diff options
Diffstat (limited to 'target/avr/translate.c')
-rw-r--r-- | target/avr/translate.c | 3061 |
1 files changed, 3061 insertions, 0 deletions
diff --git a/target/avr/translate.c b/target/avr/translate.c new file mode 100644 index 0000000000..648dcd5c3e --- /dev/null +++ b/target/avr/translate.c @@ -0,0 +1,3061 @@ +/* + * QEMU AVR CPU + * + * Copyright (c) 2019-2020 Michael Rolnik + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see + * <http://www.gnu.org/licenses/lgpl-2.1.html> + */ + +#include "qemu/osdep.h" +#include "qemu/qemu-print.h" +#include "tcg/tcg.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "tcg/tcg-op.h" +#include "exec/cpu_ldst.h" +#include "exec/helper-proto.h" +#include "exec/helper-gen.h" +#include "exec/log.h" +#include "exec/translator.h" +#include "exec/gen-icount.h" + +/* + * Define if you want a BREAK instruction translated to a breakpoint + * Active debugging connection is assumed + * This is for + * https://github.com/seharris/qemu-avr-tests/tree/master/instruction-tests + * tests + */ +#undef BREAKPOINT_ON_BREAK + +static TCGv cpu_pc; + +static TCGv cpu_Cf; +static TCGv cpu_Zf; +static TCGv cpu_Nf; +static TCGv cpu_Vf; +static TCGv cpu_Sf; +static TCGv cpu_Hf; +static TCGv cpu_Tf; +static TCGv cpu_If; + +static TCGv cpu_rampD; +static TCGv cpu_rampX; +static TCGv cpu_rampY; +static TCGv cpu_rampZ; + +static TCGv cpu_r[NUMBER_OF_CPU_REGISTERS]; +static TCGv cpu_eind; +static TCGv cpu_sp; + +static TCGv cpu_skip; + +static const char reg_names[NUMBER_OF_CPU_REGISTERS][8] = { + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", + "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", + "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", +}; +#define REG(x) (cpu_r[x]) + +enum { + DISAS_EXIT = DISAS_TARGET_0, /* We want return to the cpu main loop. */ + DISAS_LOOKUP = DISAS_TARGET_1, /* We have a variable condition exit. */ + DISAS_CHAIN = DISAS_TARGET_2, /* We have a single condition exit. */ +}; + +typedef struct DisasContext DisasContext; + +/* This is the state at translation time. */ +struct DisasContext { + TranslationBlock *tb; + + CPUAVRState *env; + CPUState *cs; + + target_long npc; + uint32_t opcode; + + /* Routine used to access memory */ + int memidx; + int bstate; + int singlestep; + + /* + * some AVR instructions can make the following instruction to be skipped + * Let's name those instructions + * A - instruction that can skip the next one + * B - instruction that can be skipped. this depends on execution of A + * there are two scenarios + * 1. A and B belong to the same translation block + * 2. A is the last instruction in the translation block and B is the last + * + * following variables are used to simplify the skipping logic, they are + * used in the following manner (sketch) + * + * TCGLabel *skip_label = NULL; + * if (ctx.skip_cond != TCG_COND_NEVER) { + * skip_label = gen_new_label(); + * tcg_gen_brcond_tl(skip_cond, skip_var0, skip_var1, skip_label); + * } + * + * if (free_skip_var0) { + * tcg_temp_free(skip_var0); + * free_skip_var0 = false; + * } + * + * translate(&ctx); + * + * if (skip_label) { + * gen_set_label(skip_label); + * } + */ + TCGv skip_var0; + TCGv skip_var1; + TCGCond skip_cond; + bool free_skip_var0; +}; + +void avr_cpu_tcg_init(void) +{ + int i; + +#define AVR_REG_OFFS(x) offsetof(CPUAVRState, x) + cpu_pc = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(pc_w), "pc"); + cpu_Cf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregC), "Cf"); + cpu_Zf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregZ), "Zf"); + cpu_Nf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregN), "Nf"); + cpu_Vf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregV), "Vf"); + cpu_Sf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregS), "Sf"); + cpu_Hf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregH), "Hf"); + cpu_Tf = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregT), "Tf"); + cpu_If = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sregI), "If"); + cpu_rampD = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampD), "rampD"); + cpu_rampX = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampX), "rampX"); + cpu_rampY = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampY), "rampY"); + cpu_rampZ = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(rampZ), "rampZ"); + cpu_eind = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(eind), "eind"); + cpu_sp = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(sp), "sp"); + cpu_skip = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(skip), "skip"); + + for (i = 0; i < NUMBER_OF_CPU_REGISTERS; i++) { + cpu_r[i] = tcg_global_mem_new_i32(cpu_env, AVR_REG_OFFS(r[i]), + reg_names[i]); + } +#undef AVR_REG_OFFS +} + +static int to_regs_16_31_by_one(DisasContext *ctx, int indx) +{ + return 16 + (indx % 16); +} + +static int to_regs_16_23_by_one(DisasContext *ctx, int indx) +{ + return 16 + (indx % 8); +} + +static int to_regs_24_30_by_two(DisasContext *ctx, int indx) +{ + return 24 + (indx % 4) * 2; +} + +static int to_regs_00_30_by_two(DisasContext *ctx, int indx) +{ + return (indx % 16) * 2; +} + +static uint16_t next_word(DisasContext *ctx) +{ + return cpu_lduw_code(ctx->env, ctx->npc++ * 2); +} + +static int append_16(DisasContext *ctx, int x) +{ + return x << 16 | next_word(ctx); +} + +static bool avr_have_feature(DisasContext *ctx, int feature) +{ + if (!avr_feature(ctx->env, feature)) { + gen_helper_unsupported(cpu_env); + ctx->bstate = DISAS_NORETURN; + return false; + } + return true; +} + +static bool decode_insn(DisasContext *ctx, uint16_t insn); +#include "decode_insn.inc.c" + +/* + * Arithmetic Instructions + */ + +/* + * Utility functions for updating status registers: + * + * - gen_add_CHf() + * - gen_add_Vf() + * - gen_sub_CHf() + * - gen_sub_Vf() + * - gen_NSf() + * - gen_ZNSf() + * + */ + +static void gen_add_CHf(TCGv R, TCGv Rd, TCGv Rr) +{ + TCGv t1 = tcg_temp_new_i32(); + TCGv t2 = tcg_temp_new_i32(); + TCGv t3 = tcg_temp_new_i32(); + + tcg_gen_and_tl(t1, Rd, Rr); /* t1 = Rd & Rr */ + tcg_gen_andc_tl(t2, Rd, R); /* t2 = Rd & ~R */ + tcg_gen_andc_tl(t3, Rr, R); /* t3 = Rr & ~R */ + tcg_gen_or_tl(t1, t1, t2); /* t1 = t1 | t2 | t3 */ + tcg_gen_or_tl(t1, t1, t3); + + tcg_gen_shri_tl(cpu_Cf, t1, 7); /* Cf = t1(7) */ + tcg_gen_shri_tl(cpu_Hf, t1, 3); /* Hf = t1(3) */ + tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); + + tcg_temp_free_i32(t3); + tcg_temp_free_i32(t2); + tcg_temp_free_i32(t1); +} + +static void gen_add_Vf(TCGv R, TCGv Rd, TCGv Rr) +{ + TCGv t1 = tcg_temp_new_i32(); + TCGv t2 = tcg_temp_new_i32(); + + /* t1 = Rd & Rr & ~R | ~Rd & ~Rr & R */ + /* = (Rd ^ R) & ~(Rd ^ Rr) */ + tcg_gen_xor_tl(t1, Rd, R); + tcg_gen_xor_tl(t2, Rd, Rr); + tcg_gen_andc_tl(t1, t1, t2); + + tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ + + tcg_temp_free_i32(t2); + tcg_temp_free_i32(t1); +} + +static void gen_sub_CHf(TCGv R, TCGv Rd, TCGv Rr) +{ + TCGv t1 = tcg_temp_new_i32(); + TCGv t2 = tcg_temp_new_i32(); + TCGv t3 = tcg_temp_new_i32(); + + tcg_gen_not_tl(t1, Rd); /* t1 = ~Rd */ + tcg_gen_and_tl(t2, t1, Rr); /* t2 = ~Rd & Rr */ + tcg_gen_or_tl(t3, t1, Rr); /* t3 = (~Rd | Rr) & R */ + tcg_gen_and_tl(t3, t3, R); + tcg_gen_or_tl(t2, t2, t3); /* t2 = ~Rd & Rr | ~Rd & R | R & Rr */ + + tcg_gen_shri_tl(cpu_Cf, t2, 7); /* Cf = t2(7) */ + tcg_gen_shri_tl(cpu_Hf, t2, 3); /* Hf = t2(3) */ + tcg_gen_andi_tl(cpu_Hf, cpu_Hf, 1); + + tcg_temp_free_i32(t3); + tcg_temp_free_i32(t2); + tcg_temp_free_i32(t1); +} + +static void gen_sub_Vf(TCGv R, TCGv Rd, TCGv Rr) +{ + TCGv t1 = tcg_temp_new_i32(); + TCGv t2 = tcg_temp_new_i32(); + + /* t1 = Rd & ~Rr & ~R | ~Rd & Rr & R */ + /* = (Rd ^ R) & (Rd ^ R) */ + tcg_gen_xor_tl(t1, Rd, R); + tcg_gen_xor_tl(t2, Rd, Rr); + tcg_gen_and_tl(t1, t1, t2); + + tcg_gen_shri_tl(cpu_Vf, t1, 7); /* Vf = t1(7) */ + + tcg_temp_free_i32(t2); + tcg_temp_free_i32(t1); +} + +static void gen_NSf(TCGv R) +{ + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ +} + +static void gen_ZNSf(TCGv R) +{ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + /* update status register */ + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ +} + +/* + * Adds two registers without the C Flag and places the result in the + * destination register Rd. + */ +static bool trans_ADD(DisasContext *ctx, arg_ADD *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_add_tl(R, Rd, Rr); /* Rd = Rd + Rr */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_add_CHf(R, Rd, Rr); + gen_add_Vf(R, Rd, Rr); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Adds two registers and the contents of the C Flag and places the result in + * the destination register Rd. + */ +static bool trans_ADC(DisasContext *ctx, arg_ADC *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_add_tl(R, Rd, Rr); /* R = Rd + Rr + Cf */ + tcg_gen_add_tl(R, R, cpu_Cf); + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_add_CHf(R, Rd, Rr); + gen_add_Vf(R, Rd, Rr); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Adds an immediate value (0 - 63) to a register pair and places the result + * in the register pair. This instruction operates on the upper four register + * pairs, and is well suited for operations on the pointer registers. This + * instruction is not available in all devices. Refer to the device specific + * instruction set summary. + */ +static bool trans_ADIW(DisasContext *ctx, arg_ADIW *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { + return true; + } + + TCGv RdL = cpu_r[a->rd]; + TCGv RdH = cpu_r[a->rd + 1]; + int Imm = (a->imm); + TCGv R = tcg_temp_new_i32(); + TCGv Rd = tcg_temp_new_i32(); + + tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ + tcg_gen_addi_tl(R, Rd, Imm); /* R = Rd + Imm */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + + /* update status register */ + tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ + tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); + tcg_gen_andc_tl(cpu_Vf, R, Rd); /* Vf = R & ~Rd */ + tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf);/* Sf = Nf ^ Vf */ + + /* update output registers */ + tcg_gen_andi_tl(RdL, R, 0xff); + tcg_gen_shri_tl(RdH, R, 8); + + tcg_temp_free_i32(Rd); + tcg_temp_free_i32(R); + + return true; +} + +/* + * Subtracts two registers and places the result in the destination + * register Rd. + */ +static bool trans_SUB(DisasContext *ctx, arg_SUB *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + tcg_gen_andc_tl(cpu_Cf, Rd, R); /* Cf = Rd & ~R */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Subtracts a register and a constant and places the result in the + * destination register Rd. This instruction is working on Register R16 to R31 + * and is very well suited for operations on the X, Y, and Z-pointers. + */ +static bool trans_SUBI(DisasContext *ctx, arg_SUBI *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = tcg_const_i32(a->imm); + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Imm */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + tcg_temp_free_i32(Rr); + + return true; +} + +/* + * Subtracts two registers and subtracts with the C Flag and places the + * result in the destination register Rd. + */ +static bool trans_SBC(DisasContext *ctx, arg_SBC *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv zero = tcg_const_i32(0); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ + tcg_gen_sub_tl(R, R, cpu_Cf); + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_NSf(R); + + /* + * Previous value remains unchanged when the result is zero; + * cleared otherwise. + */ + tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(zero); + tcg_temp_free_i32(R); + + return true; +} + +/* + * SBCI -- Subtract Immediate with Carry + */ +static bool trans_SBCI(DisasContext *ctx, arg_SBCI *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = tcg_const_i32(a->imm); + TCGv R = tcg_temp_new_i32(); + TCGv zero = tcg_const_i32(0); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ + tcg_gen_sub_tl(R, R, cpu_Cf); + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_NSf(R); + + /* + * Previous value remains unchanged when the result is zero; + * cleared otherwise. + */ + tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(zero); + tcg_temp_free_i32(R); + tcg_temp_free_i32(Rr); + + return true; +} + +/* + * Subtracts an immediate value (0-63) from a register pair and places the + * result in the register pair. This instruction operates on the upper four + * register pairs, and is well suited for operations on the Pointer Registers. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_SBIW(DisasContext *ctx, arg_SBIW *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ADIW_SBIW)) { + return true; + } + + TCGv RdL = cpu_r[a->rd]; + TCGv RdH = cpu_r[a->rd + 1]; + int Imm = (a->imm); + TCGv R = tcg_temp_new_i32(); + TCGv Rd = tcg_temp_new_i32(); + + tcg_gen_deposit_tl(Rd, RdL, RdH, 8, 8); /* Rd = RdH:RdL */ + tcg_gen_subi_tl(R, Rd, Imm); /* R = Rd - Imm */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + + /* update status register */ + tcg_gen_andc_tl(cpu_Cf, R, Rd); + tcg_gen_shri_tl(cpu_Cf, cpu_Cf, 15); /* Cf = R & ~Rd */ + tcg_gen_andc_tl(cpu_Vf, Rd, R); + tcg_gen_shri_tl(cpu_Vf, cpu_Vf, 15); /* Vf = Rd & ~R */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + tcg_gen_shri_tl(cpu_Nf, R, 15); /* Nf = R(15) */ + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ + + /* update output registers */ + tcg_gen_andi_tl(RdL, R, 0xff); + tcg_gen_shri_tl(RdH, R, 8); + + tcg_temp_free_i32(Rd); + tcg_temp_free_i32(R); + + return true; +} + +/* + * Performs the logical AND between the contents of register Rd and register + * Rr and places the result in the destination register Rd. + */ +static bool trans_AND(DisasContext *ctx, arg_AND *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_and_tl(R, Rd, Rr); /* Rd = Rd and Rr */ + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Performs the logical AND between the contents of register Rd and a constant + * and places the result in the destination register Rd. + */ +static bool trans_ANDI(DisasContext *ctx, arg_ANDI *a) +{ + TCGv Rd = cpu_r[a->rd]; + int Imm = (a->imm); + + tcg_gen_andi_tl(Rd, Rd, Imm); /* Rd = Rd & Imm */ + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ + gen_ZNSf(Rd); + + return true; +} + +/* + * Performs the logical OR between the contents of register Rd and register + * Rr and places the result in the destination register Rd. + */ +static bool trans_OR(DisasContext *ctx, arg_OR *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_or_tl(R, Rd, Rr); + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Performs the logical OR between the contents of register Rd and a + * constant and places the result in the destination register Rd. + */ +static bool trans_ORI(DisasContext *ctx, arg_ORI *a) +{ + TCGv Rd = cpu_r[a->rd]; + int Imm = (a->imm); + + tcg_gen_ori_tl(Rd, Rd, Imm); /* Rd = Rd | Imm */ + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0x00); /* Vf = 0 */ + gen_ZNSf(Rd); + + return true; +} + +/* + * Performs the logical EOR between the contents of register Rd and + * register Rr and places the result in the destination register Rd. + */ +static bool trans_EOR(DisasContext *ctx, arg_EOR *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + + tcg_gen_xor_tl(Rd, Rd, Rr); + + /* update status register */ + tcg_gen_movi_tl(cpu_Vf, 0); + gen_ZNSf(Rd); + + return true; +} + +/* + * Clears the specified bits in register Rd. Performs the logical AND + * between the contents of register Rd and the complement of the constant mask + * K. The result will be placed in register Rd. + */ +static bool trans_COM(DisasContext *ctx, arg_COM *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_xori_tl(Rd, Rd, 0xff); + + /* update status register */ + tcg_gen_movi_tl(cpu_Cf, 1); /* Cf = 1 */ + tcg_gen_movi_tl(cpu_Vf, 0); /* Vf = 0 */ + gen_ZNSf(Rd); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * Replaces the contents of register Rd with its two's complement; the + * value $80 is left unchanged. + */ +static bool trans_NEG(DisasContext *ctx, arg_NEG *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_const_i32(0); + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, t0, Rd); /* R = 0 - Rd */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, t0, Rd); + gen_sub_Vf(R, t0, Rd); + gen_ZNSf(R); + + /* update output registers */ + tcg_gen_mov_tl(Rd, R); + + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * Adds one -1- to the contents of register Rd and places the result in the + * destination register Rd. The C Flag in SREG is not affected by the + * operation, thus allowing the INC instruction to be used on a loop counter in + * multiple-precision computations. When operating on unsigned numbers, only + * BREQ and BRNE branches can be expected to perform consistently. When + * operating on two's complement values, all signed branches are available. + */ +static bool trans_INC(DisasContext *ctx, arg_INC *a) +{ + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_addi_tl(Rd, Rd, 1); + tcg_gen_andi_tl(Rd, Rd, 0xff); + + /* update status register */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x80); /* Vf = Rd == 0x80 */ + gen_ZNSf(Rd); + + return true; +} + +/* + * Subtracts one -1- from the contents of register Rd and places the result + * in the destination register Rd. The C Flag in SREG is not affected by the + * operation, thus allowing the DEC instruction to be used on a loop counter in + * multiple-precision computations. When operating on unsigned values, only + * BREQ and BRNE branches can be expected to perform consistently. When + * operating on two's complement values, all signed branches are available. + */ +static bool trans_DEC(DisasContext *ctx, arg_DEC *a) +{ + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_subi_tl(Rd, Rd, 1); /* Rd = Rd - 1 */ + tcg_gen_andi_tl(Rd, Rd, 0xff); /* make it 8 bits */ + + /* update status register */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Vf, Rd, 0x7f); /* Vf = Rd == 0x7f */ + gen_ZNSf(Rd); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit unsigned multiplication. + */ +static bool trans_MUL(DisasContext *ctx, arg_MUL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication. + */ +static bool trans_MULS(DisasContext *ctx, arg_MULS *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ + tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ + tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit multiplication of a + * signed and an unsigned number. + */ +static bool trans_MULSU(DisasContext *ctx, arg_MULSU *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv t0 = tcg_temp_new_i32(); + + tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ + tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ + tcg_gen_andi_tl(R, R, 0xffff); /* make R 16 bits */ + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit unsigned + * multiplication and shifts the result one bit left. + */ +static bool trans_FMUL(DisasContext *ctx, arg_FMUL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_mul_tl(R, Rd, Rr); /* R = Rd * Rr */ + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + /* update output registers */ + tcg_gen_shli_tl(R, R, 1); + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + tcg_gen_andi_tl(R1, R1, 0xff); + + + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication + * and shifts the result one bit left. + */ +static bool trans_FMULS(DisasContext *ctx, arg_FMULS *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ + tcg_gen_ext8s_tl(t1, Rr); /* make Rr full 32 bit signed */ + tcg_gen_mul_tl(R, t0, t1); /* R = Rd * Rr */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + /* update output registers */ + tcg_gen_shli_tl(R, R, 1); + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + tcg_gen_andi_tl(R1, R1, 0xff); + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs 8-bit x 8-bit -> 16-bit signed multiplication + * and shifts the result one bit left. + */ +static bool trans_FMULSU(DisasContext *ctx, arg_FMULSU *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MUL)) { + return true; + } + + TCGv R0 = cpu_r[0]; + TCGv R1 = cpu_r[1]; + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv t0 = tcg_temp_new_i32(); + + tcg_gen_ext8s_tl(t0, Rd); /* make Rd full 32 bit signed */ + tcg_gen_mul_tl(R, t0, Rr); /* R = Rd * Rr */ + tcg_gen_andi_tl(R, R, 0xffff); /* make it 16 bits */ + + /* update status register */ + tcg_gen_shri_tl(cpu_Cf, R, 15); /* Cf = R(15) */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + + /* update output registers */ + tcg_gen_shli_tl(R, R, 1); + tcg_gen_andi_tl(R0, R, 0xff); + tcg_gen_shri_tl(R1, R, 8); + tcg_gen_andi_tl(R1, R1, 0xff); + + tcg_temp_free_i32(t0); + tcg_temp_free_i32(R); + + return true; +} + +/* + * The module is an instruction set extension to the AVR CPU, performing + * DES iterations. The 64-bit data block (plaintext or ciphertext) is placed in + * the CPU register file, registers R0-R7, where LSB of data is placed in LSB + * of R0 and MSB of data is placed in MSB of R7. The full 64-bit key (including + * parity bits) is placed in registers R8- R15, organized in the register file + * with LSB of key in LSB of R8 and MSB of key in MSB of R15. Executing one DES + * instruction performs one round in the DES algorithm. Sixteen rounds must be + * executed in increasing order to form the correct DES ciphertext or + * plaintext. Intermediate results are stored in the register file (R0-R15) + * after each DES instruction. The instruction's operand (K) determines which + * round is executed, and the half carry flag (H) determines whether encryption + * or decryption is performed. The DES algorithm is described in + * "Specifications for the Data Encryption Standard" (Federal Information + * Processing Standards Publication 46). Intermediate results in this + * implementation differ from the standard because the initial permutation and + * the inverse initial permutation are performed each iteration. This does not + * affect the result in the final ciphertext or plaintext, but reduces + * execution time. + */ +static bool trans_DES(DisasContext *ctx, arg_DES *a) +{ + /* TODO */ + if (!avr_have_feature(ctx, AVR_FEATURE_DES)) { + return true; + } + + qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); + + return true; +} + +/* + * Branch Instructions + */ +static void gen_jmp_ez(DisasContext *ctx) +{ + tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); + tcg_gen_or_tl(cpu_pc, cpu_pc, cpu_eind); + ctx->bstate = DISAS_LOOKUP; +} + +static void gen_jmp_z(DisasContext *ctx) +{ + tcg_gen_deposit_tl(cpu_pc, cpu_r[30], cpu_r[31], 8, 8); + ctx->bstate = DISAS_LOOKUP; +} + +static void gen_push_ret(DisasContext *ctx, int ret) +{ + if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { + + TCGv t0 = tcg_const_i32((ret & 0x0000ff)); + + tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_UB); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + + tcg_temp_free_i32(t0); + } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { + + TCGv t0 = tcg_const_i32((ret & 0x00ffff)); + + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + tcg_gen_qemu_st_tl(t0, cpu_sp, MMU_DATA_IDX, MO_BEUW); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + + tcg_temp_free_i32(t0); + + } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { + + TCGv lo = tcg_const_i32((ret & 0x0000ff)); + TCGv hi = tcg_const_i32((ret & 0xffff00) >> 8); + + tcg_gen_qemu_st_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 2); + tcg_gen_qemu_st_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + + tcg_temp_free_i32(lo); + tcg_temp_free_i32(hi); + } +} + +static void gen_pop_ret(DisasContext *ctx, TCGv ret) +{ + if (avr_feature(ctx->env, AVR_FEATURE_1_BYTE_PC)) { + tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_UB); + } else if (avr_feature(ctx->env, AVR_FEATURE_2_BYTE_PC)) { + tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + tcg_gen_qemu_ld_tl(ret, cpu_sp, MMU_DATA_IDX, MO_BEUW); + tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + } else if (avr_feature(ctx->env, AVR_FEATURE_3_BYTE_PC)) { + TCGv lo = tcg_temp_new_i32(); + TCGv hi = tcg_temp_new_i32(); + + tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + tcg_gen_qemu_ld_tl(hi, cpu_sp, MMU_DATA_IDX, MO_BEUW); + + tcg_gen_addi_tl(cpu_sp, cpu_sp, 2); + tcg_gen_qemu_ld_tl(lo, cpu_sp, MMU_DATA_IDX, MO_UB); + + tcg_gen_deposit_tl(ret, lo, hi, 8, 16); + + tcg_temp_free_i32(lo); + tcg_temp_free_i32(hi); + } +} + +static void gen_goto_tb(DisasContext *ctx, int n, target_ulong dest) +{ + TranslationBlock *tb = ctx->tb; + + if (ctx->singlestep == 0) { + tcg_gen_goto_tb(n); + tcg_gen_movi_i32(cpu_pc, dest); + tcg_gen_exit_tb(tb, n); + } else { + tcg_gen_movi_i32(cpu_pc, dest); + gen_helper_debug(cpu_env); + tcg_gen_exit_tb(NULL, 0); + } + ctx->bstate = DISAS_NORETURN; +} + +/* + * Relative jump to an address within PC - 2K +1 and PC + 2K (words). For + * AVR microcontrollers with Program memory not exceeding 4K words (8KB) this + * instruction can address the entire memory from every address location. See + * also JMP. + */ +static bool trans_RJMP(DisasContext *ctx, arg_RJMP *a) +{ + int dst = ctx->npc + a->imm; + + gen_goto_tb(ctx, 0, dst); + + return true; +} + +/* + * Indirect jump to the address pointed to by the Z (16 bits) Pointer + * Register in the Register File. The Z-pointer Register is 16 bits wide and + * allows jump within the lowest 64K words (128KB) section of Program memory. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_IJMP(DisasContext *ctx, arg_IJMP *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { + return true; + } + + gen_jmp_z(ctx); + + return true; +} + +/* + * Indirect jump to the address pointed to by the Z (16 bits) Pointer + * Register in the Register File and the EIND Register in the I/O space. This + * instruction allows for indirect jumps to the entire 4M (words) Program + * memory space. See also IJMP. This instruction is not available in all + * devices. Refer to the device specific instruction set summary. + */ +static bool trans_EIJMP(DisasContext *ctx, arg_EIJMP *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { + return true; + } + + gen_jmp_ez(ctx); + return true; +} + +/* + * Jump to an address within the entire 4M (words) Program memory. See also + * RJMP. This instruction is not available in all devices. Refer to the device + * specific instruction set summary.0 + */ +static bool trans_JMP(DisasContext *ctx, arg_JMP *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { + return true; + } + + gen_goto_tb(ctx, 0, a->imm); + + return true; +} + +/* + * Relative call to an address within PC - 2K + 1 and PC + 2K (words). The + * return address (the instruction after the RCALL) is stored onto the Stack. + * See also CALL. For AVR microcontrollers with Program memory not exceeding 4K + * words (8KB) this instruction can address the entire memory from every + * address location. The Stack Pointer uses a post-decrement scheme during + * RCALL. + */ +static bool trans_RCALL(DisasContext *ctx, arg_RCALL *a) +{ + int ret = ctx->npc; + int dst = ctx->npc + a->imm; + + gen_push_ret(ctx, ret); + gen_goto_tb(ctx, 0, dst); + + return true; +} + +/* + * Calls to a subroutine within the entire 4M (words) Program memory. The + * return address (to the instruction after the CALL) will be stored onto the + * Stack. See also RCALL. The Stack Pointer uses a post-decrement scheme during + * CALL. This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_ICALL(DisasContext *ctx, arg_ICALL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_IJMP_ICALL)) { + return true; + } + + int ret = ctx->npc; + + gen_push_ret(ctx, ret); + gen_jmp_z(ctx); + + return true; +} + +/* + * Indirect call of a subroutine pointed to by the Z (16 bits) Pointer + * Register in the Register File and the EIND Register in the I/O space. This + * instruction allows for indirect calls to the entire 4M (words) Program + * memory space. See also ICALL. The Stack Pointer uses a post-decrement scheme + * during EICALL. This instruction is not available in all devices. Refer to + * the device specific instruction set summary. + */ +static bool trans_EICALL(DisasContext *ctx, arg_EICALL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_EIJMP_EICALL)) { + return true; + } + + int ret = ctx->npc; + + gen_push_ret(ctx, ret); + gen_jmp_ez(ctx); + return true; +} + +/* + * Calls to a subroutine within the entire Program memory. The return + * address (to the instruction after the CALL) will be stored onto the Stack. + * (See also RCALL). The Stack Pointer uses a post-decrement scheme during + * CALL. This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_CALL(DisasContext *ctx, arg_CALL *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_JMP_CALL)) { + return true; + } + + int Imm = a->imm; + int ret = ctx->npc; + + gen_push_ret(ctx, ret); + gen_goto_tb(ctx, 0, Imm); + + return true; +} + +/* + * Returns from subroutine. The return address is loaded from the STACK. + * The Stack Pointer uses a preincrement scheme during RET. + */ +static bool trans_RET(DisasContext *ctx, arg_RET *a) +{ + gen_pop_ret(ctx, cpu_pc); + + ctx->bstate = DISAS_LOOKUP; + return true; +} + +/* + * Returns from interrupt. The return address is loaded from the STACK and + * the Global Interrupt Flag is set. Note that the Status Register is not + * automatically stored when entering an interrupt routine, and it is not + * restored when returning from an interrupt routine. This must be handled by + * the application program. The Stack Pointer uses a pre-increment scheme + * during RETI. + */ +static bool trans_RETI(DisasContext *ctx, arg_RETI *a) +{ + gen_pop_ret(ctx, cpu_pc); + tcg_gen_movi_tl(cpu_If, 1); + + /* Need to return to main loop to re-evaluate interrupts. */ + ctx->bstate = DISAS_EXIT; + return true; +} + +/* + * This instruction performs a compare between two registers Rd and Rr, and + * skips the next instruction if Rd = Rr. + */ +static bool trans_CPSE(DisasContext *ctx, arg_CPSE *a) +{ + ctx->skip_cond = TCG_COND_EQ; + ctx->skip_var0 = cpu_r[a->rd]; + ctx->skip_var1 = cpu_r[a->rr]; + return true; +} + +/* + * This instruction performs a compare between two registers Rd and Rr. + * None of the registers are changed. All conditional branches can be used + * after this instruction. + */ +static bool trans_CP(DisasContext *ctx, arg_CP *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_ZNSf(R); + + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs a compare between two registers Rd and Rr and + * also takes into account the previous carry. None of the registers are + * changed. All conditional branches can be used after this instruction. + */ +static bool trans_CPC(DisasContext *ctx, arg_CPC *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + TCGv R = tcg_temp_new_i32(); + TCGv zero = tcg_const_i32(0); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr - Cf */ + tcg_gen_sub_tl(R, R, cpu_Cf); + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_NSf(R); + + /* + * Previous value remains unchanged when the result is zero; + * cleared otherwise. + */ + tcg_gen_movcond_tl(TCG_COND_EQ, cpu_Zf, R, zero, cpu_Zf, zero); + + tcg_temp_free_i32(zero); + tcg_temp_free_i32(R); + + return true; +} + +/* + * This instruction performs a compare between register Rd and a constant. + * The register is not changed. All conditional branches can be used after this + * instruction. + */ +static bool trans_CPI(DisasContext *ctx, arg_CPI *a) +{ + TCGv Rd = cpu_r[a->rd]; + int Imm = a->imm; + TCGv Rr = tcg_const_i32(Imm); + TCGv R = tcg_temp_new_i32(); + + tcg_gen_sub_tl(R, Rd, Rr); /* R = Rd - Rr */ + tcg_gen_andi_tl(R, R, 0xff); /* make it 8 bits */ + + /* update status register */ + gen_sub_CHf(R, Rd, Rr); + gen_sub_Vf(R, Rd, Rr); + gen_ZNSf(R); + + tcg_temp_free_i32(R); + tcg_temp_free_i32(Rr); + + return true; +} + +/* + * This instruction tests a single bit in a register and skips the next + * instruction if the bit is cleared. + */ +static bool trans_SBRC(DisasContext *ctx, arg_SBRC *a) +{ + TCGv Rr = cpu_r[a->rr]; + + ctx->skip_cond = TCG_COND_EQ; + ctx->skip_var0 = tcg_temp_new(); + ctx->free_skip_var0 = true; + + tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); + return true; +} + +/* + * This instruction tests a single bit in a register and skips the next + * instruction if the bit is set. + */ +static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a) +{ + TCGv Rr = cpu_r[a->rr]; + + ctx->skip_cond = TCG_COND_NE; + ctx->skip_var0 = tcg_temp_new(); + ctx->free_skip_var0 = true; + + tcg_gen_andi_tl(ctx->skip_var0, Rr, 1 << a->bit); + return true; +} + +/* + * This instruction tests a single bit in an I/O Register and skips the + * next instruction if the bit is cleared. This instruction operates on the + * lower 32 I/O Registers -- addresses 0-31. + */ +static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a) +{ + TCGv temp = tcg_const_i32(a->reg); + + gen_helper_inb(temp, cpu_env, temp); + tcg_gen_andi_tl(temp, temp, 1 << a->bit); + ctx->skip_cond = TCG_COND_EQ; + ctx->skip_var0 = temp; + ctx->free_skip_var0 = true; + + return true; +} + +/* + * This instruction tests a single bit in an I/O Register and skips the + * next instruction if the bit is set. This instruction operates on the lower + * 32 I/O Registers -- addresses 0-31. + */ +static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a) +{ + TCGv temp = tcg_const_i32(a->reg); + + gen_helper_inb(temp, cpu_env, temp); + tcg_gen_andi_tl(temp, temp, 1 << a->bit); + ctx->skip_cond = TCG_COND_NE; + ctx->skip_var0 = temp; + ctx->free_skip_var0 = true; + + return true; +} + +/* + * Conditional relative branch. Tests a single bit in SREG and branches + * relatively to PC if the bit is cleared. This instruction branches relatively + * to PC in either direction (PC - 63 < = destination <= PC + 64). The + * parameter k is the offset from PC and is represented in two's complement + * form. + */ +static bool trans_BRBC(DisasContext *ctx, arg_BRBC *a) +{ + TCGLabel *not_taken = gen_new_label(); + + TCGv var; + + switch (a->bit) { + case 0x00: + var = cpu_Cf; + break; + case 0x01: + var = cpu_Zf; + break; + case 0x02: + var = cpu_Nf; + break; + case 0x03: + var = cpu_Vf; + break; + case 0x04: + var = cpu_Sf; + break; + case 0x05: + var = cpu_Hf; + break; + case 0x06: + var = cpu_Tf; + break; + case 0x07: + var = cpu_If; + break; + default: + g_assert_not_reached(); + } + + tcg_gen_brcondi_i32(TCG_COND_NE, var, 0, not_taken); + gen_goto_tb(ctx, 0, ctx->npc + a->imm); + gen_set_label(not_taken); + + ctx->bstate = DISAS_CHAIN; + return true; +} + +/* + * Conditional relative branch. Tests a single bit in SREG and branches + * relatively to PC if the bit is set. This instruction branches relatively to + * PC in either direction (PC - 63 < = destination <= PC + 64). The parameter k + * is the offset from PC and is represented in two's complement form. + */ +static bool trans_BRBS(DisasContext *ctx, arg_BRBS *a) +{ + TCGLabel *not_taken = gen_new_label(); + + TCGv var; + + switch (a->bit) { + case 0x00: + var = cpu_Cf; + break; + case 0x01: + var = cpu_Zf; + break; + case 0x02: + var = cpu_Nf; + break; + case 0x03: + var = cpu_Vf; + break; + case 0x04: + var = cpu_Sf; + break; + case 0x05: + var = cpu_Hf; + break; + case 0x06: + var = cpu_Tf; + break; + case 0x07: + var = cpu_If; + break; + default: + g_assert_not_reached(); + } + + tcg_gen_brcondi_i32(TCG_COND_EQ, var, 0, not_taken); + gen_goto_tb(ctx, 0, ctx->npc + a->imm); + gen_set_label(not_taken); + + ctx->bstate = DISAS_CHAIN; + return true; +} + +/* + * Data Transfer Instructions + */ + +/* + * in the gen_set_addr & gen_get_addr functions + * H assumed to be in 0x00ff0000 format + * M assumed to be in 0x000000ff format + * L assumed to be in 0x000000ff format + */ +static void gen_set_addr(TCGv addr, TCGv H, TCGv M, TCGv L) +{ + + tcg_gen_andi_tl(L, addr, 0x000000ff); + + tcg_gen_andi_tl(M, addr, 0x0000ff00); + tcg_gen_shri_tl(M, M, 8); + + tcg_gen_andi_tl(H, addr, 0x00ff0000); +} + +static void gen_set_xaddr(TCGv addr) +{ + gen_set_addr(addr, cpu_rampX, cpu_r[27], cpu_r[26]); +} + +static void gen_set_yaddr(TCGv addr) +{ + gen_set_addr(addr, cpu_rampY, cpu_r[29], cpu_r[28]); +} + +static void gen_set_zaddr(TCGv addr) +{ + gen_set_addr(addr, cpu_rampZ, cpu_r[31], cpu_r[30]); +} + +static TCGv gen_get_addr(TCGv H, TCGv M, TCGv L) +{ + TCGv addr = tcg_temp_new_i32(); + + tcg_gen_deposit_tl(addr, M, H, 8, 8); + tcg_gen_deposit_tl(addr, L, addr, 8, 16); + + return addr; +} + +static TCGv gen_get_xaddr(void) +{ + return gen_get_addr(cpu_rampX, cpu_r[27], cpu_r[26]); +} + +static TCGv gen_get_yaddr(void) +{ + return gen_get_addr(cpu_rampY, cpu_r[29], cpu_r[28]); +} + +static TCGv gen_get_zaddr(void) +{ + return gen_get_addr(cpu_rampZ, cpu_r[31], cpu_r[30]); +} + +/* + * Load one byte indirect from data space to register and stores an clear + * the bits in data space specified by the register. The instruction can only + * be used towards internal SRAM. The data location is pointed to by the Z (16 + * bits) Pointer Register in the Register File. Memory access is limited to the + * current data segment of 64KB. To access another data segment in devices with + * more than 64KB data space, the RAMPZ in register in the I/O area has to be + * changed. The Z-pointer Register is left unchanged by the operation. This + * instruction is especially suited for clearing status bits stored in SRAM. + */ +static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr) +{ + if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) { + gen_helper_fullwr(cpu_env, data, addr); + } else { + tcg_gen_qemu_st8(data, addr, MMU_DATA_IDX); /* mem[addr] = data */ + } +} + +static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr) +{ + if (ctx->tb->flags & TB_FLAGS_FULL_ACCESS) { + gen_helper_fullrd(data, cpu_env, addr); + } else { + tcg_gen_qemu_ld8u(data, addr, MMU_DATA_IDX); /* data = mem[addr] */ + } +} + +/* + * This instruction makes a copy of one register into another. The source + * register Rr is left unchanged, while the destination register Rd is loaded + * with a copy of Rr. + */ +static bool trans_MOV(DisasContext *ctx, arg_MOV *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv Rr = cpu_r[a->rr]; + + tcg_gen_mov_tl(Rd, Rr); + + return true; +} + +/* + * This instruction makes a copy of one register pair into another register + * pair. The source register pair Rr+1:Rr is left unchanged, while the + * destination register pair Rd+1:Rd is loaded with a copy of Rr + 1:Rr. This + * instruction is not available in all devices. Refer to the device specific + * instruction set summary. + */ +static bool trans_MOVW(DisasContext *ctx, arg_MOVW *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_MOVW)) { + return true; + } + + TCGv RdL = cpu_r[a->rd]; + TCGv RdH = cpu_r[a->rd + 1]; + TCGv RrL = cpu_r[a->rr]; + TCGv RrH = cpu_r[a->rr + 1]; + + tcg_gen_mov_tl(RdH, RrH); + tcg_gen_mov_tl(RdL, RrL); + + return true; +} + +/* + * Loads an 8 bit constant directly to register 16 to 31. + */ +static bool trans_LDI(DisasContext *ctx, arg_LDI *a) +{ + TCGv Rd = cpu_r[a->rd]; + int imm = a->imm; + + tcg_gen_movi_tl(Rd, imm); + + return true; +} + +/* + * Loads one byte from the data space to a register. For parts with SRAM, + * the data space consists of the Register File, I/O memory and internal SRAM + * (and external SRAM if applicable). For parts without SRAM, the data space + * consists of the register file only. The EEPROM has a separate address space. + * A 16-bit address must be supplied. Memory access is limited to the current + * data segment of 64KB. The LDS instruction uses the RAMPD Register to access + * memory above 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPD in register in the I/O area has to be changed. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_LDS(DisasContext *ctx, arg_LDS *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_rampD; + a->imm = next_word(ctx); + + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ + tcg_gen_shli_tl(addr, addr, 16); + tcg_gen_ori_tl(addr, addr, a->imm); + + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte indirect from the data space to a register. For parts + * with SRAM, the data space consists of the Register File, I/O memory and + * internal SRAM (and external SRAM if applicable). For parts without SRAM, the + * data space consists of the Register File only. In some parts the Flash + * Memory has been mapped to the data space and can be read using this command. + * The EEPROM has a separate address space. The data location is pointed to by + * the X (16 bits) Pointer Register in the Register File. Memory access is + * limited to the current data segment of 64KB. To access another data segment + * in devices with more than 64KB data space, the RAMPX in register in the I/O + * area has to be changed. The X-pointer Register can either be left unchanged + * by the operation, or it can be post-incremented or predecremented. These + * features are especially suited for accessing arrays, tables, and Stack + * Pointer usage of the X-pointer Register. Note that only the low byte of the + * X-pointer is updated in devices with no more than 256 bytes data space. For + * such devices, the high byte of the pointer is not used by this instruction + * and can be used for other purposes. The RAMPX Register in the I/O area is + * updated in parts with more than 64KB data space or more than 64KB Program + * memory, and the increment/decrement is added to the entire 24-bit address on + * such devices. Not all variants of this instruction is available in all + * devices. Refer to the device specific instruction set summary. In the + * Reduced Core tinyAVR the LD instruction can be used to achieve the same + * operation as LPM since the program memory is mapped to the data memory + * space. + */ +static bool trans_LDX1(DisasContext *ctx, arg_LDX1 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_xaddr(); + + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDX2(DisasContext *ctx, arg_LDX2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_xaddr(); + + gen_data_load(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDX3(DisasContext *ctx, arg_LDX3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_xaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_load(ctx, Rd, addr); + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte indirect with or without displacement from the data space + * to a register. For parts with SRAM, the data space consists of the Register + * File, I/O memory and internal SRAM (and external SRAM if applicable). For + * parts without SRAM, the data space consists of the Register File only. In + * some parts the Flash Memory has been mapped to the data space and can be + * read using this command. The EEPROM has a separate address space. The data + * location is pointed to by the Y (16 bits) Pointer Register in the Register + * File. Memory access is limited to the current data segment of 64KB. To + * access another data segment in devices with more than 64KB data space, the + * RAMPY in register in the I/O area has to be changed. The Y-pointer Register + * can either be left unchanged by the operation, or it can be post-incremented + * or predecremented. These features are especially suited for accessing + * arrays, tables, and Stack Pointer usage of the Y-pointer Register. Note that + * only the low byte of the Y-pointer is updated in devices with no more than + * 256 bytes data space. For such devices, the high byte of the pointer is not + * used by this instruction and can be used for other purposes. The RAMPY + * Register in the I/O area is updated in parts with more than 64KB data space + * or more than 64KB Program memory, and the increment/decrement/displacement + * is added to the entire 24-bit address on such devices. Not all variants of + * this instruction is available in all devices. Refer to the device specific + * instruction set summary. In the Reduced Core tinyAVR the LD instruction can + * be used to achieve the same operation as LPM since the program memory is + * mapped to the data memory space. + */ +static bool trans_LDY2(DisasContext *ctx, arg_LDY2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + gen_data_load(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDY3(DisasContext *ctx, arg_LDY3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_load(ctx, Rd, addr); + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDDY(DisasContext *ctx, arg_LDDY *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte indirect with or without displacement from the data space + * to a register. For parts with SRAM, the data space consists of the Register + * File, I/O memory and internal SRAM (and external SRAM if applicable). For + * parts without SRAM, the data space consists of the Register File only. In + * some parts the Flash Memory has been mapped to the data space and can be + * read using this command. The EEPROM has a separate address space. The data + * location is pointed to by the Z (16 bits) Pointer Register in the Register + * File. Memory access is limited to the current data segment of 64KB. To + * access another data segment in devices with more than 64KB data space, the + * RAMPZ in register in the I/O area has to be changed. The Z-pointer Register + * can either be left unchanged by the operation, or it can be post-incremented + * or predecremented. These features are especially suited for Stack Pointer + * usage of the Z-pointer Register, however because the Z-pointer Register can + * be used for indirect subroutine calls, indirect jumps and table lookup, it + * is often more convenient to use the X or Y-pointer as a dedicated Stack + * Pointer. Note that only the low byte of the Z-pointer is updated in devices + * with no more than 256 bytes data space. For such devices, the high byte of + * the pointer is not used by this instruction and can be used for other + * purposes. The RAMPZ Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the + * increment/decrement/displacement is added to the entire 24-bit address on + * such devices. Not all variants of this instruction is available in all + * devices. Refer to the device specific instruction set summary. In the + * Reduced Core tinyAVR the LD instruction can be used to achieve the same + * operation as LPM since the program memory is mapped to the data memory + * space. For using the Z-pointer for table lookup in Program memory see the + * LPM and ELPM instructions. + */ +static bool trans_LDZ2(DisasContext *ctx, arg_LDZ2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + gen_data_load(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDZ3(DisasContext *ctx, arg_LDZ3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_load(ctx, Rd, addr); + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LDDZ(DisasContext *ctx, arg_LDDZ *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_load(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte from a Register to the data space. For parts with SRAM, + * the data space consists of the Register File, I/O memory and internal SRAM + * (and external SRAM if applicable). For parts without SRAM, the data space + * consists of the Register File only. The EEPROM has a separate address space. + * A 16-bit address must be supplied. Memory access is limited to the current + * data segment of 64KB. The STS instruction uses the RAMPD Register to access + * memory above 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPD in register in the I/O area has to be changed. + * This instruction is not available in all devices. Refer to the device + * specific instruction set summary. + */ +static bool trans_STS(DisasContext *ctx, arg_STS *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_rampD; + a->imm = next_word(ctx); + + tcg_gen_mov_tl(addr, H); /* addr = H:M:L */ + tcg_gen_shli_tl(addr, addr, 16); + tcg_gen_ori_tl(addr, addr, a->imm); + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte indirect from a register to data space. For parts with SRAM, + * the data space consists of the Register File, I/O memory, and internal SRAM + * (and external SRAM if applicable). For parts without SRAM, the data space + * consists of the Register File only. The EEPROM has a separate address space. + * + * The data location is pointed to by the X (16 bits) Pointer Register in the + * Register File. Memory access is limited to the current data segment of 64KB. + * To access another data segment in devices with more than 64KB data space, the + * RAMPX in register in the I/O area has to be changed. + * + * The X-pointer Register can either be left unchanged by the operation, or it + * can be post-incremented or pre-decremented. These features are especially + * suited for accessing arrays, tables, and Stack Pointer usage of the + * X-pointer Register. Note that only the low byte of the X-pointer is updated + * in devices with no more than 256 bytes data space. For such devices, the high + * byte of the pointer is not used by this instruction and can be used for other + * purposes. The RAMPX Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the increment / + * decrement is added to the entire 24-bit address on such devices. + */ +static bool trans_STX1(DisasContext *ctx, arg_STX1 *a) +{ + TCGv Rd = cpu_r[a->rr]; + TCGv addr = gen_get_xaddr(); + + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STX2(DisasContext *ctx, arg_STX2 *a) +{ + TCGv Rd = cpu_r[a->rr]; + TCGv addr = gen_get_xaddr(); + + gen_data_store(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STX3(DisasContext *ctx, arg_STX3 *a) +{ + TCGv Rd = cpu_r[a->rr]; + TCGv addr = gen_get_xaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_store(ctx, Rd, addr); + gen_set_xaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte indirect with or without displacement from a register to data + * space. For parts with SRAM, the data space consists of the Register File, I/O + * memory, and internal SRAM (and external SRAM if applicable). For parts + * without SRAM, the data space consists of the Register File only. The EEPROM + * has a separate address space. + * + * The data location is pointed to by the Y (16 bits) Pointer Register in the + * Register File. Memory access is limited to the current data segment of 64KB. + * To access another data segment in devices with more than 64KB data space, the + * RAMPY in register in the I/O area has to be changed. + * + * The Y-pointer Register can either be left unchanged by the operation, or it + * can be post-incremented or pre-decremented. These features are especially + * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer + * Register. Note that only the low byte of the Y-pointer is updated in devices + * with no more than 256 bytes data space. For such devices, the high byte of + * the pointer is not used by this instruction and can be used for other + * purposes. The RAMPY Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the increment / + * decrement / displacement is added to the entire 24-bit address on such + * devices. + */ +static bool trans_STY2(DisasContext *ctx, arg_STY2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + gen_data_store(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STY3(DisasContext *ctx, arg_STY3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_store(ctx, Rd, addr); + gen_set_yaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STDY(DisasContext *ctx, arg_STDY *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_yaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Stores one byte indirect with or without displacement from a register to data + * space. For parts with SRAM, the data space consists of the Register File, I/O + * memory, and internal SRAM (and external SRAM if applicable). For parts + * without SRAM, the data space consists of the Register File only. The EEPROM + * has a separate address space. + * + * The data location is pointed to by the Y (16 bits) Pointer Register in the + * Register File. Memory access is limited to the current data segment of 64KB. + * To access another data segment in devices with more than 64KB data space, the + * RAMPY in register in the I/O area has to be changed. + * + * The Y-pointer Register can either be left unchanged by the operation, or it + * can be post-incremented or pre-decremented. These features are especially + * suited for accessing arrays, tables, and Stack Pointer usage of the Y-pointer + * Register. Note that only the low byte of the Y-pointer is updated in devices + * with no more than 256 bytes data space. For such devices, the high byte of + * the pointer is not used by this instruction and can be used for other + * purposes. The RAMPY Register in the I/O area is updated in parts with more + * than 64KB data space or more than 64KB Program memory, and the increment / + * decrement / displacement is added to the entire 24-bit address on such + * devices. + */ +static bool trans_STZ2(DisasContext *ctx, arg_STZ2 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + gen_data_store(ctx, Rd, addr); + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STZ3(DisasContext *ctx, arg_STZ3 *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_subi_tl(addr, addr, 1); /* addr = addr - 1 */ + gen_data_store(ctx, Rd, addr); + + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_STDZ(DisasContext *ctx, arg_STDZ *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_addi_tl(addr, addr, a->imm); /* addr = addr + q */ + gen_data_store(ctx, Rd, addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte pointed to by the Z-register into the destination + * register Rd. This instruction features a 100% space effective constant + * initialization or constant data fetch. The Program memory is organized in + * 16-bit words while the Z-pointer is a byte address. Thus, the least + * significant bit of the Z-pointer selects either low byte (ZLSB = 0) or high + * byte (ZLSB = 1). This instruction can address the first 64KB (32K words) of + * Program memory. The Zpointer Register can either be left unchanged by the + * operation, or it can be incremented. The incrementation does not apply to + * the RAMPZ Register. + * + * Devices with Self-Programming capability can use the LPM instruction to read + * the Fuse and Lock bit values. + */ +static bool trans_LPM1(DisasContext *ctx, arg_LPM1 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { + return true; + } + + TCGv Rd = cpu_r[0]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_r[31]; + TCGv L = cpu_r[30]; + + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ + tcg_gen_or_tl(addr, addr, L); + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LPM2(DisasContext *ctx, arg_LPM2 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_LPM)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_r[31]; + TCGv L = cpu_r[30]; + + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ + tcg_gen_or_tl(addr, addr, L); + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_LPMX(DisasContext *ctx, arg_LPMX *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_LPMX)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = tcg_temp_new_i32(); + TCGv H = cpu_r[31]; + TCGv L = cpu_r[30]; + + tcg_gen_shli_tl(addr, H, 8); /* addr = H:L */ + tcg_gen_or_tl(addr, addr, L); + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + tcg_gen_andi_tl(L, addr, 0xff); + tcg_gen_shri_tl(addr, addr, 8); + tcg_gen_andi_tl(H, addr, 0xff); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Loads one byte pointed to by the Z-register and the RAMPZ Register in + * the I/O space, and places this byte in the destination register Rd. This + * instruction features a 100% space effective constant initialization or + * constant data fetch. The Program memory is organized in 16-bit words while + * the Z-pointer is a byte address. Thus, the least significant bit of the + * Z-pointer selects either low byte (ZLSB = 0) or high byte (ZLSB = 1). This + * instruction can address the entire Program memory space. The Z-pointer + * Register can either be left unchanged by the operation, or it can be + * incremented. The incrementation applies to the entire 24-bit concatenation + * of the RAMPZ and Z-pointer Registers. + * + * Devices with Self-Programming capability can use the ELPM instruction to + * read the Fuse and Lock bit value. + */ +static bool trans_ELPM1(DisasContext *ctx, arg_ELPM1 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { + return true; + } + + TCGv Rd = cpu_r[0]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_ELPM2(DisasContext *ctx, arg_ELPM2 *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ELPM)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + + tcg_temp_free_i32(addr); + + return true; +} + +static bool trans_ELPMX(DisasContext *ctx, arg_ELPMX *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_ELPMX)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + + tcg_gen_qemu_ld8u(Rd, addr, MMU_CODE_IDX); /* Rd = mem[addr] */ + tcg_gen_addi_tl(addr, addr, 1); /* addr = addr + 1 */ + gen_set_zaddr(addr); + + tcg_temp_free_i32(addr); + + return true; +} + +/* + * SPM can be used to erase a page in the Program memory, to write a page + * in the Program memory (that is already erased), and to set Boot Loader Lock + * bits. In some devices, the Program memory can be written one word at a time, + * in other devices an entire page can be programmed simultaneously after first + * filling a temporary page buffer. In all cases, the Program memory must be + * erased one page at a time. When erasing the Program memory, the RAMPZ and + * Z-register are used as page address. When writing the Program memory, the + * RAMPZ and Z-register are used as page or word address, and the R1:R0 + * register pair is used as data(1). When setting the Boot Loader Lock bits, + * the R1:R0 register pair is used as data. Refer to the device documentation + * for detailed description of SPM usage. This instruction can address the + * entire Program memory. + * + * The SPM instruction is not available in all devices. Refer to the device + * specific instruction set summary. + * + * Note: 1. R1 determines the instruction high byte, and R0 determines the + * instruction low byte. + */ +static bool trans_SPM(DisasContext *ctx, arg_SPM *a) +{ + /* TODO */ + if (!avr_have_feature(ctx, AVR_FEATURE_SPM)) { + return true; + } + + return true; +} + +static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a) +{ + /* TODO */ + if (!avr_have_feature(ctx, AVR_FEATURE_SPMX)) { + return true; + } + + return true; +} + +/* + * Loads data from the I/O Space (Ports, Timers, Configuration Registers, + * etc.) into register Rd in the Register File. + */ +static bool trans_IN(DisasContext *ctx, arg_IN *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv port = tcg_const_i32(a->imm); + + gen_helper_inb(Rd, cpu_env, port); + + tcg_temp_free_i32(port); + + return true; +} + +/* + * Stores data from register Rr in the Register File to I/O Space (Ports, + * Timers, Configuration Registers, etc.). + */ +static bool trans_OUT(DisasContext *ctx, arg_OUT *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv port = tcg_const_i32(a->imm); + + gen_helper_outb(cpu_env, port, Rd); + + tcg_temp_free_i32(port); + + return true; +} + +/* + * This instruction stores the contents of register Rr on the STACK. The + * Stack Pointer is post-decremented by 1 after the PUSH. This instruction is + * not available in all devices. Refer to the device specific instruction set + * summary. + */ +static bool trans_PUSH(DisasContext *ctx, arg_PUSH *a) +{ + TCGv Rd = cpu_r[a->rd]; + + gen_data_store(ctx, Rd, cpu_sp); + tcg_gen_subi_tl(cpu_sp, cpu_sp, 1); + + return true; +} + +/* + * This instruction loads register Rd with a byte from the STACK. The Stack + * Pointer is pre-incremented by 1 before the POP. This instruction is not + * available in all devices. Refer to the device specific instruction set + * summary. + */ +static bool trans_POP(DisasContext *ctx, arg_POP *a) +{ + /* + * Using a temp to work around some strange behaviour: + * tcg_gen_addi_tl(cpu_sp, cpu_sp, 1); + * gen_data_load(ctx, Rd, cpu_sp); + * seems to cause the add to happen twice. + * This doesn't happen if either the add or the load is removed. + */ + TCGv t1 = tcg_temp_new_i32(); + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_addi_tl(t1, cpu_sp, 1); + gen_data_load(ctx, Rd, t1); + tcg_gen_mov_tl(cpu_sp, t1); + + return true; +} + +/* + * Exchanges one byte indirect between register and data space. The data + * location is pointed to by the Z (16 bits) Pointer Register in the Register + * File. Memory access is limited to the current data segment of 64KB. To + * access another data segment in devices with more than 64KB data space, the + * RAMPZ in register in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for writing/reading status bits stored in SRAM. + */ +static bool trans_XCH(DisasContext *ctx, arg_XCH *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_temp_new_i32(); + TCGv addr = gen_get_zaddr(); + + gen_data_load(ctx, t0, addr); + gen_data_store(ctx, Rd, addr); + tcg_gen_mov_tl(Rd, t0); + + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Load one byte indirect from data space to register and set bits in data + * space specified by the register. The instruction can only be used towards + * internal SRAM. The data location is pointed to by the Z (16 bits) Pointer + * Register in the Register File. Memory access is limited to the current data + * segment of 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPZ in register in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for setting status bits stored in SRAM. + */ +static bool trans_LAS(DisasContext *ctx, arg_LAS *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rr = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ + tcg_gen_or_tl(t1, t0, Rr); + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Load one byte indirect from data space to register and stores and clear + * the bits in data space specified by the register. The instruction can + * only be used towards internal SRAM. The data location is pointed to by + * the Z (16 bits) Pointer Register in the Register File. Memory access is + * limited to the current data segment of 64KB. To access another data + * segment in devices with more than 64KB data space, the RAMPZ in register + * in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for clearing status bits stored in SRAM. + */ +static bool trans_LAC(DisasContext *ctx, arg_LAC *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rr = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ + tcg_gen_andc_tl(t1, t0, Rr); /* t1 = t0 & (0xff - Rr) = t0 & ~Rr */ + tcg_gen_mov_tl(Rr, t0); /* Rr = t0 */ + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + + +/* + * Load one byte indirect from data space to register and toggles bits in + * the data space specified by the register. The instruction can only be used + * towards SRAM. The data location is pointed to by the Z (16 bits) Pointer + * Register in the Register File. Memory access is limited to the current data + * segment of 64KB. To access another data segment in devices with more than + * 64KB data space, the RAMPZ in register in the I/O area has to be changed. + * + * The Z-pointer Register is left unchanged by the operation. This instruction + * is especially suited for changing status bits stored in SRAM. + */ +static bool trans_LAT(DisasContext *ctx, arg_LAT *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_RMW)) { + return true; + } + + TCGv Rd = cpu_r[a->rd]; + TCGv addr = gen_get_zaddr(); + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + gen_data_load(ctx, t0, addr); /* t0 = mem[addr] */ + tcg_gen_xor_tl(t1, t0, Rd); + tcg_gen_mov_tl(Rd, t0); /* Rd = t0 */ + gen_data_store(ctx, t1, addr); /* mem[addr] = t1 */ + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(addr); + + return true; +} + +/* + * Bit and Bit-test Instructions + */ +static void gen_rshift_ZNVSf(TCGv R) +{ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, R, 0); /* Zf = R == 0 */ + tcg_gen_shri_tl(cpu_Nf, R, 7); /* Nf = R(7) */ + tcg_gen_xor_tl(cpu_Vf, cpu_Nf, cpu_Cf); + tcg_gen_xor_tl(cpu_Sf, cpu_Nf, cpu_Vf); /* Sf = Nf ^ Vf */ +} + +/* + * Shifts all bits in Rd one place to the right. Bit 7 is cleared. Bit 0 is + * loaded into the C Flag of the SREG. This operation effectively divides an + * unsigned value by two. The C Flag can be used to round the result. + */ +static bool trans_LSR(DisasContext *ctx, arg_LSR *a) +{ + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_andi_tl(cpu_Cf, Rd, 1); + tcg_gen_shri_tl(Rd, Rd, 1); + + /* update status register */ + tcg_gen_setcondi_tl(TCG_COND_EQ, cpu_Zf, Rd, 0); /* Zf = Rd == 0 */ + tcg_gen_movi_tl(cpu_Nf, 0); + tcg_gen_mov_tl(cpu_Vf, cpu_Cf); + tcg_gen_mov_tl(cpu_Sf, cpu_Vf); + + return true; +} + +/* + * Shifts all bits in Rd one place to the right. The C Flag is shifted into + * bit 7 of Rd. Bit 0 is shifted into the C Flag. This operation, combined + * with ASR, effectively divides multi-byte signed values by two. Combined with + * LSR it effectively divides multi-byte unsigned values by two. The Carry Flag + * can be used to round the result. + */ +static bool trans_ROR(DisasContext *ctx, arg_ROR *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_temp_new_i32(); + + tcg_gen_shli_tl(t0, cpu_Cf, 7); + + /* update status register */ + tcg_gen_andi_tl(cpu_Cf, Rd, 1); + + /* update output register */ + tcg_gen_shri_tl(Rd, Rd, 1); + tcg_gen_or_tl(Rd, Rd, t0); + + /* update status register */ + gen_rshift_ZNVSf(Rd); + + tcg_temp_free_i32(t0); + + return true; +} + +/* + * Shifts all bits in Rd one place to the right. Bit 7 is held constant. Bit 0 + * is loaded into the C Flag of the SREG. This operation effectively divides a + * signed value by two without changing its sign. The Carry Flag can be used to + * round the result. + */ +static bool trans_ASR(DisasContext *ctx, arg_ASR *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_temp_new_i32(); + + /* update status register */ + tcg_gen_andi_tl(cpu_Cf, Rd, 1); /* Cf = Rd(0) */ + + /* update output register */ + tcg_gen_andi_tl(t0, Rd, 0x80); /* Rd = (Rd & 0x80) | (Rd >> 1) */ + tcg_gen_shri_tl(Rd, Rd, 1); + tcg_gen_or_tl(Rd, Rd, t0); + + /* update status register */ + gen_rshift_ZNVSf(Rd); + + tcg_temp_free_i32(t0); + + return true; +} + +/* + * Swaps high and low nibbles in a register. + */ +static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t0 = tcg_temp_new_i32(); + TCGv t1 = tcg_temp_new_i32(); + + tcg_gen_andi_tl(t0, Rd, 0x0f); + tcg_gen_shli_tl(t0, t0, 4); + tcg_gen_andi_tl(t1, Rd, 0xf0); + tcg_gen_shri_tl(t1, t1, 4); + tcg_gen_or_tl(Rd, t0, t1); + + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t0); + + return true; +} + +/* + * Sets a specified bit in an I/O Register. This instruction operates on + * the lower 32 I/O Registers -- addresses 0-31. + */ +static bool trans_SBI(DisasContext *ctx, arg_SBI *a) +{ + TCGv data = tcg_temp_new_i32(); + TCGv port = tcg_const_i32(a->reg); + + gen_helper_inb(data, cpu_env, port); + tcg_gen_ori_tl(data, data, 1 << a->bit); + gen_helper_outb(cpu_env, port, data); + + tcg_temp_free_i32(port); + tcg_temp_free_i32(data); + + return true; +} + +/* + * Clears a specified bit in an I/O Register. This instruction operates on + * the lower 32 I/O Registers -- addresses 0-31. + */ +static bool trans_CBI(DisasContext *ctx, arg_CBI *a) +{ + TCGv data = tcg_temp_new_i32(); + TCGv port = tcg_const_i32(a->reg); + + gen_helper_inb(data, cpu_env, port); + tcg_gen_andi_tl(data, data, ~(1 << a->bit)); + gen_helper_outb(cpu_env, port, data); + + tcg_temp_free_i32(data); + tcg_temp_free_i32(port); + + return true; +} + +/* + * Stores bit b from Rd to the T Flag in SREG (Status Register). + */ +static bool trans_BST(DisasContext *ctx, arg_BST *a) +{ + TCGv Rd = cpu_r[a->rd]; + + tcg_gen_andi_tl(cpu_Tf, Rd, 1 << a->bit); + tcg_gen_shri_tl(cpu_Tf, cpu_Tf, a->bit); + + return true; +} + +/* + * Copies the T Flag in the SREG (Status Register) to bit b in register Rd. + */ +static bool trans_BLD(DisasContext *ctx, arg_BLD *a) +{ + TCGv Rd = cpu_r[a->rd]; + TCGv t1 = tcg_temp_new_i32(); + + tcg_gen_andi_tl(Rd, Rd, ~(1u << a->bit)); /* clear bit */ + tcg_gen_shli_tl(t1, cpu_Tf, a->bit); /* create mask */ + tcg_gen_or_tl(Rd, Rd, t1); + + tcg_temp_free_i32(t1); + + return true; +} + +/* + * Sets a single Flag or bit in SREG. + */ +static bool trans_BSET(DisasContext *ctx, arg_BSET *a) +{ + switch (a->bit) { + case 0x00: + tcg_gen_movi_tl(cpu_Cf, 0x01); + break; + case 0x01: + tcg_gen_movi_tl(cpu_Zf, 0x01); + break; + case 0x02: + tcg_gen_movi_tl(cpu_Nf, 0x01); + break; + case 0x03: + tcg_gen_movi_tl(cpu_Vf, 0x01); + break; + case 0x04: + tcg_gen_movi_tl(cpu_Sf, 0x01); + break; + case 0x05: + tcg_gen_movi_tl(cpu_Hf, 0x01); + break; + case 0x06: + tcg_gen_movi_tl(cpu_Tf, 0x01); + break; + case 0x07: + tcg_gen_movi_tl(cpu_If, 0x01); + break; + } + + return true; +} + +/* + * Clears a single Flag in SREG. + */ +static bool trans_BCLR(DisasContext *ctx, arg_BCLR *a) +{ + switch (a->bit) { + case 0x00: + tcg_gen_movi_tl(cpu_Cf, 0x00); + break; + case 0x01: + tcg_gen_movi_tl(cpu_Zf, 0x00); + break; + case 0x02: + tcg_gen_movi_tl(cpu_Nf, 0x00); + break; + case 0x03: + tcg_gen_movi_tl(cpu_Vf, 0x00); + break; + case 0x04: + tcg_gen_movi_tl(cpu_Sf, 0x00); + break; + case 0x05: + tcg_gen_movi_tl(cpu_Hf, 0x00); + break; + case 0x06: + tcg_gen_movi_tl(cpu_Tf, 0x00); + break; + case 0x07: + tcg_gen_movi_tl(cpu_If, 0x00); + break; + } + + return true; +} + +/* + * MCU Control Instructions + */ + +/* + * The BREAK instruction is used by the On-chip Debug system, and is + * normally not used in the application software. When the BREAK instruction is + * executed, the AVR CPU is set in the Stopped Mode. This gives the On-chip + * Debugger access to internal resources. If any Lock bits are set, or either + * the JTAGEN or OCDEN Fuses are unprogrammed, the CPU will treat the BREAK + * instruction as a NOP and will not enter the Stopped mode. This instruction + * is not available in all devices. Refer to the device specific instruction + * set summary. + */ +static bool trans_BREAK(DisasContext *ctx, arg_BREAK *a) +{ + if (!avr_have_feature(ctx, AVR_FEATURE_BREAK)) { + return true; + } + +#ifdef BREAKPOINT_ON_BREAK + tcg_gen_movi_tl(cpu_pc, ctx->npc - 1); + gen_helper_debug(cpu_env); + ctx->bstate = DISAS_EXIT; +#else + /* NOP */ +#endif + + return true; +} + +/* + * This instruction performs a single cycle No Operation. + */ +static bool trans_NOP(DisasContext *ctx, arg_NOP *a) +{ + + /* NOP */ + + return true; +} + +/* + * This instruction sets the circuit in sleep mode defined by the MCU + * Control Register. + */ +static bool trans_SLEEP(DisasContext *ctx, arg_SLEEP *a) +{ + gen_helper_sleep(cpu_env); + ctx->bstate = DISAS_NORETURN; + return true; +} + +/* + * This instruction resets the Watchdog Timer. This instruction must be + * executed within a limited time given by the WD prescaler. See the Watchdog + * Timer hardware specification. + */ +static bool trans_WDR(DisasContext *ctx, arg_WDR *a) +{ + gen_helper_wdr(cpu_env); + + return true; +} + +/* + * Core translation mechanism functions: + * + * - translate() + * - canonicalize_skip() + * - gen_intermediate_code() + * - restore_state_to_opc() + * + */ +static void translate(DisasContext *ctx) +{ + uint32_t opcode = next_word(ctx); + + if (!decode_insn(ctx, opcode)) { + gen_helper_unsupported(cpu_env); + ctx->bstate = DISAS_NORETURN; + } +} + +/* Standardize the cpu_skip condition to NE. */ +static bool canonicalize_skip(DisasContext *ctx) +{ + switch (ctx->skip_cond) { + case TCG_COND_NEVER: + /* Normal case: cpu_skip is known to be false. */ + return false; + + case TCG_COND_ALWAYS: + /* + * Breakpoint case: cpu_skip is known to be true, via TB_FLAGS_SKIP. + * The breakpoint is on the instruction being skipped, at the start + * of the TranslationBlock. No need to update. + */ + return false; + + case TCG_COND_NE: + if (ctx->skip_var1 == NULL) { + tcg_gen_mov_tl(cpu_skip, ctx->skip_var0); + } else { + tcg_gen_xor_tl(cpu_skip, ctx->skip_var0, ctx->skip_var1); + ctx->skip_var1 = NULL; + } + break; + + default: + /* Convert to a NE condition vs 0. */ + if (ctx->skip_var1 == NULL) { + tcg_gen_setcondi_tl(ctx->skip_cond, cpu_skip, ctx->skip_var0, 0); + } else { + tcg_gen_setcond_tl(ctx->skip_cond, cpu_skip, + ctx->skip_var0, ctx->skip_var1); + ctx->skip_var1 = NULL; + } + ctx->skip_cond = TCG_COND_NE; + break; + } + if (ctx->free_skip_var0) { + tcg_temp_free(ctx->skip_var0); + ctx->free_skip_var0 = false; + } + ctx->skip_var0 = cpu_skip; + return true; +} + +void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) +{ + CPUAVRState *env = cs->env_ptr; + DisasContext ctx = { + .tb = tb, + .cs = cs, + .env = env, + .memidx = 0, + .bstate = DISAS_NEXT, + .skip_cond = TCG_COND_NEVER, + .singlestep = cs->singlestep_enabled, + }; + target_ulong pc_start = tb->pc / 2; + int num_insns = 0; + + if (tb->flags & TB_FLAGS_FULL_ACCESS) { + /* + * This flag is set by ST/LD instruction we will regenerate it ONLY + * with mem/cpu memory access instead of mem access + */ + max_insns = 1; + } + if (ctx.singlestep) { + max_insns = 1; + } + + gen_tb_start(tb); + + ctx.npc = pc_start; + if (tb->flags & TB_FLAGS_SKIP) { + ctx.skip_cond = TCG_COND_ALWAYS; + ctx.skip_var0 = cpu_skip; + } + + do { + TCGLabel *skip_label = NULL; + + /* translate current instruction */ + tcg_gen_insn_start(ctx.npc); + num_insns++; + + /* + * this is due to some strange GDB behavior + * let's assume main has address 0x100 + * b main - sets breakpoint at address 0x00000100 (code) + * b *0x100 - sets breakpoint at address 0x00800100 (data) + */ + if (unlikely(!ctx.singlestep && + (cpu_breakpoint_test(cs, OFFSET_CODE + ctx.npc * 2, BP_ANY) || + cpu_breakpoint_test(cs, OFFSET_DATA + ctx.npc * 2, BP_ANY)))) { + canonicalize_skip(&ctx); + tcg_gen_movi_tl(cpu_pc, ctx.npc); + gen_helper_debug(cpu_env); + goto done_generating; + } + + /* Conditionally skip the next instruction, if indicated. */ + if (ctx.skip_cond != TCG_COND_NEVER) { + skip_label = gen_new_label(); + if (ctx.skip_var0 == cpu_skip) { + /* + * Copy cpu_skip so that we may zero it before the branch. + * This ensures that cpu_skip is non-zero after the label + * if and only if the skipped insn itself sets a skip. + */ + ctx.free_skip_var0 = true; + ctx.skip_var0 = tcg_temp_new(); + tcg_gen_mov_tl(ctx.skip_var0, cpu_skip); + tcg_gen_movi_tl(cpu_skip, 0); + } + if (ctx.skip_var1 == NULL) { + tcg_gen_brcondi_tl(ctx.skip_cond, ctx.skip_var0, 0, skip_label); + } else { + tcg_gen_brcond_tl(ctx.skip_cond, ctx.skip_var0, + ctx.skip_var1, skip_label); + ctx.skip_var1 = NULL; + } + if (ctx.free_skip_var0) { + tcg_temp_free(ctx.skip_var0); + ctx.free_skip_var0 = false; + } + ctx.skip_cond = TCG_COND_NEVER; + ctx.skip_var0 = NULL; + } + + translate(&ctx); + + if (skip_label) { + canonicalize_skip(&ctx); + gen_set_label(skip_label); + if (ctx.bstate == DISAS_NORETURN) { + ctx.bstate = DISAS_CHAIN; + } + } + } while (ctx.bstate == DISAS_NEXT + && num_insns < max_insns + && (ctx.npc - pc_start) * 2 < TARGET_PAGE_SIZE - 4 + && !tcg_op_buf_full()); + + if (tb->cflags & CF_LAST_IO) { + gen_io_end(); + } + + bool nonconst_skip = canonicalize_skip(&ctx); + + switch (ctx.bstate) { + case DISAS_NORETURN: + assert(!nonconst_skip); + break; + case DISAS_NEXT: + case DISAS_TOO_MANY: + case DISAS_CHAIN: + if (!nonconst_skip) { + /* Note gen_goto_tb checks singlestep. */ + gen_goto_tb(&ctx, 1, ctx.npc); + break; + } + tcg_gen_movi_tl(cpu_pc, ctx.npc); + /* fall through */ + case DISAS_LOOKUP: + if (!ctx.singlestep) { + tcg_gen_lookup_and_goto_ptr(); + break; + } + /* fall through */ + case DISAS_EXIT: + if (ctx.singlestep) { + gen_helper_debug(cpu_env); + } else { + tcg_gen_exit_tb(NULL, 0); + } + break; + default: + g_assert_not_reached(); + } + +done_generating: + gen_tb_end(tb, num_insns); + + tb->size = (ctx.npc - pc_start) * 2; + tb->icount = num_insns; + +#ifdef DEBUG_DISAS + if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) + && qemu_log_in_addr_range(tb->pc)) { + FILE *fd; + fd = qemu_log_lock(); + qemu_log("IN: %s\n", lookup_symbol(tb->pc)); + log_target_disas(cs, tb->pc, tb->size); + qemu_log("\n"); + qemu_log_unlock(fd); + } +#endif +} + +void restore_state_to_opc(CPUAVRState *env, TranslationBlock *tb, + target_ulong *data) +{ + env->pc_w = data[0]; +} |