aboutsummaryrefslogtreecommitdiff
path: root/target/arm
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm')
-rw-r--r--target/arm/Makefile.objs2
-rw-r--r--target/arm/cpu.c1
-rw-r--r--target/arm/cpu.h10
-rw-r--r--target/arm/cpu64.c2
-rw-r--r--target/arm/helper.c1072
-rw-r--r--target/arm/helper.h3
-rw-r--r--target/arm/translate-a64.c116
-rw-r--r--target/arm/translate.c237
-rw-r--r--target/arm/vfp_helper.c1176
9 files changed, 1393 insertions, 1226 deletions
diff --git a/target/arm/Makefile.objs b/target/arm/Makefile.objs
index 1a4fc06448..6bdcc65c2c 100644
--- a/target/arm/Makefile.objs
+++ b/target/arm/Makefile.objs
@@ -5,7 +5,7 @@ obj-$(call land,$(CONFIG_KVM),$(call lnot,$(TARGET_AARCH64))) += kvm32.o
obj-$(call land,$(CONFIG_KVM),$(TARGET_AARCH64)) += kvm64.o
obj-$(call lnot,$(CONFIG_KVM)) += kvm-stub.o
obj-y += translate.o op_helper.o helper.o cpu.o
-obj-y += neon_helper.o iwmmxt_helper.o vec_helper.o
+obj-y += neon_helper.o iwmmxt_helper.o vec_helper.o vfp_helper.o
obj-y += gdbstub.o
obj-$(TARGET_AARCH64) += cpu64.o translate-a64.o helper-a64.o gdbstub64.o
obj-$(TARGET_AARCH64) += pauth_helper.o
diff --git a/target/arm/cpu.c b/target/arm/cpu.c
index edf6e0e1f1..8ea6569088 100644
--- a/target/arm/cpu.c
+++ b/target/arm/cpu.c
@@ -2001,6 +2001,7 @@ static void arm_max_initfn(Object *obj)
cpu->isar.id_isar5 = t;
t = cpu->isar.id_isar6;
+ t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
t = FIELD_DP32(t, ID_ISAR6, DP, 1);
cpu->isar.id_isar6 = t;
diff --git a/target/arm/cpu.h b/target/arm/cpu.h
index 84ae6849c2..1eea1a408b 100644
--- a/target/arm/cpu.h
+++ b/target/arm/cpu.h
@@ -3273,6 +3273,11 @@ static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
}
+static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
+{
+ return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
+}
+
static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
{
return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
@@ -3351,6 +3356,11 @@ static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
}
+static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
+{
+ return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
+}
+
static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
{
return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
diff --git a/target/arm/cpu64.c b/target/arm/cpu64.c
index eff0f164dd..69e4134f79 100644
--- a/target/arm/cpu64.c
+++ b/target/arm/cpu64.c
@@ -311,6 +311,7 @@ static void aarch64_max_initfn(Object *obj)
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
+ t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
@@ -344,6 +345,7 @@ static void aarch64_max_initfn(Object *obj)
cpu->isar.id_isar5 = u;
u = cpu->isar.id_isar6;
+ u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
u = FIELD_DP32(u, ID_ISAR6, DP, 1);
cpu->isar.id_isar6 = u;
diff --git a/target/arm/helper.c b/target/arm/helper.c
index a018eb23fe..fbaa801cea 100644
--- a/target/arm/helper.c
+++ b/target/arm/helper.c
@@ -1167,7 +1167,7 @@ void pmu_init(ARMCPU *cpu)
if (cnt->supported(&cpu->env)) {
supported_event_map[cnt->number] = i;
- uint64_t event_mask = 1 << (cnt->number & 0x1f);
+ uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
if (cnt->number & 0x20) {
cpu->pmceid1 |= event_mask;
} else {
@@ -11387,9 +11387,11 @@ static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
hit = true;
} else if (m_is_ppb_region(env, address)) {
hit = true;
- } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
- hit = true;
} else {
+ if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
+ hit = true;
+ }
+
for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
/* region search */
/* Note that the base address is bits [31:5] from the register
@@ -11427,7 +11429,7 @@ static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
*is_subpage = true;
}
- if (hit) {
+ if (matchregion != -1) {
/* Multiple regions match -- always a failure (unlike
* PMSAv7 where highest-numbered-region wins)
*/
@@ -12679,1068 +12681,6 @@ uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
return (a & mask) | (b & ~mask);
}
-/* VFP support. We follow the convention used for VFP instructions:
- Single precision routines have a "s" suffix, double precision a
- "d" suffix. */
-
-/* Convert host exception flags to vfp form. */
-static inline int vfp_exceptbits_from_host(int host_bits)
-{
- int target_bits = 0;
-
- if (host_bits & float_flag_invalid)
- target_bits |= 1;
- if (host_bits & float_flag_divbyzero)
- target_bits |= 2;
- if (host_bits & float_flag_overflow)
- target_bits |= 4;
- if (host_bits & (float_flag_underflow | float_flag_output_denormal))
- target_bits |= 8;
- if (host_bits & float_flag_inexact)
- target_bits |= 0x10;
- if (host_bits & float_flag_input_denormal)
- target_bits |= 0x80;
- return target_bits;
-}
-
-uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
-{
- uint32_t i, fpscr;
-
- fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
- | (env->vfp.vec_len << 16)
- | (env->vfp.vec_stride << 20);
-
- i = get_float_exception_flags(&env->vfp.fp_status);
- i |= get_float_exception_flags(&env->vfp.standard_fp_status);
- /* FZ16 does not generate an input denormal exception. */
- i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
- & ~float_flag_input_denormal);
- fpscr |= vfp_exceptbits_from_host(i);
-
- i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
- fpscr |= i ? FPCR_QC : 0;
-
- return fpscr;
-}
-
-uint32_t vfp_get_fpscr(CPUARMState *env)
-{
- return HELPER(vfp_get_fpscr)(env);
-}
-
-/* Convert vfp exception flags to target form. */
-static inline int vfp_exceptbits_to_host(int target_bits)
-{
- int host_bits = 0;
-
- if (target_bits & 1)
- host_bits |= float_flag_invalid;
- if (target_bits & 2)
- host_bits |= float_flag_divbyzero;
- if (target_bits & 4)
- host_bits |= float_flag_overflow;
- if (target_bits & 8)
- host_bits |= float_flag_underflow;
- if (target_bits & 0x10)
- host_bits |= float_flag_inexact;
- if (target_bits & 0x80)
- host_bits |= float_flag_input_denormal;
- return host_bits;
-}
-
-void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
-{
- int i;
- uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
-
- /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
- if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
- val &= ~FPCR_FZ16;
- }
-
- /*
- * We don't implement trapped exception handling, so the
- * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
- *
- * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
- * (which are stored in fp_status), and the other RES0 bits
- * in between, then we clear all of the low 16 bits.
- */
- env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
- env->vfp.vec_len = (val >> 16) & 7;
- env->vfp.vec_stride = (val >> 20) & 3;
-
- /*
- * The bit we set within fpscr_q is arbitrary; the register as a
- * whole being zero/non-zero is what counts.
- */
- env->vfp.qc[0] = val & FPCR_QC;
- env->vfp.qc[1] = 0;
- env->vfp.qc[2] = 0;
- env->vfp.qc[3] = 0;
-
- changed ^= val;
- if (changed & (3 << 22)) {
- i = (val >> 22) & 3;
- switch (i) {
- case FPROUNDING_TIEEVEN:
- i = float_round_nearest_even;
- break;
- case FPROUNDING_POSINF:
- i = float_round_up;
- break;
- case FPROUNDING_NEGINF:
- i = float_round_down;
- break;
- case FPROUNDING_ZERO:
- i = float_round_to_zero;
- break;
- }
- set_float_rounding_mode(i, &env->vfp.fp_status);
- set_float_rounding_mode(i, &env->vfp.fp_status_f16);
- }
- if (changed & FPCR_FZ16) {
- bool ftz_enabled = val & FPCR_FZ16;
- set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
- set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
- }
- if (changed & FPCR_FZ) {
- bool ftz_enabled = val & FPCR_FZ;
- set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
- set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
- }
- if (changed & FPCR_DN) {
- bool dnan_enabled = val & FPCR_DN;
- set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
- set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
- }
-
- /* The exception flags are ORed together when we read fpscr so we
- * only need to preserve the current state in one of our
- * float_status values.
- */
- i = vfp_exceptbits_to_host(val);
- set_float_exception_flags(i, &env->vfp.fp_status);
- set_float_exception_flags(0, &env->vfp.fp_status_f16);
- set_float_exception_flags(0, &env->vfp.standard_fp_status);
-}
-
-void vfp_set_fpscr(CPUARMState *env, uint32_t val)
-{
- HELPER(vfp_set_fpscr)(env, val);
-}
-
-#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
-
-#define VFP_BINOP(name) \
-float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
-{ \
- float_status *fpst = fpstp; \
- return float32_ ## name(a, b, fpst); \
-} \
-float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
-{ \
- float_status *fpst = fpstp; \
- return float64_ ## name(a, b, fpst); \
-}
-VFP_BINOP(add)
-VFP_BINOP(sub)
-VFP_BINOP(mul)
-VFP_BINOP(div)
-VFP_BINOP(min)
-VFP_BINOP(max)
-VFP_BINOP(minnum)
-VFP_BINOP(maxnum)
-#undef VFP_BINOP
-
-float32 VFP_HELPER(neg, s)(float32 a)
-{
- return float32_chs(a);
-}
-
-float64 VFP_HELPER(neg, d)(float64 a)
-{
- return float64_chs(a);
-}
-
-float32 VFP_HELPER(abs, s)(float32 a)
-{
- return float32_abs(a);
-}
-
-float64 VFP_HELPER(abs, d)(float64 a)
-{
- return float64_abs(a);
-}
-
-float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
-{
- return float32_sqrt(a, &env->vfp.fp_status);
-}
-
-float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
-{
- return float64_sqrt(a, &env->vfp.fp_status);
-}
-
-static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
-{
- uint32_t flags;
- switch (cmp) {
- case float_relation_equal:
- flags = 0x6;
- break;
- case float_relation_less:
- flags = 0x8;
- break;
- case float_relation_greater:
- flags = 0x2;
- break;
- case float_relation_unordered:
- flags = 0x3;
- break;
- default:
- g_assert_not_reached();
- }
- env->vfp.xregs[ARM_VFP_FPSCR] =
- deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
-}
-
-/* XXX: check quiet/signaling case */
-#define DO_VFP_cmp(p, type) \
-void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
-{ \
- softfloat_to_vfp_compare(env, \
- type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
-} \
-void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
-{ \
- softfloat_to_vfp_compare(env, \
- type ## _compare(a, b, &env->vfp.fp_status)); \
-}
-DO_VFP_cmp(s, float32)
-DO_VFP_cmp(d, float64)
-#undef DO_VFP_cmp
-
-/* Integer to float and float to integer conversions */
-
-#define CONV_ITOF(name, ftype, fsz, sign) \
-ftype HELPER(name)(uint32_t x, void *fpstp) \
-{ \
- float_status *fpst = fpstp; \
- return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
-}
-
-#define CONV_FTOI(name, ftype, fsz, sign, round) \
-sign##int32_t HELPER(name)(ftype x, void *fpstp) \
-{ \
- float_status *fpst = fpstp; \
- if (float##fsz##_is_any_nan(x)) { \
- float_raise(float_flag_invalid, fpst); \
- return 0; \
- } \
- return float##fsz##_to_##sign##int32##round(x, fpst); \
-}
-
-#define FLOAT_CONVS(name, p, ftype, fsz, sign) \
- CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
- CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
- CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
-
-FLOAT_CONVS(si, h, uint32_t, 16, )
-FLOAT_CONVS(si, s, float32, 32, )
-FLOAT_CONVS(si, d, float64, 64, )
-FLOAT_CONVS(ui, h, uint32_t, 16, u)
-FLOAT_CONVS(ui, s, float32, 32, u)
-FLOAT_CONVS(ui, d, float64, 64, u)
-
-#undef CONV_ITOF
-#undef CONV_FTOI
-#undef FLOAT_CONVS
-
-/* floating point conversion */
-float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
-{
- return float32_to_float64(x, &env->vfp.fp_status);
-}
-
-float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
-{
- return float64_to_float32(x, &env->vfp.fp_status);
-}
-
-/* VFP3 fixed point conversion. */
-#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
-float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
- void *fpstp) \
-{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
-
-#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
-uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
- void *fpst) \
-{ \
- if (unlikely(float##fsz##_is_any_nan(x))) { \
- float_raise(float_flag_invalid, fpst); \
- return 0; \
- } \
- return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
-}
-
-#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
-VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
-VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
- float_round_to_zero, _round_to_zero) \
-VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
- get_float_rounding_mode(fpst), )
-
-#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
-VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
-VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
- get_float_rounding_mode(fpst), )
-
-VFP_CONV_FIX(sh, d, 64, 64, int16)
-VFP_CONV_FIX(sl, d, 64, 64, int32)
-VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
-VFP_CONV_FIX(uh, d, 64, 64, uint16)
-VFP_CONV_FIX(ul, d, 64, 64, uint32)
-VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
-VFP_CONV_FIX(sh, s, 32, 32, int16)
-VFP_CONV_FIX(sl, s, 32, 32, int32)
-VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
-VFP_CONV_FIX(uh, s, 32, 32, uint16)
-VFP_CONV_FIX(ul, s, 32, 32, uint32)
-VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
-
-#undef VFP_CONV_FIX
-#undef VFP_CONV_FIX_FLOAT
-#undef VFP_CONV_FLOAT_FIX_ROUND
-#undef VFP_CONV_FIX_A64
-
-uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
-{
- return int32_to_float16_scalbn(x, -shift, fpst);
-}
-
-uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
-{
- return uint32_to_float16_scalbn(x, -shift, fpst);
-}
-
-uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
-{
- return int64_to_float16_scalbn(x, -shift, fpst);
-}
-
-uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
-{
- return uint64_to_float16_scalbn(x, -shift, fpst);
-}
-
-uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
-{
- if (unlikely(float16_is_any_nan(x))) {
- float_raise(float_flag_invalid, fpst);
- return 0;
- }
- return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
- shift, fpst);
-}
-
-uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
-{
- if (unlikely(float16_is_any_nan(x))) {
- float_raise(float_flag_invalid, fpst);
- return 0;
- }
- return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
- shift, fpst);
-}
-
-uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
-{
- if (unlikely(float16_is_any_nan(x))) {
- float_raise(float_flag_invalid, fpst);
- return 0;
- }
- return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
- shift, fpst);
-}
-
-uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
-{
- if (unlikely(float16_is_any_nan(x))) {
- float_raise(float_flag_invalid, fpst);
- return 0;
- }
- return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
- shift, fpst);
-}
-
-uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
-{
- if (unlikely(float16_is_any_nan(x))) {
- float_raise(float_flag_invalid, fpst);
- return 0;
- }
- return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
- shift, fpst);
-}
-
-uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
-{
- if (unlikely(float16_is_any_nan(x))) {
- float_raise(float_flag_invalid, fpst);
- return 0;
- }
- return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
- shift, fpst);
-}
-
-/* Set the current fp rounding mode and return the old one.
- * The argument is a softfloat float_round_ value.
- */
-uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
-{
- float_status *fp_status = fpstp;
-
- uint32_t prev_rmode = get_float_rounding_mode(fp_status);
- set_float_rounding_mode(rmode, fp_status);
-
- return prev_rmode;
-}
-
-/* Set the current fp rounding mode in the standard fp status and return
- * the old one. This is for NEON instructions that need to change the
- * rounding mode but wish to use the standard FPSCR values for everything
- * else. Always set the rounding mode back to the correct value after
- * modifying it.
- * The argument is a softfloat float_round_ value.
- */
-uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
-{
- float_status *fp_status = &env->vfp.standard_fp_status;
-
- uint32_t prev_rmode = get_float_rounding_mode(fp_status);
- set_float_rounding_mode(rmode, fp_status);
-
- return prev_rmode;
-}
-
-/* Half precision conversions. */
-float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
-{
- /* Squash FZ16 to 0 for the duration of conversion. In this case,
- * it would affect flushing input denormals.
- */
- float_status *fpst = fpstp;
- flag save = get_flush_inputs_to_zero(fpst);
- set_flush_inputs_to_zero(false, fpst);
- float32 r = float16_to_float32(a, !ahp_mode, fpst);
- set_flush_inputs_to_zero(save, fpst);
- return r;
-}
-
-uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
-{
- /* Squash FZ16 to 0 for the duration of conversion. In this case,
- * it would affect flushing output denormals.
- */
- float_status *fpst = fpstp;
- flag save = get_flush_to_zero(fpst);
- set_flush_to_zero(false, fpst);
- float16 r = float32_to_float16(a, !ahp_mode, fpst);
- set_flush_to_zero(save, fpst);
- return r;
-}
-
-float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
-{
- /* Squash FZ16 to 0 for the duration of conversion. In this case,
- * it would affect flushing input denormals.
- */
- float_status *fpst = fpstp;
- flag save = get_flush_inputs_to_zero(fpst);
- set_flush_inputs_to_zero(false, fpst);
- float64 r = float16_to_float64(a, !ahp_mode, fpst);
- set_flush_inputs_to_zero(save, fpst);
- return r;
-}
-
-uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
-{
- /* Squash FZ16 to 0 for the duration of conversion. In this case,
- * it would affect flushing output denormals.
- */
- float_status *fpst = fpstp;
- flag save = get_flush_to_zero(fpst);
- set_flush_to_zero(false, fpst);
- float16 r = float64_to_float16(a, !ahp_mode, fpst);
- set_flush_to_zero(save, fpst);
- return r;
-}
-
-#define float32_two make_float32(0x40000000)
-#define float32_three make_float32(0x40400000)
-#define float32_one_point_five make_float32(0x3fc00000)
-
-float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
-{
- float_status *s = &env->vfp.standard_fp_status;
- if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
- (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
- if (!(float32_is_zero(a) || float32_is_zero(b))) {
- float_raise(float_flag_input_denormal, s);
- }
- return float32_two;
- }
- return float32_sub(float32_two, float32_mul(a, b, s), s);
-}
-
-float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
-{
- float_status *s = &env->vfp.standard_fp_status;
- float32 product;
- if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
- (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
- if (!(float32_is_zero(a) || float32_is_zero(b))) {
- float_raise(float_flag_input_denormal, s);
- }
- return float32_one_point_five;
- }
- product = float32_mul(a, b, s);
- return float32_div(float32_sub(float32_three, product, s), float32_two, s);
-}
-
-/* NEON helpers. */
-
-/* Constants 256 and 512 are used in some helpers; we avoid relying on
- * int->float conversions at run-time. */
-#define float64_256 make_float64(0x4070000000000000LL)
-#define float64_512 make_float64(0x4080000000000000LL)
-#define float16_maxnorm make_float16(0x7bff)
-#define float32_maxnorm make_float32(0x7f7fffff)
-#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
-
-/* Reciprocal functions
- *
- * The algorithm that must be used to calculate the estimate
- * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
- */
-
-/* See RecipEstimate()
- *
- * input is a 9 bit fixed point number
- * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
- * result range 256 .. 511 for a number from 1.0 to 511/256.
- */
-
-static int recip_estimate(int input)
-{
- int a, b, r;
- assert(256 <= input && input < 512);
- a = (input * 2) + 1;
- b = (1 << 19) / a;
- r = (b + 1) >> 1;
- assert(256 <= r && r < 512);
- return r;
-}
-
-/*
- * Common wrapper to call recip_estimate
- *
- * The parameters are exponent and 64 bit fraction (without implicit
- * bit) where the binary point is nominally at bit 52. Returns a
- * float64 which can then be rounded to the appropriate size by the
- * callee.
- */
-
-static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
-{
- uint32_t scaled, estimate;
- uint64_t result_frac;
- int result_exp;
-
- /* Handle sub-normals */
- if (*exp == 0) {
- if (extract64(frac, 51, 1) == 0) {
- *exp = -1;
- frac <<= 2;
- } else {
- frac <<= 1;
- }
- }
-
- /* scaled = UInt('1':fraction<51:44>) */
- scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
- estimate = recip_estimate(scaled);
-
- result_exp = exp_off - *exp;
- result_frac = deposit64(0, 44, 8, estimate);
- if (result_exp == 0) {
- result_frac = deposit64(result_frac >> 1, 51, 1, 1);
- } else if (result_exp == -1) {
- result_frac = deposit64(result_frac >> 2, 50, 2, 1);
- result_exp = 0;
- }
-
- *exp = result_exp;
-
- return result_frac;
-}
-
-static bool round_to_inf(float_status *fpst, bool sign_bit)
-{
- switch (fpst->float_rounding_mode) {
- case float_round_nearest_even: /* Round to Nearest */
- return true;
- case float_round_up: /* Round to +Inf */
- return !sign_bit;
- case float_round_down: /* Round to -Inf */
- return sign_bit;
- case float_round_to_zero: /* Round to Zero */
- return false;
- }
-
- g_assert_not_reached();
-}
-
-uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
-{
- float_status *fpst = fpstp;
- float16 f16 = float16_squash_input_denormal(input, fpst);
- uint32_t f16_val = float16_val(f16);
- uint32_t f16_sign = float16_is_neg(f16);
- int f16_exp = extract32(f16_val, 10, 5);
- uint32_t f16_frac = extract32(f16_val, 0, 10);
- uint64_t f64_frac;
-
- if (float16_is_any_nan(f16)) {
- float16 nan = f16;
- if (float16_is_signaling_nan(f16, fpst)) {
- float_raise(float_flag_invalid, fpst);
- nan = float16_silence_nan(f16, fpst);
- }
- if (fpst->default_nan_mode) {
- nan = float16_default_nan(fpst);
- }
- return nan;
- } else if (float16_is_infinity(f16)) {
- return float16_set_sign(float16_zero, float16_is_neg(f16));
- } else if (float16_is_zero(f16)) {
- float_raise(float_flag_divbyzero, fpst);
- return float16_set_sign(float16_infinity, float16_is_neg(f16));
- } else if (float16_abs(f16) < (1 << 8)) {
- /* Abs(value) < 2.0^-16 */
- float_raise(float_flag_overflow | float_flag_inexact, fpst);
- if (round_to_inf(fpst, f16_sign)) {
- return float16_set_sign(float16_infinity, f16_sign);
- } else {
- return float16_set_sign(float16_maxnorm, f16_sign);
- }
- } else if (f16_exp >= 29 && fpst->flush_to_zero) {
- float_raise(float_flag_underflow, fpst);
- return float16_set_sign(float16_zero, float16_is_neg(f16));
- }
-
- f64_frac = call_recip_estimate(&f16_exp, 29,
- ((uint64_t) f16_frac) << (52 - 10));
-
- /* result = sign : result_exp<4:0> : fraction<51:42> */
- f16_val = deposit32(0, 15, 1, f16_sign);
- f16_val = deposit32(f16_val, 10, 5, f16_exp);
- f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
- return make_float16(f16_val);
-}
-
-float32 HELPER(recpe_f32)(float32 input, void *fpstp)
-{
- float_status *fpst = fpstp;
- float32 f32 = float32_squash_input_denormal(input, fpst);
- uint32_t f32_val = float32_val(f32);
- bool f32_sign = float32_is_neg(f32);
- int f32_exp = extract32(f32_val, 23, 8);
- uint32_t f32_frac = extract32(f32_val, 0, 23);
- uint64_t f64_frac;
-
- if (float32_is_any_nan(f32)) {
- float32 nan = f32;
- if (float32_is_signaling_nan(f32, fpst)) {
- float_raise(float_flag_invalid, fpst);
- nan = float32_silence_nan(f32, fpst);
- }
- if (fpst->default_nan_mode) {
- nan = float32_default_nan(fpst);
- }
- return nan;
- } else if (float32_is_infinity(f32)) {
- return float32_set_sign(float32_zero, float32_is_neg(f32));
- } else if (float32_is_zero(f32)) {
- float_raise(float_flag_divbyzero, fpst);
- return float32_set_sign(float32_infinity, float32_is_neg(f32));
- } else if (float32_abs(f32) < (1ULL << 21)) {
- /* Abs(value) < 2.0^-128 */
- float_raise(float_flag_overflow | float_flag_inexact, fpst);
- if (round_to_inf(fpst, f32_sign)) {
- return float32_set_sign(float32_infinity, f32_sign);
- } else {
- return float32_set_sign(float32_maxnorm, f32_sign);
- }
- } else if (f32_exp >= 253 && fpst->flush_to_zero) {
- float_raise(float_flag_underflow, fpst);
- return float32_set_sign(float32_zero, float32_is_neg(f32));
- }
-
- f64_frac = call_recip_estimate(&f32_exp, 253,
- ((uint64_t) f32_frac) << (52 - 23));
-
- /* result = sign : result_exp<7:0> : fraction<51:29> */
- f32_val = deposit32(0, 31, 1, f32_sign);
- f32_val = deposit32(f32_val, 23, 8, f32_exp);
- f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
- return make_float32(f32_val);
-}
-
-float64 HELPER(recpe_f64)(float64 input, void *fpstp)
-{
- float_status *fpst = fpstp;
- float64 f64 = float64_squash_input_denormal(input, fpst);
- uint64_t f64_val = float64_val(f64);
- bool f64_sign = float64_is_neg(f64);
- int f64_exp = extract64(f64_val, 52, 11);
- uint64_t f64_frac = extract64(f64_val, 0, 52);
-
- /* Deal with any special cases */
- if (float64_is_any_nan(f64)) {
- float64 nan = f64;
- if (float64_is_signaling_nan(f64, fpst)) {
- float_raise(float_flag_invalid, fpst);
- nan = float64_silence_nan(f64, fpst);
- }
- if (fpst->default_nan_mode) {
- nan = float64_default_nan(fpst);
- }
- return nan;
- } else if (float64_is_infinity(f64)) {
- return float64_set_sign(float64_zero, float64_is_neg(f64));
- } else if (float64_is_zero(f64)) {
- float_raise(float_flag_divbyzero, fpst);
- return float64_set_sign(float64_infinity, float64_is_neg(f64));
- } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
- /* Abs(value) < 2.0^-1024 */
- float_raise(float_flag_overflow | float_flag_inexact, fpst);
- if (round_to_inf(fpst, f64_sign)) {
- return float64_set_sign(float64_infinity, f64_sign);
- } else {
- return float64_set_sign(float64_maxnorm, f64_sign);
- }
- } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
- float_raise(float_flag_underflow, fpst);
- return float64_set_sign(float64_zero, float64_is_neg(f64));
- }
-
- f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
-
- /* result = sign : result_exp<10:0> : fraction<51:0>; */
- f64_val = deposit64(0, 63, 1, f64_sign);
- f64_val = deposit64(f64_val, 52, 11, f64_exp);
- f64_val = deposit64(f64_val, 0, 52, f64_frac);
- return make_float64(f64_val);
-}
-
-/* The algorithm that must be used to calculate the estimate
- * is specified by the ARM ARM.
- */
-
-static int do_recip_sqrt_estimate(int a)
-{
- int b, estimate;
-
- assert(128 <= a && a < 512);
- if (a < 256) {
- a = a * 2 + 1;
- } else {
- a = (a >> 1) << 1;
- a = (a + 1) * 2;
- }
- b = 512;
- while (a * (b + 1) * (b + 1) < (1 << 28)) {
- b += 1;
- }
- estimate = (b + 1) / 2;
- assert(256 <= estimate && estimate < 512);
-
- return estimate;
-}
-
-
-static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
-{
- int estimate;
- uint32_t scaled;
-
- if (*exp == 0) {
- while (extract64(frac, 51, 1) == 0) {
- frac = frac << 1;
- *exp -= 1;
- }
- frac = extract64(frac, 0, 51) << 1;
- }
-
- if (*exp & 1) {
- /* scaled = UInt('01':fraction<51:45>) */
- scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
- } else {
- /* scaled = UInt('1':fraction<51:44>) */
- scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
- }
- estimate = do_recip_sqrt_estimate(scaled);
-
- *exp = (exp_off - *exp) / 2;
- return extract64(estimate, 0, 8) << 44;
-}
-
-uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
-{
- float_status *s = fpstp;
- float16 f16 = float16_squash_input_denormal(input, s);
- uint16_t val = float16_val(f16);
- bool f16_sign = float16_is_neg(f16);
- int f16_exp = extract32(val, 10, 5);
- uint16_t f16_frac = extract32(val, 0, 10);
- uint64_t f64_frac;
-
- if (float16_is_any_nan(f16)) {
- float16 nan = f16;
- if (float16_is_signaling_nan(f16, s)) {
- float_raise(float_flag_invalid, s);
- nan = float16_silence_nan(f16, s);
- }
- if (s->default_nan_mode) {
- nan = float16_default_nan(s);
- }
- return nan;
- } else if (float16_is_zero(f16)) {
- float_raise(float_flag_divbyzero, s);
- return float16_set_sign(float16_infinity, f16_sign);
- } else if (f16_sign) {
- float_raise(float_flag_invalid, s);
- return float16_default_nan(s);
- } else if (float16_is_infinity(f16)) {
- return float16_zero;
- }
-
- /* Scale and normalize to a double-precision value between 0.25 and 1.0,
- * preserving the parity of the exponent. */
-
- f64_frac = ((uint64_t) f16_frac) << (52 - 10);
-
- f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
-
- /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
- val = deposit32(0, 15, 1, f16_sign);
- val = deposit32(val, 10, 5, f16_exp);
- val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
- return make_float16(val);
-}
-
-float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
-{
- float_status *s = fpstp;
- float32 f32 = float32_squash_input_denormal(input, s);
- uint32_t val = float32_val(f32);
- uint32_t f32_sign = float32_is_neg(f32);
- int f32_exp = extract32(val, 23, 8);
- uint32_t f32_frac = extract32(val, 0, 23);
- uint64_t f64_frac;
-
- if (float32_is_any_nan(f32)) {
- float32 nan = f32;
- if (float32_is_signaling_nan(f32, s)) {
- float_raise(float_flag_invalid, s);
- nan = float32_silence_nan(f32, s);
- }
- if (s->default_nan_mode) {
- nan = float32_default_nan(s);
- }
- return nan;
- } else if (float32_is_zero(f32)) {
- float_raise(float_flag_divbyzero, s);
- return float32_set_sign(float32_infinity, float32_is_neg(f32));
- } else if (float32_is_neg(f32)) {
- float_raise(float_flag_invalid, s);
- return float32_default_nan(s);
- } else if (float32_is_infinity(f32)) {
- return float32_zero;
- }
-
- /* Scale and normalize to a double-precision value between 0.25 and 1.0,
- * preserving the parity of the exponent. */
-
- f64_frac = ((uint64_t) f32_frac) << 29;
-
- f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
-
- /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
- val = deposit32(0, 31, 1, f32_sign);
- val = deposit32(val, 23, 8, f32_exp);
- val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
- return make_float32(val);
-}
-
-float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
-{
- float_status *s = fpstp;
- float64 f64 = float64_squash_input_denormal(input, s);
- uint64_t val = float64_val(f64);
- bool f64_sign = float64_is_neg(f64);
- int f64_exp = extract64(val, 52, 11);
- uint64_t f64_frac = extract64(val, 0, 52);
-
- if (float64_is_any_nan(f64)) {
- float64 nan = f64;
- if (float64_is_signaling_nan(f64, s)) {
- float_raise(float_flag_invalid, s);
- nan = float64_silence_nan(f64, s);
- }
- if (s->default_nan_mode) {
- nan = float64_default_nan(s);
- }
- return nan;
- } else if (float64_is_zero(f64)) {
- float_raise(float_flag_divbyzero, s);
- return float64_set_sign(float64_infinity, float64_is_neg(f64));
- } else if (float64_is_neg(f64)) {
- float_raise(float_flag_invalid, s);
- return float64_default_nan(s);
- } else if (float64_is_infinity(f64)) {
- return float64_zero;
- }
-
- f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
-
- /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
- val = deposit64(0, 61, 1, f64_sign);
- val = deposit64(val, 52, 11, f64_exp);
- val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
- return make_float64(val);
-}
-
-uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
-{
- /* float_status *s = fpstp; */
- int input, estimate;
-
- if ((a & 0x80000000) == 0) {
- return 0xffffffff;
- }
-
- input = extract32(a, 23, 9);
- estimate = recip_estimate(input);
-
- return deposit32(0, (32 - 9), 9, estimate);
-}
-
-uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
-{
- int estimate;
-
- if ((a & 0xc0000000) == 0) {
- return 0xffffffff;
- }
-
- estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
-
- return deposit32(0, 23, 9, estimate);
-}
-
-/* VFPv4 fused multiply-accumulate */
-float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
-{
- float_status *fpst = fpstp;
- return float32_muladd(a, b, c, 0, fpst);
-}
-
-float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
-{
- float_status *fpst = fpstp;
- return float64_muladd(a, b, c, 0, fpst);
-}
-
-/* ARMv8 round to integral */
-float32 HELPER(rints_exact)(float32 x, void *fp_status)
-{
- return float32_round_to_int(x, fp_status);
-}
-
-float64 HELPER(rintd_exact)(float64 x, void *fp_status)
-{
- return float64_round_to_int(x, fp_status);
-}
-
-float32 HELPER(rints)(float32 x, void *fp_status)
-{
- int old_flags = get_float_exception_flags(fp_status), new_flags;
- float32 ret;
-
- ret = float32_round_to_int(x, fp_status);
-
- /* Suppress any inexact exceptions the conversion produced */
- if (!(old_flags & float_flag_inexact)) {
- new_flags = get_float_exception_flags(fp_status);
- set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
- }
-
- return ret;
-}
-
-float64 HELPER(rintd)(float64 x, void *fp_status)
-{
- int old_flags = get_float_exception_flags(fp_status), new_flags;
- float64 ret;
-
- ret = float64_round_to_int(x, fp_status);
-
- new_flags = get_float_exception_flags(fp_status);
-
- /* Suppress any inexact exceptions the conversion produced */
- if (!(old_flags & float_flag_inexact)) {
- new_flags = get_float_exception_flags(fp_status);
- set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
- }
-
- return ret;
-}
-
-/* Convert ARM rounding mode to softfloat */
-int arm_rmode_to_sf(int rmode)
-{
- switch (rmode) {
- case FPROUNDING_TIEAWAY:
- rmode = float_round_ties_away;
- break;
- case FPROUNDING_ODD:
- /* FIXME: add support for TIEAWAY and ODD */
- qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
- rmode);
- /* fall through for now */
- case FPROUNDING_TIEEVEN:
- default:
- rmode = float_round_nearest_even;
- break;
- case FPROUNDING_POSINF:
- rmode = float_round_up;
- break;
- case FPROUNDING_NEGINF:
- rmode = float_round_down;
- break;
- case FPROUNDING_ZERO:
- rmode = float_round_to_zero;
- break;
- }
- return rmode;
-}
-
/* CRC helpers.
* The upper bytes of val (above the number specified by 'bytes') must have
* been zeroed out by the caller.
diff --git a/target/arm/helper.h b/target/arm/helper.h
index 923e8e1525..747cb64d29 100644
--- a/target/arm/helper.h
+++ b/target/arm/helper.h
@@ -218,6 +218,9 @@ DEF_HELPER_FLAGS_2(rintd_exact, TCG_CALL_NO_RWG, f64, f64, ptr)
DEF_HELPER_FLAGS_2(rints, TCG_CALL_NO_RWG, f32, f32, ptr)
DEF_HELPER_FLAGS_2(rintd, TCG_CALL_NO_RWG, f64, f64, ptr)
+DEF_HELPER_FLAGS_2(vjcvt, TCG_CALL_NO_RWG, i32, f64, env)
+DEF_HELPER_FLAGS_2(fjcvtzs, TCG_CALL_NO_RWG, i64, f64, ptr)
+
/* neon_helper.c */
DEF_HELPER_FLAGS_3(neon_qadd_u8, TCG_CALL_NO_RWG, i32, env, i32, i32)
DEF_HELPER_FLAGS_3(neon_qadd_s8, TCG_CALL_NO_RWG, i32, env, i32, i32)
diff --git a/target/arm/translate-a64.c b/target/arm/translate-a64.c
index af8e4fd4be..c56e878787 100644
--- a/target/arm/translate-a64.c
+++ b/target/arm/translate-a64.c
@@ -6526,6 +6526,24 @@ static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
}
}
+static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
+{
+ TCGv_i64 t = read_fp_dreg(s, rn);
+ TCGv_ptr fpstatus = get_fpstatus_ptr(false);
+
+ gen_helper_fjcvtzs(t, t, fpstatus);
+
+ tcg_temp_free_ptr(fpstatus);
+
+ tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
+ tcg_gen_extrh_i64_i32(cpu_ZF, t);
+ tcg_gen_movi_i32(cpu_CF, 0);
+ tcg_gen_movi_i32(cpu_NF, 0);
+ tcg_gen_movi_i32(cpu_VF, 0);
+
+ tcg_temp_free_i64(t);
+}
+
/* Floating point <-> integer conversions
* 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
* +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
@@ -6541,68 +6559,80 @@ static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
int type = extract32(insn, 22, 2);
bool sbit = extract32(insn, 29, 1);
bool sf = extract32(insn, 31, 1);
+ bool itof = false;
if (sbit) {
- unallocated_encoding(s);
- return;
+ goto do_unallocated;
}
- if (opcode > 5) {
- /* FMOV */
- bool itof = opcode & 1;
-
- if (rmode >= 2) {
- unallocated_encoding(s);
- return;
+ switch (opcode) {
+ case 2: /* SCVTF */
+ case 3: /* UCVTF */
+ itof = true;
+ /* fallthru */
+ case 4: /* FCVTAS */
+ case 5: /* FCVTAU */
+ if (rmode != 0) {
+ goto do_unallocated;
}
-
- switch (sf << 3 | type << 1 | rmode) {
- case 0x0: /* 32 bit */
- case 0xa: /* 64 bit */
- case 0xd: /* 64 bit to top half of quad */
+ /* fallthru */
+ case 0: /* FCVT[NPMZ]S */
+ case 1: /* FCVT[NPMZ]U */
+ switch (type) {
+ case 0: /* float32 */
+ case 1: /* float64 */
break;
- case 0x6: /* 16-bit float, 32-bit int */
- case 0xe: /* 16-bit float, 64-bit int */
- if (dc_isar_feature(aa64_fp16, s)) {
- break;
+ case 3: /* float16 */
+ if (!dc_isar_feature(aa64_fp16, s)) {
+ goto do_unallocated;
}
- /* fallthru */
+ break;
default:
- /* all other sf/type/rmode combinations are invalid */
- unallocated_encoding(s);
- return;
+ goto do_unallocated;
}
-
if (!fp_access_check(s)) {
return;
}
- handle_fmov(s, rd, rn, type, itof);
- } else {
- /* actual FP conversions */
- bool itof = extract32(opcode, 1, 1);
+ handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
+ break;
- if (rmode != 0 && opcode > 1) {
- unallocated_encoding(s);
- return;
- }
- switch (type) {
- case 0: /* float32 */
- case 1: /* float64 */
- break;
- case 3: /* float16 */
- if (dc_isar_feature(aa64_fp16, s)) {
- break;
+ default:
+ switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
+ case 0b01100110: /* FMOV half <-> 32-bit int */
+ case 0b01100111:
+ case 0b11100110: /* FMOV half <-> 64-bit int */
+ case 0b11100111:
+ if (!dc_isar_feature(aa64_fp16, s)) {
+ goto do_unallocated;
}
/* fallthru */
+ case 0b00000110: /* FMOV 32-bit */
+ case 0b00000111:
+ case 0b10100110: /* FMOV 64-bit */
+ case 0b10100111:
+ case 0b11001110: /* FMOV top half of 128-bit */
+ case 0b11001111:
+ if (!fp_access_check(s)) {
+ return;
+ }
+ itof = opcode & 1;
+ handle_fmov(s, rd, rn, type, itof);
+ break;
+
+ case 0b00111110: /* FJCVTZS */
+ if (!dc_isar_feature(aa64_jscvt, s)) {
+ goto do_unallocated;
+ } else if (fp_access_check(s)) {
+ handle_fjcvtzs(s, rd, rn);
+ }
+ break;
+
default:
+ do_unallocated:
unallocated_encoding(s);
return;
}
-
- if (!fp_access_check(s)) {
- return;
- }
- handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
+ break;
}
}
diff --git a/target/arm/translate.c b/target/arm/translate.c
index dac737f6ca..c1175798ac 100644
--- a/target/arm/translate.c
+++ b/target/arm/translate.c
@@ -3639,52 +3639,115 @@ static int disas_vfp_insn(DisasContext *s, uint32_t insn)
}
} else {
/* data processing */
+ bool rd_is_dp = dp;
+ bool rm_is_dp = dp;
+ bool no_output = false;
+
/* The opcode is in bits 23, 21, 20 and 6. */
op = ((insn >> 20) & 8) | ((insn >> 19) & 6) | ((insn >> 6) & 1);
- if (dp) {
- if (op == 15) {
- /* rn is opcode */
- rn = ((insn >> 15) & 0x1e) | ((insn >> 7) & 1);
- } else {
- /* rn is register number */
- VFP_DREG_N(rn, insn);
- }
+ rn = VFP_SREG_N(insn);
- if (op == 15 && (rn == 15 || ((rn & 0x1c) == 0x18) ||
- ((rn & 0x1e) == 0x6))) {
- /* Integer or single/half precision destination. */
- rd = VFP_SREG_D(insn);
- } else {
- VFP_DREG_D(rd, insn);
- }
- if (op == 15 &&
- (((rn & 0x1c) == 0x10) || ((rn & 0x14) == 0x14) ||
- ((rn & 0x1e) == 0x4))) {
- /* VCVT from int or half precision is always from S reg
- * regardless of dp bit. VCVT with immediate frac_bits
- * has same format as SREG_M.
+ if (op == 15) {
+ /* rn is opcode, encoded as per VFP_SREG_N. */
+ switch (rn) {
+ case 0x00: /* vmov */
+ case 0x01: /* vabs */
+ case 0x02: /* vneg */
+ case 0x03: /* vsqrt */
+ break;
+
+ case 0x04: /* vcvtb.f64.f16, vcvtb.f32.f16 */
+ case 0x05: /* vcvtt.f64.f16, vcvtt.f32.f16 */
+ /*
+ * VCVTB, VCVTT: only present with the halfprec extension
+ * UNPREDICTABLE if bit 8 is set prior to ARMv8
+ * (we choose to UNDEF)
*/
- rm = VFP_SREG_M(insn);
- } else {
- VFP_DREG_M(rm, insn);
+ if ((dp && !arm_dc_feature(s, ARM_FEATURE_V8)) ||
+ !arm_dc_feature(s, ARM_FEATURE_VFP_FP16)) {
+ return 1;
+ }
+ rm_is_dp = false;
+ break;
+ case 0x06: /* vcvtb.f16.f32, vcvtb.f16.f64 */
+ case 0x07: /* vcvtt.f16.f32, vcvtt.f16.f64 */
+ if ((dp && !arm_dc_feature(s, ARM_FEATURE_V8)) ||
+ !arm_dc_feature(s, ARM_FEATURE_VFP_FP16)) {
+ return 1;
+ }
+ rd_is_dp = false;
+ break;
+
+ case 0x08: case 0x0a: /* vcmp, vcmpz */
+ case 0x09: case 0x0b: /* vcmpe, vcmpez */
+ no_output = true;
+ break;
+
+ case 0x0c: /* vrintr */
+ case 0x0d: /* vrintz */
+ case 0x0e: /* vrintx */
+ break;
+
+ case 0x0f: /* vcvt double<->single */
+ rd_is_dp = !dp;
+ break;
+
+ case 0x10: /* vcvt.fxx.u32 */
+ case 0x11: /* vcvt.fxx.s32 */
+ rm_is_dp = false;
+ break;
+ case 0x18: /* vcvtr.u32.fxx */
+ case 0x19: /* vcvtz.u32.fxx */
+ case 0x1a: /* vcvtr.s32.fxx */
+ case 0x1b: /* vcvtz.s32.fxx */
+ rd_is_dp = false;
+ break;
+
+ case 0x14: /* vcvt fp <-> fixed */
+ case 0x15:
+ case 0x16:
+ case 0x17:
+ case 0x1c:
+ case 0x1d:
+ case 0x1e:
+ case 0x1f:
+ if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
+ return 1;
+ }
+ /* Immediate frac_bits has same format as SREG_M. */
+ rm_is_dp = false;
+ break;
+
+ case 0x13: /* vjcvt */
+ if (!dp || !dc_isar_feature(aa32_jscvt, s)) {
+ return 1;
+ }
+ rd_is_dp = false;
+ break;
+
+ default:
+ return 1;
}
+ } else if (dp) {
+ /* rn is register number */
+ VFP_DREG_N(rn, insn);
+ }
+
+ if (rd_is_dp) {
+ VFP_DREG_D(rd, insn);
+ } else {
+ rd = VFP_SREG_D(insn);
+ }
+ if (rm_is_dp) {
+ VFP_DREG_M(rm, insn);
} else {
- rn = VFP_SREG_N(insn);
- if (op == 15 && rn == 15) {
- /* Double precision destination. */
- VFP_DREG_D(rd, insn);
- } else {
- rd = VFP_SREG_D(insn);
- }
- /* NB that we implicitly rely on the encoding for the frac_bits
- * in VCVT of fixed to float being the same as that of an SREG_M
- */
rm = VFP_SREG_M(insn);
}
veclen = s->vec_len;
- if (op == 15 && rn > 3)
+ if (op == 15 && rn > 3) {
veclen = 0;
+ }
/* Shut up compiler warnings. */
delta_m = 0;
@@ -3720,55 +3783,28 @@ static int disas_vfp_insn(DisasContext *s, uint32_t insn)
/* Load the initial operands. */
if (op == 15) {
switch (rn) {
- case 16:
- case 17:
- /* Integer source */
- gen_mov_F0_vreg(0, rm);
- break;
- case 8:
- case 9:
- /* Compare */
+ case 0x08: case 0x09: /* Compare */
gen_mov_F0_vreg(dp, rd);
gen_mov_F1_vreg(dp, rm);
break;
- case 10:
- case 11:
- /* Compare with zero */
+ case 0x0a: case 0x0b: /* Compare with zero */
gen_mov_F0_vreg(dp, rd);
gen_vfp_F1_ld0(dp);
break;
- case 20:
- case 21:
- case 22:
- case 23:
- case 28:
- case 29:
- case 30:
- case 31:
+ case 0x14: /* vcvt fp <-> fixed */
+ case 0x15:
+ case 0x16:
+ case 0x17:
+ case 0x1c:
+ case 0x1d:
+ case 0x1e:
+ case 0x1f:
/* Source and destination the same. */
gen_mov_F0_vreg(dp, rd);
break;
- case 4:
- case 5:
- case 6:
- case 7:
- /* VCVTB, VCVTT: only present with the halfprec extension
- * UNPREDICTABLE if bit 8 is set prior to ARMv8
- * (we choose to UNDEF)
- */
- if ((dp && !arm_dc_feature(s, ARM_FEATURE_V8)) ||
- !arm_dc_feature(s, ARM_FEATURE_VFP_FP16)) {
- return 1;
- }
- if (!extract32(rn, 1, 1)) {
- /* Half precision source. */
- gen_mov_F0_vreg(0, rm);
- break;
- }
- /* Otherwise fall through */
default:
/* One source operand. */
- gen_mov_F0_vreg(dp, rm);
+ gen_mov_F0_vreg(rm_is_dp, rm);
break;
}
} else {
@@ -4047,10 +4083,11 @@ static int disas_vfp_insn(DisasContext *s, uint32_t insn)
break;
}
case 15: /* single<->double conversion */
- if (dp)
+ if (dp) {
gen_helper_vfp_fcvtsd(cpu_F0s, cpu_F0d, cpu_env);
- else
+ } else {
gen_helper_vfp_fcvtds(cpu_F0d, cpu_F0s, cpu_env);
+ }
break;
case 16: /* fuito */
gen_vfp_uito(dp, 0);
@@ -4058,28 +4095,19 @@ static int disas_vfp_insn(DisasContext *s, uint32_t insn)
case 17: /* fsito */
gen_vfp_sito(dp, 0);
break;
+ case 19: /* vjcvt */
+ gen_helper_vjcvt(cpu_F0s, cpu_F0d, cpu_env);
+ break;
case 20: /* fshto */
- if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
- return 1;
- }
gen_vfp_shto(dp, 16 - rm, 0);
break;
case 21: /* fslto */
- if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
- return 1;
- }
gen_vfp_slto(dp, 32 - rm, 0);
break;
case 22: /* fuhto */
- if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
- return 1;
- }
gen_vfp_uhto(dp, 16 - rm, 0);
break;
case 23: /* fulto */
- if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
- return 1;
- }
gen_vfp_ulto(dp, 32 - rm, 0);
break;
case 24: /* ftoui */
@@ -4095,57 +4123,34 @@ static int disas_vfp_insn(DisasContext *s, uint32_t insn)
gen_vfp_tosiz(dp, 0);
break;
case 28: /* ftosh */
- if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
- return 1;
- }
gen_vfp_tosh(dp, 16 - rm, 0);
break;
case 29: /* ftosl */
- if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
- return 1;
- }
gen_vfp_tosl(dp, 32 - rm, 0);
break;
case 30: /* ftouh */
- if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
- return 1;
- }
gen_vfp_touh(dp, 16 - rm, 0);
break;
case 31: /* ftoul */
- if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
- return 1;
- }
gen_vfp_toul(dp, 32 - rm, 0);
break;
default: /* undefined */
- return 1;
+ g_assert_not_reached();
}
break;
default: /* undefined */
return 1;
}
- /* Write back the result. */
- if (op == 15 && (rn >= 8 && rn <= 11)) {
- /* Comparison, do nothing. */
- } else if (op == 15 && dp && ((rn & 0x1c) == 0x18 ||
- (rn & 0x1e) == 0x6)) {
- /* VCVT double to int: always integer result.
- * VCVT double to half precision is always a single
- * precision result.
- */
- gen_mov_vreg_F0(0, rd);
- } else if (op == 15 && rn == 15) {
- /* conversion */
- gen_mov_vreg_F0(!dp, rd);
- } else {
- gen_mov_vreg_F0(dp, rd);
+ /* Write back the result, if any. */
+ if (!no_output) {
+ gen_mov_vreg_F0(rd_is_dp, rd);
}
/* break out of the loop if we have finished */
- if (veclen == 0)
+ if (veclen == 0) {
break;
+ }
if (op == 15 && delta_m == 0) {
/* single source one-many */
diff --git a/target/arm/vfp_helper.c b/target/arm/vfp_helper.c
new file mode 100644
index 0000000000..cc7f9f5cb1
--- /dev/null
+++ b/target/arm/vfp_helper.c
@@ -0,0 +1,1176 @@
+/*
+ * ARM VFP floating-point operations
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "cpu.h"
+#include "exec/helper-proto.h"
+#include "fpu/softfloat.h"
+#include "internals.h"
+
+
+/* VFP support. We follow the convention used for VFP instructions:
+ Single precision routines have a "s" suffix, double precision a
+ "d" suffix. */
+
+/* Convert host exception flags to vfp form. */
+static inline int vfp_exceptbits_from_host(int host_bits)
+{
+ int target_bits = 0;
+
+ if (host_bits & float_flag_invalid)
+ target_bits |= 1;
+ if (host_bits & float_flag_divbyzero)
+ target_bits |= 2;
+ if (host_bits & float_flag_overflow)
+ target_bits |= 4;
+ if (host_bits & (float_flag_underflow | float_flag_output_denormal))
+ target_bits |= 8;
+ if (host_bits & float_flag_inexact)
+ target_bits |= 0x10;
+ if (host_bits & float_flag_input_denormal)
+ target_bits |= 0x80;
+ return target_bits;
+}
+
+uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
+{
+ uint32_t i, fpscr;
+
+ fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
+ | (env->vfp.vec_len << 16)
+ | (env->vfp.vec_stride << 20);
+
+ i = get_float_exception_flags(&env->vfp.fp_status);
+ i |= get_float_exception_flags(&env->vfp.standard_fp_status);
+ /* FZ16 does not generate an input denormal exception. */
+ i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
+ & ~float_flag_input_denormal);
+ fpscr |= vfp_exceptbits_from_host(i);
+
+ i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
+ fpscr |= i ? FPCR_QC : 0;
+
+ return fpscr;
+}
+
+uint32_t vfp_get_fpscr(CPUARMState *env)
+{
+ return HELPER(vfp_get_fpscr)(env);
+}
+
+/* Convert vfp exception flags to target form. */
+static inline int vfp_exceptbits_to_host(int target_bits)
+{
+ int host_bits = 0;
+
+ if (target_bits & 1)
+ host_bits |= float_flag_invalid;
+ if (target_bits & 2)
+ host_bits |= float_flag_divbyzero;
+ if (target_bits & 4)
+ host_bits |= float_flag_overflow;
+ if (target_bits & 8)
+ host_bits |= float_flag_underflow;
+ if (target_bits & 0x10)
+ host_bits |= float_flag_inexact;
+ if (target_bits & 0x80)
+ host_bits |= float_flag_input_denormal;
+ return host_bits;
+}
+
+void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
+{
+ int i;
+ uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
+
+ /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
+ if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
+ val &= ~FPCR_FZ16;
+ }
+
+ /*
+ * We don't implement trapped exception handling, so the
+ * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
+ *
+ * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
+ * (which are stored in fp_status), and the other RES0 bits
+ * in between, then we clear all of the low 16 bits.
+ */
+ env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
+ env->vfp.vec_len = (val >> 16) & 7;
+ env->vfp.vec_stride = (val >> 20) & 3;
+
+ /*
+ * The bit we set within fpscr_q is arbitrary; the register as a
+ * whole being zero/non-zero is what counts.
+ */
+ env->vfp.qc[0] = val & FPCR_QC;
+ env->vfp.qc[1] = 0;
+ env->vfp.qc[2] = 0;
+ env->vfp.qc[3] = 0;
+
+ changed ^= val;
+ if (changed & (3 << 22)) {
+ i = (val >> 22) & 3;
+ switch (i) {
+ case FPROUNDING_TIEEVEN:
+ i = float_round_nearest_even;
+ break;
+ case FPROUNDING_POSINF:
+ i = float_round_up;
+ break;
+ case FPROUNDING_NEGINF:
+ i = float_round_down;
+ break;
+ case FPROUNDING_ZERO:
+ i = float_round_to_zero;
+ break;
+ }
+ set_float_rounding_mode(i, &env->vfp.fp_status);
+ set_float_rounding_mode(i, &env->vfp.fp_status_f16);
+ }
+ if (changed & FPCR_FZ16) {
+ bool ftz_enabled = val & FPCR_FZ16;
+ set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
+ set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
+ }
+ if (changed & FPCR_FZ) {
+ bool ftz_enabled = val & FPCR_FZ;
+ set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
+ set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
+ }
+ if (changed & FPCR_DN) {
+ bool dnan_enabled = val & FPCR_DN;
+ set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
+ set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
+ }
+
+ /* The exception flags are ORed together when we read fpscr so we
+ * only need to preserve the current state in one of our
+ * float_status values.
+ */
+ i = vfp_exceptbits_to_host(val);
+ set_float_exception_flags(i, &env->vfp.fp_status);
+ set_float_exception_flags(0, &env->vfp.fp_status_f16);
+ set_float_exception_flags(0, &env->vfp.standard_fp_status);
+}
+
+void vfp_set_fpscr(CPUARMState *env, uint32_t val)
+{
+ HELPER(vfp_set_fpscr)(env, val);
+}
+
+#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
+
+#define VFP_BINOP(name) \
+float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ return float32_ ## name(a, b, fpst); \
+} \
+float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ return float64_ ## name(a, b, fpst); \
+}
+VFP_BINOP(add)
+VFP_BINOP(sub)
+VFP_BINOP(mul)
+VFP_BINOP(div)
+VFP_BINOP(min)
+VFP_BINOP(max)
+VFP_BINOP(minnum)
+VFP_BINOP(maxnum)
+#undef VFP_BINOP
+
+float32 VFP_HELPER(neg, s)(float32 a)
+{
+ return float32_chs(a);
+}
+
+float64 VFP_HELPER(neg, d)(float64 a)
+{
+ return float64_chs(a);
+}
+
+float32 VFP_HELPER(abs, s)(float32 a)
+{
+ return float32_abs(a);
+}
+
+float64 VFP_HELPER(abs, d)(float64 a)
+{
+ return float64_abs(a);
+}
+
+float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
+{
+ return float32_sqrt(a, &env->vfp.fp_status);
+}
+
+float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
+{
+ return float64_sqrt(a, &env->vfp.fp_status);
+}
+
+static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
+{
+ uint32_t flags;
+ switch (cmp) {
+ case float_relation_equal:
+ flags = 0x6;
+ break;
+ case float_relation_less:
+ flags = 0x8;
+ break;
+ case float_relation_greater:
+ flags = 0x2;
+ break;
+ case float_relation_unordered:
+ flags = 0x3;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ env->vfp.xregs[ARM_VFP_FPSCR] =
+ deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
+}
+
+/* XXX: check quiet/signaling case */
+#define DO_VFP_cmp(p, type) \
+void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
+{ \
+ softfloat_to_vfp_compare(env, \
+ type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
+} \
+void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
+{ \
+ softfloat_to_vfp_compare(env, \
+ type ## _compare(a, b, &env->vfp.fp_status)); \
+}
+DO_VFP_cmp(s, float32)
+DO_VFP_cmp(d, float64)
+#undef DO_VFP_cmp
+
+/* Integer to float and float to integer conversions */
+
+#define CONV_ITOF(name, ftype, fsz, sign) \
+ftype HELPER(name)(uint32_t x, void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
+}
+
+#define CONV_FTOI(name, ftype, fsz, sign, round) \
+sign##int32_t HELPER(name)(ftype x, void *fpstp) \
+{ \
+ float_status *fpst = fpstp; \
+ if (float##fsz##_is_any_nan(x)) { \
+ float_raise(float_flag_invalid, fpst); \
+ return 0; \
+ } \
+ return float##fsz##_to_##sign##int32##round(x, fpst); \
+}
+
+#define FLOAT_CONVS(name, p, ftype, fsz, sign) \
+ CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
+ CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
+ CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
+
+FLOAT_CONVS(si, h, uint32_t, 16, )
+FLOAT_CONVS(si, s, float32, 32, )
+FLOAT_CONVS(si, d, float64, 64, )
+FLOAT_CONVS(ui, h, uint32_t, 16, u)
+FLOAT_CONVS(ui, s, float32, 32, u)
+FLOAT_CONVS(ui, d, float64, 64, u)
+
+#undef CONV_ITOF
+#undef CONV_FTOI
+#undef FLOAT_CONVS
+
+/* floating point conversion */
+float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
+{
+ return float32_to_float64(x, &env->vfp.fp_status);
+}
+
+float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
+{
+ return float64_to_float32(x, &env->vfp.fp_status);
+}
+
+/* VFP3 fixed point conversion. */
+#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
+float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
+ void *fpstp) \
+{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
+
+#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
+uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
+ void *fpst) \
+{ \
+ if (unlikely(float##fsz##_is_any_nan(x))) { \
+ float_raise(float_flag_invalid, fpst); \
+ return 0; \
+ } \
+ return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
+}
+
+#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
+VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
+ float_round_to_zero, _round_to_zero) \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
+ get_float_rounding_mode(fpst), )
+
+#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
+VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
+ get_float_rounding_mode(fpst), )
+
+VFP_CONV_FIX(sh, d, 64, 64, int16)
+VFP_CONV_FIX(sl, d, 64, 64, int32)
+VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
+VFP_CONV_FIX(uh, d, 64, 64, uint16)
+VFP_CONV_FIX(ul, d, 64, 64, uint32)
+VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
+VFP_CONV_FIX(sh, s, 32, 32, int16)
+VFP_CONV_FIX(sl, s, 32, 32, int32)
+VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
+VFP_CONV_FIX(uh, s, 32, 32, uint16)
+VFP_CONV_FIX(ul, s, 32, 32, uint32)
+VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
+
+#undef VFP_CONV_FIX
+#undef VFP_CONV_FIX_FLOAT
+#undef VFP_CONV_FLOAT_FIX_ROUND
+#undef VFP_CONV_FIX_A64
+
+uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
+{
+ return int32_to_float16_scalbn(x, -shift, fpst);
+}
+
+uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
+{
+ return uint32_to_float16_scalbn(x, -shift, fpst);
+}
+
+uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
+{
+ return int64_to_float16_scalbn(x, -shift, fpst);
+}
+
+uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
+{
+ return uint64_to_float16_scalbn(x, -shift, fpst);
+}
+
+uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
+{
+ if (unlikely(float16_is_any_nan(x))) {
+ float_raise(float_flag_invalid, fpst);
+ return 0;
+ }
+ return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
+ shift, fpst);
+}
+
+uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
+{
+ if (unlikely(float16_is_any_nan(x))) {
+ float_raise(float_flag_invalid, fpst);
+ return 0;
+ }
+ return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
+ shift, fpst);
+}
+
+uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
+{
+ if (unlikely(float16_is_any_nan(x))) {
+ float_raise(float_flag_invalid, fpst);
+ return 0;
+ }
+ return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
+ shift, fpst);
+}
+
+uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
+{
+ if (unlikely(float16_is_any_nan(x))) {
+ float_raise(float_flag_invalid, fpst);
+ return 0;
+ }
+ return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
+ shift, fpst);
+}
+
+uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
+{
+ if (unlikely(float16_is_any_nan(x))) {
+ float_raise(float_flag_invalid, fpst);
+ return 0;
+ }
+ return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
+ shift, fpst);
+}
+
+uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
+{
+ if (unlikely(float16_is_any_nan(x))) {
+ float_raise(float_flag_invalid, fpst);
+ return 0;
+ }
+ return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
+ shift, fpst);
+}
+
+/* Set the current fp rounding mode and return the old one.
+ * The argument is a softfloat float_round_ value.
+ */
+uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
+{
+ float_status *fp_status = fpstp;
+
+ uint32_t prev_rmode = get_float_rounding_mode(fp_status);
+ set_float_rounding_mode(rmode, fp_status);
+
+ return prev_rmode;
+}
+
+/* Set the current fp rounding mode in the standard fp status and return
+ * the old one. This is for NEON instructions that need to change the
+ * rounding mode but wish to use the standard FPSCR values for everything
+ * else. Always set the rounding mode back to the correct value after
+ * modifying it.
+ * The argument is a softfloat float_round_ value.
+ */
+uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
+{
+ float_status *fp_status = &env->vfp.standard_fp_status;
+
+ uint32_t prev_rmode = get_float_rounding_mode(fp_status);
+ set_float_rounding_mode(rmode, fp_status);
+
+ return prev_rmode;
+}
+
+/* Half precision conversions. */
+float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
+{
+ /* Squash FZ16 to 0 for the duration of conversion. In this case,
+ * it would affect flushing input denormals.
+ */
+ float_status *fpst = fpstp;
+ flag save = get_flush_inputs_to_zero(fpst);
+ set_flush_inputs_to_zero(false, fpst);
+ float32 r = float16_to_float32(a, !ahp_mode, fpst);
+ set_flush_inputs_to_zero(save, fpst);
+ return r;
+}
+
+uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
+{
+ /* Squash FZ16 to 0 for the duration of conversion. In this case,
+ * it would affect flushing output denormals.
+ */
+ float_status *fpst = fpstp;
+ flag save = get_flush_to_zero(fpst);
+ set_flush_to_zero(false, fpst);
+ float16 r = float32_to_float16(a, !ahp_mode, fpst);
+ set_flush_to_zero(save, fpst);
+ return r;
+}
+
+float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
+{
+ /* Squash FZ16 to 0 for the duration of conversion. In this case,
+ * it would affect flushing input denormals.
+ */
+ float_status *fpst = fpstp;
+ flag save = get_flush_inputs_to_zero(fpst);
+ set_flush_inputs_to_zero(false, fpst);
+ float64 r = float16_to_float64(a, !ahp_mode, fpst);
+ set_flush_inputs_to_zero(save, fpst);
+ return r;
+}
+
+uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
+{
+ /* Squash FZ16 to 0 for the duration of conversion. In this case,
+ * it would affect flushing output denormals.
+ */
+ float_status *fpst = fpstp;
+ flag save = get_flush_to_zero(fpst);
+ set_flush_to_zero(false, fpst);
+ float16 r = float64_to_float16(a, !ahp_mode, fpst);
+ set_flush_to_zero(save, fpst);
+ return r;
+}
+
+#define float32_two make_float32(0x40000000)
+#define float32_three make_float32(0x40400000)
+#define float32_one_point_five make_float32(0x3fc00000)
+
+float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
+{
+ float_status *s = &env->vfp.standard_fp_status;
+ if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
+ (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
+ if (!(float32_is_zero(a) || float32_is_zero(b))) {
+ float_raise(float_flag_input_denormal, s);
+ }
+ return float32_two;
+ }
+ return float32_sub(float32_two, float32_mul(a, b, s), s);
+}
+
+float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
+{
+ float_status *s = &env->vfp.standard_fp_status;
+ float32 product;
+ if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
+ (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
+ if (!(float32_is_zero(a) || float32_is_zero(b))) {
+ float_raise(float_flag_input_denormal, s);
+ }
+ return float32_one_point_five;
+ }
+ product = float32_mul(a, b, s);
+ return float32_div(float32_sub(float32_three, product, s), float32_two, s);
+}
+
+/* NEON helpers. */
+
+/* Constants 256 and 512 are used in some helpers; we avoid relying on
+ * int->float conversions at run-time. */
+#define float64_256 make_float64(0x4070000000000000LL)
+#define float64_512 make_float64(0x4080000000000000LL)
+#define float16_maxnorm make_float16(0x7bff)
+#define float32_maxnorm make_float32(0x7f7fffff)
+#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
+
+/* Reciprocal functions
+ *
+ * The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
+ */
+
+/* See RecipEstimate()
+ *
+ * input is a 9 bit fixed point number
+ * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
+ * result range 256 .. 511 for a number from 1.0 to 511/256.
+ */
+
+static int recip_estimate(int input)
+{
+ int a, b, r;
+ assert(256 <= input && input < 512);
+ a = (input * 2) + 1;
+ b = (1 << 19) / a;
+ r = (b + 1) >> 1;
+ assert(256 <= r && r < 512);
+ return r;
+}
+
+/*
+ * Common wrapper to call recip_estimate
+ *
+ * The parameters are exponent and 64 bit fraction (without implicit
+ * bit) where the binary point is nominally at bit 52. Returns a
+ * float64 which can then be rounded to the appropriate size by the
+ * callee.
+ */
+
+static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
+{
+ uint32_t scaled, estimate;
+ uint64_t result_frac;
+ int result_exp;
+
+ /* Handle sub-normals */
+ if (*exp == 0) {
+ if (extract64(frac, 51, 1) == 0) {
+ *exp = -1;
+ frac <<= 2;
+ } else {
+ frac <<= 1;
+ }
+ }
+
+ /* scaled = UInt('1':fraction<51:44>) */
+ scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
+ estimate = recip_estimate(scaled);
+
+ result_exp = exp_off - *exp;
+ result_frac = deposit64(0, 44, 8, estimate);
+ if (result_exp == 0) {
+ result_frac = deposit64(result_frac >> 1, 51, 1, 1);
+ } else if (result_exp == -1) {
+ result_frac = deposit64(result_frac >> 2, 50, 2, 1);
+ result_exp = 0;
+ }
+
+ *exp = result_exp;
+
+ return result_frac;
+}
+
+static bool round_to_inf(float_status *fpst, bool sign_bit)
+{
+ switch (fpst->float_rounding_mode) {
+ case float_round_nearest_even: /* Round to Nearest */
+ return true;
+ case float_round_up: /* Round to +Inf */
+ return !sign_bit;
+ case float_round_down: /* Round to -Inf */
+ return sign_bit;
+ case float_round_to_zero: /* Round to Zero */
+ return false;
+ }
+
+ g_assert_not_reached();
+}
+
+uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ float16 f16 = float16_squash_input_denormal(input, fpst);
+ uint32_t f16_val = float16_val(f16);
+ uint32_t f16_sign = float16_is_neg(f16);
+ int f16_exp = extract32(f16_val, 10, 5);
+ uint32_t f16_frac = extract32(f16_val, 0, 10);
+ uint64_t f64_frac;
+
+ if (float16_is_any_nan(f16)) {
+ float16 nan = f16;
+ if (float16_is_signaling_nan(f16, fpst)) {
+ float_raise(float_flag_invalid, fpst);
+ nan = float16_silence_nan(f16, fpst);
+ }
+ if (fpst->default_nan_mode) {
+ nan = float16_default_nan(fpst);
+ }
+ return nan;
+ } else if (float16_is_infinity(f16)) {
+ return float16_set_sign(float16_zero, float16_is_neg(f16));
+ } else if (float16_is_zero(f16)) {
+ float_raise(float_flag_divbyzero, fpst);
+ return float16_set_sign(float16_infinity, float16_is_neg(f16));
+ } else if (float16_abs(f16) < (1 << 8)) {
+ /* Abs(value) < 2.0^-16 */
+ float_raise(float_flag_overflow | float_flag_inexact, fpst);
+ if (round_to_inf(fpst, f16_sign)) {
+ return float16_set_sign(float16_infinity, f16_sign);
+ } else {
+ return float16_set_sign(float16_maxnorm, f16_sign);
+ }
+ } else if (f16_exp >= 29 && fpst->flush_to_zero) {
+ float_raise(float_flag_underflow, fpst);
+ return float16_set_sign(float16_zero, float16_is_neg(f16));
+ }
+
+ f64_frac = call_recip_estimate(&f16_exp, 29,
+ ((uint64_t) f16_frac) << (52 - 10));
+
+ /* result = sign : result_exp<4:0> : fraction<51:42> */
+ f16_val = deposit32(0, 15, 1, f16_sign);
+ f16_val = deposit32(f16_val, 10, 5, f16_exp);
+ f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
+ return make_float16(f16_val);
+}
+
+float32 HELPER(recpe_f32)(float32 input, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ float32 f32 = float32_squash_input_denormal(input, fpst);
+ uint32_t f32_val = float32_val(f32);
+ bool f32_sign = float32_is_neg(f32);
+ int f32_exp = extract32(f32_val, 23, 8);
+ uint32_t f32_frac = extract32(f32_val, 0, 23);
+ uint64_t f64_frac;
+
+ if (float32_is_any_nan(f32)) {
+ float32 nan = f32;
+ if (float32_is_signaling_nan(f32, fpst)) {
+ float_raise(float_flag_invalid, fpst);
+ nan = float32_silence_nan(f32, fpst);
+ }
+ if (fpst->default_nan_mode) {
+ nan = float32_default_nan(fpst);
+ }
+ return nan;
+ } else if (float32_is_infinity(f32)) {
+ return float32_set_sign(float32_zero, float32_is_neg(f32));
+ } else if (float32_is_zero(f32)) {
+ float_raise(float_flag_divbyzero, fpst);
+ return float32_set_sign(float32_infinity, float32_is_neg(f32));
+ } else if (float32_abs(f32) < (1ULL << 21)) {
+ /* Abs(value) < 2.0^-128 */
+ float_raise(float_flag_overflow | float_flag_inexact, fpst);
+ if (round_to_inf(fpst, f32_sign)) {
+ return float32_set_sign(float32_infinity, f32_sign);
+ } else {
+ return float32_set_sign(float32_maxnorm, f32_sign);
+ }
+ } else if (f32_exp >= 253 && fpst->flush_to_zero) {
+ float_raise(float_flag_underflow, fpst);
+ return float32_set_sign(float32_zero, float32_is_neg(f32));
+ }
+
+ f64_frac = call_recip_estimate(&f32_exp, 253,
+ ((uint64_t) f32_frac) << (52 - 23));
+
+ /* result = sign : result_exp<7:0> : fraction<51:29> */
+ f32_val = deposit32(0, 31, 1, f32_sign);
+ f32_val = deposit32(f32_val, 23, 8, f32_exp);
+ f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
+ return make_float32(f32_val);
+}
+
+float64 HELPER(recpe_f64)(float64 input, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ float64 f64 = float64_squash_input_denormal(input, fpst);
+ uint64_t f64_val = float64_val(f64);
+ bool f64_sign = float64_is_neg(f64);
+ int f64_exp = extract64(f64_val, 52, 11);
+ uint64_t f64_frac = extract64(f64_val, 0, 52);
+
+ /* Deal with any special cases */
+ if (float64_is_any_nan(f64)) {
+ float64 nan = f64;
+ if (float64_is_signaling_nan(f64, fpst)) {
+ float_raise(float_flag_invalid, fpst);
+ nan = float64_silence_nan(f64, fpst);
+ }
+ if (fpst->default_nan_mode) {
+ nan = float64_default_nan(fpst);
+ }
+ return nan;
+ } else if (float64_is_infinity(f64)) {
+ return float64_set_sign(float64_zero, float64_is_neg(f64));
+ } else if (float64_is_zero(f64)) {
+ float_raise(float_flag_divbyzero, fpst);
+ return float64_set_sign(float64_infinity, float64_is_neg(f64));
+ } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
+ /* Abs(value) < 2.0^-1024 */
+ float_raise(float_flag_overflow | float_flag_inexact, fpst);
+ if (round_to_inf(fpst, f64_sign)) {
+ return float64_set_sign(float64_infinity, f64_sign);
+ } else {
+ return float64_set_sign(float64_maxnorm, f64_sign);
+ }
+ } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
+ float_raise(float_flag_underflow, fpst);
+ return float64_set_sign(float64_zero, float64_is_neg(f64));
+ }
+
+ f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
+
+ /* result = sign : result_exp<10:0> : fraction<51:0>; */
+ f64_val = deposit64(0, 63, 1, f64_sign);
+ f64_val = deposit64(f64_val, 52, 11, f64_exp);
+ f64_val = deposit64(f64_val, 0, 52, f64_frac);
+ return make_float64(f64_val);
+}
+
+/* The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM.
+ */
+
+static int do_recip_sqrt_estimate(int a)
+{
+ int b, estimate;
+
+ assert(128 <= a && a < 512);
+ if (a < 256) {
+ a = a * 2 + 1;
+ } else {
+ a = (a >> 1) << 1;
+ a = (a + 1) * 2;
+ }
+ b = 512;
+ while (a * (b + 1) * (b + 1) < (1 << 28)) {
+ b += 1;
+ }
+ estimate = (b + 1) / 2;
+ assert(256 <= estimate && estimate < 512);
+
+ return estimate;
+}
+
+
+static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
+{
+ int estimate;
+ uint32_t scaled;
+
+ if (*exp == 0) {
+ while (extract64(frac, 51, 1) == 0) {
+ frac = frac << 1;
+ *exp -= 1;
+ }
+ frac = extract64(frac, 0, 51) << 1;
+ }
+
+ if (*exp & 1) {
+ /* scaled = UInt('01':fraction<51:45>) */
+ scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
+ } else {
+ /* scaled = UInt('1':fraction<51:44>) */
+ scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
+ }
+ estimate = do_recip_sqrt_estimate(scaled);
+
+ *exp = (exp_off - *exp) / 2;
+ return extract64(estimate, 0, 8) << 44;
+}
+
+uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
+{
+ float_status *s = fpstp;
+ float16 f16 = float16_squash_input_denormal(input, s);
+ uint16_t val = float16_val(f16);
+ bool f16_sign = float16_is_neg(f16);
+ int f16_exp = extract32(val, 10, 5);
+ uint16_t f16_frac = extract32(val, 0, 10);
+ uint64_t f64_frac;
+
+ if (float16_is_any_nan(f16)) {
+ float16 nan = f16;
+ if (float16_is_signaling_nan(f16, s)) {
+ float_raise(float_flag_invalid, s);
+ nan = float16_silence_nan(f16, s);
+ }
+ if (s->default_nan_mode) {
+ nan = float16_default_nan(s);
+ }
+ return nan;
+ } else if (float16_is_zero(f16)) {
+ float_raise(float_flag_divbyzero, s);
+ return float16_set_sign(float16_infinity, f16_sign);
+ } else if (f16_sign) {
+ float_raise(float_flag_invalid, s);
+ return float16_default_nan(s);
+ } else if (float16_is_infinity(f16)) {
+ return float16_zero;
+ }
+
+ /* Scale and normalize to a double-precision value between 0.25 and 1.0,
+ * preserving the parity of the exponent. */
+
+ f64_frac = ((uint64_t) f16_frac) << (52 - 10);
+
+ f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
+
+ /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
+ val = deposit32(0, 15, 1, f16_sign);
+ val = deposit32(val, 10, 5, f16_exp);
+ val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
+ return make_float16(val);
+}
+
+float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
+{
+ float_status *s = fpstp;
+ float32 f32 = float32_squash_input_denormal(input, s);
+ uint32_t val = float32_val(f32);
+ uint32_t f32_sign = float32_is_neg(f32);
+ int f32_exp = extract32(val, 23, 8);
+ uint32_t f32_frac = extract32(val, 0, 23);
+ uint64_t f64_frac;
+
+ if (float32_is_any_nan(f32)) {
+ float32 nan = f32;
+ if (float32_is_signaling_nan(f32, s)) {
+ float_raise(float_flag_invalid, s);
+ nan = float32_silence_nan(f32, s);
+ }
+ if (s->default_nan_mode) {
+ nan = float32_default_nan(s);
+ }
+ return nan;
+ } else if (float32_is_zero(f32)) {
+ float_raise(float_flag_divbyzero, s);
+ return float32_set_sign(float32_infinity, float32_is_neg(f32));
+ } else if (float32_is_neg(f32)) {
+ float_raise(float_flag_invalid, s);
+ return float32_default_nan(s);
+ } else if (float32_is_infinity(f32)) {
+ return float32_zero;
+ }
+
+ /* Scale and normalize to a double-precision value between 0.25 and 1.0,
+ * preserving the parity of the exponent. */
+
+ f64_frac = ((uint64_t) f32_frac) << 29;
+
+ f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
+
+ /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
+ val = deposit32(0, 31, 1, f32_sign);
+ val = deposit32(val, 23, 8, f32_exp);
+ val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
+ return make_float32(val);
+}
+
+float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
+{
+ float_status *s = fpstp;
+ float64 f64 = float64_squash_input_denormal(input, s);
+ uint64_t val = float64_val(f64);
+ bool f64_sign = float64_is_neg(f64);
+ int f64_exp = extract64(val, 52, 11);
+ uint64_t f64_frac = extract64(val, 0, 52);
+
+ if (float64_is_any_nan(f64)) {
+ float64 nan = f64;
+ if (float64_is_signaling_nan(f64, s)) {
+ float_raise(float_flag_invalid, s);
+ nan = float64_silence_nan(f64, s);
+ }
+ if (s->default_nan_mode) {
+ nan = float64_default_nan(s);
+ }
+ return nan;
+ } else if (float64_is_zero(f64)) {
+ float_raise(float_flag_divbyzero, s);
+ return float64_set_sign(float64_infinity, float64_is_neg(f64));
+ } else if (float64_is_neg(f64)) {
+ float_raise(float_flag_invalid, s);
+ return float64_default_nan(s);
+ } else if (float64_is_infinity(f64)) {
+ return float64_zero;
+ }
+
+ f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
+
+ /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
+ val = deposit64(0, 61, 1, f64_sign);
+ val = deposit64(val, 52, 11, f64_exp);
+ val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
+ return make_float64(val);
+}
+
+uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
+{
+ /* float_status *s = fpstp; */
+ int input, estimate;
+
+ if ((a & 0x80000000) == 0) {
+ return 0xffffffff;
+ }
+
+ input = extract32(a, 23, 9);
+ estimate = recip_estimate(input);
+
+ return deposit32(0, (32 - 9), 9, estimate);
+}
+
+uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
+{
+ int estimate;
+
+ if ((a & 0xc0000000) == 0) {
+ return 0xffffffff;
+ }
+
+ estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
+
+ return deposit32(0, 23, 9, estimate);
+}
+
+/* VFPv4 fused multiply-accumulate */
+float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return float32_muladd(a, b, c, 0, fpst);
+}
+
+float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return float64_muladd(a, b, c, 0, fpst);
+}
+
+/* ARMv8 round to integral */
+float32 HELPER(rints_exact)(float32 x, void *fp_status)
+{
+ return float32_round_to_int(x, fp_status);
+}
+
+float64 HELPER(rintd_exact)(float64 x, void *fp_status)
+{
+ return float64_round_to_int(x, fp_status);
+}
+
+float32 HELPER(rints)(float32 x, void *fp_status)
+{
+ int old_flags = get_float_exception_flags(fp_status), new_flags;
+ float32 ret;
+
+ ret = float32_round_to_int(x, fp_status);
+
+ /* Suppress any inexact exceptions the conversion produced */
+ if (!(old_flags & float_flag_inexact)) {
+ new_flags = get_float_exception_flags(fp_status);
+ set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+ }
+
+ return ret;
+}
+
+float64 HELPER(rintd)(float64 x, void *fp_status)
+{
+ int old_flags = get_float_exception_flags(fp_status), new_flags;
+ float64 ret;
+
+ ret = float64_round_to_int(x, fp_status);
+
+ new_flags = get_float_exception_flags(fp_status);
+
+ /* Suppress any inexact exceptions the conversion produced */
+ if (!(old_flags & float_flag_inexact)) {
+ new_flags = get_float_exception_flags(fp_status);
+ set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+ }
+
+ return ret;
+}
+
+/* Convert ARM rounding mode to softfloat */
+int arm_rmode_to_sf(int rmode)
+{
+ switch (rmode) {
+ case FPROUNDING_TIEAWAY:
+ rmode = float_round_ties_away;
+ break;
+ case FPROUNDING_ODD:
+ /* FIXME: add support for TIEAWAY and ODD */
+ qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
+ rmode);
+ /* fall through for now */
+ case FPROUNDING_TIEEVEN:
+ default:
+ rmode = float_round_nearest_even;
+ break;
+ case FPROUNDING_POSINF:
+ rmode = float_round_up;
+ break;
+ case FPROUNDING_NEGINF:
+ rmode = float_round_down;
+ break;
+ case FPROUNDING_ZERO:
+ rmode = float_round_to_zero;
+ break;
+ }
+ return rmode;
+}
+
+/*
+ * Implement float64 to int32_t conversion without saturation;
+ * the result is supplied modulo 2^32.
+ */
+uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
+{
+ float_status *status = vstatus;
+ uint32_t exp, sign;
+ uint64_t frac;
+ uint32_t inexact = 1; /* !Z */
+
+ sign = extract64(value, 63, 1);
+ exp = extract64(value, 52, 11);
+ frac = extract64(value, 0, 52);
+
+ if (exp == 0) {
+ /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
+ inexact = sign;
+ if (frac != 0) {
+ if (status->flush_inputs_to_zero) {
+ float_raise(float_flag_input_denormal, status);
+ } else {
+ float_raise(float_flag_inexact, status);
+ inexact = 1;
+ }
+ }
+ frac = 0;
+ } else if (exp == 0x7ff) {
+ /* This operation raises Invalid for both NaN and overflow (Inf). */
+ float_raise(float_flag_invalid, status);
+ frac = 0;
+ } else {
+ int true_exp = exp - 1023;
+ int shift = true_exp - 52;
+
+ /* Restore implicit bit. */
+ frac |= 1ull << 52;
+
+ /* Shift the fraction into place. */
+ if (shift >= 0) {
+ /* The number is so large we must shift the fraction left. */
+ if (shift >= 64) {
+ /* The fraction is shifted out entirely. */
+ frac = 0;
+ } else {
+ frac <<= shift;
+ }
+ } else if (shift > -64) {
+ /* Normal case -- shift right and notice if bits shift out. */
+ inexact = (frac << (64 + shift)) != 0;
+ frac >>= -shift;
+ } else {
+ /* The fraction is shifted out entirely. */
+ frac = 0;
+ }
+
+ /* Notice overflow or inexact exceptions. */
+ if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
+ /* Overflow, for which this operation raises invalid. */
+ float_raise(float_flag_invalid, status);
+ inexact = 1;
+ } else if (inexact) {
+ float_raise(float_flag_inexact, status);
+ }
+
+ /* Honor the sign. */
+ if (sign) {
+ frac = -frac;
+ }
+ }
+
+ /* Pack the result and the env->ZF representation of Z together. */
+ return deposit64(frac, 32, 32, inexact);
+}
+
+uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
+{
+ uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
+ uint32_t result = pair;
+ uint32_t z = (pair >> 32) == 0;
+
+ /* Store Z, clear NCV, in FPSCR.NZCV. */
+ env->vfp.xregs[ARM_VFP_FPSCR]
+ = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);
+
+ return result;
+}