aboutsummaryrefslogtreecommitdiff
path: root/target/arm/helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/helper.c')
-rw-r--r--target/arm/helper.c237
1 files changed, 158 insertions, 79 deletions
diff --git a/target/arm/helper.c b/target/arm/helper.c
index ca4d4a57bf..c77ed85215 100644
--- a/target/arm/helper.c
+++ b/target/arm/helper.c
@@ -7529,7 +7529,8 @@ void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
{
- /* The TT instructions can be used by unprivileged code, but in
+ /*
+ * The TT instructions can be used by unprivileged code, but in
* user-only emulation we don't have the MPU.
* Luckily since we know we are NonSecure unprivileged (and that in
* turn means that the A flag wasn't specified), all the bits in the
@@ -7801,7 +7802,8 @@ static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
return true;
pend_fault:
- /* By pending the exception at this point we are making
+ /*
+ * By pending the exception at this point we are making
* the IMPDEF choice "overridden exceptions pended" (see the
* MergeExcInfo() pseudocode). The other choice would be to not
* pend them now and then make a choice about which to throw away
@@ -7876,7 +7878,8 @@ static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
return true;
pend_fault:
- /* By pending the exception at this point we are making
+ /*
+ * By pending the exception at this point we are making
* the IMPDEF choice "overridden exceptions pended" (see the
* MergeExcInfo() pseudocode). The other choice would be to not
* pend them now and then make a choice about which to throw away
@@ -7977,7 +7980,8 @@ void HELPER(v7m_preserve_fp_state)(CPUARMState *env)
*/
}
-/* Write to v7M CONTROL.SPSEL bit for the specified security bank.
+/*
+ * Write to v7M CONTROL.SPSEL bit for the specified security bank.
* This may change the current stack pointer between Main and Process
* stack pointers if it is done for the CONTROL register for the current
* security state.
@@ -8005,7 +8009,8 @@ static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
}
}
-/* Write to v7M CONTROL.SPSEL bit. This may change the current
+/*
+ * Write to v7M CONTROL.SPSEL bit. This may change the current
* stack pointer between Main and Process stack pointers.
*/
static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
@@ -8015,7 +8020,8 @@ static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
{
- /* Write a new value to v7m.exception, thus transitioning into or out
+ /*
+ * Write a new value to v7m.exception, thus transitioning into or out
* of Handler mode; this may result in a change of active stack pointer.
*/
bool new_is_psp, old_is_psp = v7m_using_psp(env);
@@ -8041,7 +8047,8 @@ static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
return;
}
- /* All the banked state is accessed by looking at env->v7m.secure
+ /*
+ * All the banked state is accessed by looking at env->v7m.secure
* except for the stack pointer; rearrange the SP appropriately.
*/
new_ss_msp = env->v7m.other_ss_msp;
@@ -8068,7 +8075,8 @@ static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
{
- /* Handle v7M BXNS:
+ /*
+ * Handle v7M BXNS:
* - if the return value is a magic value, do exception return (like BX)
* - otherwise bit 0 of the return value is the target security state
*/
@@ -8083,7 +8091,8 @@ void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
}
if (dest >= min_magic) {
- /* This is an exception return magic value; put it where
+ /*
+ * This is an exception return magic value; put it where
* do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
* Note that if we ever add gen_ss_advance() singlestep support to
* M profile this should count as an "instruction execution complete"
@@ -8108,7 +8117,8 @@ void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
{
- /* Handle v7M BLXNS:
+ /*
+ * Handle v7M BLXNS:
* - bit 0 of the destination address is the target security state
*/
@@ -8121,7 +8131,8 @@ void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
assert(env->v7m.secure);
if (dest & 1) {
- /* target is Secure, so this is just a normal BLX,
+ /*
+ * Target is Secure, so this is just a normal BLX,
* except that the low bit doesn't indicate Thumb/not.
*/
env->regs[14] = nextinst;
@@ -8152,7 +8163,8 @@ void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
env->regs[13] = sp;
env->regs[14] = 0xfeffffff;
if (arm_v7m_is_handler_mode(env)) {
- /* Write a dummy value to IPSR, to avoid leaking the current secure
+ /*
+ * Write a dummy value to IPSR, to avoid leaking the current secure
* exception number to non-secure code. This is guaranteed not
* to cause write_v7m_exception() to actually change stacks.
*/
@@ -8167,7 +8179,8 @@ void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
bool spsel)
{
- /* Return a pointer to the location where we currently store the
+ /*
+ * Return a pointer to the location where we currently store the
* stack pointer for the requested security state and thread mode.
* This pointer will become invalid if the CPU state is updated
* such that the stack pointers are switched around (eg changing
@@ -8213,7 +8226,8 @@ static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
- /* We don't do a get_phys_addr() here because the rules for vector
+ /*
+ * We don't do a get_phys_addr() here because the rules for vector
* loads are special: they always use the default memory map, and
* the default memory map permits reads from all addresses.
* Since there's no easy way to pass through to pmsav8_mpu_lookup()
@@ -8244,7 +8258,8 @@ static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
return true;
load_fail:
- /* All vector table fetch fails are reported as HardFault, with
+ /*
+ * All vector table fetch fails are reported as HardFault, with
* HFSR.VECTTBL and .FORCED set. (FORCED is set because
* technically the underlying exception is a MemManage or BusFault
* that is escalated to HardFault.) This is a terminal exception,
@@ -8276,7 +8291,8 @@ static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr)
static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
bool ignore_faults)
{
- /* For v8M, push the callee-saves register part of the stack frame.
+ /*
+ * For v8M, push the callee-saves register part of the stack frame.
* Compare the v8M pseudocode PushCalleeStack().
* In the tailchaining case this may not be the current stack.
*/
@@ -8327,7 +8343,8 @@ static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
return true;
}
- /* Write as much of the stack frame as we can. A write failure may
+ /*
+ * Write as much of the stack frame as we can. A write failure may
* cause us to pend a derived exception.
*/
sig = v7m_integrity_sig(env, lr);
@@ -8351,7 +8368,8 @@ static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
bool ignore_stackfaults)
{
- /* Do the "take the exception" parts of exception entry,
+ /*
+ * Do the "take the exception" parts of exception entry,
* but not the pushing of state to the stack. This is
* similar to the pseudocode ExceptionTaken() function.
*/
@@ -8376,13 +8394,15 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
if (arm_feature(env, ARM_FEATURE_V8)) {
if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
(lr & R_V7M_EXCRET_S_MASK)) {
- /* The background code (the owner of the registers in the
+ /*
+ * The background code (the owner of the registers in the
* exception frame) is Secure. This means it may either already
* have or now needs to push callee-saves registers.
*/
if (targets_secure) {
if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
- /* We took an exception from Secure to NonSecure
+ /*
+ * We took an exception from Secure to NonSecure
* (which means the callee-saved registers got stacked)
* and are now tailchaining to a Secure exception.
* Clear DCRS so eventual return from this Secure
@@ -8391,7 +8411,8 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
lr &= ~R_V7M_EXCRET_DCRS_MASK;
}
} else {
- /* We're going to a non-secure exception; push the
+ /*
+ * We're going to a non-secure exception; push the
* callee-saves registers to the stack now, if they're
* not already saved.
*/
@@ -8413,14 +8434,16 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
lr |= R_V7M_EXCRET_SPSEL_MASK;
}
- /* Clear registers if necessary to prevent non-secure exception
+ /*
+ * Clear registers if necessary to prevent non-secure exception
* code being able to see register values from secure code.
* Where register values become architecturally UNKNOWN we leave
* them with their previous values.
*/
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
if (!targets_secure) {
- /* Always clear the caller-saved registers (they have been
+ /*
+ * Always clear the caller-saved registers (they have been
* pushed to the stack earlier in v7m_push_stack()).
* Clear callee-saved registers if the background code is
* Secure (in which case these regs were saved in
@@ -8441,7 +8464,8 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
}
if (push_failed && !ignore_stackfaults) {
- /* Derived exception on callee-saves register stacking:
+ /*
+ * Derived exception on callee-saves register stacking:
* we might now want to take a different exception which
* targets a different security state, so try again from the top.
*/
@@ -8458,7 +8482,8 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
return;
}
- /* Now we've done everything that might cause a derived exception
+ /*
+ * Now we've done everything that might cause a derived exception
* we can go ahead and activate whichever exception we're going to
* take (which might now be the derived exception).
*/
@@ -8661,7 +8686,8 @@ void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr)
static bool v7m_push_stack(ARMCPU *cpu)
{
- /* Do the "set up stack frame" part of exception entry,
+ /*
+ * Do the "set up stack frame" part of exception entry,
* similar to pseudocode PushStack().
* Return true if we generate a derived exception (and so
* should ignore further stack faults trying to process
@@ -8729,7 +8755,8 @@ static bool v7m_push_stack(ARMCPU *cpu)
}
}
- /* Write as much of the stack frame as we can. If we fail a stack
+ /*
+ * Write as much of the stack frame as we can. If we fail a stack
* write this will result in a derived exception being pended
* (which may be taken in preference to the one we started with
* if it has higher priority).
@@ -8846,7 +8873,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
bool ftype;
bool restore_s16_s31;
- /* If we're not in Handler mode then jumps to magic exception-exit
+ /*
+ * If we're not in Handler mode then jumps to magic exception-exit
* addresses don't have magic behaviour. However for the v8M
* security extensions the magic secure-function-return has to
* work in thread mode too, so to avoid doing an extra check in
@@ -8860,7 +8888,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
return;
}
- /* In the spec pseudocode ExceptionReturn() is called directly
+ /*
+ * In the spec pseudocode ExceptionReturn() is called directly
* from BXWritePC() and gets the full target PC value including
* bit zero. In QEMU's implementation we treat it as a normal
* jump-to-register (which is then caught later on), and so split
@@ -8893,7 +8922,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
- /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
+ /*
+ * EXC_RETURN.ES validation check (R_SMFL). We must do this before
* we pick which FAULTMASK to clear.
*/
if (!env->v7m.secure &&
@@ -8907,7 +8937,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
}
if (env->v7m.exception != ARMV7M_EXCP_NMI) {
- /* Auto-clear FAULTMASK on return from other than NMI.
+ /*
+ * Auto-clear FAULTMASK on return from other than NMI.
* If the security extension is implemented then this only
* happens if the raw execution priority is >= 0; the
* value of the ES bit in the exception return value indicates
@@ -8932,7 +8963,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
/* still an irq active now */
break;
case 1:
- /* we returned to base exception level, no nesting.
+ /*
+ * We returned to base exception level, no nesting.
* (In the pseudocode this is written using "NestedActivation != 1"
* where we have 'rettobase == false'.)
*/
@@ -8949,7 +8981,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
if (arm_feature(env, ARM_FEATURE_V8)) {
if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
- /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
+ /*
+ * UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
* we choose to take the UsageFault.
*/
if ((excret & R_V7M_EXCRET_S_MASK) ||
@@ -8968,7 +9001,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
break;
case 13: /* Return to Thread using Process stack */
case 9: /* Return to Thread using Main stack */
- /* We only need to check NONBASETHRDENA for v7M, because in
+ /*
+ * We only need to check NONBASETHRDENA for v7M, because in
* v8M this bit does not exist (it is RES1).
*/
if (!rettobase &&
@@ -9026,7 +9060,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
}
if (ufault) {
- /* Bad exception return: instead of popping the exception
+ /*
+ * Bad exception return: instead of popping the exception
* stack, directly take a usage fault on the current stack.
*/
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
@@ -9056,7 +9091,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
switch_v7m_security_state(env, return_to_secure);
{
- /* The stack pointer we should be reading the exception frame from
+ /*
+ * The stack pointer we should be reading the exception frame from
* depends on bits in the magic exception return type value (and
* for v8M isn't necessarily the stack pointer we will eventually
* end up resuming execution with). Get a pointer to the location
@@ -9129,7 +9165,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
if (!pop_ok) {
- /* v7m_stack_read() pended a fault, so take it (as a tail
+ /*
+ * v7m_stack_read() pended a fault, so take it (as a tail
* chained exception on the same stack frame)
*/
qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
@@ -9137,7 +9174,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
return;
}
- /* Returning from an exception with a PC with bit 0 set is defined
+ /*
+ * Returning from an exception with a PC with bit 0 set is defined
* behaviour on v8M (bit 0 is ignored), but for v7M it was specified
* to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
* the lsbit, and there are several RTOSes out there which incorrectly
@@ -9155,13 +9193,15 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
}
if (arm_feature(env, ARM_FEATURE_V8)) {
- /* For v8M we have to check whether the xPSR exception field
+ /*
+ * For v8M we have to check whether the xPSR exception field
* matches the EXCRET value for return to handler/thread
* before we commit to changing the SP and xPSR.
*/
bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
if (return_to_handler != will_be_handler) {
- /* Take an INVPC UsageFault on the current stack.
+ /*
+ * Take an INVPC UsageFault on the current stack.
* By this point we will have switched to the security state
* for the background state, so this UsageFault will target
* that state.
@@ -9276,7 +9316,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
frameptr += 0x40;
}
}
- /* Undo stack alignment (the SPREALIGN bit indicates that the original
+ /*
+ * Undo stack alignment (the SPREALIGN bit indicates that the original
* pre-exception SP was not 8-aligned and we added a padding word to
* align it, so we undo this by ORing in the bit that increases it
* from the current 8-aligned value to the 8-unaligned value. (Adding 4
@@ -9302,13 +9343,15 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
V7M_CONTROL, SFPA, sfpa);
}
- /* The restored xPSR exception field will be zero if we're
+ /*
+ * The restored xPSR exception field will be zero if we're
* resuming in Thread mode. If that doesn't match what the
* exception return excret specified then this is a UsageFault.
* v7M requires we make this check here; v8M did it earlier.
*/
if (return_to_handler != arm_v7m_is_handler_mode(env)) {
- /* Take an INVPC UsageFault by pushing the stack again;
+ /*
+ * Take an INVPC UsageFault by pushing the stack again;
* we know we're v7M so this is never a Secure UsageFault.
*/
bool ignore_stackfaults;
@@ -9330,7 +9373,8 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
static bool do_v7m_function_return(ARMCPU *cpu)
{
- /* v8M security extensions magic function return.
+ /*
+ * v8M security extensions magic function return.
* We may either:
* (1) throw an exception (longjump)
* (2) return true if we successfully handled the function return
@@ -9360,7 +9404,8 @@ static bool do_v7m_function_return(ARMCPU *cpu)
frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
frameptr = *frame_sp_p;
- /* These loads may throw an exception (for MPU faults). We want to
+ /*
+ * These loads may throw an exception (for MPU faults). We want to
* do them as secure, so work out what MMU index that is.
*/
mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
@@ -9441,7 +9486,8 @@ static void arm_log_exception(int idx)
static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
uint32_t addr, uint16_t *insn)
{
- /* Load a 16-bit portion of a v7M instruction, returning true on success,
+ /*
+ * Load a 16-bit portion of a v7M instruction, returning true on success,
* or false on failure (in which case we will have pended the appropriate
* exception).
* We need to do the instruction fetch's MPU and SAU checks
@@ -9464,7 +9510,8 @@ static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
if (!sattrs.nsc || sattrs.ns) {
- /* This must be the second half of the insn, and it straddles a
+ /*
+ * This must be the second half of the insn, and it straddles a
* region boundary with the second half not being S&NSC.
*/
env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
@@ -9494,7 +9541,8 @@ static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
static bool v7m_handle_execute_nsc(ARMCPU *cpu)
{
- /* Check whether this attempt to execute code in a Secure & NS-Callable
+ /*
+ * Check whether this attempt to execute code in a Secure & NS-Callable
* memory region is for an SG instruction; if so, then emulate the
* effect of the SG instruction and return true. Otherwise pend
* the correct kind of exception and return false.
@@ -9503,7 +9551,8 @@ static bool v7m_handle_execute_nsc(ARMCPU *cpu)
ARMMMUIdx mmu_idx;
uint16_t insn;
- /* We should never get here unless get_phys_addr_pmsav8() caused
+ /*
+ * We should never get here unless get_phys_addr_pmsav8() caused
* an exception for NS executing in S&NSC memory.
*/
assert(!env->v7m.secure);
@@ -9521,7 +9570,8 @@ static bool v7m_handle_execute_nsc(ARMCPU *cpu)
}
if (insn != 0xe97f) {
- /* Not an SG instruction first half (we choose the IMPDEF
+ /*
+ * Not an SG instruction first half (we choose the IMPDEF
* early-SG-check option).
*/
goto gen_invep;
@@ -9532,13 +9582,15 @@ static bool v7m_handle_execute_nsc(ARMCPU *cpu)
}
if (insn != 0xe97f) {
- /* Not an SG instruction second half (yes, both halves of the SG
+ /*
+ * Not an SG instruction second half (yes, both halves of the SG
* insn have the same hex value)
*/
goto gen_invep;
}
- /* OK, we have confirmed that we really have an SG instruction.
+ /*
+ * OK, we have confirmed that we really have an SG instruction.
* We know we're NS in S memory so don't need to repeat those checks.
*/
qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
@@ -9567,8 +9619,10 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
arm_log_exception(cs->exception_index);
- /* For exceptions we just mark as pending on the NVIC, and let that
- handle it. */
+ /*
+ * For exceptions we just mark as pending on the NVIC, and let that
+ * handle it.
+ */
switch (cs->exception_index) {
case EXCP_UDEF:
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
@@ -9614,13 +9668,15 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
break;
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
- /* Note that for M profile we don't have a guest facing FSR, but
+ /*
+ * Note that for M profile we don't have a guest facing FSR, but
* the env->exception.fsr will be populated by the code that
* raises the fault, in the A profile short-descriptor format.
*/
switch (env->exception.fsr & 0xf) {
case M_FAKE_FSR_NSC_EXEC:
- /* Exception generated when we try to execute code at an address
+ /*
+ * Exception generated when we try to execute code at an address
* which is marked as Secure & Non-Secure Callable and the CPU
* is in the Non-Secure state. The only instruction which can
* be executed like this is SG (and that only if both halves of
@@ -9633,7 +9689,8 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
}
break;
case M_FAKE_FSR_SFAULT:
- /* Various flavours of SecureFault for attempts to execute or
+ /*
+ * Various flavours of SecureFault for attempts to execute or
* access data in the wrong security state.
*/
switch (cs->exception_index) {
@@ -9675,7 +9732,8 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
break;
default:
- /* All other FSR values are either MPU faults or "can't happen
+ /*
+ * All other FSR values are either MPU faults or "can't happen
* for M profile" cases.
*/
switch (cs->exception_index) {
@@ -9741,7 +9799,8 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
if (arm_feature(env, ARM_FEATURE_V8)) {
lr = R_V7M_EXCRET_RES1_MASK |
R_V7M_EXCRET_DCRS_MASK;
- /* The S bit indicates whether we should return to Secure
+ /*
+ * The S bit indicates whether we should return to Secure
* or NonSecure (ie our current state).
* The ES bit indicates whether we're taking this exception
* to Secure or NonSecure (ie our target state). We set it
@@ -9776,7 +9835,8 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
}
-/* Function used to synchronize QEMU's AArch64 register set with AArch32
+/*
+ * Function used to synchronize QEMU's AArch64 register set with AArch32
* register set. This is necessary when switching between AArch32 and AArch64
* execution state.
*/
@@ -9790,7 +9850,8 @@ void aarch64_sync_32_to_64(CPUARMState *env)
env->xregs[i] = env->regs[i];
}
- /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
+ /*
+ * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
* Otherwise, they come from the banked user regs.
*/
if (mode == ARM_CPU_MODE_FIQ) {
@@ -9803,7 +9864,8 @@ void aarch64_sync_32_to_64(CPUARMState *env)
}
}
- /* Registers x13-x23 are the various mode SP and FP registers. Registers
+ /*
+ * Registers x13-x23 are the various mode SP and FP registers. Registers
* r13 and r14 are only copied if we are in that mode, otherwise we copy
* from the mode banked register.
*/
@@ -9858,7 +9920,8 @@ void aarch64_sync_32_to_64(CPUARMState *env)
env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
}
- /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
+ /*
+ * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
* mode, then we can copy from r8-r14. Otherwise, we copy from the
* FIQ bank for r8-r14.
*/
@@ -9877,7 +9940,8 @@ void aarch64_sync_32_to_64(CPUARMState *env)
env->pc = env->regs[15];
}
-/* Function used to synchronize QEMU's AArch32 register set with AArch64
+/*
+ * Function used to synchronize QEMU's AArch32 register set with AArch64
* register set. This is necessary when switching between AArch32 and AArch64
* execution state.
*/
@@ -9891,7 +9955,8 @@ void aarch64_sync_64_to_32(CPUARMState *env)
env->regs[i] = env->xregs[i];
}
- /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
+ /*
+ * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
* Otherwise, we copy x8-x12 into the banked user regs.
*/
if (mode == ARM_CPU_MODE_FIQ) {
@@ -9904,7 +9969,8 @@ void aarch64_sync_64_to_32(CPUARMState *env)
}
}
- /* Registers r13 & r14 depend on the current mode.
+ /*
+ * Registers r13 & r14 depend on the current mode.
* If we are in a given mode, we copy the corresponding x registers to r13
* and r14. Otherwise, we copy the x register to the banked r13 and r14
* for the mode.
@@ -9915,7 +9981,8 @@ void aarch64_sync_64_to_32(CPUARMState *env)
} else {
env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
- /* HYP is an exception in that it does not have its own banked r14 but
+ /*
+ * HYP is an exception in that it does not have its own banked r14 but
* shares the USR r14
*/
if (mode == ARM_CPU_MODE_HYP) {
@@ -12758,7 +12825,8 @@ uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
return value;
}
case 0x94: /* CONTROL_NS */
- /* We have to handle this here because unprivileged Secure code
+ /*
+ * We have to handle this here because unprivileged Secure code
* can read the NS CONTROL register.
*/
if (!env->v7m.secure) {
@@ -12811,7 +12879,8 @@ uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
return env->v7m.faultmask[M_REG_NS];
case 0x98: /* SP_NS */
{
- /* This gives the non-secure SP selected based on whether we're
+ /*
+ * This gives the non-secure SP selected based on whether we're
* currently in handler mode or not, using the NS CONTROL.SPSEL.
*/
bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
@@ -12862,7 +12931,8 @@ uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
{
- /* We're passed bits [11..0] of the instruction; extract
+ /*
+ * We're passed bits [11..0] of the instruction; extract
* SYSm and the mask bits.
* Invalid combinations of SYSm and mask are UNPREDICTABLE;
* we choose to treat them as if the mask bits were valid.
@@ -12948,7 +13018,8 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
return;
case 0x98: /* SP_NS */
{
- /* This gives the non-secure SP selected based on whether we're
+ /*
+ * This gives the non-secure SP selected based on whether we're
* currently in handler mode or not, using the NS CONTROL.SPSEL.
*/
bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
@@ -13109,7 +13180,8 @@ uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
bool targetsec = env->v7m.secure;
bool is_subpage;
- /* Work out what the security state and privilege level we're
+ /*
+ * Work out what the security state and privilege level we're
* interested in is...
*/
if (alt) {
@@ -13126,12 +13198,14 @@ uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
/* ...and then figure out which MMU index this is */
mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
- /* We know that the MPU and SAU don't care about the access type
+ /*
+ * We know that the MPU and SAU don't care about the access type
* for our purposes beyond that we don't want to claim to be
* an insn fetch, so we arbitrarily call this a read.
*/
- /* MPU region info only available for privileged or if
+ /*
+ * MPU region info only available for privileged or if
* inspecting the other MPU state.
*/
if (arm_current_el(env) != 0 || alt) {
@@ -13236,7 +13310,8 @@ bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
- /* Implement DC ZVA, which zeroes a fixed-length block of memory.
+ /*
+ * Implement DC ZVA, which zeroes a fixed-length block of memory.
* Note that we do not implement the (architecturally mandated)
* alignment fault for attempts to use this on Device memory
* (which matches the usual QEMU behaviour of not implementing either
@@ -13249,7 +13324,8 @@ void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
#ifndef CONFIG_USER_ONLY
{
- /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
+ /*
+ * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
* the block size so we might have to do more than one TLB lookup.
* We know that in fact for any v8 CPU the page size is at least 4K
* and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
@@ -13276,7 +13352,8 @@ void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
}
}
if (i == maxidx) {
- /* If it's all in the TLB it's fair game for just writing to;
+ /*
+ * If it's all in the TLB it's fair game for just writing to;
* we know we don't need to update dirty status, etc.
*/
for (i = 0; i < maxidx - 1; i++) {
@@ -13285,7 +13362,8 @@ void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
return;
}
- /* OK, try a store and see if we can populate the tlb. This
+ /*
+ * OK, try a store and see if we can populate the tlb. This
* might cause an exception if the memory isn't writable,
* in which case we will longjmp out of here. We must for
* this purpose use the actual register value passed to us
@@ -13301,7 +13379,8 @@ void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
}
}
- /* Slow path (probably attempt to do this to an I/O device or
+ /*
+ * Slow path (probably attempt to do this to an I/O device or
* similar, or clearing of a block of code we have translations
* cached for). Just do a series of byte writes as the architecture
* demands. It's not worth trying to use a cpu_physical_memory_map(),