatch shouldn't abort migration, + * unless the user explicitly asked for a more strict TSC + * setting (e.g. using an explicit "tsc-freq" option). + */ + kvm_arch_set_tsc_khz(cpu); + } + + ret = kvm_getput_regs(x86_cpu, 1); + if (ret < 0) { + return ret; + } + ret = kvm_put_xsave(x86_cpu); + if (ret < 0) { + return ret; + } + ret = kvm_put_xcrs(x86_cpu); + if (ret < 0) { + return ret; + } + /* must be before kvm_put_msrs */ + ret = kvm_inject_mce_oldstyle(x86_cpu); + if (ret < 0) { + return ret; + } + ret = kvm_put_msrs(x86_cpu, level); + if (ret < 0) { + return ret; + } + ret = kvm_put_vcpu_events(x86_cpu, level); + if (ret < 0) { + return ret; + } + if (level >= KVM_PUT_RESET_STATE) { + ret = kvm_put_mp_state(x86_cpu); + if (ret < 0) { + return ret; + } + } + + ret = kvm_put_tscdeadline_msr(x86_cpu); + if (ret < 0) { + return ret; + } + ret = kvm_put_debugregs(x86_cpu); + if (ret < 0) { + return ret; + } + /* must be last */ + ret = kvm_guest_debug_workarounds(x86_cpu); + if (ret < 0) { + return ret; + } + return 0; +} + +int kvm_arch_get_registers(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + int ret; + + assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); + + ret = kvm_get_vcpu_events(cpu); + if (ret < 0) { + goto out; + } + /* + * KVM_GET_MPSTATE can modify CS and RIP, call it before + * KVM_GET_REGS and KVM_GET_SREGS. + */ + ret = kvm_get_mp_state(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_getput_regs(cpu, 0); + if (ret < 0) { + goto out; + } + ret = kvm_get_xsave(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_xcrs(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_sregs(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_msrs(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_apic(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_debugregs(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_nested_state(cpu); + if (ret < 0) { + goto out; + } + ret = 0; + out: + cpu_sync_bndcs_hflags(&cpu->env); + return ret; +} + +void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) +{ + X86CPU *x86_cpu = X86_CPU(cpu); + CPUX86State *env = &x86_cpu->env; + int ret; + + /* Inject NMI */ + if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { + if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { + qemu_mutex_lock_iothread(); + cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; + qemu_mutex_unlock_iothread(); + DPRINTF("injected NMI\n"); + ret = kvm_vcpu_ioctl(cpu, KVM_NMI); + if (ret < 0) { + fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", + strerror(-ret)); + } + } + if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { + qemu_mutex_lock_iothread(); + cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; + qemu_mutex_unlock_iothread(); + DPRINTF("injected SMI\n"); + ret = kvm_vcpu_ioctl(cpu, KVM_SMI); + if (ret < 0) { + fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", + strerror(-ret)); + } + } + } + + if (!kvm_pic_in_kernel()) { + qemu_mutex_lock_iothread(); + } + + /* Force the VCPU out of its inner loop to process any INIT requests + * or (for userspace APIC, but it is cheap to combine the checks here) + * pending TPR access reports. + */ + if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { + if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && + !(env->hflags & HF_SMM_MASK)) { + cpu->exit_request = 1; + } + if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { + cpu->exit_request = 1; + } + } + + if (!kvm_pic_in_kernel()) { + /* Try to inject an interrupt if the guest can accept it */ + if (run->ready_for_interrupt_injection && + (cpu->interrupt_request & CPU_INTERRUPT_HARD) && + (env->eflags & IF_MASK)) { + int irq; + + cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; + irq = cpu_get_pic_interrupt(env); + if (irq >= 0) { + struct kvm_interrupt intr; + + intr.irq = irq; + DPRINTF("injected interrupt %d\n", irq); + ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); + if (ret < 0) { + fprintf(stderr, + "KVM: injection failed, interrupt lost (%s)\n", + strerror(-ret)); + } + } + } + + /* If we have an interrupt but the guest is not ready to receive an + * interrupt, request an interrupt window exit. This will + * cause a return to userspace as soon as the guest is ready to + * receive interrupts. */ + if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { + run->request_interrupt_window = 1; + } else { + run->request_interrupt_window = 0; + } + + DPRINTF("setting tpr\n"); + run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); + + qemu_mutex_unlock_iothread(); + } +} + +MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) +{ + X86CPU *x86_cpu = X86_CPU(cpu); + CPUX86State *env = &x86_cpu->env; + + if (run->flags & KVM_RUN_X86_SMM) { + env->hflags |= HF_SMM_MASK; + } else { + env->hflags &= ~HF_SMM_MASK; + } + if (run->if_flag) { + env->eflags |= IF_MASK; + } else { + env->eflags &= ~IF_MASK; + } + + /* We need to protect the apic state against concurrent accesses from + * different threads in case the userspace irqchip is used. */ + if (!kvm_irqchip_in_kernel()) { + qemu_mutex_lock_iothread(); + } + cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); + cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); + if (!kvm_irqchip_in_kernel()) { + qemu_mutex_unlock_iothread(); + } + return cpu_get_mem_attrs(env); +} + +int kvm_arch_process_async_events(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + + if (cs->interrupt_request & CPU_INTERRUPT_MCE) { + /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ + assert(env->mcg_cap); + + cs->interrupt_request &= ~CPU_INTERRUPT_MCE; + + kvm_cpu_synchronize_state(cs); + + if (env->exception_nr == EXCP08_DBLE) { + /* this means triple fault */ + qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); + cs->exit_request = 1; + return 0; + } + kvm_queue_exception(env, EXCP12_MCHK, 0, 0); + env->has_error_code = 0; + + cs->halted = 0; + if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { + env->mp_state = KVM_MP_STATE_RUNNABLE; + } + } + + if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && + !(env->hflags & HF_SMM_MASK)) { + kvm_cpu_synchronize_state(cs); + do_cpu_init(cpu); + } + + if (kvm_irqchip_in_kernel()) { + return 0; + } + + if (cs->interrupt_request & CPU_INTERRUPT_POLL) { + cs->interrupt_request &= ~CPU_INTERRUPT_POLL; + apic_poll_irq(cpu->apic_state); + } + if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && + (env->eflags & IF_MASK)) || + (cs->interrupt_request & CPU_INTERRUPT_NMI)) { + cs->halted = 0; + } + if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { + kvm_cpu_synchronize_state(cs); + do_cpu_sipi(cpu); + } + if (cs->interrupt_request & CPU_INTERRUPT_TPR) { + cs->interrupt_request &= ~CPU_INTERRUPT_TPR; + kvm_cpu_synchronize_state(cs); + apic_handle_tpr_access_report(cpu->apic_state, env->eip, + env->tpr_access_type); + } + + return cs->halted; +} + +static int kvm_handle_halt(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + + if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && + (env->eflags & IF_MASK)) && + !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { + cs->halted = 1; + return EXCP_HLT; + } + + return 0; +} + +static int kvm_handle_tpr_access(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + struct kvm_run *run = cs->kvm_run; + + apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, + run->tpr_access.is_write ? TPR_ACCESS_WRITE + : TPR_ACCESS_READ); + return 1; +} + +int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + static const uint8_t int3 = 0xcc; + + if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { + return -EINVAL; + } + return 0; +} + +int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + uint8_t int3; + + if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { + return -EINVAL; + } + return 0; +} + +static struct { + target_ulong addr; + int len; + int type; +} hw_breakpoint[4]; + +static int nb_hw_breakpoint; + +static int find_hw_breakpoint(target_ulong addr, int len, int type) +{ + int n; + + for (n = 0; n < nb_hw_breakpoint; n++) { + if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && + (hw_breakpoint[n].len == len || len == -1)) { + return n; + } + } + return -1; +} + +int kvm_arch_insert_hw_breakpoint(target_ulong addr, + target_ulong len, int type) +{ + switch (type) { + case GDB_BREAKPOINT_HW: + len = 1; + break; + case GDB_WATCHPOINT_WRITE: + case GDB_WATCHPOINT_ACCESS: + switch (len) { + case 1: + break; + case 2: + case 4: + case 8: + if (addr & (len - 1)) { + return -EINVAL; + } + break; + default: + return -EINVAL; + } + break; + default: + return -ENOSYS; + } + + if (nb_hw_breakpoint == 4) { + return -ENOBUFS; + } + if (find_hw_breakpoint(addr, len, type) >= 0) { + return -EEXIST; + } + hw_breakpoint[nb_hw_breakpoint].addr = addr; + hw_breakpoint[nb_hw_breakpoint].len = len; + hw_breakpoint[nb_hw_breakpoint].type = type; + nb_hw_breakpoint++; + + return 0; +} + +int kvm_arch_remove_hw_breakpoint(target_ulong addr, + target_ulong len, int type) +{ + int n; + + n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); + if (n < 0) { + return -ENOENT; + } + nb_hw_breakpoint--; + hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; + + return 0; +} + +void kvm_arch_remove_all_hw_breakpoints(void) +{ + nb_hw_breakpoint = 0; +} + +static CPUWatchpoint hw_watchpoint; + +static int kvm_handle_debug(X86CPU *cpu, + struct kvm_debug_exit_arch *arch_info) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + int ret = 0; + int n; + + if (arch_info->exception == EXCP01_DB) { + if (arch_info->dr6 & DR6_BS) { + if (cs->singlestep_enabled) { + ret = EXCP_DEBUG; + } + } else { + for (n = 0; n < 4; n++) { + if (arch_info->dr6 & (1 << n)) { + switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { + case 0x0: + ret = EXCP_DEBUG; + break; + case 0x1: + ret = EXCP_DEBUG; + cs->watchpoint_hit = &hw_watchpoint; + hw_watchpoint.vaddr = hw_breakpoint[n].addr; + hw_watchpoint.flags = BP_MEM_WRITE; + break; + case 0x3: + ret = EXCP_DEBUG; + cs->watchpoint_hit = &hw_watchpoint; + hw_watchpoint.vaddr = hw_breakpoint[n].addr; + hw_watchpoint.flags = BP_MEM_ACCESS; + break; + } + } + } + } + } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { + ret = EXCP_DEBUG; + } + if (ret == 0) { + cpu_synchronize_state(cs); + assert(env->exception_nr == -1); + + /* pass to guest */ + kvm_queue_exception(env, arch_info->exception, + arch_info->exception == EXCP01_DB, + arch_info->dr6); + env->has_error_code = 0; + } + + return ret; +} + +void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) +{ + const uint8_t type_code[] = { + [GDB_BREAKPOINT_HW] = 0x0, + [GDB_WATCHPOINT_WRITE] = 0x1, + [GDB_WATCHPOINT_ACCESS] = 0x3 + }; + const uint8_t len_code[] = { + [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 + }; + int n; + + if (kvm_sw_breakpoints_active(cpu)) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; + } + if (nb_hw_breakpoint > 0) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; + dbg->arch.debugreg[7] = 0x0600; + for (n = 0; n < nb_hw_breakpoint; n++) { + dbg->arch.debugreg[n] = hw_breakpoint[n].addr; + dbg->arch.debugreg[7] |= (2 << (n * 2)) | + (type_code[hw_breakpoint[n].type] << (16 + n*4)) | + ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); + } + } +} + +static bool host_supports_vmx(void) +{ + uint32_t ecx, unused; + + host_cpuid(1, 0, &unused, &unused, &ecx, &unused); + return ecx & CPUID_EXT_VMX; +} + +#define VMX_INVALID_GUEST_STATE 0x80000021 + +int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) +{ + X86CPU *cpu = X86_CPU(cs); + uint64_t code; + int ret; + + switch (run->exit_reason) { + case KVM_EXIT_HLT: + DPRINTF("handle_hlt\n"); + qemu_mutex_lock_iothread(); + ret = kvm_handle_halt(cpu); + qemu_mutex_unlock_iothread(); + break; + case KVM_EXIT_SET_TPR: + ret = 0; + break; + case KVM_EXIT_TPR_ACCESS: + qemu_mutex_lock_iothread(); + ret = kvm_handle_tpr_access(cpu); + qemu_mutex_unlock_iothread(); + break; + case KVM_EXIT_FAIL_ENTRY: + code = run->fail_entry.hardware_entry_failure_reason; + fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", + code); + if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { + fprintf(stderr, + "\nIf you're running a guest on an Intel machine without " + "unrestricted mode\n" + "support, the failure can be most likely due to the guest " + "entering an invalid\n" + "state for Intel VT. For example, the guest maybe running " + "in big real mode\n" + "which is not supported on less recent Intel processors." + "\n\n"); + } + ret = -1; + break; + case KVM_EXIT_EXCEPTION: + fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", + run->ex.exception, run->ex.error_code); + ret = -1; + break; + case KVM_EXIT_DEBUG: + DPRINTF("kvm_exit_debug\n"); + qemu_mutex_lock_iothread(); + ret = kvm_handle_debug(cpu, &run->debug.arch); + qemu_mutex_unlock_iothread(); + break; + case KVM_EXIT_HYPERV: + ret = kvm_hv_handle_exit(cpu, &run->hyperv); + break; + case KVM_EXIT_IOAPIC_EOI: + ioapic_eoi_broadcast(run->eoi.vector); + ret = 0; + break; + default: + fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); + ret = -1; + break; + } + + return ret; +} + +bool kvm_arch_stop_on_emulation_error(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + + kvm_cpu_synchronize_state(cs); + return !(env->cr[0] & CR0_PE_MASK) || + ((env->segs[R_CS].selector & 3) != 3); +} + +void kvm_arch_init_irq_routing(KVMState *s) +{ + /* We know at this point that we're using the in-kernel + * irqchip, so we can use irqfds, and on x86 we know + * we can use msi via irqfd and GSI routing. + */ + kvm_msi_via_irqfd_allowed = true; + kvm_gsi_routing_allowed = true; + + if (kvm_irqchip_is_split()) { + int i; + + /* If the ioapic is in QEMU and the lapics are in KVM, reserve + MSI routes for signaling interrupts to the local apics. */ + for (i = 0; i < IOAPIC_NUM_PINS; i++) { + if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { + error_report("Could not enable split IRQ mode."); + exit(1); + } + } + } +} + +int kvm_arch_irqchip_create(KVMState *s) +{ + int ret; + if (kvm_kernel_irqchip_split()) { + ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); + if (ret) { + error_report("Could not enable split irqchip mode: %s", + strerror(-ret)); + exit(1); + } else { + DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); + kvm_split_irqchip = true; + return 1; + } + } else { + return 0; + } +} + +uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) +{ + CPUX86State *env; + uint64_t ext_id; + + if (!first_cpu) { + return address; + } + env = &X86_CPU(first_cpu)->env; + if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) { + return address; + } + + /* + * If the remappable format bit is set, or the upper bits are + * already set in address_hi, or the low extended bits aren't + * there anyway, do nothing. + */ + ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); + if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { + return address; + } + + address &= ~ext_id; + address |= ext_id << 35; + return address; +} + +int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, + uint64_t address, uint32_t data, PCIDevice *dev) +{ + X86IOMMUState *iommu = x86_iommu_get_default(); + + if (iommu) { + X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); + + if (class->int_remap) { + int ret; + MSIMessage src, dst; + + src.address = route->u.msi.address_hi; + src.address <<= VTD_MSI_ADDR_HI_SHIFT; + src.address |= route->u.msi.address_lo; + src.data = route->u.msi.data; + + ret = class->int_remap(iommu, &src, &dst, dev ? \ + pci_requester_id(dev) : \ + X86_IOMMU_SID_INVALID); + if (ret) { + trace_kvm_x86_fixup_msi_error(route->gsi); + return 1; + } + + /* + * Handled untranslated compatibilty format interrupt with + * extended destination ID in the low bits 11-5. */ + dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); + + route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; + route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; + route->u.msi.data = dst.data; + return 0; + } + } + + address = kvm_swizzle_msi_ext_dest_id(address); + route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; + route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; + return 0; +} + +typedef struct MSIRouteEntry MSIRouteEntry; + +struct MSIRouteEntry { + PCIDevice *dev; /* Device pointer */ + int vector; /* MSI/MSIX vector index */ + int virq; /* Virtual IRQ index */ + QLIST_ENTRY(MSIRouteEntry) list; +}; + +/* List of used GSI routes */ +static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ + QLIST_HEAD_INITIALIZER(msi_route_list); + +static void kvm_update_msi_routes_all(void *private, bool global, + uint32_t index, uint32_t mask) +{ + int cnt = 0, vector; + MSIRouteEntry *entry; + MSIMessage msg; + PCIDevice *dev; + + /* TODO: explicit route update */ + QLIST_FOREACH(entry, &msi_route_list, list) { + cnt++; + vector = entry->vector; + dev = entry->dev; + if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { + msg = msix_get_message(dev, vector); + } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { + msg = msi_get_message(dev, vector); + } else { + /* + * Either MSI/MSIX is disabled for the device, or the + * specific message was masked out. Skip this one. + */ + continue; + } + kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); + } + kvm_irqchip_commit_routes(kvm_state); + trace_kvm_x86_update_msi_routes(cnt); +} + +int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, + int vector, PCIDevice *dev) +{ + static bool notify_list_inited = false; + MSIRouteEntry *entry; + + if (!dev) { + /* These are (possibly) IOAPIC routes only used for split + * kernel irqchip mode, while what we are housekeeping are + * PCI devices only. */ + return 0; + } + + entry = g_new0(MSIRouteEntry, 1); + entry->dev = dev; + entry->vector = vector; + entry->virq = route->gsi; + QLIST_INSERT_HEAD(&msi_route_list, entry, list); + + trace_kvm_x86_add_msi_route(route->gsi); + + if (!notify_list_inited) { + /* For the first time we do add route, add ourselves into + * IOMMU's IEC notify list if needed. */ + X86IOMMUState *iommu = x86_iommu_get_default(); + if (iommu) { + x86_iommu_iec_register_notifier(iommu, + kvm_update_msi_routes_all, + NULL); + } + notify_list_inited = true; + } + return 0; +} + +int kvm_arch_release_virq_post(int virq) +{ + MSIRouteEntry *entry, *next; + QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { + if (entry->virq == virq) { + trace_kvm_x86_remove_msi_route(virq); + QLIST_REMOVE(entry, list); + g_free(entry); + break; + } + } + return 0; +} + +int kvm_arch_msi_data_to_gsi(uint32_t data) +{ + abort(); +} + +bool kvm_has_waitpkg(void) +{ + return has_msr_umwait; +} |