diff options
Diffstat (limited to 'target/arm/helper-a64.c')
-rw-r--r-- | target/arm/helper-a64.c | 559 |
1 files changed, 559 insertions, 0 deletions
diff --git a/target/arm/helper-a64.c b/target/arm/helper-a64.c new file mode 100644 index 0000000000..98b97df461 --- /dev/null +++ b/target/arm/helper-a64.c @@ -0,0 +1,559 @@ +/* + * AArch64 specific helpers + * + * Copyright (c) 2013 Alexander Graf <agraf@suse.de> + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/gdbstub.h" +#include "exec/helper-proto.h" +#include "qemu/host-utils.h" +#include "qemu/log.h" +#include "sysemu/sysemu.h" +#include "qemu/bitops.h" +#include "internals.h" +#include "qemu/crc32c.h" +#include "exec/exec-all.h" +#include "exec/cpu_ldst.h" +#include "qemu/int128.h" +#include "tcg.h" +#include <zlib.h> /* For crc32 */ + +/* C2.4.7 Multiply and divide */ +/* special cases for 0 and LLONG_MIN are mandated by the standard */ +uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) +{ + if (den == 0) { + return 0; + } + return num / den; +} + +int64_t HELPER(sdiv64)(int64_t num, int64_t den) +{ + if (den == 0) { + return 0; + } + if (num == LLONG_MIN && den == -1) { + return LLONG_MIN; + } + return num / den; +} + +uint64_t HELPER(clz64)(uint64_t x) +{ + return clz64(x); +} + +uint64_t HELPER(cls64)(uint64_t x) +{ + return clrsb64(x); +} + +uint32_t HELPER(cls32)(uint32_t x) +{ + return clrsb32(x); +} + +uint32_t HELPER(clz32)(uint32_t x) +{ + return clz32(x); +} + +uint64_t HELPER(rbit64)(uint64_t x) +{ + return revbit64(x); +} + +/* Convert a softfloat float_relation_ (as returned by + * the float*_compare functions) to the correct ARM + * NZCV flag state. + */ +static inline uint32_t float_rel_to_flags(int res) +{ + uint64_t flags; + switch (res) { + case float_relation_equal: + flags = PSTATE_Z | PSTATE_C; + break; + case float_relation_less: + flags = PSTATE_N; + break; + case float_relation_greater: + flags = PSTATE_C; + break; + case float_relation_unordered: + default: + flags = PSTATE_C | PSTATE_V; + break; + } + return flags; +} + +uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) +{ + return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); +} + +uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) +{ + return float_rel_to_flags(float32_compare(x, y, fp_status)); +} + +uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) +{ + return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); +} + +uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) +{ + return float_rel_to_flags(float64_compare(x, y, fp_status)); +} + +float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) +{ + float_status *fpst = fpstp; + + a = float32_squash_input_denormal(a, fpst); + b = float32_squash_input_denormal(b, fpst); + + if ((float32_is_zero(a) && float32_is_infinity(b)) || + (float32_is_infinity(a) && float32_is_zero(b))) { + /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ + return make_float32((1U << 30) | + ((float32_val(a) ^ float32_val(b)) & (1U << 31))); + } + return float32_mul(a, b, fpst); +} + +float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) +{ + float_status *fpst = fpstp; + + a = float64_squash_input_denormal(a, fpst); + b = float64_squash_input_denormal(b, fpst); + + if ((float64_is_zero(a) && float64_is_infinity(b)) || + (float64_is_infinity(a) && float64_is_zero(b))) { + /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ + return make_float64((1ULL << 62) | + ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); + } + return float64_mul(a, b, fpst); +} + +uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, + uint32_t rn, uint32_t numregs) +{ + /* Helper function for SIMD TBL and TBX. We have to do the table + * lookup part for the 64 bits worth of indices we're passed in. + * result is the initial results vector (either zeroes for TBL + * or some guest values for TBX), rn the register number where + * the table starts, and numregs the number of registers in the table. + * We return the results of the lookups. + */ + int shift; + + for (shift = 0; shift < 64; shift += 8) { + int index = extract64(indices, shift, 8); + if (index < 16 * numregs) { + /* Convert index (a byte offset into the virtual table + * which is a series of 128-bit vectors concatenated) + * into the correct vfp.regs[] element plus a bit offset + * into that element, bearing in mind that the table + * can wrap around from V31 to V0. + */ + int elt = (rn * 2 + (index >> 3)) % 64; + int bitidx = (index & 7) * 8; + uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8); + + result = deposit64(result, shift, 8, val); + } + } + return result; +} + +/* 64bit/double versions of the neon float compare functions */ +uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) +{ + float_status *fpst = fpstp; + return -float64_eq_quiet(a, b, fpst); +} + +uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) +{ + float_status *fpst = fpstp; + return -float64_le(b, a, fpst); +} + +uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) +{ + float_status *fpst = fpstp; + return -float64_lt(b, a, fpst); +} + +/* Reciprocal step and sqrt step. Note that unlike the A32/T32 + * versions, these do a fully fused multiply-add or + * multiply-add-and-halve. + */ +#define float32_two make_float32(0x40000000) +#define float32_three make_float32(0x40400000) +#define float32_one_point_five make_float32(0x3fc00000) + +#define float64_two make_float64(0x4000000000000000ULL) +#define float64_three make_float64(0x4008000000000000ULL) +#define float64_one_point_five make_float64(0x3FF8000000000000ULL) + +float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) +{ + float_status *fpst = fpstp; + + a = float32_squash_input_denormal(a, fpst); + b = float32_squash_input_denormal(b, fpst); + + a = float32_chs(a); + if ((float32_is_infinity(a) && float32_is_zero(b)) || + (float32_is_infinity(b) && float32_is_zero(a))) { + return float32_two; + } + return float32_muladd(a, b, float32_two, 0, fpst); +} + +float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) +{ + float_status *fpst = fpstp; + + a = float64_squash_input_denormal(a, fpst); + b = float64_squash_input_denormal(b, fpst); + + a = float64_chs(a); + if ((float64_is_infinity(a) && float64_is_zero(b)) || + (float64_is_infinity(b) && float64_is_zero(a))) { + return float64_two; + } + return float64_muladd(a, b, float64_two, 0, fpst); +} + +float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) +{ + float_status *fpst = fpstp; + + a = float32_squash_input_denormal(a, fpst); + b = float32_squash_input_denormal(b, fpst); + + a = float32_chs(a); + if ((float32_is_infinity(a) && float32_is_zero(b)) || + (float32_is_infinity(b) && float32_is_zero(a))) { + return float32_one_point_five; + } + return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); +} + +float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) +{ + float_status *fpst = fpstp; + + a = float64_squash_input_denormal(a, fpst); + b = float64_squash_input_denormal(b, fpst); + + a = float64_chs(a); + if ((float64_is_infinity(a) && float64_is_zero(b)) || + (float64_is_infinity(b) && float64_is_zero(a))) { + return float64_one_point_five; + } + return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); +} + +/* Pairwise long add: add pairs of adjacent elements into + * double-width elements in the result (eg _s8 is an 8x8->16 op) + */ +uint64_t HELPER(neon_addlp_s8)(uint64_t a) +{ + uint64_t nsignmask = 0x0080008000800080ULL; + uint64_t wsignmask = 0x8000800080008000ULL; + uint64_t elementmask = 0x00ff00ff00ff00ffULL; + uint64_t tmp1, tmp2; + uint64_t res, signres; + + /* Extract odd elements, sign extend each to a 16 bit field */ + tmp1 = a & elementmask; + tmp1 ^= nsignmask; + tmp1 |= wsignmask; + tmp1 = (tmp1 - nsignmask) ^ wsignmask; + /* Ditto for the even elements */ + tmp2 = (a >> 8) & elementmask; + tmp2 ^= nsignmask; + tmp2 |= wsignmask; + tmp2 = (tmp2 - nsignmask) ^ wsignmask; + + /* calculate the result by summing bits 0..14, 16..22, etc, + * and then adjusting the sign bits 15, 23, etc manually. + * This ensures the addition can't overflow the 16 bit field. + */ + signres = (tmp1 ^ tmp2) & wsignmask; + res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); + res ^= signres; + + return res; +} + +uint64_t HELPER(neon_addlp_u8)(uint64_t a) +{ + uint64_t tmp; + + tmp = a & 0x00ff00ff00ff00ffULL; + tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; + return tmp; +} + +uint64_t HELPER(neon_addlp_s16)(uint64_t a) +{ + int32_t reslo, reshi; + + reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); + reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); + + return (uint32_t)reslo | (((uint64_t)reshi) << 32); +} + +uint64_t HELPER(neon_addlp_u16)(uint64_t a) +{ + uint64_t tmp; + + tmp = a & 0x0000ffff0000ffffULL; + tmp += (a >> 16) & 0x0000ffff0000ffffULL; + return tmp; +} + +/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ +float32 HELPER(frecpx_f32)(float32 a, void *fpstp) +{ + float_status *fpst = fpstp; + uint32_t val32, sbit; + int32_t exp; + + if (float32_is_any_nan(a)) { + float32 nan = a; + if (float32_is_signaling_nan(a, fpst)) { + float_raise(float_flag_invalid, fpst); + nan = float32_maybe_silence_nan(a, fpst); + } + if (fpst->default_nan_mode) { + nan = float32_default_nan(fpst); + } + return nan; + } + + val32 = float32_val(a); + sbit = 0x80000000ULL & val32; + exp = extract32(val32, 23, 8); + + if (exp == 0) { + return make_float32(sbit | (0xfe << 23)); + } else { + return make_float32(sbit | (~exp & 0xff) << 23); + } +} + +float64 HELPER(frecpx_f64)(float64 a, void *fpstp) +{ + float_status *fpst = fpstp; + uint64_t val64, sbit; + int64_t exp; + + if (float64_is_any_nan(a)) { + float64 nan = a; + if (float64_is_signaling_nan(a, fpst)) { + float_raise(float_flag_invalid, fpst); + nan = float64_maybe_silence_nan(a, fpst); + } + if (fpst->default_nan_mode) { + nan = float64_default_nan(fpst); + } + return nan; + } + + val64 = float64_val(a); + sbit = 0x8000000000000000ULL & val64; + exp = extract64(float64_val(a), 52, 11); + + if (exp == 0) { + return make_float64(sbit | (0x7feULL << 52)); + } else { + return make_float64(sbit | (~exp & 0x7ffULL) << 52); + } +} + +float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) +{ + /* Von Neumann rounding is implemented by using round-to-zero + * and then setting the LSB of the result if Inexact was raised. + */ + float32 r; + float_status *fpst = &env->vfp.fp_status; + float_status tstat = *fpst; + int exflags; + + set_float_rounding_mode(float_round_to_zero, &tstat); + set_float_exception_flags(0, &tstat); + r = float64_to_float32(a, &tstat); + r = float32_maybe_silence_nan(r, &tstat); + exflags = get_float_exception_flags(&tstat); + if (exflags & float_flag_inexact) { + r = make_float32(float32_val(r) | 1); + } + exflags |= get_float_exception_flags(fpst); + set_float_exception_flags(exflags, fpst); + return r; +} + +/* 64-bit versions of the CRC helpers. Note that although the operation + * (and the prototypes of crc32c() and crc32() mean that only the bottom + * 32 bits of the accumulator and result are used, we pass and return + * uint64_t for convenience of the generated code. Unlike the 32-bit + * instruction set versions, val may genuinely have 64 bits of data in it. + * The upper bytes of val (above the number specified by 'bytes') must have + * been zeroed out by the caller. + */ +uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) +{ + uint8_t buf[8]; + + stq_le_p(buf, val); + + /* zlib crc32 converts the accumulator and output to one's complement. */ + return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; +} + +uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) +{ + uint8_t buf[8]; + + stq_le_p(buf, val); + + /* Linux crc32c converts the output to one's complement. */ + return crc32c(acc, buf, bytes) ^ 0xffffffff; +} + +/* Returns 0 on success; 1 otherwise. */ +uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr, + uint64_t new_lo, uint64_t new_hi) +{ + uintptr_t ra = GETPC(); + Int128 oldv, cmpv, newv; + bool success; + + cmpv = int128_make128(env->exclusive_val, env->exclusive_high); + newv = int128_make128(new_lo, new_hi); + + if (parallel_cpus) { +#ifndef CONFIG_ATOMIC128 + cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); +#else + int mem_idx = cpu_mmu_index(env, false); + TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); + oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra); + success = int128_eq(oldv, cmpv); +#endif + } else { + uint64_t o0, o1; + +#ifdef CONFIG_USER_ONLY + /* ??? Enforce alignment. */ + uint64_t *haddr = g2h(addr); + o0 = ldq_le_p(haddr + 0); + o1 = ldq_le_p(haddr + 1); + oldv = int128_make128(o0, o1); + + success = int128_eq(oldv, cmpv); + if (success) { + stq_le_p(haddr + 0, int128_getlo(newv)); + stq_le_p(haddr + 1, int128_gethi(newv)); + } +#else + int mem_idx = cpu_mmu_index(env, false); + TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx); + TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx); + + o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra); + o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra); + oldv = int128_make128(o0, o1); + + success = int128_eq(oldv, cmpv); + if (success) { + helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra); + helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra); + } +#endif + } + + return !success; +} + +uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr, + uint64_t new_lo, uint64_t new_hi) +{ + uintptr_t ra = GETPC(); + Int128 oldv, cmpv, newv; + bool success; + + cmpv = int128_make128(env->exclusive_val, env->exclusive_high); + newv = int128_make128(new_lo, new_hi); + + if (parallel_cpus) { +#ifndef CONFIG_ATOMIC128 + cpu_loop_exit_atomic(ENV_GET_CPU(env), ra); +#else + int mem_idx = cpu_mmu_index(env, false); + TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); + oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra); + success = int128_eq(oldv, cmpv); +#endif + } else { + uint64_t o0, o1; + +#ifdef CONFIG_USER_ONLY + /* ??? Enforce alignment. */ + uint64_t *haddr = g2h(addr); + o1 = ldq_be_p(haddr + 0); + o0 = ldq_be_p(haddr + 1); + oldv = int128_make128(o0, o1); + + success = int128_eq(oldv, cmpv); + if (success) { + stq_be_p(haddr + 0, int128_gethi(newv)); + stq_be_p(haddr + 1, int128_getlo(newv)); + } +#else + int mem_idx = cpu_mmu_index(env, false); + TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx); + TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx); + + o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra); + o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra); + oldv = int128_make128(o0, o1); + + success = int128_eq(oldv, cmpv); + if (success) { + helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra); + helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra); + } +#endif + } + + return !success; +} |