diff options
Diffstat (limited to 'target/arm/tcg/vec_helper.c')
-rw-r--r-- | target/arm/tcg/vec_helper.c | 2716 |
1 files changed, 2716 insertions, 0 deletions
diff --git a/target/arm/tcg/vec_helper.c b/target/arm/tcg/vec_helper.c new file mode 100644 index 0000000000..f59d3b26ea --- /dev/null +++ b/target/arm/tcg/vec_helper.c @@ -0,0 +1,2716 @@ +/* + * ARM AdvSIMD / SVE Vector Operations + * + * Copyright (c) 2018 Linaro + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/helper-proto.h" +#include "tcg/tcg-gvec-desc.h" +#include "fpu/softfloat.h" +#include "qemu/int128.h" +#include "vec_internal.h" + +/* + * Data for expanding active predicate bits to bytes, for byte elements. + * + * for (i = 0; i < 256; ++i) { + * unsigned long m = 0; + * for (j = 0; j < 8; j++) { + * if ((i >> j) & 1) { + * m |= 0xfful << (j << 3); + * } + * } + * printf("0x%016lx,\n", m); + * } + */ +const uint64_t expand_pred_b_data[256] = { + 0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00, + 0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff, + 0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000, + 0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff, + 0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00, + 0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff, + 0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000, + 0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff, + 0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00, + 0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff, + 0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000, + 0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff, + 0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00, + 0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff, + 0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000, + 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff, + 0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00, + 0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff, + 0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000, + 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff, + 0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00, + 0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff, + 0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000, + 0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff, + 0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00, + 0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff, + 0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000, + 0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff, + 0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, + 0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff, + 0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000, + 0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff, + 0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00, + 0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff, + 0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000, + 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff, + 0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00, + 0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff, + 0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000, + 0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff, + 0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00, + 0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff, + 0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000, + 0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff, + 0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00, + 0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff, + 0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000, + 0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff, + 0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00, + 0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff, + 0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000, + 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff, + 0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00, + 0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff, + 0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000, + 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff, + 0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, + 0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff, + 0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000, + 0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff, + 0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00, + 0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff, + 0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000, + 0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff, + 0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00, + 0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff, + 0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000, + 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff, + 0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00, + 0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff, + 0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000, + 0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff, + 0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00, + 0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff, + 0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000, + 0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff, + 0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00, + 0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff, + 0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000, + 0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff, + 0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00, + 0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff, + 0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000, + 0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff, + 0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00, + 0xffffffffffffffff, +}; + +/* + * Similarly for half-word elements. + * for (i = 0; i < 256; ++i) { + * unsigned long m = 0; + * if (i & 0xaa) { + * continue; + * } + * for (j = 0; j < 8; j += 2) { + * if ((i >> j) & 1) { + * m |= 0xfffful << (j << 3); + * } + * } + * printf("[0x%x] = 0x%016lx,\n", i, m); + * } + */ +const uint64_t expand_pred_h_data[0x55 + 1] = { + [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000, + [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000, + [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000, + [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000, + [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000, + [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000, + [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000, + [0x55] = 0xffffffffffffffff, +}; + +/* Signed saturating rounding doubling multiply-accumulate high half, 8-bit */ +int8_t do_sqrdmlah_b(int8_t src1, int8_t src2, int8_t src3, + bool neg, bool round) +{ + /* + * Simplify: + * = ((a3 << 8) + ((e1 * e2) << 1) + (round << 7)) >> 8 + * = ((a3 << 7) + (e1 * e2) + (round << 6)) >> 7 + */ + int32_t ret = (int32_t)src1 * src2; + if (neg) { + ret = -ret; + } + ret += ((int32_t)src3 << 7) + (round << 6); + ret >>= 7; + + if (ret != (int8_t)ret) { + ret = (ret < 0 ? INT8_MIN : INT8_MAX); + } + return ret; +} + +void HELPER(sve2_sqrdmlah_b)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int8_t *d = vd, *n = vn, *m = vm, *a = va; + + for (i = 0; i < opr_sz; ++i) { + d[i] = do_sqrdmlah_b(n[i], m[i], a[i], false, true); + } +} + +void HELPER(sve2_sqrdmlsh_b)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int8_t *d = vd, *n = vn, *m = vm, *a = va; + + for (i = 0; i < opr_sz; ++i) { + d[i] = do_sqrdmlah_b(n[i], m[i], a[i], true, true); + } +} + +void HELPER(sve2_sqdmulh_b)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int8_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + d[i] = do_sqrdmlah_b(n[i], m[i], 0, false, false); + } +} + +void HELPER(sve2_sqrdmulh_b)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int8_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + d[i] = do_sqrdmlah_b(n[i], m[i], 0, false, true); + } +} + +/* Signed saturating rounding doubling multiply-accumulate high half, 16-bit */ +int16_t do_sqrdmlah_h(int16_t src1, int16_t src2, int16_t src3, + bool neg, bool round, uint32_t *sat) +{ + /* Simplify similarly to do_sqrdmlah_b above. */ + int32_t ret = (int32_t)src1 * src2; + if (neg) { + ret = -ret; + } + ret += ((int32_t)src3 << 15) + (round << 14); + ret >>= 15; + + if (ret != (int16_t)ret) { + *sat = 1; + ret = (ret < 0 ? INT16_MIN : INT16_MAX); + } + return ret; +} + +uint32_t HELPER(neon_qrdmlah_s16)(CPUARMState *env, uint32_t src1, + uint32_t src2, uint32_t src3) +{ + uint32_t *sat = &env->vfp.qc[0]; + uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, false, true, sat); + uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16, + false, true, sat); + return deposit32(e1, 16, 16, e2); +} + +void HELPER(gvec_qrdmlah_s16)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + int16_t *d = vd; + int16_t *n = vn; + int16_t *m = vm; + uintptr_t i; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = do_sqrdmlah_h(n[i], m[i], d[i], false, true, vq); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +uint32_t HELPER(neon_qrdmlsh_s16)(CPUARMState *env, uint32_t src1, + uint32_t src2, uint32_t src3) +{ + uint32_t *sat = &env->vfp.qc[0]; + uint16_t e1 = do_sqrdmlah_h(src1, src2, src3, true, true, sat); + uint16_t e2 = do_sqrdmlah_h(src1 >> 16, src2 >> 16, src3 >> 16, + true, true, sat); + return deposit32(e1, 16, 16, e2); +} + +void HELPER(gvec_qrdmlsh_s16)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + int16_t *d = vd; + int16_t *n = vn; + int16_t *m = vm; + uintptr_t i; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = do_sqrdmlah_h(n[i], m[i], d[i], true, true, vq); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(neon_sqdmulh_h)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int16_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, vq); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(neon_sqrdmulh_h)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int16_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, vq); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(sve2_sqrdmlah_h)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int16_t *d = vd, *n = vn, *m = vm, *a = va; + uint32_t discard; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = do_sqrdmlah_h(n[i], m[i], a[i], false, true, &discard); + } +} + +void HELPER(sve2_sqrdmlsh_h)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int16_t *d = vd, *n = vn, *m = vm, *a = va; + uint32_t discard; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = do_sqrdmlah_h(n[i], m[i], a[i], true, true, &discard); + } +} + +void HELPER(sve2_sqdmulh_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int16_t *d = vd, *n = vn, *m = vm; + uint32_t discard; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, false, &discard); + } +} + +void HELPER(sve2_sqrdmulh_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int16_t *d = vd, *n = vn, *m = vm; + uint32_t discard; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = do_sqrdmlah_h(n[i], m[i], 0, false, true, &discard); + } +} + +void HELPER(sve2_sqdmulh_idx_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx); + uint32_t discard; + + for (i = 0; i < opr_sz / 2; i += 16 / 2) { + int16_t mm = m[i]; + for (j = 0; j < 16 / 2; ++j) { + d[i + j] = do_sqrdmlah_h(n[i + j], mm, 0, false, false, &discard); + } + } +} + +void HELPER(sve2_sqrdmulh_idx_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx); + uint32_t discard; + + for (i = 0; i < opr_sz / 2; i += 16 / 2) { + int16_t mm = m[i]; + for (j = 0; j < 16 / 2; ++j) { + d[i + j] = do_sqrdmlah_h(n[i + j], mm, 0, false, true, &discard); + } + } +} + +/* Signed saturating rounding doubling multiply-accumulate high half, 32-bit */ +int32_t do_sqrdmlah_s(int32_t src1, int32_t src2, int32_t src3, + bool neg, bool round, uint32_t *sat) +{ + /* Simplify similarly to do_sqrdmlah_b above. */ + int64_t ret = (int64_t)src1 * src2; + if (neg) { + ret = -ret; + } + ret += ((int64_t)src3 << 31) + (round << 30); + ret >>= 31; + + if (ret != (int32_t)ret) { + *sat = 1; + ret = (ret < 0 ? INT32_MIN : INT32_MAX); + } + return ret; +} + +uint32_t HELPER(neon_qrdmlah_s32)(CPUARMState *env, int32_t src1, + int32_t src2, int32_t src3) +{ + uint32_t *sat = &env->vfp.qc[0]; + return do_sqrdmlah_s(src1, src2, src3, false, true, sat); +} + +void HELPER(gvec_qrdmlah_s32)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + int32_t *d = vd; + int32_t *n = vn; + int32_t *m = vm; + uintptr_t i; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = do_sqrdmlah_s(n[i], m[i], d[i], false, true, vq); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +uint32_t HELPER(neon_qrdmlsh_s32)(CPUARMState *env, int32_t src1, + int32_t src2, int32_t src3) +{ + uint32_t *sat = &env->vfp.qc[0]; + return do_sqrdmlah_s(src1, src2, src3, true, true, sat); +} + +void HELPER(gvec_qrdmlsh_s32)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + int32_t *d = vd; + int32_t *n = vn; + int32_t *m = vm; + uintptr_t i; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = do_sqrdmlah_s(n[i], m[i], d[i], true, true, vq); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(neon_sqdmulh_s)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int32_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, vq); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(neon_sqrdmulh_s)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int32_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, vq); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(sve2_sqrdmlah_s)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int32_t *d = vd, *n = vn, *m = vm, *a = va; + uint32_t discard; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = do_sqrdmlah_s(n[i], m[i], a[i], false, true, &discard); + } +} + +void HELPER(sve2_sqrdmlsh_s)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int32_t *d = vd, *n = vn, *m = vm, *a = va; + uint32_t discard; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = do_sqrdmlah_s(n[i], m[i], a[i], true, true, &discard); + } +} + +void HELPER(sve2_sqdmulh_s)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int32_t *d = vd, *n = vn, *m = vm; + uint32_t discard; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, false, &discard); + } +} + +void HELPER(sve2_sqrdmulh_s)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int32_t *d = vd, *n = vn, *m = vm; + uint32_t discard; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = do_sqrdmlah_s(n[i], m[i], 0, false, true, &discard); + } +} + +void HELPER(sve2_sqdmulh_idx_s)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx); + uint32_t discard; + + for (i = 0; i < opr_sz / 4; i += 16 / 4) { + int32_t mm = m[i]; + for (j = 0; j < 16 / 4; ++j) { + d[i + j] = do_sqrdmlah_s(n[i + j], mm, 0, false, false, &discard); + } + } +} + +void HELPER(sve2_sqrdmulh_idx_s)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx); + uint32_t discard; + + for (i = 0; i < opr_sz / 4; i += 16 / 4) { + int32_t mm = m[i]; + for (j = 0; j < 16 / 4; ++j) { + d[i + j] = do_sqrdmlah_s(n[i + j], mm, 0, false, true, &discard); + } + } +} + +/* Signed saturating rounding doubling multiply-accumulate high half, 64-bit */ +static int64_t do_sat128_d(Int128 r) +{ + int64_t ls = int128_getlo(r); + int64_t hs = int128_gethi(r); + + if (unlikely(hs != (ls >> 63))) { + return hs < 0 ? INT64_MIN : INT64_MAX; + } + return ls; +} + +int64_t do_sqrdmlah_d(int64_t n, int64_t m, int64_t a, bool neg, bool round) +{ + uint64_t l, h; + Int128 r, t; + + /* As in do_sqrdmlah_b, but with 128-bit arithmetic. */ + muls64(&l, &h, m, n); + r = int128_make128(l, h); + if (neg) { + r = int128_neg(r); + } + if (a) { + t = int128_exts64(a); + t = int128_lshift(t, 63); + r = int128_add(r, t); + } + if (round) { + t = int128_exts64(1ll << 62); + r = int128_add(r, t); + } + r = int128_rshift(r, 63); + + return do_sat128_d(r); +} + +void HELPER(sve2_sqrdmlah_d)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int64_t *d = vd, *n = vn, *m = vm, *a = va; + + for (i = 0; i < opr_sz / 8; ++i) { + d[i] = do_sqrdmlah_d(n[i], m[i], a[i], false, true); + } +} + +void HELPER(sve2_sqrdmlsh_d)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int64_t *d = vd, *n = vn, *m = vm, *a = va; + + for (i = 0; i < opr_sz / 8; ++i) { + d[i] = do_sqrdmlah_d(n[i], m[i], a[i], true, true); + } +} + +void HELPER(sve2_sqdmulh_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int64_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 8; ++i) { + d[i] = do_sqrdmlah_d(n[i], m[i], 0, false, false); + } +} + +void HELPER(sve2_sqrdmulh_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int64_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 8; ++i) { + d[i] = do_sqrdmlah_d(n[i], m[i], 0, false, true); + } +} + +void HELPER(sve2_sqdmulh_idx_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int64_t *d = vd, *n = vn, *m = (int64_t *)vm + idx; + + for (i = 0; i < opr_sz / 8; i += 16 / 8) { + int64_t mm = m[i]; + for (j = 0; j < 16 / 8; ++j) { + d[i + j] = do_sqrdmlah_d(n[i + j], mm, 0, false, false); + } + } +} + +void HELPER(sve2_sqrdmulh_idx_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int64_t *d = vd, *n = vn, *m = (int64_t *)vm + idx; + + for (i = 0; i < opr_sz / 8; i += 16 / 8) { + int64_t mm = m[i]; + for (j = 0; j < 16 / 8; ++j) { + d[i + j] = do_sqrdmlah_d(n[i + j], mm, 0, false, true); + } + } +} + +/* Integer 8 and 16-bit dot-product. + * + * Note that for the loops herein, host endianness does not matter + * with respect to the ordering of data within the quad-width lanes. + * All elements are treated equally, no matter where they are. + */ + +#define DO_DOT(NAME, TYPED, TYPEN, TYPEM) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + TYPED *d = vd, *a = va; \ + TYPEN *n = vn; \ + TYPEM *m = vm; \ + for (i = 0; i < opr_sz / sizeof(TYPED); ++i) { \ + d[i] = (a[i] + \ + (TYPED)n[i * 4 + 0] * m[i * 4 + 0] + \ + (TYPED)n[i * 4 + 1] * m[i * 4 + 1] + \ + (TYPED)n[i * 4 + 2] * m[i * 4 + 2] + \ + (TYPED)n[i * 4 + 3] * m[i * 4 + 3]); \ + } \ + clear_tail(d, opr_sz, simd_maxsz(desc)); \ +} + +DO_DOT(gvec_sdot_b, int32_t, int8_t, int8_t) +DO_DOT(gvec_udot_b, uint32_t, uint8_t, uint8_t) +DO_DOT(gvec_usdot_b, uint32_t, uint8_t, int8_t) +DO_DOT(gvec_sdot_h, int64_t, int16_t, int16_t) +DO_DOT(gvec_udot_h, uint64_t, uint16_t, uint16_t) + +#define DO_DOT_IDX(NAME, TYPED, TYPEN, TYPEM, HD) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t i = 0, opr_sz = simd_oprsz(desc); \ + intptr_t opr_sz_n = opr_sz / sizeof(TYPED); \ + intptr_t segend = MIN(16 / sizeof(TYPED), opr_sz_n); \ + intptr_t index = simd_data(desc); \ + TYPED *d = vd, *a = va; \ + TYPEN *n = vn; \ + TYPEM *m_indexed = (TYPEM *)vm + HD(index) * 4; \ + do { \ + TYPED m0 = m_indexed[i * 4 + 0]; \ + TYPED m1 = m_indexed[i * 4 + 1]; \ + TYPED m2 = m_indexed[i * 4 + 2]; \ + TYPED m3 = m_indexed[i * 4 + 3]; \ + do { \ + d[i] = (a[i] + \ + n[i * 4 + 0] * m0 + \ + n[i * 4 + 1] * m1 + \ + n[i * 4 + 2] * m2 + \ + n[i * 4 + 3] * m3); \ + } while (++i < segend); \ + segend = i + 4; \ + } while (i < opr_sz_n); \ + clear_tail(d, opr_sz, simd_maxsz(desc)); \ +} + +DO_DOT_IDX(gvec_sdot_idx_b, int32_t, int8_t, int8_t, H4) +DO_DOT_IDX(gvec_udot_idx_b, uint32_t, uint8_t, uint8_t, H4) +DO_DOT_IDX(gvec_sudot_idx_b, int32_t, int8_t, uint8_t, H4) +DO_DOT_IDX(gvec_usdot_idx_b, int32_t, uint8_t, int8_t, H4) +DO_DOT_IDX(gvec_sdot_idx_h, int64_t, int16_t, int16_t, H8) +DO_DOT_IDX(gvec_udot_idx_h, uint64_t, uint16_t, uint16_t, H8) + +void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm, + void *vfpst, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + float16 *d = vd; + float16 *n = vn; + float16 *m = vm; + float_status *fpst = vfpst; + uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); + uint32_t neg_imag = neg_real ^ 1; + uintptr_t i; + + /* Shift boolean to the sign bit so we can xor to negate. */ + neg_real <<= 15; + neg_imag <<= 15; + + for (i = 0; i < opr_sz / 2; i += 2) { + float16 e0 = n[H2(i)]; + float16 e1 = m[H2(i + 1)] ^ neg_imag; + float16 e2 = n[H2(i + 1)]; + float16 e3 = m[H2(i)] ^ neg_real; + + d[H2(i)] = float16_add(e0, e1, fpst); + d[H2(i + 1)] = float16_add(e2, e3, fpst); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm, + void *vfpst, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + float32 *d = vd; + float32 *n = vn; + float32 *m = vm; + float_status *fpst = vfpst; + uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); + uint32_t neg_imag = neg_real ^ 1; + uintptr_t i; + + /* Shift boolean to the sign bit so we can xor to negate. */ + neg_real <<= 31; + neg_imag <<= 31; + + for (i = 0; i < opr_sz / 4; i += 2) { + float32 e0 = n[H4(i)]; + float32 e1 = m[H4(i + 1)] ^ neg_imag; + float32 e2 = n[H4(i + 1)]; + float32 e3 = m[H4(i)] ^ neg_real; + + d[H4(i)] = float32_add(e0, e1, fpst); + d[H4(i + 1)] = float32_add(e2, e3, fpst); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm, + void *vfpst, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + float64 *d = vd; + float64 *n = vn; + float64 *m = vm; + float_status *fpst = vfpst; + uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1); + uint64_t neg_imag = neg_real ^ 1; + uintptr_t i; + + /* Shift boolean to the sign bit so we can xor to negate. */ + neg_real <<= 63; + neg_imag <<= 63; + + for (i = 0; i < opr_sz / 8; i += 2) { + float64 e0 = n[i]; + float64 e1 = m[i + 1] ^ neg_imag; + float64 e2 = n[i + 1]; + float64 e3 = m[i] ^ neg_real; + + d[i] = float64_add(e0, e1, fpst); + d[i + 1] = float64_add(e2, e3, fpst); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm, void *va, + void *vfpst, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + float16 *d = vd, *n = vn, *m = vm, *a = va; + float_status *fpst = vfpst; + intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); + uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint32_t neg_real = flip ^ neg_imag; + uintptr_t i; + + /* Shift boolean to the sign bit so we can xor to negate. */ + neg_real <<= 15; + neg_imag <<= 15; + + for (i = 0; i < opr_sz / 2; i += 2) { + float16 e2 = n[H2(i + flip)]; + float16 e1 = m[H2(i + flip)] ^ neg_real; + float16 e4 = e2; + float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag; + + d[H2(i)] = float16_muladd(e2, e1, a[H2(i)], 0, fpst); + d[H2(i + 1)] = float16_muladd(e4, e3, a[H2(i + 1)], 0, fpst); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm, void *va, + void *vfpst, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + float16 *d = vd, *n = vn, *m = vm, *a = va; + float_status *fpst = vfpst; + intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); + uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2); + uint32_t neg_real = flip ^ neg_imag; + intptr_t elements = opr_sz / sizeof(float16); + intptr_t eltspersegment = 16 / sizeof(float16); + intptr_t i, j; + + /* Shift boolean to the sign bit so we can xor to negate. */ + neg_real <<= 15; + neg_imag <<= 15; + + for (i = 0; i < elements; i += eltspersegment) { + float16 mr = m[H2(i + 2 * index + 0)]; + float16 mi = m[H2(i + 2 * index + 1)]; + float16 e1 = neg_real ^ (flip ? mi : mr); + float16 e3 = neg_imag ^ (flip ? mr : mi); + + for (j = i; j < i + eltspersegment; j += 2) { + float16 e2 = n[H2(j + flip)]; + float16 e4 = e2; + + d[H2(j)] = float16_muladd(e2, e1, a[H2(j)], 0, fpst); + d[H2(j + 1)] = float16_muladd(e4, e3, a[H2(j + 1)], 0, fpst); + } + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm, void *va, + void *vfpst, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + float32 *d = vd, *n = vn, *m = vm, *a = va; + float_status *fpst = vfpst; + intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); + uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint32_t neg_real = flip ^ neg_imag; + uintptr_t i; + + /* Shift boolean to the sign bit so we can xor to negate. */ + neg_real <<= 31; + neg_imag <<= 31; + + for (i = 0; i < opr_sz / 4; i += 2) { + float32 e2 = n[H4(i + flip)]; + float32 e1 = m[H4(i + flip)] ^ neg_real; + float32 e4 = e2; + float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag; + + d[H4(i)] = float32_muladd(e2, e1, a[H4(i)], 0, fpst); + d[H4(i + 1)] = float32_muladd(e4, e3, a[H4(i + 1)], 0, fpst); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm, void *va, + void *vfpst, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + float32 *d = vd, *n = vn, *m = vm, *a = va; + float_status *fpst = vfpst; + intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); + uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2); + uint32_t neg_real = flip ^ neg_imag; + intptr_t elements = opr_sz / sizeof(float32); + intptr_t eltspersegment = 16 / sizeof(float32); + intptr_t i, j; + + /* Shift boolean to the sign bit so we can xor to negate. */ + neg_real <<= 31; + neg_imag <<= 31; + + for (i = 0; i < elements; i += eltspersegment) { + float32 mr = m[H4(i + 2 * index + 0)]; + float32 mi = m[H4(i + 2 * index + 1)]; + float32 e1 = neg_real ^ (flip ? mi : mr); + float32 e3 = neg_imag ^ (flip ? mr : mi); + + for (j = i; j < i + eltspersegment; j += 2) { + float32 e2 = n[H4(j + flip)]; + float32 e4 = e2; + + d[H4(j)] = float32_muladd(e2, e1, a[H4(j)], 0, fpst); + d[H4(j + 1)] = float32_muladd(e4, e3, a[H4(j + 1)], 0, fpst); + } + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm, void *va, + void *vfpst, uint32_t desc) +{ + uintptr_t opr_sz = simd_oprsz(desc); + float64 *d = vd, *n = vn, *m = vm, *a = va; + float_status *fpst = vfpst; + intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); + uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint64_t neg_real = flip ^ neg_imag; + uintptr_t i; + + /* Shift boolean to the sign bit so we can xor to negate. */ + neg_real <<= 63; + neg_imag <<= 63; + + for (i = 0; i < opr_sz / 8; i += 2) { + float64 e2 = n[i + flip]; + float64 e1 = m[i + flip] ^ neg_real; + float64 e4 = e2; + float64 e3 = m[i + 1 - flip] ^ neg_imag; + + d[i] = float64_muladd(e2, e1, a[i], 0, fpst); + d[i + 1] = float64_muladd(e4, e3, a[i + 1], 0, fpst); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +/* + * Floating point comparisons producing an integer result (all 1s or all 0s). + * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do. + * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires. + */ +static uint16_t float16_ceq(float16 op1, float16 op2, float_status *stat) +{ + return -float16_eq_quiet(op1, op2, stat); +} + +static uint32_t float32_ceq(float32 op1, float32 op2, float_status *stat) +{ + return -float32_eq_quiet(op1, op2, stat); +} + +static uint16_t float16_cge(float16 op1, float16 op2, float_status *stat) +{ + return -float16_le(op2, op1, stat); +} + +static uint32_t float32_cge(float32 op1, float32 op2, float_status *stat) +{ + return -float32_le(op2, op1, stat); +} + +static uint16_t float16_cgt(float16 op1, float16 op2, float_status *stat) +{ + return -float16_lt(op2, op1, stat); +} + +static uint32_t float32_cgt(float32 op1, float32 op2, float_status *stat) +{ + return -float32_lt(op2, op1, stat); +} + +static uint16_t float16_acge(float16 op1, float16 op2, float_status *stat) +{ + return -float16_le(float16_abs(op2), float16_abs(op1), stat); +} + +static uint32_t float32_acge(float32 op1, float32 op2, float_status *stat) +{ + return -float32_le(float32_abs(op2), float32_abs(op1), stat); +} + +static uint16_t float16_acgt(float16 op1, float16 op2, float_status *stat) +{ + return -float16_lt(float16_abs(op2), float16_abs(op1), stat); +} + +static uint32_t float32_acgt(float32 op1, float32 op2, float_status *stat) +{ + return -float32_lt(float32_abs(op2), float32_abs(op1), stat); +} + +static int16_t vfp_tosszh(float16 x, void *fpstp) +{ + float_status *fpst = fpstp; + if (float16_is_any_nan(x)) { + float_raise(float_flag_invalid, fpst); + return 0; + } + return float16_to_int16_round_to_zero(x, fpst); +} + +static uint16_t vfp_touszh(float16 x, void *fpstp) +{ + float_status *fpst = fpstp; + if (float16_is_any_nan(x)) { + float_raise(float_flag_invalid, fpst); + return 0; + } + return float16_to_uint16_round_to_zero(x, fpst); +} + +#define DO_2OP(NAME, FUNC, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ +{ \ + intptr_t i, oprsz = simd_oprsz(desc); \ + TYPE *d = vd, *n = vn; \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + d[i] = FUNC(n[i], stat); \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16) +DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32) +DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64) + +DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16) +DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32) +DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64) + +DO_2OP(gvec_vrintx_h, float16_round_to_int, float16) +DO_2OP(gvec_vrintx_s, float32_round_to_int, float32) + +DO_2OP(gvec_sitos, helper_vfp_sitos, int32_t) +DO_2OP(gvec_uitos, helper_vfp_uitos, uint32_t) +DO_2OP(gvec_tosizs, helper_vfp_tosizs, float32) +DO_2OP(gvec_touizs, helper_vfp_touizs, float32) +DO_2OP(gvec_sstoh, int16_to_float16, int16_t) +DO_2OP(gvec_ustoh, uint16_to_float16, uint16_t) +DO_2OP(gvec_tosszh, vfp_tosszh, float16) +DO_2OP(gvec_touszh, vfp_touszh, float16) + +#define WRAP_CMP0_FWD(FN, CMPOP, TYPE) \ + static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \ + { \ + return TYPE##_##CMPOP(op, TYPE##_zero, stat); \ + } + +#define WRAP_CMP0_REV(FN, CMPOP, TYPE) \ + static TYPE TYPE##_##FN##0(TYPE op, float_status *stat) \ + { \ + return TYPE##_##CMPOP(TYPE##_zero, op, stat); \ + } + +#define DO_2OP_CMP0(FN, CMPOP, DIRN) \ + WRAP_CMP0_##DIRN(FN, CMPOP, float16) \ + WRAP_CMP0_##DIRN(FN, CMPOP, float32) \ + DO_2OP(gvec_f##FN##0_h, float16_##FN##0, float16) \ + DO_2OP(gvec_f##FN##0_s, float32_##FN##0, float32) + +DO_2OP_CMP0(cgt, cgt, FWD) +DO_2OP_CMP0(cge, cge, FWD) +DO_2OP_CMP0(ceq, ceq, FWD) +DO_2OP_CMP0(clt, cgt, REV) +DO_2OP_CMP0(cle, cge, REV) + +#undef DO_2OP +#undef DO_2OP_CMP0 + +/* Floating-point trigonometric starting value. + * See the ARM ARM pseudocode function FPTrigSMul. + */ +static float16 float16_ftsmul(float16 op1, uint16_t op2, float_status *stat) +{ + float16 result = float16_mul(op1, op1, stat); + if (!float16_is_any_nan(result)) { + result = float16_set_sign(result, op2 & 1); + } + return result; +} + +static float32 float32_ftsmul(float32 op1, uint32_t op2, float_status *stat) +{ + float32 result = float32_mul(op1, op1, stat); + if (!float32_is_any_nan(result)) { + result = float32_set_sign(result, op2 & 1); + } + return result; +} + +static float64 float64_ftsmul(float64 op1, uint64_t op2, float_status *stat) +{ + float64 result = float64_mul(op1, op1, stat); + if (!float64_is_any_nan(result)) { + result = float64_set_sign(result, op2 & 1); + } + return result; +} + +static float16 float16_abd(float16 op1, float16 op2, float_status *stat) +{ + return float16_abs(float16_sub(op1, op2, stat)); +} + +static float32 float32_abd(float32 op1, float32 op2, float_status *stat) +{ + return float32_abs(float32_sub(op1, op2, stat)); +} + +/* + * Reciprocal step. These are the AArch32 version which uses a + * non-fused multiply-and-subtract. + */ +static float16 float16_recps_nf(float16 op1, float16 op2, float_status *stat) +{ + op1 = float16_squash_input_denormal(op1, stat); + op2 = float16_squash_input_denormal(op2, stat); + + if ((float16_is_infinity(op1) && float16_is_zero(op2)) || + (float16_is_infinity(op2) && float16_is_zero(op1))) { + return float16_two; + } + return float16_sub(float16_two, float16_mul(op1, op2, stat), stat); +} + +static float32 float32_recps_nf(float32 op1, float32 op2, float_status *stat) +{ + op1 = float32_squash_input_denormal(op1, stat); + op2 = float32_squash_input_denormal(op2, stat); + + if ((float32_is_infinity(op1) && float32_is_zero(op2)) || + (float32_is_infinity(op2) && float32_is_zero(op1))) { + return float32_two; + } + return float32_sub(float32_two, float32_mul(op1, op2, stat), stat); +} + +/* Reciprocal square-root step. AArch32 non-fused semantics. */ +static float16 float16_rsqrts_nf(float16 op1, float16 op2, float_status *stat) +{ + op1 = float16_squash_input_denormal(op1, stat); + op2 = float16_squash_input_denormal(op2, stat); + + if ((float16_is_infinity(op1) && float16_is_zero(op2)) || + (float16_is_infinity(op2) && float16_is_zero(op1))) { + return float16_one_point_five; + } + op1 = float16_sub(float16_three, float16_mul(op1, op2, stat), stat); + return float16_div(op1, float16_two, stat); +} + +static float32 float32_rsqrts_nf(float32 op1, float32 op2, float_status *stat) +{ + op1 = float32_squash_input_denormal(op1, stat); + op2 = float32_squash_input_denormal(op2, stat); + + if ((float32_is_infinity(op1) && float32_is_zero(op2)) || + (float32_is_infinity(op2) && float32_is_zero(op1))) { + return float32_one_point_five; + } + op1 = float32_sub(float32_three, float32_mul(op1, op2, stat), stat); + return float32_div(op1, float32_two, stat); +} + +#define DO_3OP(NAME, FUNC, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ +{ \ + intptr_t i, oprsz = simd_oprsz(desc); \ + TYPE *d = vd, *n = vn, *m = vm; \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + d[i] = FUNC(n[i], m[i], stat); \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_3OP(gvec_fadd_h, float16_add, float16) +DO_3OP(gvec_fadd_s, float32_add, float32) +DO_3OP(gvec_fadd_d, float64_add, float64) + +DO_3OP(gvec_fsub_h, float16_sub, float16) +DO_3OP(gvec_fsub_s, float32_sub, float32) +DO_3OP(gvec_fsub_d, float64_sub, float64) + +DO_3OP(gvec_fmul_h, float16_mul, float16) +DO_3OP(gvec_fmul_s, float32_mul, float32) +DO_3OP(gvec_fmul_d, float64_mul, float64) + +DO_3OP(gvec_ftsmul_h, float16_ftsmul, float16) +DO_3OP(gvec_ftsmul_s, float32_ftsmul, float32) +DO_3OP(gvec_ftsmul_d, float64_ftsmul, float64) + +DO_3OP(gvec_fabd_h, float16_abd, float16) +DO_3OP(gvec_fabd_s, float32_abd, float32) + +DO_3OP(gvec_fceq_h, float16_ceq, float16) +DO_3OP(gvec_fceq_s, float32_ceq, float32) + +DO_3OP(gvec_fcge_h, float16_cge, float16) +DO_3OP(gvec_fcge_s, float32_cge, float32) + +DO_3OP(gvec_fcgt_h, float16_cgt, float16) +DO_3OP(gvec_fcgt_s, float32_cgt, float32) + +DO_3OP(gvec_facge_h, float16_acge, float16) +DO_3OP(gvec_facge_s, float32_acge, float32) + +DO_3OP(gvec_facgt_h, float16_acgt, float16) +DO_3OP(gvec_facgt_s, float32_acgt, float32) + +DO_3OP(gvec_fmax_h, float16_max, float16) +DO_3OP(gvec_fmax_s, float32_max, float32) + +DO_3OP(gvec_fmin_h, float16_min, float16) +DO_3OP(gvec_fmin_s, float32_min, float32) + +DO_3OP(gvec_fmaxnum_h, float16_maxnum, float16) +DO_3OP(gvec_fmaxnum_s, float32_maxnum, float32) + +DO_3OP(gvec_fminnum_h, float16_minnum, float16) +DO_3OP(gvec_fminnum_s, float32_minnum, float32) + +DO_3OP(gvec_recps_nf_h, float16_recps_nf, float16) +DO_3OP(gvec_recps_nf_s, float32_recps_nf, float32) + +DO_3OP(gvec_rsqrts_nf_h, float16_rsqrts_nf, float16) +DO_3OP(gvec_rsqrts_nf_s, float32_rsqrts_nf, float32) + +#ifdef TARGET_AARCH64 + +DO_3OP(gvec_recps_h, helper_recpsf_f16, float16) +DO_3OP(gvec_recps_s, helper_recpsf_f32, float32) +DO_3OP(gvec_recps_d, helper_recpsf_f64, float64) + +DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16) +DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32) +DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64) + +#endif +#undef DO_3OP + +/* Non-fused multiply-add (unlike float16_muladd etc, which are fused) */ +static float16 float16_muladd_nf(float16 dest, float16 op1, float16 op2, + float_status *stat) +{ + return float16_add(dest, float16_mul(op1, op2, stat), stat); +} + +static float32 float32_muladd_nf(float32 dest, float32 op1, float32 op2, + float_status *stat) +{ + return float32_add(dest, float32_mul(op1, op2, stat), stat); +} + +static float16 float16_mulsub_nf(float16 dest, float16 op1, float16 op2, + float_status *stat) +{ + return float16_sub(dest, float16_mul(op1, op2, stat), stat); +} + +static float32 float32_mulsub_nf(float32 dest, float32 op1, float32 op2, + float_status *stat) +{ + return float32_sub(dest, float32_mul(op1, op2, stat), stat); +} + +/* Fused versions; these have the semantics Neon VFMA/VFMS want */ +static float16 float16_muladd_f(float16 dest, float16 op1, float16 op2, + float_status *stat) +{ + return float16_muladd(op1, op2, dest, 0, stat); +} + +static float32 float32_muladd_f(float32 dest, float32 op1, float32 op2, + float_status *stat) +{ + return float32_muladd(op1, op2, dest, 0, stat); +} + +static float16 float16_mulsub_f(float16 dest, float16 op1, float16 op2, + float_status *stat) +{ + return float16_muladd(float16_chs(op1), op2, dest, 0, stat); +} + +static float32 float32_mulsub_f(float32 dest, float32 op1, float32 op2, + float_status *stat) +{ + return float32_muladd(float32_chs(op1), op2, dest, 0, stat); +} + +#define DO_MULADD(NAME, FUNC, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ +{ \ + intptr_t i, oprsz = simd_oprsz(desc); \ + TYPE *d = vd, *n = vn, *m = vm; \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + d[i] = FUNC(d[i], n[i], m[i], stat); \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_MULADD(gvec_fmla_h, float16_muladd_nf, float16) +DO_MULADD(gvec_fmla_s, float32_muladd_nf, float32) + +DO_MULADD(gvec_fmls_h, float16_mulsub_nf, float16) +DO_MULADD(gvec_fmls_s, float32_mulsub_nf, float32) + +DO_MULADD(gvec_vfma_h, float16_muladd_f, float16) +DO_MULADD(gvec_vfma_s, float32_muladd_f, float32) + +DO_MULADD(gvec_vfms_h, float16_mulsub_f, float16) +DO_MULADD(gvec_vfms_s, float32_mulsub_f, float32) + +/* For the indexed ops, SVE applies the index per 128-bit vector segment. + * For AdvSIMD, there is of course only one such vector segment. + */ + +#define DO_MUL_IDX(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, j, oprsz = simd_oprsz(desc); \ + intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ + intptr_t idx = simd_data(desc); \ + TYPE *d = vd, *n = vn, *m = vm; \ + for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ + TYPE mm = m[H(i + idx)]; \ + for (j = 0; j < segment; j++) { \ + d[i + j] = n[i + j] * mm; \ + } \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_MUL_IDX(gvec_mul_idx_h, uint16_t, H2) +DO_MUL_IDX(gvec_mul_idx_s, uint32_t, H4) +DO_MUL_IDX(gvec_mul_idx_d, uint64_t, H8) + +#undef DO_MUL_IDX + +#define DO_MLA_IDX(NAME, TYPE, OP, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ +{ \ + intptr_t i, j, oprsz = simd_oprsz(desc); \ + intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ + intptr_t idx = simd_data(desc); \ + TYPE *d = vd, *n = vn, *m = vm, *a = va; \ + for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ + TYPE mm = m[H(i + idx)]; \ + for (j = 0; j < segment; j++) { \ + d[i + j] = a[i + j] OP n[i + j] * mm; \ + } \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_MLA_IDX(gvec_mla_idx_h, uint16_t, +, H2) +DO_MLA_IDX(gvec_mla_idx_s, uint32_t, +, H4) +DO_MLA_IDX(gvec_mla_idx_d, uint64_t, +, H8) + +DO_MLA_IDX(gvec_mls_idx_h, uint16_t, -, H2) +DO_MLA_IDX(gvec_mls_idx_s, uint32_t, -, H4) +DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -, H8) + +#undef DO_MLA_IDX + +#define DO_FMUL_IDX(NAME, ADD, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ +{ \ + intptr_t i, j, oprsz = simd_oprsz(desc); \ + intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ + intptr_t idx = simd_data(desc); \ + TYPE *d = vd, *n = vn, *m = vm; \ + for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ + TYPE mm = m[H(i + idx)]; \ + for (j = 0; j < segment; j++) { \ + d[i + j] = TYPE##_##ADD(d[i + j], \ + TYPE##_mul(n[i + j], mm, stat), stat); \ + } \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +#define float16_nop(N, M, S) (M) +#define float32_nop(N, M, S) (M) +#define float64_nop(N, M, S) (M) + +DO_FMUL_IDX(gvec_fmul_idx_h, nop, float16, H2) +DO_FMUL_IDX(gvec_fmul_idx_s, nop, float32, H4) +DO_FMUL_IDX(gvec_fmul_idx_d, nop, float64, H8) + +/* + * Non-fused multiply-accumulate operations, for Neon. NB that unlike + * the fused ops below they assume accumulate both from and into Vd. + */ +DO_FMUL_IDX(gvec_fmla_nf_idx_h, add, float16, H2) +DO_FMUL_IDX(gvec_fmla_nf_idx_s, add, float32, H4) +DO_FMUL_IDX(gvec_fmls_nf_idx_h, sub, float16, H2) +DO_FMUL_IDX(gvec_fmls_nf_idx_s, sub, float32, H4) + +#undef float16_nop +#undef float32_nop +#undef float64_nop +#undef DO_FMUL_IDX + +#define DO_FMLA_IDX(NAME, TYPE, H) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \ + void *stat, uint32_t desc) \ +{ \ + intptr_t i, j, oprsz = simd_oprsz(desc); \ + intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ + TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \ + intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \ + TYPE *d = vd, *n = vn, *m = vm, *a = va; \ + op1_neg <<= (8 * sizeof(TYPE) - 1); \ + for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ + TYPE mm = m[H(i + idx)]; \ + for (j = 0; j < segment; j++) { \ + d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \ + mm, a[i + j], 0, stat); \ + } \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2) +DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4) +DO_FMLA_IDX(gvec_fmla_idx_d, float64, H8) + +#undef DO_FMLA_IDX + +#define DO_SAT(NAME, WTYPE, TYPEN, TYPEM, OP, MIN, MAX) \ +void HELPER(NAME)(void *vd, void *vq, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, oprsz = simd_oprsz(desc); \ + TYPEN *d = vd, *n = vn; TYPEM *m = vm; \ + bool q = false; \ + for (i = 0; i < oprsz / sizeof(TYPEN); i++) { \ + WTYPE dd = (WTYPE)n[i] OP m[i]; \ + if (dd < MIN) { \ + dd = MIN; \ + q = true; \ + } else if (dd > MAX) { \ + dd = MAX; \ + q = true; \ + } \ + d[i] = dd; \ + } \ + if (q) { \ + uint32_t *qc = vq; \ + qc[0] = 1; \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_SAT(gvec_uqadd_b, int, uint8_t, uint8_t, +, 0, UINT8_MAX) +DO_SAT(gvec_uqadd_h, int, uint16_t, uint16_t, +, 0, UINT16_MAX) +DO_SAT(gvec_uqadd_s, int64_t, uint32_t, uint32_t, +, 0, UINT32_MAX) + +DO_SAT(gvec_sqadd_b, int, int8_t, int8_t, +, INT8_MIN, INT8_MAX) +DO_SAT(gvec_sqadd_h, int, int16_t, int16_t, +, INT16_MIN, INT16_MAX) +DO_SAT(gvec_sqadd_s, int64_t, int32_t, int32_t, +, INT32_MIN, INT32_MAX) + +DO_SAT(gvec_uqsub_b, int, uint8_t, uint8_t, -, 0, UINT8_MAX) +DO_SAT(gvec_uqsub_h, int, uint16_t, uint16_t, -, 0, UINT16_MAX) +DO_SAT(gvec_uqsub_s, int64_t, uint32_t, uint32_t, -, 0, UINT32_MAX) + +DO_SAT(gvec_sqsub_b, int, int8_t, int8_t, -, INT8_MIN, INT8_MAX) +DO_SAT(gvec_sqsub_h, int, int16_t, int16_t, -, INT16_MIN, INT16_MAX) +DO_SAT(gvec_sqsub_s, int64_t, int32_t, int32_t, -, INT32_MIN, INT32_MAX) + +#undef DO_SAT + +void HELPER(gvec_uqadd_d)(void *vd, void *vq, void *vn, + void *vm, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + uint64_t *d = vd, *n = vn, *m = vm; + bool q = false; + + for (i = 0; i < oprsz / 8; i++) { + uint64_t nn = n[i], mm = m[i], dd = nn + mm; + if (dd < nn) { + dd = UINT64_MAX; + q = true; + } + d[i] = dd; + } + if (q) { + uint32_t *qc = vq; + qc[0] = 1; + } + clear_tail(d, oprsz, simd_maxsz(desc)); +} + +void HELPER(gvec_uqsub_d)(void *vd, void *vq, void *vn, + void *vm, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + uint64_t *d = vd, *n = vn, *m = vm; + bool q = false; + + for (i = 0; i < oprsz / 8; i++) { + uint64_t nn = n[i], mm = m[i], dd = nn - mm; + if (nn < mm) { + dd = 0; + q = true; + } + d[i] = dd; + } + if (q) { + uint32_t *qc = vq; + qc[0] = 1; + } + clear_tail(d, oprsz, simd_maxsz(desc)); +} + +void HELPER(gvec_sqadd_d)(void *vd, void *vq, void *vn, + void *vm, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + int64_t *d = vd, *n = vn, *m = vm; + bool q = false; + + for (i = 0; i < oprsz / 8; i++) { + int64_t nn = n[i], mm = m[i], dd = nn + mm; + if (((dd ^ nn) & ~(nn ^ mm)) & INT64_MIN) { + dd = (nn >> 63) ^ ~INT64_MIN; + q = true; + } + d[i] = dd; + } + if (q) { + uint32_t *qc = vq; + qc[0] = 1; + } + clear_tail(d, oprsz, simd_maxsz(desc)); +} + +void HELPER(gvec_sqsub_d)(void *vd, void *vq, void *vn, + void *vm, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + int64_t *d = vd, *n = vn, *m = vm; + bool q = false; + + for (i = 0; i < oprsz / 8; i++) { + int64_t nn = n[i], mm = m[i], dd = nn - mm; + if (((dd ^ nn) & (nn ^ mm)) & INT64_MIN) { + dd = (nn >> 63) ^ ~INT64_MIN; + q = true; + } + d[i] = dd; + } + if (q) { + uint32_t *qc = vq; + qc[0] = 1; + } + clear_tail(d, oprsz, simd_maxsz(desc)); +} + + +#define DO_SRA(NAME, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, oprsz = simd_oprsz(desc); \ + int shift = simd_data(desc); \ + TYPE *d = vd, *n = vn; \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + d[i] += n[i] >> shift; \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_SRA(gvec_ssra_b, int8_t) +DO_SRA(gvec_ssra_h, int16_t) +DO_SRA(gvec_ssra_s, int32_t) +DO_SRA(gvec_ssra_d, int64_t) + +DO_SRA(gvec_usra_b, uint8_t) +DO_SRA(gvec_usra_h, uint16_t) +DO_SRA(gvec_usra_s, uint32_t) +DO_SRA(gvec_usra_d, uint64_t) + +#undef DO_SRA + +#define DO_RSHR(NAME, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, oprsz = simd_oprsz(desc); \ + int shift = simd_data(desc); \ + TYPE *d = vd, *n = vn; \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + TYPE tmp = n[i] >> (shift - 1); \ + d[i] = (tmp >> 1) + (tmp & 1); \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_RSHR(gvec_srshr_b, int8_t) +DO_RSHR(gvec_srshr_h, int16_t) +DO_RSHR(gvec_srshr_s, int32_t) +DO_RSHR(gvec_srshr_d, int64_t) + +DO_RSHR(gvec_urshr_b, uint8_t) +DO_RSHR(gvec_urshr_h, uint16_t) +DO_RSHR(gvec_urshr_s, uint32_t) +DO_RSHR(gvec_urshr_d, uint64_t) + +#undef DO_RSHR + +#define DO_RSRA(NAME, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, oprsz = simd_oprsz(desc); \ + int shift = simd_data(desc); \ + TYPE *d = vd, *n = vn; \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + TYPE tmp = n[i] >> (shift - 1); \ + d[i] += (tmp >> 1) + (tmp & 1); \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_RSRA(gvec_srsra_b, int8_t) +DO_RSRA(gvec_srsra_h, int16_t) +DO_RSRA(gvec_srsra_s, int32_t) +DO_RSRA(gvec_srsra_d, int64_t) + +DO_RSRA(gvec_ursra_b, uint8_t) +DO_RSRA(gvec_ursra_h, uint16_t) +DO_RSRA(gvec_ursra_s, uint32_t) +DO_RSRA(gvec_ursra_d, uint64_t) + +#undef DO_RSRA + +#define DO_SRI(NAME, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, oprsz = simd_oprsz(desc); \ + int shift = simd_data(desc); \ + TYPE *d = vd, *n = vn; \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + d[i] = deposit64(d[i], 0, sizeof(TYPE) * 8 - shift, n[i] >> shift); \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_SRI(gvec_sri_b, uint8_t) +DO_SRI(gvec_sri_h, uint16_t) +DO_SRI(gvec_sri_s, uint32_t) +DO_SRI(gvec_sri_d, uint64_t) + +#undef DO_SRI + +#define DO_SLI(NAME, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, oprsz = simd_oprsz(desc); \ + int shift = simd_data(desc); \ + TYPE *d = vd, *n = vn; \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + d[i] = deposit64(d[i], shift, sizeof(TYPE) * 8 - shift, n[i]); \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ +} + +DO_SLI(gvec_sli_b, uint8_t) +DO_SLI(gvec_sli_h, uint16_t) +DO_SLI(gvec_sli_s, uint32_t) +DO_SLI(gvec_sli_d, uint64_t) + +#undef DO_SLI + +/* + * Convert float16 to float32, raising no exceptions and + * preserving exceptional values, including SNaN. + * This is effectively an unpack+repack operation. + */ +static float32 float16_to_float32_by_bits(uint32_t f16, bool fz16) +{ + const int f16_bias = 15; + const int f32_bias = 127; + uint32_t sign = extract32(f16, 15, 1); + uint32_t exp = extract32(f16, 10, 5); + uint32_t frac = extract32(f16, 0, 10); + + if (exp == 0x1f) { + /* Inf or NaN */ + exp = 0xff; + } else if (exp == 0) { + /* Zero or denormal. */ + if (frac != 0) { + if (fz16) { + frac = 0; + } else { + /* + * Denormal; these are all normal float32. + * Shift the fraction so that the msb is at bit 11, + * then remove bit 11 as the implicit bit of the + * normalized float32. Note that we still go through + * the shift for normal numbers below, to put the + * float32 fraction at the right place. + */ + int shift = clz32(frac) - 21; + frac = (frac << shift) & 0x3ff; + exp = f32_bias - f16_bias - shift + 1; + } + } + } else { + /* Normal number; adjust the bias. */ + exp += f32_bias - f16_bias; + } + sign <<= 31; + exp <<= 23; + frac <<= 23 - 10; + + return sign | exp | frac; +} + +static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2) +{ + /* + * Branchless load of u32[0], u64[0], u32[1], or u64[1]. + * Load the 2nd qword iff is_q & is_2. + * Shift to the 2nd dword iff !is_q & is_2. + * For !is_q & !is_2, the upper bits of the result are garbage. + */ + return ptr[is_q & is_2] >> ((is_2 & ~is_q) << 5); +} + +/* + * Note that FMLAL requires oprsz == 8 or oprsz == 16, + * as there is not yet SVE versions that might use blocking. + */ + +static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst, + uint32_t desc, bool fz16) +{ + intptr_t i, oprsz = simd_oprsz(desc); + int is_s = extract32(desc, SIMD_DATA_SHIFT, 1); + int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + int is_q = oprsz == 16; + uint64_t n_4, m_4; + + /* Pre-load all of the f16 data, avoiding overlap issues. */ + n_4 = load4_f16(vn, is_q, is_2); + m_4 = load4_f16(vm, is_q, is_2); + + /* Negate all inputs for FMLSL at once. */ + if (is_s) { + n_4 ^= 0x8000800080008000ull; + } + + for (i = 0; i < oprsz / 4; i++) { + float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16); + float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16); + d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst); + } + clear_tail(d, oprsz, simd_maxsz(desc)); +} + +void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm, + void *venv, uint32_t desc) +{ + CPUARMState *env = venv; + do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc, + get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); +} + +void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm, + void *venv, uint32_t desc) +{ + CPUARMState *env = venv; + do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc, + get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); +} + +void HELPER(sve2_fmlal_zzzw_s)(void *vd, void *vn, void *vm, void *va, + void *venv, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + uint16_t negn = extract32(desc, SIMD_DATA_SHIFT, 1) << 15; + intptr_t sel = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(float16); + CPUARMState *env = venv; + float_status *status = &env->vfp.fp_status; + bool fz16 = get_flush_inputs_to_zero(&env->vfp.fp_status_f16); + + for (i = 0; i < oprsz; i += sizeof(float32)) { + float16 nn_16 = *(float16 *)(vn + H1_2(i + sel)) ^ negn; + float16 mm_16 = *(float16 *)(vm + H1_2(i + sel)); + float32 nn = float16_to_float32_by_bits(nn_16, fz16); + float32 mm = float16_to_float32_by_bits(mm_16, fz16); + float32 aa = *(float32 *)(va + H1_4(i)); + + *(float32 *)(vd + H1_4(i)) = float32_muladd(nn, mm, aa, 0, status); + } +} + +static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst, + uint32_t desc, bool fz16) +{ + intptr_t i, oprsz = simd_oprsz(desc); + int is_s = extract32(desc, SIMD_DATA_SHIFT, 1); + int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3); + int is_q = oprsz == 16; + uint64_t n_4; + float32 m_1; + + /* Pre-load all of the f16 data, avoiding overlap issues. */ + n_4 = load4_f16(vn, is_q, is_2); + + /* Negate all inputs for FMLSL at once. */ + if (is_s) { + n_4 ^= 0x8000800080008000ull; + } + + m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16); + + for (i = 0; i < oprsz / 4; i++) { + float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16); + d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst); + } + clear_tail(d, oprsz, simd_maxsz(desc)); +} + +void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm, + void *venv, uint32_t desc) +{ + CPUARMState *env = venv; + do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc, + get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); +} + +void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm, + void *venv, uint32_t desc) +{ + CPUARMState *env = venv; + do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc, + get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); +} + +void HELPER(sve2_fmlal_zzxw_s)(void *vd, void *vn, void *vm, void *va, + void *venv, uint32_t desc) +{ + intptr_t i, j, oprsz = simd_oprsz(desc); + uint16_t negn = extract32(desc, SIMD_DATA_SHIFT, 1) << 15; + intptr_t sel = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(float16); + intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 2, 3) * sizeof(float16); + CPUARMState *env = venv; + float_status *status = &env->vfp.fp_status; + bool fz16 = get_flush_inputs_to_zero(&env->vfp.fp_status_f16); + + for (i = 0; i < oprsz; i += 16) { + float16 mm_16 = *(float16 *)(vm + i + idx); + float32 mm = float16_to_float32_by_bits(mm_16, fz16); + + for (j = 0; j < 16; j += sizeof(float32)) { + float16 nn_16 = *(float16 *)(vn + H1_2(i + j + sel)) ^ negn; + float32 nn = float16_to_float32_by_bits(nn_16, fz16); + float32 aa = *(float32 *)(va + H1_4(i + j)); + + *(float32 *)(vd + H1_4(i + j)) = + float32_muladd(nn, mm, aa, 0, status); + } + } +} + +void HELPER(gvec_sshl_b)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int8_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + int8_t mm = m[i]; + int8_t nn = n[i]; + int8_t res = 0; + if (mm >= 0) { + if (mm < 8) { + res = nn << mm; + } + } else { + res = nn >> (mm > -8 ? -mm : 7); + } + d[i] = res; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_sshl_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int16_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 2; ++i) { + int8_t mm = m[i]; /* only 8 bits of shift are significant */ + int16_t nn = n[i]; + int16_t res = 0; + if (mm >= 0) { + if (mm < 16) { + res = nn << mm; + } + } else { + res = nn >> (mm > -16 ? -mm : 15); + } + d[i] = res; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_ushl_b)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint8_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + int8_t mm = m[i]; + uint8_t nn = n[i]; + uint8_t res = 0; + if (mm >= 0) { + if (mm < 8) { + res = nn << mm; + } + } else { + if (mm > -8) { + res = nn >> -mm; + } + } + d[i] = res; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_ushl_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint16_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 2; ++i) { + int8_t mm = m[i]; /* only 8 bits of shift are significant */ + uint16_t nn = n[i]; + uint16_t res = 0; + if (mm >= 0) { + if (mm < 16) { + res = nn << mm; + } + } else { + if (mm > -16) { + res = nn >> -mm; + } + } + d[i] = res; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +/* + * 8x8->8 polynomial multiply. + * + * Polynomial multiplication is like integer multiplication except the + * partial products are XORed, not added. + * + * TODO: expose this as a generic vector operation, as it is a common + * crypto building block. + */ +void HELPER(gvec_pmul_b)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + uint64_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 8; ++i) { + uint64_t nn = n[i]; + uint64_t mm = m[i]; + uint64_t rr = 0; + + for (j = 0; j < 8; ++j) { + uint64_t mask = (nn & 0x0101010101010101ull) * 0xff; + rr ^= mm & mask; + mm = (mm << 1) & 0xfefefefefefefefeull; + nn >>= 1; + } + d[i] = rr; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +/* + * 64x64->128 polynomial multiply. + * Because of the lanes are not accessed in strict columns, + * this probably cannot be turned into a generic helper. + */ +void HELPER(gvec_pmull_q)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + intptr_t hi = simd_data(desc); + uint64_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 8; i += 2) { + uint64_t nn = n[i + hi]; + uint64_t mm = m[i + hi]; + uint64_t rhi = 0; + uint64_t rlo = 0; + + /* Bit 0 can only influence the low 64-bit result. */ + if (nn & 1) { + rlo = mm; + } + + for (j = 1; j < 64; ++j) { + uint64_t mask = -((nn >> j) & 1); + rlo ^= (mm << j) & mask; + rhi ^= (mm >> (64 - j)) & mask; + } + d[i] = rlo; + d[i + 1] = rhi; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +/* + * 8x8->16 polynomial multiply. + * + * The byte inputs are expanded to (or extracted from) half-words. + * Note that neon and sve2 get the inputs from different positions. + * This allows 4 bytes to be processed in parallel with uint64_t. + */ + +static uint64_t expand_byte_to_half(uint64_t x) +{ + return (x & 0x000000ff) + | ((x & 0x0000ff00) << 8) + | ((x & 0x00ff0000) << 16) + | ((x & 0xff000000) << 24); +} + +uint64_t pmull_w(uint64_t op1, uint64_t op2) +{ + uint64_t result = 0; + int i; + for (i = 0; i < 16; ++i) { + uint64_t mask = (op1 & 0x0000000100000001ull) * 0xffffffff; + result ^= op2 & mask; + op1 >>= 1; + op2 <<= 1; + } + return result; +} + +uint64_t pmull_h(uint64_t op1, uint64_t op2) +{ + uint64_t result = 0; + int i; + for (i = 0; i < 8; ++i) { + uint64_t mask = (op1 & 0x0001000100010001ull) * 0xffff; + result ^= op2 & mask; + op1 >>= 1; + op2 <<= 1; + } + return result; +} + +void HELPER(neon_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + int hi = simd_data(desc); + uint64_t *d = vd, *n = vn, *m = vm; + uint64_t nn = n[hi], mm = m[hi]; + + d[0] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm)); + nn >>= 32; + mm >>= 32; + d[1] = pmull_h(expand_byte_to_half(nn), expand_byte_to_half(mm)); + + clear_tail(d, 16, simd_maxsz(desc)); +} + +#ifdef TARGET_AARCH64 +void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + int shift = simd_data(desc) * 8; + intptr_t i, opr_sz = simd_oprsz(desc); + uint64_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 8; ++i) { + uint64_t nn = (n[i] >> shift) & 0x00ff00ff00ff00ffull; + uint64_t mm = (m[i] >> shift) & 0x00ff00ff00ff00ffull; + + d[i] = pmull_h(nn, mm); + } +} + +static uint64_t pmull_d(uint64_t op1, uint64_t op2) +{ + uint64_t result = 0; + int i; + + for (i = 0; i < 32; ++i) { + uint64_t mask = -((op1 >> i) & 1); + result ^= (op2 << i) & mask; + } + return result; +} + +void HELPER(sve2_pmull_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t sel = H4(simd_data(desc)); + intptr_t i, opr_sz = simd_oprsz(desc); + uint32_t *n = vn, *m = vm; + uint64_t *d = vd; + + for (i = 0; i < opr_sz / 8; ++i) { + d[i] = pmull_d(n[2 * i + sel], m[2 * i + sel]); + } +} +#endif + +#define DO_CMP0(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ + TYPE nn = *(TYPE *)(vn + i); \ + *(TYPE *)(vd + i) = -(nn OP 0); \ + } \ + clear_tail(vd, opr_sz, simd_maxsz(desc)); \ +} + +DO_CMP0(gvec_ceq0_b, int8_t, ==) +DO_CMP0(gvec_clt0_b, int8_t, <) +DO_CMP0(gvec_cle0_b, int8_t, <=) +DO_CMP0(gvec_cgt0_b, int8_t, >) +DO_CMP0(gvec_cge0_b, int8_t, >=) + +DO_CMP0(gvec_ceq0_h, int16_t, ==) +DO_CMP0(gvec_clt0_h, int16_t, <) +DO_CMP0(gvec_cle0_h, int16_t, <=) +DO_CMP0(gvec_cgt0_h, int16_t, >) +DO_CMP0(gvec_cge0_h, int16_t, >=) + +#undef DO_CMP0 + +#define DO_ABD(NAME, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + TYPE *d = vd, *n = vn, *m = vm; \ + \ + for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \ + d[i] = n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \ + } \ + clear_tail(d, opr_sz, simd_maxsz(desc)); \ +} + +DO_ABD(gvec_sabd_b, int8_t) +DO_ABD(gvec_sabd_h, int16_t) +DO_ABD(gvec_sabd_s, int32_t) +DO_ABD(gvec_sabd_d, int64_t) + +DO_ABD(gvec_uabd_b, uint8_t) +DO_ABD(gvec_uabd_h, uint16_t) +DO_ABD(gvec_uabd_s, uint32_t) +DO_ABD(gvec_uabd_d, uint64_t) + +#undef DO_ABD + +#define DO_ABA(NAME, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + TYPE *d = vd, *n = vn, *m = vm; \ + \ + for (i = 0; i < opr_sz / sizeof(TYPE); ++i) { \ + d[i] += n[i] < m[i] ? m[i] - n[i] : n[i] - m[i]; \ + } \ + clear_tail(d, opr_sz, simd_maxsz(desc)); \ +} + +DO_ABA(gvec_saba_b, int8_t) +DO_ABA(gvec_saba_h, int16_t) +DO_ABA(gvec_saba_s, int32_t) +DO_ABA(gvec_saba_d, int64_t) + +DO_ABA(gvec_uaba_b, uint8_t) +DO_ABA(gvec_uaba_h, uint16_t) +DO_ABA(gvec_uaba_s, uint32_t) +DO_ABA(gvec_uaba_d, uint64_t) + +#undef DO_ABA + +#define DO_NEON_PAIRWISE(NAME, OP) \ + void HELPER(NAME##s)(void *vd, void *vn, void *vm, \ + void *stat, uint32_t oprsz) \ + { \ + float_status *fpst = stat; \ + float32 *d = vd; \ + float32 *n = vn; \ + float32 *m = vm; \ + float32 r0, r1; \ + \ + /* Read all inputs before writing outputs in case vm == vd */ \ + r0 = float32_##OP(n[H4(0)], n[H4(1)], fpst); \ + r1 = float32_##OP(m[H4(0)], m[H4(1)], fpst); \ + \ + d[H4(0)] = r0; \ + d[H4(1)] = r1; \ + } \ + \ + void HELPER(NAME##h)(void *vd, void *vn, void *vm, \ + void *stat, uint32_t oprsz) \ + { \ + float_status *fpst = stat; \ + float16 *d = vd; \ + float16 *n = vn; \ + float16 *m = vm; \ + float16 r0, r1, r2, r3; \ + \ + /* Read all inputs before writing outputs in case vm == vd */ \ + r0 = float16_##OP(n[H2(0)], n[H2(1)], fpst); \ + r1 = float16_##OP(n[H2(2)], n[H2(3)], fpst); \ + r2 = float16_##OP(m[H2(0)], m[H2(1)], fpst); \ + r3 = float16_##OP(m[H2(2)], m[H2(3)], fpst); \ + \ + d[H2(0)] = r0; \ + d[H2(1)] = r1; \ + d[H2(2)] = r2; \ + d[H2(3)] = r3; \ + } + +DO_NEON_PAIRWISE(neon_padd, add) +DO_NEON_PAIRWISE(neon_pmax, max) +DO_NEON_PAIRWISE(neon_pmin, min) + +#undef DO_NEON_PAIRWISE + +#define DO_VCVT_FIXED(NAME, FUNC, TYPE) \ + void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ + { \ + intptr_t i, oprsz = simd_oprsz(desc); \ + int shift = simd_data(desc); \ + TYPE *d = vd, *n = vn; \ + float_status *fpst = stat; \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + d[i] = FUNC(n[i], shift, fpst); \ + } \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ + } + +DO_VCVT_FIXED(gvec_vcvt_sf, helper_vfp_sltos, uint32_t) +DO_VCVT_FIXED(gvec_vcvt_uf, helper_vfp_ultos, uint32_t) +DO_VCVT_FIXED(gvec_vcvt_fs, helper_vfp_tosls_round_to_zero, uint32_t) +DO_VCVT_FIXED(gvec_vcvt_fu, helper_vfp_touls_round_to_zero, uint32_t) +DO_VCVT_FIXED(gvec_vcvt_sh, helper_vfp_shtoh, uint16_t) +DO_VCVT_FIXED(gvec_vcvt_uh, helper_vfp_uhtoh, uint16_t) +DO_VCVT_FIXED(gvec_vcvt_hs, helper_vfp_toshh_round_to_zero, uint16_t) +DO_VCVT_FIXED(gvec_vcvt_hu, helper_vfp_touhh_round_to_zero, uint16_t) + +#undef DO_VCVT_FIXED + +#define DO_VCVT_RMODE(NAME, FUNC, TYPE) \ + void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ + { \ + float_status *fpst = stat; \ + intptr_t i, oprsz = simd_oprsz(desc); \ + uint32_t rmode = simd_data(desc); \ + uint32_t prev_rmode = get_float_rounding_mode(fpst); \ + TYPE *d = vd, *n = vn; \ + set_float_rounding_mode(rmode, fpst); \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + d[i] = FUNC(n[i], 0, fpst); \ + } \ + set_float_rounding_mode(prev_rmode, fpst); \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ + } + +DO_VCVT_RMODE(gvec_vcvt_rm_ss, helper_vfp_tosls, uint32_t) +DO_VCVT_RMODE(gvec_vcvt_rm_us, helper_vfp_touls, uint32_t) +DO_VCVT_RMODE(gvec_vcvt_rm_sh, helper_vfp_toshh, uint16_t) +DO_VCVT_RMODE(gvec_vcvt_rm_uh, helper_vfp_touhh, uint16_t) + +#undef DO_VCVT_RMODE + +#define DO_VRINT_RMODE(NAME, FUNC, TYPE) \ + void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ + { \ + float_status *fpst = stat; \ + intptr_t i, oprsz = simd_oprsz(desc); \ + uint32_t rmode = simd_data(desc); \ + uint32_t prev_rmode = get_float_rounding_mode(fpst); \ + TYPE *d = vd, *n = vn; \ + set_float_rounding_mode(rmode, fpst); \ + for (i = 0; i < oprsz / sizeof(TYPE); i++) { \ + d[i] = FUNC(n[i], fpst); \ + } \ + set_float_rounding_mode(prev_rmode, fpst); \ + clear_tail(d, oprsz, simd_maxsz(desc)); \ + } + +DO_VRINT_RMODE(gvec_vrint_rm_h, helper_rinth, uint16_t) +DO_VRINT_RMODE(gvec_vrint_rm_s, helper_rints, uint32_t) + +#undef DO_VRINT_RMODE + +#ifdef TARGET_AARCH64 +void HELPER(simd_tblx)(void *vd, void *vm, void *venv, uint32_t desc) +{ + const uint8_t *indices = vm; + CPUARMState *env = venv; + size_t oprsz = simd_oprsz(desc); + uint32_t rn = extract32(desc, SIMD_DATA_SHIFT, 5); + bool is_tbx = extract32(desc, SIMD_DATA_SHIFT + 5, 1); + uint32_t table_len = desc >> (SIMD_DATA_SHIFT + 6); + union { + uint8_t b[16]; + uint64_t d[2]; + } result; + + /* + * We must construct the final result in a temp, lest the output + * overlaps the input table. For TBL, begin with zero; for TBX, + * begin with the original register contents. Note that we always + * copy 16 bytes here to avoid an extra branch; clearing the high + * bits of the register for oprsz == 8 is handled below. + */ + if (is_tbx) { + memcpy(&result, vd, 16); + } else { + memset(&result, 0, 16); + } + + for (size_t i = 0; i < oprsz; ++i) { + uint32_t index = indices[H1(i)]; + + if (index < table_len) { + /* + * Convert index (a byte offset into the virtual table + * which is a series of 128-bit vectors concatenated) + * into the correct register element, bearing in mind + * that the table can wrap around from V31 to V0. + */ + const uint8_t *table = (const uint8_t *) + aa64_vfp_qreg(env, (rn + (index >> 4)) % 32); + result.b[H1(i)] = table[H1(index % 16)]; + } + } + + memcpy(vd, &result, 16); + clear_tail(vd, oprsz, simd_maxsz(desc)); +} +#endif + +/* + * NxN -> N highpart multiply + * + * TODO: expose this as a generic vector operation. + */ + +void HELPER(gvec_smulh_b)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int8_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + d[i] = ((int32_t)n[i] * m[i]) >> 8; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_smulh_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int16_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = ((int32_t)n[i] * m[i]) >> 16; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_smulh_s)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + int32_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = ((int64_t)n[i] * m[i]) >> 32; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_smulh_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint64_t *d = vd, *n = vn, *m = vm; + uint64_t discard; + + for (i = 0; i < opr_sz / 8; ++i) { + muls64(&discard, &d[i], n[i], m[i]); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_umulh_b)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint8_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + d[i] = ((uint32_t)n[i] * m[i]) >> 8; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_umulh_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint16_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 2; ++i) { + d[i] = ((uint32_t)n[i] * m[i]) >> 16; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_umulh_s)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint32_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = ((uint64_t)n[i] * m[i]) >> 32; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_umulh_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint64_t *d = vd, *n = vn, *m = vm; + uint64_t discard; + + for (i = 0; i < opr_sz / 8; ++i) { + mulu64(&discard, &d[i], n[i], m[i]); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_xar_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + int shr = simd_data(desc); + uint64_t *d = vd, *n = vn, *m = vm; + + for (i = 0; i < opr_sz; ++i) { + d[i] = ror64(n[i] ^ m[i], shr); + } + clear_tail(d, opr_sz * 8, simd_maxsz(desc)); +} + +/* + * Integer matrix-multiply accumulate + */ + +static uint32_t do_smmla_b(uint32_t sum, void *vn, void *vm) +{ + int8_t *n = vn, *m = vm; + + for (intptr_t k = 0; k < 8; ++k) { + sum += n[H1(k)] * m[H1(k)]; + } + return sum; +} + +static uint32_t do_ummla_b(uint32_t sum, void *vn, void *vm) +{ + uint8_t *n = vn, *m = vm; + + for (intptr_t k = 0; k < 8; ++k) { + sum += n[H1(k)] * m[H1(k)]; + } + return sum; +} + +static uint32_t do_usmmla_b(uint32_t sum, void *vn, void *vm) +{ + uint8_t *n = vn; + int8_t *m = vm; + + for (intptr_t k = 0; k < 8; ++k) { + sum += n[H1(k)] * m[H1(k)]; + } + return sum; +} + +static void do_mmla_b(void *vd, void *vn, void *vm, void *va, uint32_t desc, + uint32_t (*inner_loop)(uint32_t, void *, void *)) +{ + intptr_t seg, opr_sz = simd_oprsz(desc); + + for (seg = 0; seg < opr_sz; seg += 16) { + uint32_t *d = vd + seg; + uint32_t *a = va + seg; + uint32_t sum0, sum1, sum2, sum3; + + /* + * Process the entire segment at once, writing back the + * results only after we've consumed all of the inputs. + * + * Key to indices by column: + * i j i j + */ + sum0 = a[H4(0 + 0)]; + sum0 = inner_loop(sum0, vn + seg + 0, vm + seg + 0); + sum1 = a[H4(0 + 1)]; + sum1 = inner_loop(sum1, vn + seg + 0, vm + seg + 8); + sum2 = a[H4(2 + 0)]; + sum2 = inner_loop(sum2, vn + seg + 8, vm + seg + 0); + sum3 = a[H4(2 + 1)]; + sum3 = inner_loop(sum3, vn + seg + 8, vm + seg + 8); + + d[H4(0)] = sum0; + d[H4(1)] = sum1; + d[H4(2)] = sum2; + d[H4(3)] = sum3; + } + clear_tail(vd, opr_sz, simd_maxsz(desc)); +} + +#define DO_MMLA_B(NAME, INNER) \ + void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ + { do_mmla_b(vd, vn, vm, va, desc, INNER); } + +DO_MMLA_B(gvec_smmla_b, do_smmla_b) +DO_MMLA_B(gvec_ummla_b, do_ummla_b) +DO_MMLA_B(gvec_usmmla_b, do_usmmla_b) + +/* + * BFloat16 Dot Product + */ + +float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2) +{ + /* FPCR is ignored for BFDOT and BFMMLA. */ + float_status bf_status = { + .tininess_before_rounding = float_tininess_before_rounding, + .float_rounding_mode = float_round_to_odd_inf, + .flush_to_zero = true, + .flush_inputs_to_zero = true, + .default_nan_mode = true, + }; + float32 t1, t2; + + /* + * Extract each BFloat16 from the element pair, and shift + * them such that they become float32. + */ + t1 = float32_mul(e1 << 16, e2 << 16, &bf_status); + t2 = float32_mul(e1 & 0xffff0000u, e2 & 0xffff0000u, &bf_status); + t1 = float32_add(t1, t2, &bf_status); + t1 = float32_add(sum, t1, &bf_status); + + return t1; +} + +void HELPER(gvec_bfdot)(void *vd, void *vn, void *vm, void *va, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + float32 *d = vd, *a = va; + uint32_t *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = bfdotadd(a[i], n[i], m[i]); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_bfdot_idx)(void *vd, void *vn, void *vm, + void *va, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + intptr_t index = simd_data(desc); + intptr_t elements = opr_sz / 4; + intptr_t eltspersegment = MIN(16 / 4, elements); + float32 *d = vd, *a = va; + uint32_t *n = vn, *m = vm; + + for (i = 0; i < elements; i += eltspersegment) { + uint32_t m_idx = m[i + H4(index)]; + + for (j = i; j < i + eltspersegment; j++) { + d[j] = bfdotadd(a[j], n[j], m_idx); + } + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_bfmmla)(void *vd, void *vn, void *vm, void *va, uint32_t desc) +{ + intptr_t s, opr_sz = simd_oprsz(desc); + float32 *d = vd, *a = va; + uint32_t *n = vn, *m = vm; + + for (s = 0; s < opr_sz / 4; s += 4) { + float32 sum00, sum01, sum10, sum11; + + /* + * Process the entire segment at once, writing back the + * results only after we've consumed all of the inputs. + * + * Key to indicies by column: + * i j i k j k + */ + sum00 = a[s + H4(0 + 0)]; + sum00 = bfdotadd(sum00, n[s + H4(0 + 0)], m[s + H4(0 + 0)]); + sum00 = bfdotadd(sum00, n[s + H4(0 + 1)], m[s + H4(0 + 1)]); + + sum01 = a[s + H4(0 + 1)]; + sum01 = bfdotadd(sum01, n[s + H4(0 + 0)], m[s + H4(2 + 0)]); + sum01 = bfdotadd(sum01, n[s + H4(0 + 1)], m[s + H4(2 + 1)]); + + sum10 = a[s + H4(2 + 0)]; + sum10 = bfdotadd(sum10, n[s + H4(2 + 0)], m[s + H4(0 + 0)]); + sum10 = bfdotadd(sum10, n[s + H4(2 + 1)], m[s + H4(0 + 1)]); + + sum11 = a[s + H4(2 + 1)]; + sum11 = bfdotadd(sum11, n[s + H4(2 + 0)], m[s + H4(2 + 0)]); + sum11 = bfdotadd(sum11, n[s + H4(2 + 1)], m[s + H4(2 + 1)]); + + d[s + H4(0 + 0)] = sum00; + d[s + H4(0 + 1)] = sum01; + d[s + H4(2 + 0)] = sum10; + d[s + H4(2 + 1)] = sum11; + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_bfmlal)(void *vd, void *vn, void *vm, void *va, + void *stat, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + intptr_t sel = simd_data(desc); + float32 *d = vd, *a = va; + bfloat16 *n = vn, *m = vm; + + for (i = 0; i < opr_sz / 4; ++i) { + float32 nn = n[H2(i * 2 + sel)] << 16; + float32 mm = m[H2(i * 2 + sel)] << 16; + d[H4(i)] = float32_muladd(nn, mm, a[H4(i)], 0, stat); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_bfmlal_idx)(void *vd, void *vn, void *vm, + void *va, void *stat, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1); + intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 1, 3); + intptr_t elements = opr_sz / 4; + intptr_t eltspersegment = MIN(16 / 4, elements); + float32 *d = vd, *a = va; + bfloat16 *n = vn, *m = vm; + + for (i = 0; i < elements; i += eltspersegment) { + float32 m_idx = m[H2(2 * i + index)] << 16; + + for (j = i; j < i + eltspersegment; j++) { + float32 n_j = n[H2(2 * j + sel)] << 16; + d[H4(j)] = float32_muladd(n_j, m_idx, a[H4(j)], 0, stat); + } + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +#define DO_CLAMP(NAME, TYPE) \ +void HELPER(NAME)(void *d, void *n, void *m, void *a, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \ + TYPE aa = *(TYPE *)(a + i); \ + TYPE nn = *(TYPE *)(n + i); \ + TYPE mm = *(TYPE *)(m + i); \ + TYPE dd = MIN(MAX(aa, nn), mm); \ + *(TYPE *)(d + i) = dd; \ + } \ + clear_tail(d, opr_sz, simd_maxsz(desc)); \ +} + +DO_CLAMP(gvec_sclamp_b, int8_t) +DO_CLAMP(gvec_sclamp_h, int16_t) +DO_CLAMP(gvec_sclamp_s, int32_t) +DO_CLAMP(gvec_sclamp_d, int64_t) + +DO_CLAMP(gvec_uclamp_b, uint8_t) +DO_CLAMP(gvec_uclamp_h, uint16_t) +DO_CLAMP(gvec_uclamp_s, uint32_t) +DO_CLAMP(gvec_uclamp_d, uint64_t) |