diff options
Diffstat (limited to 'target/i386/kvm.c')
-rw-r--r-- | target/i386/kvm.c | 3536 |
1 files changed, 3536 insertions, 0 deletions
diff --git a/target/i386/kvm.c b/target/i386/kvm.c new file mode 100644 index 0000000000..f62264a7a8 --- /dev/null +++ b/target/i386/kvm.c @@ -0,0 +1,3536 @@ +/* + * QEMU KVM support + * + * Copyright (C) 2006-2008 Qumranet Technologies + * Copyright IBM, Corp. 2008 + * + * Authors: + * Anthony Liguori <aliguori@us.ibm.com> + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + */ + +#include "qemu/osdep.h" +#include "qapi/error.h" +#include <sys/ioctl.h> +#include <sys/utsname.h> + +#include <linux/kvm.h> +#include <linux/kvm_para.h> + +#include "qemu-common.h" +#include "cpu.h" +#include "sysemu/sysemu.h" +#include "sysemu/kvm_int.h" +#include "kvm_i386.h" +#include "hyperv.h" + +#include "exec/gdbstub.h" +#include "qemu/host-utils.h" +#include "qemu/config-file.h" +#include "qemu/error-report.h" +#include "hw/i386/pc.h" +#include "hw/i386/apic.h" +#include "hw/i386/apic_internal.h" +#include "hw/i386/apic-msidef.h" +#include "hw/i386/intel_iommu.h" +#include "hw/i386/x86-iommu.h" + +#include "exec/ioport.h" +#include "standard-headers/asm-x86/hyperv.h" +#include "hw/pci/pci.h" +#include "hw/pci/msi.h" +#include "migration/migration.h" +#include "exec/memattrs.h" +#include "trace.h" + +//#define DEBUG_KVM + +#ifdef DEBUG_KVM +#define DPRINTF(fmt, ...) \ + do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) +#else +#define DPRINTF(fmt, ...) \ + do { } while (0) +#endif + +#define MSR_KVM_WALL_CLOCK 0x11 +#define MSR_KVM_SYSTEM_TIME 0x12 + +/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus + * 255 kvm_msr_entry structs */ +#define MSR_BUF_SIZE 4096 + +#ifndef BUS_MCEERR_AR +#define BUS_MCEERR_AR 4 +#endif +#ifndef BUS_MCEERR_AO +#define BUS_MCEERR_AO 5 +#endif + +const KVMCapabilityInfo kvm_arch_required_capabilities[] = { + KVM_CAP_INFO(SET_TSS_ADDR), + KVM_CAP_INFO(EXT_CPUID), + KVM_CAP_INFO(MP_STATE), + KVM_CAP_LAST_INFO +}; + +static bool has_msr_star; +static bool has_msr_hsave_pa; +static bool has_msr_tsc_aux; +static bool has_msr_tsc_adjust; +static bool has_msr_tsc_deadline; +static bool has_msr_feature_control; +static bool has_msr_misc_enable; +static bool has_msr_smbase; +static bool has_msr_bndcfgs; +static int lm_capable_kernel; +static bool has_msr_hv_hypercall; +static bool has_msr_hv_crash; +static bool has_msr_hv_reset; +static bool has_msr_hv_vpindex; +static bool has_msr_hv_runtime; +static bool has_msr_hv_synic; +static bool has_msr_hv_stimer; +static bool has_msr_xss; + +static bool has_msr_architectural_pmu; +static uint32_t num_architectural_pmu_counters; + +static int has_xsave; +static int has_xcrs; +static int has_pit_state2; + +static bool has_msr_mcg_ext_ctl; + +static struct kvm_cpuid2 *cpuid_cache; + +int kvm_has_pit_state2(void) +{ + return has_pit_state2; +} + +bool kvm_has_smm(void) +{ + return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); +} + +bool kvm_allows_irq0_override(void) +{ + return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); +} + +static bool kvm_x2apic_api_set_flags(uint64_t flags) +{ + KVMState *s = KVM_STATE(current_machine->accelerator); + + return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); +} + +#define MEMORIZE(fn, _result) \ + ({ \ + static bool _memorized; \ + \ + if (_memorized) { \ + return _result; \ + } \ + _memorized = true; \ + _result = fn; \ + }) + +static bool has_x2apic_api; + +bool kvm_has_x2apic_api(void) +{ + return has_x2apic_api; +} + +bool kvm_enable_x2apic(void) +{ + return MEMORIZE( + kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | + KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), + has_x2apic_api); +} + +static int kvm_get_tsc(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + struct { + struct kvm_msrs info; + struct kvm_msr_entry entries[1]; + } msr_data; + int ret; + + if (env->tsc_valid) { + return 0; + } + + msr_data.info.nmsrs = 1; + msr_data.entries[0].index = MSR_IA32_TSC; + env->tsc_valid = !runstate_is_running(); + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); + if (ret < 0) { + return ret; + } + + assert(ret == 1); + env->tsc = msr_data.entries[0].data; + return 0; +} + +static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) +{ + kvm_get_tsc(cpu); +} + +void kvm_synchronize_all_tsc(void) +{ + CPUState *cpu; + + if (kvm_enabled()) { + CPU_FOREACH(cpu) { + run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); + } + } +} + +static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) +{ + struct kvm_cpuid2 *cpuid; + int r, size; + + size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); + cpuid = g_malloc0(size); + cpuid->nent = max; + r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); + if (r == 0 && cpuid->nent >= max) { + r = -E2BIG; + } + if (r < 0) { + if (r == -E2BIG) { + g_free(cpuid); + return NULL; + } else { + fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", + strerror(-r)); + exit(1); + } + } + return cpuid; +} + +/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough + * for all entries. + */ +static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) +{ + struct kvm_cpuid2 *cpuid; + int max = 1; + + if (cpuid_cache != NULL) { + return cpuid_cache; + } + while ((cpuid = try_get_cpuid(s, max)) == NULL) { + max *= 2; + } + cpuid_cache = cpuid; + return cpuid; +} + +static const struct kvm_para_features { + int cap; + int feature; +} para_features[] = { + { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, + { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, + { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, + { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, +}; + +static int get_para_features(KVMState *s) +{ + int i, features = 0; + + for (i = 0; i < ARRAY_SIZE(para_features); i++) { + if (kvm_check_extension(s, para_features[i].cap)) { + features |= (1 << para_features[i].feature); + } + } + + return features; +} + + +/* Returns the value for a specific register on the cpuid entry + */ +static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) +{ + uint32_t ret = 0; + switch (reg) { + case R_EAX: + ret = entry->eax; + break; + case R_EBX: + ret = entry->ebx; + break; + case R_ECX: + ret = entry->ecx; + break; + case R_EDX: + ret = entry->edx; + break; + } + return ret; +} + +/* Find matching entry for function/index on kvm_cpuid2 struct + */ +static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, + uint32_t function, + uint32_t index) +{ + int i; + for (i = 0; i < cpuid->nent; ++i) { + if (cpuid->entries[i].function == function && + cpuid->entries[i].index == index) { + return &cpuid->entries[i]; + } + } + /* not found: */ + return NULL; +} + +uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, + uint32_t index, int reg) +{ + struct kvm_cpuid2 *cpuid; + uint32_t ret = 0; + uint32_t cpuid_1_edx; + bool found = false; + + cpuid = get_supported_cpuid(s); + + struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); + if (entry) { + found = true; + ret = cpuid_entry_get_reg(entry, reg); + } + + /* Fixups for the data returned by KVM, below */ + + if (function == 1 && reg == R_EDX) { + /* KVM before 2.6.30 misreports the following features */ + ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; + } else if (function == 1 && reg == R_ECX) { + /* We can set the hypervisor flag, even if KVM does not return it on + * GET_SUPPORTED_CPUID + */ + ret |= CPUID_EXT_HYPERVISOR; + /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it + * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, + * and the irqchip is in the kernel. + */ + if (kvm_irqchip_in_kernel() && + kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { + ret |= CPUID_EXT_TSC_DEADLINE_TIMER; + } + + /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled + * without the in-kernel irqchip + */ + if (!kvm_irqchip_in_kernel()) { + ret &= ~CPUID_EXT_X2APIC; + } + } else if (function == 6 && reg == R_EAX) { + ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ + } else if (function == 0x80000001 && reg == R_EDX) { + /* On Intel, kvm returns cpuid according to the Intel spec, + * so add missing bits according to the AMD spec: + */ + cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); + ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; + } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { + /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't + * be enabled without the in-kernel irqchip + */ + if (!kvm_irqchip_in_kernel()) { + ret &= ~(1U << KVM_FEATURE_PV_UNHALT); + } + } + + /* fallback for older kernels */ + if ((function == KVM_CPUID_FEATURES) && !found) { + ret = get_para_features(s); + } + + return ret; +} + +typedef struct HWPoisonPage { + ram_addr_t ram_addr; + QLIST_ENTRY(HWPoisonPage) list; +} HWPoisonPage; + +static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = + QLIST_HEAD_INITIALIZER(hwpoison_page_list); + +static void kvm_unpoison_all(void *param) +{ + HWPoisonPage *page, *next_page; + + QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { + QLIST_REMOVE(page, list); + qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); + g_free(page); + } +} + +static void kvm_hwpoison_page_add(ram_addr_t ram_addr) +{ + HWPoisonPage *page; + + QLIST_FOREACH(page, &hwpoison_page_list, list) { + if (page->ram_addr == ram_addr) { + return; + } + } + page = g_new(HWPoisonPage, 1); + page->ram_addr = ram_addr; + QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); +} + +static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, + int *max_banks) +{ + int r; + + r = kvm_check_extension(s, KVM_CAP_MCE); + if (r > 0) { + *max_banks = r; + return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); + } + return -ENOSYS; +} + +static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | + MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; + uint64_t mcg_status = MCG_STATUS_MCIP; + int flags = 0; + + if (code == BUS_MCEERR_AR) { + status |= MCI_STATUS_AR | 0x134; + mcg_status |= MCG_STATUS_EIPV; + } else { + status |= 0xc0; + mcg_status |= MCG_STATUS_RIPV; + } + + flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; + /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the + * guest kernel back into env->mcg_ext_ctl. + */ + cpu_synchronize_state(cs); + if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { + mcg_status |= MCG_STATUS_LMCE; + flags = 0; + } + + cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, + (MCM_ADDR_PHYS << 6) | 0xc, flags); +} + +static void hardware_memory_error(void) +{ + fprintf(stderr, "Hardware memory error!\n"); + exit(1); +} + +int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) +{ + X86CPU *cpu = X86_CPU(c); + CPUX86State *env = &cpu->env; + ram_addr_t ram_addr; + hwaddr paddr; + + if ((env->mcg_cap & MCG_SER_P) && addr + && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { + ram_addr = qemu_ram_addr_from_host(addr); + if (ram_addr == RAM_ADDR_INVALID || + !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { + fprintf(stderr, "Hardware memory error for memory used by " + "QEMU itself instead of guest system!\n"); + /* Hope we are lucky for AO MCE */ + if (code == BUS_MCEERR_AO) { + return 0; + } else { + hardware_memory_error(); + } + } + kvm_hwpoison_page_add(ram_addr); + kvm_mce_inject(cpu, paddr, code); + } else { + if (code == BUS_MCEERR_AO) { + return 0; + } else if (code == BUS_MCEERR_AR) { + hardware_memory_error(); + } else { + return 1; + } + } + return 0; +} + +int kvm_arch_on_sigbus(int code, void *addr) +{ + X86CPU *cpu = X86_CPU(first_cpu); + + if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { + ram_addr_t ram_addr; + hwaddr paddr; + + /* Hope we are lucky for AO MCE */ + ram_addr = qemu_ram_addr_from_host(addr); + if (ram_addr == RAM_ADDR_INVALID || + !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, + addr, &paddr)) { + fprintf(stderr, "Hardware memory error for memory used by " + "QEMU itself instead of guest system!: %p\n", addr); + return 0; + } + kvm_hwpoison_page_add(ram_addr); + kvm_mce_inject(X86_CPU(first_cpu), paddr, code); + } else { + if (code == BUS_MCEERR_AO) { + return 0; + } else if (code == BUS_MCEERR_AR) { + hardware_memory_error(); + } else { + return 1; + } + } + return 0; +} + +static int kvm_inject_mce_oldstyle(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + + if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { + unsigned int bank, bank_num = env->mcg_cap & 0xff; + struct kvm_x86_mce mce; + + env->exception_injected = -1; + + /* + * There must be at least one bank in use if an MCE is pending. + * Find it and use its values for the event injection. + */ + for (bank = 0; bank < bank_num; bank++) { + if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { + break; + } + } + assert(bank < bank_num); + + mce.bank = bank; + mce.status = env->mce_banks[bank * 4 + 1]; + mce.mcg_status = env->mcg_status; + mce.addr = env->mce_banks[bank * 4 + 2]; + mce.misc = env->mce_banks[bank * 4 + 3]; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); + } + return 0; +} + +static void cpu_update_state(void *opaque, int running, RunState state) +{ + CPUX86State *env = opaque; + + if (running) { + env->tsc_valid = false; + } +} + +unsigned long kvm_arch_vcpu_id(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + return cpu->apic_id; +} + +#ifndef KVM_CPUID_SIGNATURE_NEXT +#define KVM_CPUID_SIGNATURE_NEXT 0x40000100 +#endif + +static bool hyperv_hypercall_available(X86CPU *cpu) +{ + return cpu->hyperv_vapic || + (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); +} + +static bool hyperv_enabled(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && + (hyperv_hypercall_available(cpu) || + cpu->hyperv_time || + cpu->hyperv_relaxed_timing || + cpu->hyperv_crash || + cpu->hyperv_reset || + cpu->hyperv_vpindex || + cpu->hyperv_runtime || + cpu->hyperv_synic || + cpu->hyperv_stimer); +} + +static int kvm_arch_set_tsc_khz(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + int r; + + if (!env->tsc_khz) { + return 0; + } + + r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? + kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : + -ENOTSUP; + if (r < 0) { + /* When KVM_SET_TSC_KHZ fails, it's an error only if the current + * TSC frequency doesn't match the one we want. + */ + int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? + kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : + -ENOTSUP; + if (cur_freq <= 0 || cur_freq != env->tsc_khz) { + error_report("warning: TSC frequency mismatch between " + "VM (%" PRId64 " kHz) and host (%d kHz), " + "and TSC scaling unavailable", + env->tsc_khz, cur_freq); + return r; + } + } + + return 0; +} + +static int hyperv_handle_properties(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + + if (cpu->hyperv_time && + kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) { + cpu->hyperv_time = false; + } + + if (cpu->hyperv_relaxed_timing) { + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; + } + if (cpu->hyperv_vapic) { + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; + } + if (cpu->hyperv_time) { + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; + env->features[FEAT_HYPERV_EAX] |= 0x200; + } + if (cpu->hyperv_crash && has_msr_hv_crash) { + env->features[FEAT_HYPERV_EDX] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE; + } + env->features[FEAT_HYPERV_EDX] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE; + if (cpu->hyperv_reset && has_msr_hv_reset) { + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_RESET_AVAILABLE; + } + if (cpu->hyperv_vpindex && has_msr_hv_vpindex) { + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_INDEX_AVAILABLE; + } + if (cpu->hyperv_runtime && has_msr_hv_runtime) { + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE; + } + if (cpu->hyperv_synic) { + int sint; + + if (!has_msr_hv_synic || + kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) { + fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n"); + return -ENOSYS; + } + + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNIC_AVAILABLE; + env->msr_hv_synic_version = HV_SYNIC_VERSION_1; + for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) { + env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED; + } + } + if (cpu->hyperv_stimer) { + if (!has_msr_hv_stimer) { + fprintf(stderr, "Hyper-V timers aren't supported by kernel\n"); + return -ENOSYS; + } + env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNTIMER_AVAILABLE; + } + return 0; +} + +static Error *invtsc_mig_blocker; + +#define KVM_MAX_CPUID_ENTRIES 100 + +int kvm_arch_init_vcpu(CPUState *cs) +{ + struct { + struct kvm_cpuid2 cpuid; + struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; + } QEMU_PACKED cpuid_data; + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + uint32_t limit, i, j, cpuid_i; + uint32_t unused; + struct kvm_cpuid_entry2 *c; + uint32_t signature[3]; + int kvm_base = KVM_CPUID_SIGNATURE; + int r; + + memset(&cpuid_data, 0, sizeof(cpuid_data)); + + cpuid_i = 0; + + /* Paravirtualization CPUIDs */ + if (hyperv_enabled(cpu)) { + c = &cpuid_data.entries[cpuid_i++]; + c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; + if (!cpu->hyperv_vendor_id) { + memcpy(signature, "Microsoft Hv", 12); + } else { + size_t len = strlen(cpu->hyperv_vendor_id); + + if (len > 12) { + error_report("hv-vendor-id truncated to 12 characters"); + len = 12; + } + memset(signature, 0, 12); + memcpy(signature, cpu->hyperv_vendor_id, len); + } + c->eax = HYPERV_CPUID_MIN; + c->ebx = signature[0]; + c->ecx = signature[1]; + c->edx = signature[2]; + + c = &cpuid_data.entries[cpuid_i++]; + c->function = HYPERV_CPUID_INTERFACE; + memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); + c->eax = signature[0]; + c->ebx = 0; + c->ecx = 0; + c->edx = 0; + + c = &cpuid_data.entries[cpuid_i++]; + c->function = HYPERV_CPUID_VERSION; + c->eax = 0x00001bbc; + c->ebx = 0x00060001; + + c = &cpuid_data.entries[cpuid_i++]; + c->function = HYPERV_CPUID_FEATURES; + r = hyperv_handle_properties(cs); + if (r) { + return r; + } + c->eax = env->features[FEAT_HYPERV_EAX]; + c->ebx = env->features[FEAT_HYPERV_EBX]; + c->edx = env->features[FEAT_HYPERV_EDX]; + + c = &cpuid_data.entries[cpuid_i++]; + c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; + if (cpu->hyperv_relaxed_timing) { + c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; + } + if (cpu->hyperv_vapic) { + c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; + } + c->ebx = cpu->hyperv_spinlock_attempts; + + c = &cpuid_data.entries[cpuid_i++]; + c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; + c->eax = 0x40; + c->ebx = 0x40; + + kvm_base = KVM_CPUID_SIGNATURE_NEXT; + has_msr_hv_hypercall = true; + } + + if (cpu->expose_kvm) { + memcpy(signature, "KVMKVMKVM\0\0\0", 12); + c = &cpuid_data.entries[cpuid_i++]; + c->function = KVM_CPUID_SIGNATURE | kvm_base; + c->eax = KVM_CPUID_FEATURES | kvm_base; + c->ebx = signature[0]; + c->ecx = signature[1]; + c->edx = signature[2]; + + c = &cpuid_data.entries[cpuid_i++]; + c->function = KVM_CPUID_FEATURES | kvm_base; + c->eax = env->features[FEAT_KVM]; + } + + cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); + + for (i = 0; i <= limit; i++) { + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "unsupported level value: 0x%x\n", limit); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + + switch (i) { + case 2: { + /* Keep reading function 2 till all the input is received */ + int times; + + c->function = i; + c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | + KVM_CPUID_FLAG_STATE_READ_NEXT; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + times = c->eax & 0xff; + + for (j = 1; j < times; ++j) { + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "cpuid_data is full, no space for " + "cpuid(eax:2):eax & 0xf = 0x%x\n", times); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + c->function = i; + c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + } + break; + } + case 4: + case 0xb: + case 0xd: + for (j = 0; ; j++) { + if (i == 0xd && j == 64) { + break; + } + c->function = i; + c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; + c->index = j; + cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); + + if (i == 4 && c->eax == 0) { + break; + } + if (i == 0xb && !(c->ecx & 0xff00)) { + break; + } + if (i == 0xd && c->eax == 0) { + continue; + } + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "cpuid_data is full, no space for " + "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + } + break; + default: + c->function = i; + c->flags = 0; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + break; + } + } + + if (limit >= 0x0a) { + uint32_t ver; + + cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); + if ((ver & 0xff) > 0) { + has_msr_architectural_pmu = true; + num_architectural_pmu_counters = (ver & 0xff00) >> 8; + + /* Shouldn't be more than 32, since that's the number of bits + * available in EBX to tell us _which_ counters are available. + * Play it safe. + */ + if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { + num_architectural_pmu_counters = MAX_GP_COUNTERS; + } + } + } + + cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); + + for (i = 0x80000000; i <= limit; i++) { + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + + c->function = i; + c->flags = 0; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + } + + /* Call Centaur's CPUID instructions they are supported. */ + if (env->cpuid_xlevel2 > 0) { + cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); + + for (i = 0xC0000000; i <= limit; i++) { + if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { + fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); + abort(); + } + c = &cpuid_data.entries[cpuid_i++]; + + c->function = i; + c->flags = 0; + cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); + } + } + + cpuid_data.cpuid.nent = cpuid_i; + + if (((env->cpuid_version >> 8)&0xF) >= 6 + && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == + (CPUID_MCE | CPUID_MCA) + && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { + uint64_t mcg_cap, unsupported_caps; + int banks; + int ret; + + ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); + if (ret < 0) { + fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); + return ret; + } + + if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { + error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", + (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); + return -ENOTSUP; + } + + unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); + if (unsupported_caps) { + if (unsupported_caps & MCG_LMCE_P) { + error_report("kvm: LMCE not supported"); + return -ENOTSUP; + } + error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64, + unsupported_caps); + } + + env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; + ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); + if (ret < 0) { + fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); + return ret; + } + } + + qemu_add_vm_change_state_handler(cpu_update_state, env); + + c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); + if (c) { + has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || + !!(c->ecx & CPUID_EXT_SMX); + } + + if (env->mcg_cap & MCG_LMCE_P) { + has_msr_mcg_ext_ctl = has_msr_feature_control = true; + } + + c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0); + if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) { + /* for migration */ + error_setg(&invtsc_mig_blocker, + "State blocked by non-migratable CPU device" + " (invtsc flag)"); + migrate_add_blocker(invtsc_mig_blocker); + /* for savevm */ + vmstate_x86_cpu.unmigratable = 1; + } + + cpuid_data.cpuid.padding = 0; + r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); + if (r) { + return r; + } + + r = kvm_arch_set_tsc_khz(cs); + if (r < 0) { + return r; + } + + /* vcpu's TSC frequency is either specified by user, or following + * the value used by KVM if the former is not present. In the + * latter case, we query it from KVM and record in env->tsc_khz, + * so that vcpu's TSC frequency can be migrated later via this field. + */ + if (!env->tsc_khz) { + r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? + kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : + -ENOTSUP; + if (r > 0) { + env->tsc_khz = r; + } + } + + if (has_xsave) { + env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); + } + cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); + + if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { + has_msr_tsc_aux = false; + } + + return 0; +} + +void kvm_arch_reset_vcpu(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + + env->exception_injected = -1; + env->interrupt_injected = -1; + env->xcr0 = 1; + if (kvm_irqchip_in_kernel()) { + env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : + KVM_MP_STATE_UNINITIALIZED; + } else { + env->mp_state = KVM_MP_STATE_RUNNABLE; + } +} + +void kvm_arch_do_init_vcpu(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + + /* APs get directly into wait-for-SIPI state. */ + if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { + env->mp_state = KVM_MP_STATE_INIT_RECEIVED; + } +} + +static int kvm_get_supported_msrs(KVMState *s) +{ + static int kvm_supported_msrs; + int ret = 0; + + /* first time */ + if (kvm_supported_msrs == 0) { + struct kvm_msr_list msr_list, *kvm_msr_list; + + kvm_supported_msrs = -1; + + /* Obtain MSR list from KVM. These are the MSRs that we must + * save/restore */ + msr_list.nmsrs = 0; + ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); + if (ret < 0 && ret != -E2BIG) { + return ret; + } + /* Old kernel modules had a bug and could write beyond the provided + memory. Allocate at least a safe amount of 1K. */ + kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + + msr_list.nmsrs * + sizeof(msr_list.indices[0]))); + + kvm_msr_list->nmsrs = msr_list.nmsrs; + ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); + if (ret >= 0) { + int i; + + for (i = 0; i < kvm_msr_list->nmsrs; i++) { + if (kvm_msr_list->indices[i] == MSR_STAR) { + has_msr_star = true; + continue; + } + if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { + has_msr_hsave_pa = true; + continue; + } + if (kvm_msr_list->indices[i] == MSR_TSC_AUX) { + has_msr_tsc_aux = true; + continue; + } + if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { + has_msr_tsc_adjust = true; + continue; + } + if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { + has_msr_tsc_deadline = true; + continue; + } + if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) { + has_msr_smbase = true; + continue; + } + if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { + has_msr_misc_enable = true; + continue; + } + if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { + has_msr_bndcfgs = true; + continue; + } + if (kvm_msr_list->indices[i] == MSR_IA32_XSS) { + has_msr_xss = true; + continue; + } + if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) { + has_msr_hv_crash = true; + continue; + } + if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) { + has_msr_hv_reset = true; + continue; + } + if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) { + has_msr_hv_vpindex = true; + continue; + } + if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) { + has_msr_hv_runtime = true; + continue; + } + if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) { + has_msr_hv_synic = true; + continue; + } + if (kvm_msr_list->indices[i] == HV_X64_MSR_STIMER0_CONFIG) { + has_msr_hv_stimer = true; + continue; + } + } + } + + g_free(kvm_msr_list); + } + + return ret; +} + +static Notifier smram_machine_done; +static KVMMemoryListener smram_listener; +static AddressSpace smram_address_space; +static MemoryRegion smram_as_root; +static MemoryRegion smram_as_mem; + +static void register_smram_listener(Notifier *n, void *unused) +{ + MemoryRegion *smram = + (MemoryRegion *) object_resolve_path("/machine/smram", NULL); + + /* Outer container... */ + memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); + memory_region_set_enabled(&smram_as_root, true); + + /* ... with two regions inside: normal system memory with low + * priority, and... + */ + memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", + get_system_memory(), 0, ~0ull); + memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); + memory_region_set_enabled(&smram_as_mem, true); + + if (smram) { + /* ... SMRAM with higher priority */ + memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); + memory_region_set_enabled(smram, true); + } + + address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); + kvm_memory_listener_register(kvm_state, &smram_listener, + &smram_address_space, 1); +} + +int kvm_arch_init(MachineState *ms, KVMState *s) +{ + uint64_t identity_base = 0xfffbc000; + uint64_t shadow_mem; + int ret; + struct utsname utsname; + +#ifdef KVM_CAP_XSAVE + has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); +#endif + +#ifdef KVM_CAP_XCRS + has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); +#endif + +#ifdef KVM_CAP_PIT_STATE2 + has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); +#endif + + ret = kvm_get_supported_msrs(s); + if (ret < 0) { + return ret; + } + + uname(&utsname); + lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; + + /* + * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. + * In order to use vm86 mode, an EPT identity map and a TSS are needed. + * Since these must be part of guest physical memory, we need to allocate + * them, both by setting their start addresses in the kernel and by + * creating a corresponding e820 entry. We need 4 pages before the BIOS. + * + * Older KVM versions may not support setting the identity map base. In + * that case we need to stick with the default, i.e. a 256K maximum BIOS + * size. + */ + if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { + /* Allows up to 16M BIOSes. */ + identity_base = 0xfeffc000; + + ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); + if (ret < 0) { + return ret; + } + } + + /* Set TSS base one page after EPT identity map. */ + ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); + if (ret < 0) { + return ret; + } + + /* Tell fw_cfg to notify the BIOS to reserve the range. */ + ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); + if (ret < 0) { + fprintf(stderr, "e820_add_entry() table is full\n"); + return ret; + } + qemu_register_reset(kvm_unpoison_all, NULL); + + shadow_mem = machine_kvm_shadow_mem(ms); + if (shadow_mem != -1) { + shadow_mem /= 4096; + ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); + if (ret < 0) { + return ret; + } + } + + if (kvm_check_extension(s, KVM_CAP_X86_SMM)) { + smram_machine_done.notify = register_smram_listener; + qemu_add_machine_init_done_notifier(&smram_machine_done); + } + return 0; +} + +static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) +{ + lhs->selector = rhs->selector; + lhs->base = rhs->base; + lhs->limit = rhs->limit; + lhs->type = 3; + lhs->present = 1; + lhs->dpl = 3; + lhs->db = 0; + lhs->s = 1; + lhs->l = 0; + lhs->g = 0; + lhs->avl = 0; + lhs->unusable = 0; +} + +static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) +{ + unsigned flags = rhs->flags; + lhs->selector = rhs->selector; + lhs->base = rhs->base; + lhs->limit = rhs->limit; + lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; + lhs->present = (flags & DESC_P_MASK) != 0; + lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; + lhs->db = (flags >> DESC_B_SHIFT) & 1; + lhs->s = (flags & DESC_S_MASK) != 0; + lhs->l = (flags >> DESC_L_SHIFT) & 1; + lhs->g = (flags & DESC_G_MASK) != 0; + lhs->avl = (flags & DESC_AVL_MASK) != 0; + lhs->unusable = !lhs->present; + lhs->padding = 0; +} + +static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) +{ + lhs->selector = rhs->selector; + lhs->base = rhs->base; + lhs->limit = rhs->limit; + if (rhs->unusable) { + lhs->flags = 0; + } else { + lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | + (rhs->present * DESC_P_MASK) | + (rhs->dpl << DESC_DPL_SHIFT) | + (rhs->db << DESC_B_SHIFT) | + (rhs->s * DESC_S_MASK) | + (rhs->l << DESC_L_SHIFT) | + (rhs->g * DESC_G_MASK) | + (rhs->avl * DESC_AVL_MASK); + } +} + +static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) +{ + if (set) { + *kvm_reg = *qemu_reg; + } else { + *qemu_reg = *kvm_reg; + } +} + +static int kvm_getput_regs(X86CPU *cpu, int set) +{ + CPUX86State *env = &cpu->env; + struct kvm_regs regs; + int ret = 0; + + if (!set) { + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); + if (ret < 0) { + return ret; + } + } + + kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); + kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); + kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); + kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); + kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); + kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); + kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); + kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); +#ifdef TARGET_X86_64 + kvm_getput_reg(®s.r8, &env->regs[8], set); + kvm_getput_reg(®s.r9, &env->regs[9], set); + kvm_getput_reg(®s.r10, &env->regs[10], set); + kvm_getput_reg(®s.r11, &env->regs[11], set); + kvm_getput_reg(®s.r12, &env->regs[12], set); + kvm_getput_reg(®s.r13, &env->regs[13], set); + kvm_getput_reg(®s.r14, &env->regs[14], set); + kvm_getput_reg(®s.r15, &env->regs[15], set); +#endif + + kvm_getput_reg(®s.rflags, &env->eflags, set); + kvm_getput_reg(®s.rip, &env->eip, set); + + if (set) { + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); + } + + return ret; +} + +static int kvm_put_fpu(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_fpu fpu; + int i; + + memset(&fpu, 0, sizeof fpu); + fpu.fsw = env->fpus & ~(7 << 11); + fpu.fsw |= (env->fpstt & 7) << 11; + fpu.fcw = env->fpuc; + fpu.last_opcode = env->fpop; + fpu.last_ip = env->fpip; + fpu.last_dp = env->fpdp; + for (i = 0; i < 8; ++i) { + fpu.ftwx |= (!env->fptags[i]) << i; + } + memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); + for (i = 0; i < CPU_NB_REGS; i++) { + stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); + stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); + } + fpu.mxcsr = env->mxcsr; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); +} + +#define XSAVE_FCW_FSW 0 +#define XSAVE_FTW_FOP 1 +#define XSAVE_CWD_RIP 2 +#define XSAVE_CWD_RDP 4 +#define XSAVE_MXCSR 6 +#define XSAVE_ST_SPACE 8 +#define XSAVE_XMM_SPACE 40 +#define XSAVE_XSTATE_BV 128 +#define XSAVE_YMMH_SPACE 144 +#define XSAVE_BNDREGS 240 +#define XSAVE_BNDCSR 256 +#define XSAVE_OPMASK 272 +#define XSAVE_ZMM_Hi256 288 +#define XSAVE_Hi16_ZMM 416 +#define XSAVE_PKRU 672 + +#define XSAVE_BYTE_OFFSET(word_offset) \ + ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0])) + +#define ASSERT_OFFSET(word_offset, field) \ + QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ + offsetof(X86XSaveArea, field)) + +ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); +ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); +ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); +ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); +ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); +ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); +ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); +ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); +ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); +ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); +ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); +ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); +ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); +ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); +ASSERT_OFFSET(XSAVE_PKRU, pkru_state); + +static int kvm_put_xsave(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + X86XSaveArea *xsave = env->kvm_xsave_buf; + uint16_t cwd, swd, twd; + int i; + + if (!has_xsave) { + return kvm_put_fpu(cpu); + } + + memset(xsave, 0, sizeof(struct kvm_xsave)); + twd = 0; + swd = env->fpus & ~(7 << 11); + swd |= (env->fpstt & 7) << 11; + cwd = env->fpuc; + for (i = 0; i < 8; ++i) { + twd |= (!env->fptags[i]) << i; + } + xsave->legacy.fcw = cwd; + xsave->legacy.fsw = swd; + xsave->legacy.ftw = twd; + xsave->legacy.fpop = env->fpop; + xsave->legacy.fpip = env->fpip; + xsave->legacy.fpdp = env->fpdp; + memcpy(&xsave->legacy.fpregs, env->fpregs, + sizeof env->fpregs); + xsave->legacy.mxcsr = env->mxcsr; + xsave->header.xstate_bv = env->xstate_bv; + memcpy(&xsave->bndreg_state.bnd_regs, env->bnd_regs, + sizeof env->bnd_regs); + xsave->bndcsr_state.bndcsr = env->bndcs_regs; + memcpy(&xsave->opmask_state.opmask_regs, env->opmask_regs, + sizeof env->opmask_regs); + + for (i = 0; i < CPU_NB_REGS; i++) { + uint8_t *xmm = xsave->legacy.xmm_regs[i]; + uint8_t *ymmh = xsave->avx_state.ymmh[i]; + uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; + stq_p(xmm, env->xmm_regs[i].ZMM_Q(0)); + stq_p(xmm+8, env->xmm_regs[i].ZMM_Q(1)); + stq_p(ymmh, env->xmm_regs[i].ZMM_Q(2)); + stq_p(ymmh+8, env->xmm_regs[i].ZMM_Q(3)); + stq_p(zmmh, env->xmm_regs[i].ZMM_Q(4)); + stq_p(zmmh+8, env->xmm_regs[i].ZMM_Q(5)); + stq_p(zmmh+16, env->xmm_regs[i].ZMM_Q(6)); + stq_p(zmmh+24, env->xmm_regs[i].ZMM_Q(7)); + } + +#ifdef TARGET_X86_64 + memcpy(&xsave->hi16_zmm_state.hi16_zmm, &env->xmm_regs[16], + 16 * sizeof env->xmm_regs[16]); + memcpy(&xsave->pkru_state, &env->pkru, sizeof env->pkru); +#endif + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); +} + +static int kvm_put_xcrs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_xcrs xcrs = {}; + + if (!has_xcrs) { + return 0; + } + + xcrs.nr_xcrs = 1; + xcrs.flags = 0; + xcrs.xcrs[0].xcr = 0; + xcrs.xcrs[0].value = env->xcr0; + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); +} + +static int kvm_put_sregs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_sregs sregs; + + memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); + if (env->interrupt_injected >= 0) { + sregs.interrupt_bitmap[env->interrupt_injected / 64] |= + (uint64_t)1 << (env->interrupt_injected % 64); + } + + if ((env->eflags & VM_MASK)) { + set_v8086_seg(&sregs.cs, &env->segs[R_CS]); + set_v8086_seg(&sregs.ds, &env->segs[R_DS]); + set_v8086_seg(&sregs.es, &env->segs[R_ES]); + set_v8086_seg(&sregs.fs, &env->segs[R_FS]); + set_v8086_seg(&sregs.gs, &env->segs[R_GS]); + set_v8086_seg(&sregs.ss, &env->segs[R_SS]); + } else { + set_seg(&sregs.cs, &env->segs[R_CS]); + set_seg(&sregs.ds, &env->segs[R_DS]); + set_seg(&sregs.es, &env->segs[R_ES]); + set_seg(&sregs.fs, &env->segs[R_FS]); + set_seg(&sregs.gs, &env->segs[R_GS]); + set_seg(&sregs.ss, &env->segs[R_SS]); + } + + set_seg(&sregs.tr, &env->tr); + set_seg(&sregs.ldt, &env->ldt); + + sregs.idt.limit = env->idt.limit; + sregs.idt.base = env->idt.base; + memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); + sregs.gdt.limit = env->gdt.limit; + sregs.gdt.base = env->gdt.base; + memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); + + sregs.cr0 = env->cr[0]; + sregs.cr2 = env->cr[2]; + sregs.cr3 = env->cr[3]; + sregs.cr4 = env->cr[4]; + + sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); + sregs.apic_base = cpu_get_apic_base(cpu->apic_state); + + sregs.efer = env->efer; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); +} + +static void kvm_msr_buf_reset(X86CPU *cpu) +{ + memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); +} + +static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) +{ + struct kvm_msrs *msrs = cpu->kvm_msr_buf; + void *limit = ((void *)msrs) + MSR_BUF_SIZE; + struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; + + assert((void *)(entry + 1) <= limit); + + entry->index = index; + entry->reserved = 0; + entry->data = value; + msrs->nmsrs++; +} + +static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) +{ + kvm_msr_buf_reset(cpu); + kvm_msr_entry_add(cpu, index, value); + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); +} + +void kvm_put_apicbase(X86CPU *cpu, uint64_t value) +{ + int ret; + + ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); + assert(ret == 1); +} + +static int kvm_put_tscdeadline_msr(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + int ret; + + if (!has_msr_tsc_deadline) { + return 0; + } + + ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); + if (ret < 0) { + return ret; + } + + assert(ret == 1); + return 0; +} + +/* + * Provide a separate write service for the feature control MSR in order to + * kick the VCPU out of VMXON or even guest mode on reset. This has to be done + * before writing any other state because forcibly leaving nested mode + * invalidates the VCPU state. + */ +static int kvm_put_msr_feature_control(X86CPU *cpu) +{ + int ret; + + if (!has_msr_feature_control) { + return 0; + } + + ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, + cpu->env.msr_ia32_feature_control); + if (ret < 0) { + return ret; + } + + assert(ret == 1); + return 0; +} + +static int kvm_put_msrs(X86CPU *cpu, int level) +{ + CPUX86State *env = &cpu->env; + int i; + int ret; + + kvm_msr_buf_reset(cpu); + + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); + kvm_msr_entry_add(cpu, MSR_PAT, env->pat); + if (has_msr_star) { + kvm_msr_entry_add(cpu, MSR_STAR, env->star); + } + if (has_msr_hsave_pa) { + kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); + } + if (has_msr_tsc_aux) { + kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); + } + if (has_msr_tsc_adjust) { + kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); + } + if (has_msr_misc_enable) { + kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, + env->msr_ia32_misc_enable); + } + if (has_msr_smbase) { + kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); + } + if (has_msr_bndcfgs) { + kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); + } + if (has_msr_xss) { + kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); + } +#ifdef TARGET_X86_64 + if (lm_capable_kernel) { + kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); + kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); + kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); + kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); + } +#endif + /* + * The following MSRs have side effects on the guest or are too heavy + * for normal writeback. Limit them to reset or full state updates. + */ + if (level >= KVM_PUT_RESET_STATE) { + kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); + kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); + kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { + kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { + kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { + kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); + } + if (has_msr_architectural_pmu) { + /* Stop the counter. */ + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); + + /* Set the counter values. */ + for (i = 0; i < MAX_FIXED_COUNTERS; i++) { + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, + env->msr_fixed_counters[i]); + } + for (i = 0; i < num_architectural_pmu_counters; i++) { + kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, + env->msr_gp_counters[i]); + kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, + env->msr_gp_evtsel[i]); + } + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, + env->msr_global_status); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, + env->msr_global_ovf_ctrl); + + /* Now start the PMU. */ + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, + env->msr_fixed_ctr_ctrl); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, + env->msr_global_ctrl); + } + if (has_msr_hv_hypercall) { + kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, + env->msr_hv_guest_os_id); + kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, + env->msr_hv_hypercall); + } + if (cpu->hyperv_vapic) { + kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, + env->msr_hv_vapic); + } + if (cpu->hyperv_time) { + kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc); + } + if (has_msr_hv_crash) { + int j; + + for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) + kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, + env->msr_hv_crash_params[j]); + + kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, + HV_X64_MSR_CRASH_CTL_NOTIFY); + } + if (has_msr_hv_runtime) { + kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); + } + if (cpu->hyperv_synic) { + int j; + + kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, + env->msr_hv_synic_control); + kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, + env->msr_hv_synic_version); + kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, + env->msr_hv_synic_evt_page); + kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, + env->msr_hv_synic_msg_page); + + for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { + kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, + env->msr_hv_synic_sint[j]); + } + } + if (has_msr_hv_stimer) { + int j; + + for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { + kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, + env->msr_hv_stimer_config[j]); + } + + for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { + kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, + env->msr_hv_stimer_count[j]); + } + } + if (env->features[FEAT_1_EDX] & CPUID_MTRR) { + uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); + + kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); + kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); + kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); + kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); + for (i = 0; i < MSR_MTRRcap_VCNT; i++) { + /* The CPU GPs if we write to a bit above the physical limit of + * the host CPU (and KVM emulates that) + */ + uint64_t mask = env->mtrr_var[i].mask; + mask &= phys_mask; + + kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), + env->mtrr_var[i].base); + kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); + } + } + + /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see + * kvm_put_msr_feature_control. */ + } + if (env->mcg_cap) { + int i; + + kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); + kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); + if (has_msr_mcg_ext_ctl) { + kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); + } + for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { + kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); + } + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); + if (ret < 0) { + return ret; + } + + assert(ret == cpu->kvm_msr_buf->nmsrs); + return 0; +} + + +static int kvm_get_fpu(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_fpu fpu; + int i, ret; + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); + if (ret < 0) { + return ret; + } + + env->fpstt = (fpu.fsw >> 11) & 7; + env->fpus = fpu.fsw; + env->fpuc = fpu.fcw; + env->fpop = fpu.last_opcode; + env->fpip = fpu.last_ip; + env->fpdp = fpu.last_dp; + for (i = 0; i < 8; ++i) { + env->fptags[i] = !((fpu.ftwx >> i) & 1); + } + memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); + for (i = 0; i < CPU_NB_REGS; i++) { + env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); + env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); + } + env->mxcsr = fpu.mxcsr; + + return 0; +} + +static int kvm_get_xsave(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + X86XSaveArea *xsave = env->kvm_xsave_buf; + int ret, i; + uint16_t cwd, swd, twd; + + if (!has_xsave) { + return kvm_get_fpu(cpu); + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); + if (ret < 0) { + return ret; + } + + cwd = xsave->legacy.fcw; + swd = xsave->legacy.fsw; + twd = xsave->legacy.ftw; + env->fpop = xsave->legacy.fpop; + env->fpstt = (swd >> 11) & 7; + env->fpus = swd; + env->fpuc = cwd; + for (i = 0; i < 8; ++i) { + env->fptags[i] = !((twd >> i) & 1); + } + env->fpip = xsave->legacy.fpip; + env->fpdp = xsave->legacy.fpdp; + env->mxcsr = xsave->legacy.mxcsr; + memcpy(env->fpregs, &xsave->legacy.fpregs, + sizeof env->fpregs); + env->xstate_bv = xsave->header.xstate_bv; + memcpy(env->bnd_regs, &xsave->bndreg_state.bnd_regs, + sizeof env->bnd_regs); + env->bndcs_regs = xsave->bndcsr_state.bndcsr; + memcpy(env->opmask_regs, &xsave->opmask_state.opmask_regs, + sizeof env->opmask_regs); + + for (i = 0; i < CPU_NB_REGS; i++) { + uint8_t *xmm = xsave->legacy.xmm_regs[i]; + uint8_t *ymmh = xsave->avx_state.ymmh[i]; + uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; + env->xmm_regs[i].ZMM_Q(0) = ldq_p(xmm); + env->xmm_regs[i].ZMM_Q(1) = ldq_p(xmm+8); + env->xmm_regs[i].ZMM_Q(2) = ldq_p(ymmh); + env->xmm_regs[i].ZMM_Q(3) = ldq_p(ymmh+8); + env->xmm_regs[i].ZMM_Q(4) = ldq_p(zmmh); + env->xmm_regs[i].ZMM_Q(5) = ldq_p(zmmh+8); + env->xmm_regs[i].ZMM_Q(6) = ldq_p(zmmh+16); + env->xmm_regs[i].ZMM_Q(7) = ldq_p(zmmh+24); + } + +#ifdef TARGET_X86_64 + memcpy(&env->xmm_regs[16], &xsave->hi16_zmm_state.hi16_zmm, + 16 * sizeof env->xmm_regs[16]); + memcpy(&env->pkru, &xsave->pkru_state, sizeof env->pkru); +#endif + return 0; +} + +static int kvm_get_xcrs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + int i, ret; + struct kvm_xcrs xcrs; + + if (!has_xcrs) { + return 0; + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); + if (ret < 0) { + return ret; + } + + for (i = 0; i < xcrs.nr_xcrs; i++) { + /* Only support xcr0 now */ + if (xcrs.xcrs[i].xcr == 0) { + env->xcr0 = xcrs.xcrs[i].value; + break; + } + } + return 0; +} + +static int kvm_get_sregs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_sregs sregs; + uint32_t hflags; + int bit, i, ret; + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); + if (ret < 0) { + return ret; + } + + /* There can only be one pending IRQ set in the bitmap at a time, so try + to find it and save its number instead (-1 for none). */ + env->interrupt_injected = -1; + for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { + if (sregs.interrupt_bitmap[i]) { + bit = ctz64(sregs.interrupt_bitmap[i]); + env->interrupt_injected = i * 64 + bit; + break; + } + } + + get_seg(&env->segs[R_CS], &sregs.cs); + get_seg(&env->segs[R_DS], &sregs.ds); + get_seg(&env->segs[R_ES], &sregs.es); + get_seg(&env->segs[R_FS], &sregs.fs); + get_seg(&env->segs[R_GS], &sregs.gs); + get_seg(&env->segs[R_SS], &sregs.ss); + + get_seg(&env->tr, &sregs.tr); + get_seg(&env->ldt, &sregs.ldt); + + env->idt.limit = sregs.idt.limit; + env->idt.base = sregs.idt.base; + env->gdt.limit = sregs.gdt.limit; + env->gdt.base = sregs.gdt.base; + + env->cr[0] = sregs.cr0; + env->cr[2] = sregs.cr2; + env->cr[3] = sregs.cr3; + env->cr[4] = sregs.cr4; + + env->efer = sregs.efer; + + /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ + +#define HFLAG_COPY_MASK \ + ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ + HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ + HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ + HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) + + hflags = env->hflags & HFLAG_COPY_MASK; + hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; + hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); + hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & + (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); + hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); + + if (env->cr[4] & CR4_OSFXSR_MASK) { + hflags |= HF_OSFXSR_MASK; + } + + if (env->efer & MSR_EFER_LMA) { + hflags |= HF_LMA_MASK; + } + + if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { + hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; + } else { + hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> + (DESC_B_SHIFT - HF_CS32_SHIFT); + hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> + (DESC_B_SHIFT - HF_SS32_SHIFT); + if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || + !(hflags & HF_CS32_MASK)) { + hflags |= HF_ADDSEG_MASK; + } else { + hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | + env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; + } + } + env->hflags = hflags; + + return 0; +} + +static int kvm_get_msrs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; + int ret, i; + uint64_t mtrr_top_bits; + + kvm_msr_buf_reset(cpu); + + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); + kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); + kvm_msr_entry_add(cpu, MSR_PAT, 0); + if (has_msr_star) { + kvm_msr_entry_add(cpu, MSR_STAR, 0); + } + if (has_msr_hsave_pa) { + kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); + } + if (has_msr_tsc_aux) { + kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); + } + if (has_msr_tsc_adjust) { + kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); + } + if (has_msr_tsc_deadline) { + kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); + } + if (has_msr_misc_enable) { + kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); + } + if (has_msr_smbase) { + kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); + } + if (has_msr_feature_control) { + kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); + } + if (has_msr_bndcfgs) { + kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); + } + if (has_msr_xss) { + kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); + } + + + if (!env->tsc_valid) { + kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); + env->tsc_valid = !runstate_is_running(); + } + +#ifdef TARGET_X86_64 + if (lm_capable_kernel) { + kvm_msr_entry_add(cpu, MSR_CSTAR, 0); + kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); + kvm_msr_entry_add(cpu, MSR_FMASK, 0); + kvm_msr_entry_add(cpu, MSR_LSTAR, 0); + } +#endif + kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); + kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { + kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { + kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); + } + if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { + kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); + } + if (has_msr_architectural_pmu) { + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); + kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); + for (i = 0; i < MAX_FIXED_COUNTERS; i++) { + kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); + } + for (i = 0; i < num_architectural_pmu_counters; i++) { + kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); + kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); + } + } + + if (env->mcg_cap) { + kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); + kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); + if (has_msr_mcg_ext_ctl) { + kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); + } + for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { + kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); + } + } + + if (has_msr_hv_hypercall) { + kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); + kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); + } + if (cpu->hyperv_vapic) { + kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); + } + if (cpu->hyperv_time) { + kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); + } + if (has_msr_hv_crash) { + int j; + + for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) { + kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); + } + } + if (has_msr_hv_runtime) { + kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); + } + if (cpu->hyperv_synic) { + uint32_t msr; + + kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); + kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, 0); + kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); + kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); + for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { + kvm_msr_entry_add(cpu, msr, 0); + } + } + if (has_msr_hv_stimer) { + uint32_t msr; + + for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; + msr++) { + kvm_msr_entry_add(cpu, msr, 0); + } + } + if (env->features[FEAT_1_EDX] & CPUID_MTRR) { + kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); + kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); + for (i = 0; i < MSR_MTRRcap_VCNT; i++) { + kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); + kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); + } + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); + if (ret < 0) { + return ret; + } + + assert(ret == cpu->kvm_msr_buf->nmsrs); + /* + * MTRR masks: Each mask consists of 5 parts + * a 10..0: must be zero + * b 11 : valid bit + * c n-1.12: actual mask bits + * d 51..n: reserved must be zero + * e 63.52: reserved must be zero + * + * 'n' is the number of physical bits supported by the CPU and is + * apparently always <= 52. We know our 'n' but don't know what + * the destinations 'n' is; it might be smaller, in which case + * it masks (c) on loading. It might be larger, in which case + * we fill 'd' so that d..c is consistent irrespetive of the 'n' + * we're migrating to. + */ + + if (cpu->fill_mtrr_mask) { + QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); + assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); + mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); + } else { + mtrr_top_bits = 0; + } + + for (i = 0; i < ret; i++) { + uint32_t index = msrs[i].index; + switch (index) { + case MSR_IA32_SYSENTER_CS: + env->sysenter_cs = msrs[i].data; + break; + case MSR_IA32_SYSENTER_ESP: + env->sysenter_esp = msrs[i].data; + break; + case MSR_IA32_SYSENTER_EIP: + env->sysenter_eip = msrs[i].data; + break; + case MSR_PAT: + env->pat = msrs[i].data; + break; + case MSR_STAR: + env->star = msrs[i].data; + break; +#ifdef TARGET_X86_64 + case MSR_CSTAR: + env->cstar = msrs[i].data; + break; + case MSR_KERNELGSBASE: + env->kernelgsbase = msrs[i].data; + break; + case MSR_FMASK: + env->fmask = msrs[i].data; + break; + case MSR_LSTAR: + env->lstar = msrs[i].data; + break; +#endif + case MSR_IA32_TSC: + env->tsc = msrs[i].data; + break; + case MSR_TSC_AUX: + env->tsc_aux = msrs[i].data; + break; + case MSR_TSC_ADJUST: + env->tsc_adjust = msrs[i].data; + break; + case MSR_IA32_TSCDEADLINE: + env->tsc_deadline = msrs[i].data; + break; + case MSR_VM_HSAVE_PA: + env->vm_hsave = msrs[i].data; + break; + case MSR_KVM_SYSTEM_TIME: + env->system_time_msr = msrs[i].data; + break; + case MSR_KVM_WALL_CLOCK: + env->wall_clock_msr = msrs[i].data; + break; + case MSR_MCG_STATUS: + env->mcg_status = msrs[i].data; + break; + case MSR_MCG_CTL: + env->mcg_ctl = msrs[i].data; + break; + case MSR_MCG_EXT_CTL: + env->mcg_ext_ctl = msrs[i].data; + break; + case MSR_IA32_MISC_ENABLE: + env->msr_ia32_misc_enable = msrs[i].data; + break; + case MSR_IA32_SMBASE: + env->smbase = msrs[i].data; + break; + case MSR_IA32_FEATURE_CONTROL: + env->msr_ia32_feature_control = msrs[i].data; + break; + case MSR_IA32_BNDCFGS: + env->msr_bndcfgs = msrs[i].data; + break; + case MSR_IA32_XSS: + env->xss = msrs[i].data; + break; + default: + if (msrs[i].index >= MSR_MC0_CTL && + msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { + env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; + } + break; + case MSR_KVM_ASYNC_PF_EN: + env->async_pf_en_msr = msrs[i].data; + break; + case MSR_KVM_PV_EOI_EN: + env->pv_eoi_en_msr = msrs[i].data; + break; + case MSR_KVM_STEAL_TIME: + env->steal_time_msr = msrs[i].data; + break; + case MSR_CORE_PERF_FIXED_CTR_CTRL: + env->msr_fixed_ctr_ctrl = msrs[i].data; + break; + case MSR_CORE_PERF_GLOBAL_CTRL: + env->msr_global_ctrl = msrs[i].data; + break; + case MSR_CORE_PERF_GLOBAL_STATUS: + env->msr_global_status = msrs[i].data; + break; + case MSR_CORE_PERF_GLOBAL_OVF_CTRL: + env->msr_global_ovf_ctrl = msrs[i].data; + break; + case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: + env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; + break; + case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: + env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; + break; + case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: + env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; + break; + case HV_X64_MSR_HYPERCALL: + env->msr_hv_hypercall = msrs[i].data; + break; + case HV_X64_MSR_GUEST_OS_ID: + env->msr_hv_guest_os_id = msrs[i].data; + break; + case HV_X64_MSR_APIC_ASSIST_PAGE: + env->msr_hv_vapic = msrs[i].data; + break; + case HV_X64_MSR_REFERENCE_TSC: + env->msr_hv_tsc = msrs[i].data; + break; + case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: + env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; + break; + case HV_X64_MSR_VP_RUNTIME: + env->msr_hv_runtime = msrs[i].data; + break; + case HV_X64_MSR_SCONTROL: + env->msr_hv_synic_control = msrs[i].data; + break; + case HV_X64_MSR_SVERSION: + env->msr_hv_synic_version = msrs[i].data; + break; + case HV_X64_MSR_SIEFP: + env->msr_hv_synic_evt_page = msrs[i].data; + break; + case HV_X64_MSR_SIMP: + env->msr_hv_synic_msg_page = msrs[i].data; + break; + case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: + env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; + break; + case HV_X64_MSR_STIMER0_CONFIG: + case HV_X64_MSR_STIMER1_CONFIG: + case HV_X64_MSR_STIMER2_CONFIG: + case HV_X64_MSR_STIMER3_CONFIG: + env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = + msrs[i].data; + break; + case HV_X64_MSR_STIMER0_COUNT: + case HV_X64_MSR_STIMER1_COUNT: + case HV_X64_MSR_STIMER2_COUNT: + case HV_X64_MSR_STIMER3_COUNT: + env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = + msrs[i].data; + break; + case MSR_MTRRdefType: + env->mtrr_deftype = msrs[i].data; + break; + case MSR_MTRRfix64K_00000: + env->mtrr_fixed[0] = msrs[i].data; + break; + case MSR_MTRRfix16K_80000: + env->mtrr_fixed[1] = msrs[i].data; + break; + case MSR_MTRRfix16K_A0000: + env->mtrr_fixed[2] = msrs[i].data; + break; + case MSR_MTRRfix4K_C0000: + env->mtrr_fixed[3] = msrs[i].data; + break; + case MSR_MTRRfix4K_C8000: + env->mtrr_fixed[4] = msrs[i].data; + break; + case MSR_MTRRfix4K_D0000: + env->mtrr_fixed[5] = msrs[i].data; + break; + case MSR_MTRRfix4K_D8000: + env->mtrr_fixed[6] = msrs[i].data; + break; + case MSR_MTRRfix4K_E0000: + env->mtrr_fixed[7] = msrs[i].data; + break; + case MSR_MTRRfix4K_E8000: + env->mtrr_fixed[8] = msrs[i].data; + break; + case MSR_MTRRfix4K_F0000: + env->mtrr_fixed[9] = msrs[i].data; + break; + case MSR_MTRRfix4K_F8000: + env->mtrr_fixed[10] = msrs[i].data; + break; + case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): + if (index & 1) { + env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | + mtrr_top_bits; + } else { + env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; + } + break; + } + } + + return 0; +} + +static int kvm_put_mp_state(X86CPU *cpu) +{ + struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); +} + +static int kvm_get_mp_state(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + struct kvm_mp_state mp_state; + int ret; + + ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); + if (ret < 0) { + return ret; + } + env->mp_state = mp_state.mp_state; + if (kvm_irqchip_in_kernel()) { + cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); + } + return 0; +} + +static int kvm_get_apic(X86CPU *cpu) +{ + DeviceState *apic = cpu->apic_state; + struct kvm_lapic_state kapic; + int ret; + + if (apic && kvm_irqchip_in_kernel()) { + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); + if (ret < 0) { + return ret; + } + + kvm_get_apic_state(apic, &kapic); + } + return 0; +} + +static int kvm_put_vcpu_events(X86CPU *cpu, int level) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + struct kvm_vcpu_events events = {}; + + if (!kvm_has_vcpu_events()) { + return 0; + } + + events.exception.injected = (env->exception_injected >= 0); + events.exception.nr = env->exception_injected; + events.exception.has_error_code = env->has_error_code; + events.exception.error_code = env->error_code; + events.exception.pad = 0; + + events.interrupt.injected = (env->interrupt_injected >= 0); + events.interrupt.nr = env->interrupt_injected; + events.interrupt.soft = env->soft_interrupt; + + events.nmi.injected = env->nmi_injected; + events.nmi.pending = env->nmi_pending; + events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); + events.nmi.pad = 0; + + events.sipi_vector = env->sipi_vector; + events.flags = 0; + + if (has_msr_smbase) { + events.smi.smm = !!(env->hflags & HF_SMM_MASK); + events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); + if (kvm_irqchip_in_kernel()) { + /* As soon as these are moved to the kernel, remove them + * from cs->interrupt_request. + */ + events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; + events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; + cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); + } else { + /* Keep these in cs->interrupt_request. */ + events.smi.pending = 0; + events.smi.latched_init = 0; + } + events.flags |= KVM_VCPUEVENT_VALID_SMM; + } + + if (level >= KVM_PUT_RESET_STATE) { + events.flags |= + KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; + } + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); +} + +static int kvm_get_vcpu_events(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_vcpu_events events; + int ret; + + if (!kvm_has_vcpu_events()) { + return 0; + } + + memset(&events, 0, sizeof(events)); + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); + if (ret < 0) { + return ret; + } + env->exception_injected = + events.exception.injected ? events.exception.nr : -1; + env->has_error_code = events.exception.has_error_code; + env->error_code = events.exception.error_code; + + env->interrupt_injected = + events.interrupt.injected ? events.interrupt.nr : -1; + env->soft_interrupt = events.interrupt.soft; + + env->nmi_injected = events.nmi.injected; + env->nmi_pending = events.nmi.pending; + if (events.nmi.masked) { + env->hflags2 |= HF2_NMI_MASK; + } else { + env->hflags2 &= ~HF2_NMI_MASK; + } + + if (events.flags & KVM_VCPUEVENT_VALID_SMM) { + if (events.smi.smm) { + env->hflags |= HF_SMM_MASK; + } else { + env->hflags &= ~HF_SMM_MASK; + } + if (events.smi.pending) { + cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); + } else { + cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); + } + if (events.smi.smm_inside_nmi) { + env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; + } else { + env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; + } + if (events.smi.latched_init) { + cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); + } else { + cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); + } + } + + env->sipi_vector = events.sipi_vector; + + return 0; +} + +static int kvm_guest_debug_workarounds(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + int ret = 0; + unsigned long reinject_trap = 0; + + if (!kvm_has_vcpu_events()) { + if (env->exception_injected == 1) { + reinject_trap = KVM_GUESTDBG_INJECT_DB; + } else if (env->exception_injected == 3) { + reinject_trap = KVM_GUESTDBG_INJECT_BP; + } + env->exception_injected = -1; + } + + /* + * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF + * injected via SET_GUEST_DEBUG while updating GP regs. Work around this + * by updating the debug state once again if single-stepping is on. + * Another reason to call kvm_update_guest_debug here is a pending debug + * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to + * reinject them via SET_GUEST_DEBUG. + */ + if (reinject_trap || + (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { + ret = kvm_update_guest_debug(cs, reinject_trap); + } + return ret; +} + +static int kvm_put_debugregs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_debugregs dbgregs; + int i; + + if (!kvm_has_debugregs()) { + return 0; + } + + for (i = 0; i < 4; i++) { + dbgregs.db[i] = env->dr[i]; + } + dbgregs.dr6 = env->dr[6]; + dbgregs.dr7 = env->dr[7]; + dbgregs.flags = 0; + + return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); +} + +static int kvm_get_debugregs(X86CPU *cpu) +{ + CPUX86State *env = &cpu->env; + struct kvm_debugregs dbgregs; + int i, ret; + + if (!kvm_has_debugregs()) { + return 0; + } + + ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); + if (ret < 0) { + return ret; + } + for (i = 0; i < 4; i++) { + env->dr[i] = dbgregs.db[i]; + } + env->dr[4] = env->dr[6] = dbgregs.dr6; + env->dr[5] = env->dr[7] = dbgregs.dr7; + + return 0; +} + +int kvm_arch_put_registers(CPUState *cpu, int level) +{ + X86CPU *x86_cpu = X86_CPU(cpu); + int ret; + + assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); + + if (level >= KVM_PUT_RESET_STATE) { + ret = kvm_put_msr_feature_control(x86_cpu); + if (ret < 0) { + return ret; + } + } + + if (level == KVM_PUT_FULL_STATE) { + /* We don't check for kvm_arch_set_tsc_khz() errors here, + * because TSC frequency mismatch shouldn't abort migration, + * unless the user explicitly asked for a more strict TSC + * setting (e.g. using an explicit "tsc-freq" option). + */ + kvm_arch_set_tsc_khz(cpu); + } + + ret = kvm_getput_regs(x86_cpu, 1); + if (ret < 0) { + return ret; + } + ret = kvm_put_xsave(x86_cpu); + if (ret < 0) { + return ret; + } + ret = kvm_put_xcrs(x86_cpu); + if (ret < 0) { + return ret; + } + ret = kvm_put_sregs(x86_cpu); + if (ret < 0) { + return ret; + } + /* must be before kvm_put_msrs */ + ret = kvm_inject_mce_oldstyle(x86_cpu); + if (ret < 0) { + return ret; + } + ret = kvm_put_msrs(x86_cpu, level); + if (ret < 0) { + return ret; + } + if (level >= KVM_PUT_RESET_STATE) { + ret = kvm_put_mp_state(x86_cpu); + if (ret < 0) { + return ret; + } + } + + ret = kvm_put_tscdeadline_msr(x86_cpu); + if (ret < 0) { + return ret; + } + + ret = kvm_put_vcpu_events(x86_cpu, level); + if (ret < 0) { + return ret; + } + ret = kvm_put_debugregs(x86_cpu); + if (ret < 0) { + return ret; + } + /* must be last */ + ret = kvm_guest_debug_workarounds(x86_cpu); + if (ret < 0) { + return ret; + } + return 0; +} + +int kvm_arch_get_registers(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + int ret; + + assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); + + ret = kvm_getput_regs(cpu, 0); + if (ret < 0) { + goto out; + } + ret = kvm_get_xsave(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_xcrs(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_sregs(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_msrs(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_mp_state(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_apic(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_vcpu_events(cpu); + if (ret < 0) { + goto out; + } + ret = kvm_get_debugregs(cpu); + if (ret < 0) { + goto out; + } + ret = 0; + out: + cpu_sync_bndcs_hflags(&cpu->env); + return ret; +} + +void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) +{ + X86CPU *x86_cpu = X86_CPU(cpu); + CPUX86State *env = &x86_cpu->env; + int ret; + + /* Inject NMI */ + if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { + if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { + qemu_mutex_lock_iothread(); + cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; + qemu_mutex_unlock_iothread(); + DPRINTF("injected NMI\n"); + ret = kvm_vcpu_ioctl(cpu, KVM_NMI); + if (ret < 0) { + fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", + strerror(-ret)); + } + } + if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { + qemu_mutex_lock_iothread(); + cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; + qemu_mutex_unlock_iothread(); + DPRINTF("injected SMI\n"); + ret = kvm_vcpu_ioctl(cpu, KVM_SMI); + if (ret < 0) { + fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", + strerror(-ret)); + } + } + } + + if (!kvm_pic_in_kernel()) { + qemu_mutex_lock_iothread(); + } + + /* Force the VCPU out of its inner loop to process any INIT requests + * or (for userspace APIC, but it is cheap to combine the checks here) + * pending TPR access reports. + */ + if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { + if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && + !(env->hflags & HF_SMM_MASK)) { + cpu->exit_request = 1; + } + if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { + cpu->exit_request = 1; + } + } + + if (!kvm_pic_in_kernel()) { + /* Try to inject an interrupt if the guest can accept it */ + if (run->ready_for_interrupt_injection && + (cpu->interrupt_request & CPU_INTERRUPT_HARD) && + (env->eflags & IF_MASK)) { + int irq; + + cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; + irq = cpu_get_pic_interrupt(env); + if (irq >= 0) { + struct kvm_interrupt intr; + + intr.irq = irq; + DPRINTF("injected interrupt %d\n", irq); + ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); + if (ret < 0) { + fprintf(stderr, + "KVM: injection failed, interrupt lost (%s)\n", + strerror(-ret)); + } + } + } + + /* If we have an interrupt but the guest is not ready to receive an + * interrupt, request an interrupt window exit. This will + * cause a return to userspace as soon as the guest is ready to + * receive interrupts. */ + if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { + run->request_interrupt_window = 1; + } else { + run->request_interrupt_window = 0; + } + + DPRINTF("setting tpr\n"); + run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); + + qemu_mutex_unlock_iothread(); + } +} + +MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) +{ + X86CPU *x86_cpu = X86_CPU(cpu); + CPUX86State *env = &x86_cpu->env; + + if (run->flags & KVM_RUN_X86_SMM) { + env->hflags |= HF_SMM_MASK; + } else { + env->hflags &= ~HF_SMM_MASK; + } + if (run->if_flag) { + env->eflags |= IF_MASK; + } else { + env->eflags &= ~IF_MASK; + } + + /* We need to protect the apic state against concurrent accesses from + * different threads in case the userspace irqchip is used. */ + if (!kvm_irqchip_in_kernel()) { + qemu_mutex_lock_iothread(); + } + cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); + cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); + if (!kvm_irqchip_in_kernel()) { + qemu_mutex_unlock_iothread(); + } + return cpu_get_mem_attrs(env); +} + +int kvm_arch_process_async_events(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + + if (cs->interrupt_request & CPU_INTERRUPT_MCE) { + /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ + assert(env->mcg_cap); + + cs->interrupt_request &= ~CPU_INTERRUPT_MCE; + + kvm_cpu_synchronize_state(cs); + + if (env->exception_injected == EXCP08_DBLE) { + /* this means triple fault */ + qemu_system_reset_request(); + cs->exit_request = 1; + return 0; + } + env->exception_injected = EXCP12_MCHK; + env->has_error_code = 0; + + cs->halted = 0; + if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { + env->mp_state = KVM_MP_STATE_RUNNABLE; + } + } + + if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && + !(env->hflags & HF_SMM_MASK)) { + kvm_cpu_synchronize_state(cs); + do_cpu_init(cpu); + } + + if (kvm_irqchip_in_kernel()) { + return 0; + } + + if (cs->interrupt_request & CPU_INTERRUPT_POLL) { + cs->interrupt_request &= ~CPU_INTERRUPT_POLL; + apic_poll_irq(cpu->apic_state); + } + if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && + (env->eflags & IF_MASK)) || + (cs->interrupt_request & CPU_INTERRUPT_NMI)) { + cs->halted = 0; + } + if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { + kvm_cpu_synchronize_state(cs); + do_cpu_sipi(cpu); + } + if (cs->interrupt_request & CPU_INTERRUPT_TPR) { + cs->interrupt_request &= ~CPU_INTERRUPT_TPR; + kvm_cpu_synchronize_state(cs); + apic_handle_tpr_access_report(cpu->apic_state, env->eip, + env->tpr_access_type); + } + + return cs->halted; +} + +static int kvm_handle_halt(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + + if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && + (env->eflags & IF_MASK)) && + !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { + cs->halted = 1; + return EXCP_HLT; + } + + return 0; +} + +static int kvm_handle_tpr_access(X86CPU *cpu) +{ + CPUState *cs = CPU(cpu); + struct kvm_run *run = cs->kvm_run; + + apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, + run->tpr_access.is_write ? TPR_ACCESS_WRITE + : TPR_ACCESS_READ); + return 1; +} + +int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + static const uint8_t int3 = 0xcc; + + if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { + return -EINVAL; + } + return 0; +} + +int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) +{ + uint8_t int3; + + if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || + cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { + return -EINVAL; + } + return 0; +} + +static struct { + target_ulong addr; + int len; + int type; +} hw_breakpoint[4]; + +static int nb_hw_breakpoint; + +static int find_hw_breakpoint(target_ulong addr, int len, int type) +{ + int n; + + for (n = 0; n < nb_hw_breakpoint; n++) { + if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && + (hw_breakpoint[n].len == len || len == -1)) { + return n; + } + } + return -1; +} + +int kvm_arch_insert_hw_breakpoint(target_ulong addr, + target_ulong len, int type) +{ + switch (type) { + case GDB_BREAKPOINT_HW: + len = 1; + break; + case GDB_WATCHPOINT_WRITE: + case GDB_WATCHPOINT_ACCESS: + switch (len) { + case 1: + break; + case 2: + case 4: + case 8: + if (addr & (len - 1)) { + return -EINVAL; + } + break; + default: + return -EINVAL; + } + break; + default: + return -ENOSYS; + } + + if (nb_hw_breakpoint == 4) { + return -ENOBUFS; + } + if (find_hw_breakpoint(addr, len, type) >= 0) { + return -EEXIST; + } + hw_breakpoint[nb_hw_breakpoint].addr = addr; + hw_breakpoint[nb_hw_breakpoint].len = len; + hw_breakpoint[nb_hw_breakpoint].type = type; + nb_hw_breakpoint++; + + return 0; +} + +int kvm_arch_remove_hw_breakpoint(target_ulong addr, + target_ulong len, int type) +{ + int n; + + n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); + if (n < 0) { + return -ENOENT; + } + nb_hw_breakpoint--; + hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; + + return 0; +} + +void kvm_arch_remove_all_hw_breakpoints(void) +{ + nb_hw_breakpoint = 0; +} + +static CPUWatchpoint hw_watchpoint; + +static int kvm_handle_debug(X86CPU *cpu, + struct kvm_debug_exit_arch *arch_info) +{ + CPUState *cs = CPU(cpu); + CPUX86State *env = &cpu->env; + int ret = 0; + int n; + + if (arch_info->exception == 1) { + if (arch_info->dr6 & (1 << 14)) { + if (cs->singlestep_enabled) { + ret = EXCP_DEBUG; + } + } else { + for (n = 0; n < 4; n++) { + if (arch_info->dr6 & (1 << n)) { + switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { + case 0x0: + ret = EXCP_DEBUG; + break; + case 0x1: + ret = EXCP_DEBUG; + cs->watchpoint_hit = &hw_watchpoint; + hw_watchpoint.vaddr = hw_breakpoint[n].addr; + hw_watchpoint.flags = BP_MEM_WRITE; + break; + case 0x3: + ret = EXCP_DEBUG; + cs->watchpoint_hit = &hw_watchpoint; + hw_watchpoint.vaddr = hw_breakpoint[n].addr; + hw_watchpoint.flags = BP_MEM_ACCESS; + break; + } + } + } + } + } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { + ret = EXCP_DEBUG; + } + if (ret == 0) { + cpu_synchronize_state(cs); + assert(env->exception_injected == -1); + + /* pass to guest */ + env->exception_injected = arch_info->exception; + env->has_error_code = 0; + } + + return ret; +} + +void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) +{ + const uint8_t type_code[] = { + [GDB_BREAKPOINT_HW] = 0x0, + [GDB_WATCHPOINT_WRITE] = 0x1, + [GDB_WATCHPOINT_ACCESS] = 0x3 + }; + const uint8_t len_code[] = { + [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 + }; + int n; + + if (kvm_sw_breakpoints_active(cpu)) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; + } + if (nb_hw_breakpoint > 0) { + dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; + dbg->arch.debugreg[7] = 0x0600; + for (n = 0; n < nb_hw_breakpoint; n++) { + dbg->arch.debugreg[n] = hw_breakpoint[n].addr; + dbg->arch.debugreg[7] |= (2 << (n * 2)) | + (type_code[hw_breakpoint[n].type] << (16 + n*4)) | + ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); + } + } +} + +static bool host_supports_vmx(void) +{ + uint32_t ecx, unused; + + host_cpuid(1, 0, &unused, &unused, &ecx, &unused); + return ecx & CPUID_EXT_VMX; +} + +#define VMX_INVALID_GUEST_STATE 0x80000021 + +int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) +{ + X86CPU *cpu = X86_CPU(cs); + uint64_t code; + int ret; + + switch (run->exit_reason) { + case KVM_EXIT_HLT: + DPRINTF("handle_hlt\n"); + qemu_mutex_lock_iothread(); + ret = kvm_handle_halt(cpu); + qemu_mutex_unlock_iothread(); + break; + case KVM_EXIT_SET_TPR: + ret = 0; + break; + case KVM_EXIT_TPR_ACCESS: + qemu_mutex_lock_iothread(); + ret = kvm_handle_tpr_access(cpu); + qemu_mutex_unlock_iothread(); + break; + case KVM_EXIT_FAIL_ENTRY: + code = run->fail_entry.hardware_entry_failure_reason; + fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", + code); + if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { + fprintf(stderr, + "\nIf you're running a guest on an Intel machine without " + "unrestricted mode\n" + "support, the failure can be most likely due to the guest " + "entering an invalid\n" + "state for Intel VT. For example, the guest maybe running " + "in big real mode\n" + "which is not supported on less recent Intel processors." + "\n\n"); + } + ret = -1; + break; + case KVM_EXIT_EXCEPTION: + fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", + run->ex.exception, run->ex.error_code); + ret = -1; + break; + case KVM_EXIT_DEBUG: + DPRINTF("kvm_exit_debug\n"); + qemu_mutex_lock_iothread(); + ret = kvm_handle_debug(cpu, &run->debug.arch); + qemu_mutex_unlock_iothread(); + break; + case KVM_EXIT_HYPERV: + ret = kvm_hv_handle_exit(cpu, &run->hyperv); + break; + case KVM_EXIT_IOAPIC_EOI: + ioapic_eoi_broadcast(run->eoi.vector); + ret = 0; + break; + default: + fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); + ret = -1; + break; + } + + return ret; +} + +bool kvm_arch_stop_on_emulation_error(CPUState *cs) +{ + X86CPU *cpu = X86_CPU(cs); + CPUX86State *env = &cpu->env; + + kvm_cpu_synchronize_state(cs); + return !(env->cr[0] & CR0_PE_MASK) || + ((env->segs[R_CS].selector & 3) != 3); +} + +void kvm_arch_init_irq_routing(KVMState *s) +{ + if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { + /* If kernel can't do irq routing, interrupt source + * override 0->2 cannot be set up as required by HPET. + * So we have to disable it. + */ + no_hpet = 1; + } + /* We know at this point that we're using the in-kernel + * irqchip, so we can use irqfds, and on x86 we know + * we can use msi via irqfd and GSI routing. + */ + kvm_msi_via_irqfd_allowed = true; + kvm_gsi_routing_allowed = true; + + if (kvm_irqchip_is_split()) { + int i; + + /* If the ioapic is in QEMU and the lapics are in KVM, reserve + MSI routes for signaling interrupts to the local apics. */ + for (i = 0; i < IOAPIC_NUM_PINS; i++) { + if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { + error_report("Could not enable split IRQ mode."); + exit(1); + } + } + } +} + +int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) +{ + int ret; + if (machine_kernel_irqchip_split(ms)) { + ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); + if (ret) { + error_report("Could not enable split irqchip mode: %s", + strerror(-ret)); + exit(1); + } else { + DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); + kvm_split_irqchip = true; + return 1; + } + } else { + return 0; + } +} + +/* Classic KVM device assignment interface. Will remain x86 only. */ +int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, + uint32_t flags, uint32_t *dev_id) +{ + struct kvm_assigned_pci_dev dev_data = { + .segnr = dev_addr->domain, + .busnr = dev_addr->bus, + .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), + .flags = flags, + }; + int ret; + + dev_data.assigned_dev_id = + (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; + + ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); + if (ret < 0) { + return ret; + } + + *dev_id = dev_data.assigned_dev_id; + + return 0; +} + +int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) +{ + struct kvm_assigned_pci_dev dev_data = { + .assigned_dev_id = dev_id, + }; + + return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); +} + +static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, + uint32_t irq_type, uint32_t guest_irq) +{ + struct kvm_assigned_irq assigned_irq = { + .assigned_dev_id = dev_id, + .guest_irq = guest_irq, + .flags = irq_type, + }; + + if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { + return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); + } else { + return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); + } +} + +int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, + uint32_t guest_irq) +{ + uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | + (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); + + return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); +} + +int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) +{ + struct kvm_assigned_pci_dev dev_data = { + .assigned_dev_id = dev_id, + .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, + }; + + return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); +} + +static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, + uint32_t type) +{ + struct kvm_assigned_irq assigned_irq = { + .assigned_dev_id = dev_id, + .flags = type, + }; + + return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); +} + +int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) +{ + return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | + (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); +} + +int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) +{ + return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | + KVM_DEV_IRQ_GUEST_MSI, virq); +} + +int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) +{ + return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | + KVM_DEV_IRQ_HOST_MSI); +} + +bool kvm_device_msix_supported(KVMState *s) +{ + /* The kernel lacks a corresponding KVM_CAP, so we probe by calling + * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ + return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; +} + +int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, + uint32_t nr_vectors) +{ + struct kvm_assigned_msix_nr msix_nr = { + .assigned_dev_id = dev_id, + .entry_nr = nr_vectors, + }; + + return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); +} + +int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, + int virq) +{ + struct kvm_assigned_msix_entry msix_entry = { + .assigned_dev_id = dev_id, + .gsi = virq, + .entry = vector, + }; + + return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); +} + +int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) +{ + return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | + KVM_DEV_IRQ_GUEST_MSIX, 0); +} + +int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) +{ + return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | + KVM_DEV_IRQ_HOST_MSIX); +} + +int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, + uint64_t address, uint32_t data, PCIDevice *dev) +{ + X86IOMMUState *iommu = x86_iommu_get_default(); + + if (iommu) { + int ret; + MSIMessage src, dst; + X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); + + src.address = route->u.msi.address_hi; + src.address <<= VTD_MSI_ADDR_HI_SHIFT; + src.address |= route->u.msi.address_lo; + src.data = route->u.msi.data; + + ret = class->int_remap(iommu, &src, &dst, dev ? \ + pci_requester_id(dev) : \ + X86_IOMMU_SID_INVALID); + if (ret) { + trace_kvm_x86_fixup_msi_error(route->gsi); + return 1; + } + + route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; + route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; + route->u.msi.data = dst.data; + } + + return 0; +} + +typedef struct MSIRouteEntry MSIRouteEntry; + +struct MSIRouteEntry { + PCIDevice *dev; /* Device pointer */ + int vector; /* MSI/MSIX vector index */ + int virq; /* Virtual IRQ index */ + QLIST_ENTRY(MSIRouteEntry) list; +}; + +/* List of used GSI routes */ +static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ + QLIST_HEAD_INITIALIZER(msi_route_list); + +static void kvm_update_msi_routes_all(void *private, bool global, + uint32_t index, uint32_t mask) +{ + int cnt = 0; + MSIRouteEntry *entry; + MSIMessage msg; + /* TODO: explicit route update */ + QLIST_FOREACH(entry, &msi_route_list, list) { + cnt++; + msg = pci_get_msi_message(entry->dev, entry->vector); + kvm_irqchip_update_msi_route(kvm_state, entry->virq, + msg, entry->dev); + } + kvm_irqchip_commit_routes(kvm_state); + trace_kvm_x86_update_msi_routes(cnt); +} + +int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, + int vector, PCIDevice *dev) +{ + static bool notify_list_inited = false; + MSIRouteEntry *entry; + + if (!dev) { + /* These are (possibly) IOAPIC routes only used for split + * kernel irqchip mode, while what we are housekeeping are + * PCI devices only. */ + return 0; + } + + entry = g_new0(MSIRouteEntry, 1); + entry->dev = dev; + entry->vector = vector; + entry->virq = route->gsi; + QLIST_INSERT_HEAD(&msi_route_list, entry, list); + + trace_kvm_x86_add_msi_route(route->gsi); + + if (!notify_list_inited) { + /* For the first time we do add route, add ourselves into + * IOMMU's IEC notify list if needed. */ + X86IOMMUState *iommu = x86_iommu_get_default(); + if (iommu) { + x86_iommu_iec_register_notifier(iommu, + kvm_update_msi_routes_all, + NULL); + } + notify_list_inited = true; + } + return 0; +} + +int kvm_arch_release_virq_post(int virq) +{ + MSIRouteEntry *entry, *next; + QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { + if (entry->virq == virq) { + trace_kvm_x86_remove_msi_route(virq); + QLIST_REMOVE(entry, list); + break; + } + } + return 0; +} + +int kvm_arch_msi_data_to_gsi(uint32_t data) +{ + abort(); +} |