diff options
Diffstat (limited to 'target/arm/cpu.h')
-rw-r--r-- | target/arm/cpu.h | 2466 |
1 files changed, 2466 insertions, 0 deletions
diff --git a/target/arm/cpu.h b/target/arm/cpu.h new file mode 100644 index 0000000000..ca5c849ed6 --- /dev/null +++ b/target/arm/cpu.h @@ -0,0 +1,2466 @@ +/* + * ARM virtual CPU header + * + * Copyright (c) 2003 Fabrice Bellard + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#ifndef ARM_CPU_H +#define ARM_CPU_H + +#include "kvm-consts.h" + +#if defined(TARGET_AARCH64) + /* AArch64 definitions */ +# define TARGET_LONG_BITS 64 +#else +# define TARGET_LONG_BITS 32 +#endif + +#define CPUArchState struct CPUARMState + +#include "qemu-common.h" +#include "cpu-qom.h" +#include "exec/cpu-defs.h" + +#include "fpu/softfloat.h" + +#define EXCP_UDEF 1 /* undefined instruction */ +#define EXCP_SWI 2 /* software interrupt */ +#define EXCP_PREFETCH_ABORT 3 +#define EXCP_DATA_ABORT 4 +#define EXCP_IRQ 5 +#define EXCP_FIQ 6 +#define EXCP_BKPT 7 +#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ +#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ +#define EXCP_HVC 11 /* HyperVisor Call */ +#define EXCP_HYP_TRAP 12 +#define EXCP_SMC 13 /* Secure Monitor Call */ +#define EXCP_VIRQ 14 +#define EXCP_VFIQ 15 +#define EXCP_SEMIHOST 16 /* semihosting call */ + +#define ARMV7M_EXCP_RESET 1 +#define ARMV7M_EXCP_NMI 2 +#define ARMV7M_EXCP_HARD 3 +#define ARMV7M_EXCP_MEM 4 +#define ARMV7M_EXCP_BUS 5 +#define ARMV7M_EXCP_USAGE 6 +#define ARMV7M_EXCP_SVC 11 +#define ARMV7M_EXCP_DEBUG 12 +#define ARMV7M_EXCP_PENDSV 14 +#define ARMV7M_EXCP_SYSTICK 15 + +/* ARM-specific interrupt pending bits. */ +#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 +#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 +#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 + +/* The usual mapping for an AArch64 system register to its AArch32 + * counterpart is for the 32 bit world to have access to the lower + * half only (with writes leaving the upper half untouched). It's + * therefore useful to be able to pass TCG the offset of the least + * significant half of a uint64_t struct member. + */ +#ifdef HOST_WORDS_BIGENDIAN +#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) +#define offsetofhigh32(S, M) offsetof(S, M) +#else +#define offsetoflow32(S, M) offsetof(S, M) +#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) +#endif + +/* Meanings of the ARMCPU object's four inbound GPIO lines */ +#define ARM_CPU_IRQ 0 +#define ARM_CPU_FIQ 1 +#define ARM_CPU_VIRQ 2 +#define ARM_CPU_VFIQ 3 + +#define NB_MMU_MODES 7 +/* ARM-specific extra insn start words: + * 1: Conditional execution bits + * 2: Partial exception syndrome for data aborts + */ +#define TARGET_INSN_START_EXTRA_WORDS 2 + +/* The 2nd extra word holding syndrome info for data aborts does not use + * the upper 6 bits nor the lower 14 bits. We mask and shift it down to + * help the sleb128 encoder do a better job. + * When restoring the CPU state, we shift it back up. + */ +#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) +#define ARM_INSN_START_WORD2_SHIFT 14 + +/* We currently assume float and double are IEEE single and double + precision respectively. + Doing runtime conversions is tricky because VFP registers may contain + integer values (eg. as the result of a FTOSI instruction). + s<2n> maps to the least significant half of d<n> + s<2n+1> maps to the most significant half of d<n> + */ + +/* CPU state for each instance of a generic timer (in cp15 c14) */ +typedef struct ARMGenericTimer { + uint64_t cval; /* Timer CompareValue register */ + uint64_t ctl; /* Timer Control register */ +} ARMGenericTimer; + +#define GTIMER_PHYS 0 +#define GTIMER_VIRT 1 +#define GTIMER_HYP 2 +#define GTIMER_SEC 3 +#define NUM_GTIMERS 4 + +typedef struct { + uint64_t raw_tcr; + uint32_t mask; + uint32_t base_mask; +} TCR; + +typedef struct CPUARMState { + /* Regs for current mode. */ + uint32_t regs[16]; + + /* 32/64 switch only happens when taking and returning from + * exceptions so the overlap semantics are taken care of then + * instead of having a complicated union. + */ + /* Regs for A64 mode. */ + uint64_t xregs[32]; + uint64_t pc; + /* PSTATE isn't an architectural register for ARMv8. However, it is + * convenient for us to assemble the underlying state into a 32 bit format + * identical to the architectural format used for the SPSR. (This is also + * what the Linux kernel's 'pstate' field in signal handlers and KVM's + * 'pstate' register are.) Of the PSTATE bits: + * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same + * semantics as for AArch32, as described in the comments on each field) + * nRW (also known as M[4]) is kept, inverted, in env->aarch64 + * DAIF (exception masks) are kept in env->daif + * all other bits are stored in their correct places in env->pstate + */ + uint32_t pstate; + uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */ + + /* Frequently accessed CPSR bits are stored separately for efficiency. + This contains all the other bits. Use cpsr_{read,write} to access + the whole CPSR. */ + uint32_t uncached_cpsr; + uint32_t spsr; + + /* Banked registers. */ + uint64_t banked_spsr[8]; + uint32_t banked_r13[8]; + uint32_t banked_r14[8]; + + /* These hold r8-r12. */ + uint32_t usr_regs[5]; + uint32_t fiq_regs[5]; + + /* cpsr flag cache for faster execution */ + uint32_t CF; /* 0 or 1 */ + uint32_t VF; /* V is the bit 31. All other bits are undefined */ + uint32_t NF; /* N is bit 31. All other bits are undefined. */ + uint32_t ZF; /* Z set if zero. */ + uint32_t QF; /* 0 or 1 */ + uint32_t GE; /* cpsr[19:16] */ + uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */ + uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ + uint64_t daif; /* exception masks, in the bits they are in PSTATE */ + + uint64_t elr_el[4]; /* AArch64 exception link regs */ + uint64_t sp_el[4]; /* AArch64 banked stack pointers */ + + /* System control coprocessor (cp15) */ + struct { + uint32_t c0_cpuid; + union { /* Cache size selection */ + struct { + uint64_t _unused_csselr0; + uint64_t csselr_ns; + uint64_t _unused_csselr1; + uint64_t csselr_s; + }; + uint64_t csselr_el[4]; + }; + union { /* System control register. */ + struct { + uint64_t _unused_sctlr; + uint64_t sctlr_ns; + uint64_t hsctlr; + uint64_t sctlr_s; + }; + uint64_t sctlr_el[4]; + }; + uint64_t cpacr_el1; /* Architectural feature access control register */ + uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ + uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ + uint64_t sder; /* Secure debug enable register. */ + uint32_t nsacr; /* Non-secure access control register. */ + union { /* MMU translation table base 0. */ + struct { + uint64_t _unused_ttbr0_0; + uint64_t ttbr0_ns; + uint64_t _unused_ttbr0_1; + uint64_t ttbr0_s; + }; + uint64_t ttbr0_el[4]; + }; + union { /* MMU translation table base 1. */ + struct { + uint64_t _unused_ttbr1_0; + uint64_t ttbr1_ns; + uint64_t _unused_ttbr1_1; + uint64_t ttbr1_s; + }; + uint64_t ttbr1_el[4]; + }; + uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ + /* MMU translation table base control. */ + TCR tcr_el[4]; + TCR vtcr_el2; /* Virtualization Translation Control. */ + uint32_t c2_data; /* MPU data cacheable bits. */ + uint32_t c2_insn; /* MPU instruction cacheable bits. */ + union { /* MMU domain access control register + * MPU write buffer control. + */ + struct { + uint64_t dacr_ns; + uint64_t dacr_s; + }; + struct { + uint64_t dacr32_el2; + }; + }; + uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ + uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ + uint64_t hcr_el2; /* Hypervisor configuration register */ + uint64_t scr_el3; /* Secure configuration register. */ + union { /* Fault status registers. */ + struct { + uint64_t ifsr_ns; + uint64_t ifsr_s; + }; + struct { + uint64_t ifsr32_el2; + }; + }; + union { + struct { + uint64_t _unused_dfsr; + uint64_t dfsr_ns; + uint64_t hsr; + uint64_t dfsr_s; + }; + uint64_t esr_el[4]; + }; + uint32_t c6_region[8]; /* MPU base/size registers. */ + union { /* Fault address registers. */ + struct { + uint64_t _unused_far0; +#ifdef HOST_WORDS_BIGENDIAN + uint32_t ifar_ns; + uint32_t dfar_ns; + uint32_t ifar_s; + uint32_t dfar_s; +#else + uint32_t dfar_ns; + uint32_t ifar_ns; + uint32_t dfar_s; + uint32_t ifar_s; +#endif + uint64_t _unused_far3; + }; + uint64_t far_el[4]; + }; + uint64_t hpfar_el2; + uint64_t hstr_el2; + union { /* Translation result. */ + struct { + uint64_t _unused_par_0; + uint64_t par_ns; + uint64_t _unused_par_1; + uint64_t par_s; + }; + uint64_t par_el[4]; + }; + + uint32_t c6_rgnr; + + uint32_t c9_insn; /* Cache lockdown registers. */ + uint32_t c9_data; + uint64_t c9_pmcr; /* performance monitor control register */ + uint64_t c9_pmcnten; /* perf monitor counter enables */ + uint32_t c9_pmovsr; /* perf monitor overflow status */ + uint32_t c9_pmxevtyper; /* perf monitor event type */ + uint32_t c9_pmuserenr; /* perf monitor user enable */ + uint32_t c9_pminten; /* perf monitor interrupt enables */ + union { /* Memory attribute redirection */ + struct { +#ifdef HOST_WORDS_BIGENDIAN + uint64_t _unused_mair_0; + uint32_t mair1_ns; + uint32_t mair0_ns; + uint64_t _unused_mair_1; + uint32_t mair1_s; + uint32_t mair0_s; +#else + uint64_t _unused_mair_0; + uint32_t mair0_ns; + uint32_t mair1_ns; + uint64_t _unused_mair_1; + uint32_t mair0_s; + uint32_t mair1_s; +#endif + }; + uint64_t mair_el[4]; + }; + union { /* vector base address register */ + struct { + uint64_t _unused_vbar; + uint64_t vbar_ns; + uint64_t hvbar; + uint64_t vbar_s; + }; + uint64_t vbar_el[4]; + }; + uint32_t mvbar; /* (monitor) vector base address register */ + struct { /* FCSE PID. */ + uint32_t fcseidr_ns; + uint32_t fcseidr_s; + }; + union { /* Context ID. */ + struct { + uint64_t _unused_contextidr_0; + uint64_t contextidr_ns; + uint64_t _unused_contextidr_1; + uint64_t contextidr_s; + }; + uint64_t contextidr_el[4]; + }; + union { /* User RW Thread register. */ + struct { + uint64_t tpidrurw_ns; + uint64_t tpidrprw_ns; + uint64_t htpidr; + uint64_t _tpidr_el3; + }; + uint64_t tpidr_el[4]; + }; + /* The secure banks of these registers don't map anywhere */ + uint64_t tpidrurw_s; + uint64_t tpidrprw_s; + uint64_t tpidruro_s; + + union { /* User RO Thread register. */ + uint64_t tpidruro_ns; + uint64_t tpidrro_el[1]; + }; + uint64_t c14_cntfrq; /* Counter Frequency register */ + uint64_t c14_cntkctl; /* Timer Control register */ + uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */ + uint64_t cntvoff_el2; /* Counter Virtual Offset register */ + ARMGenericTimer c14_timer[NUM_GTIMERS]; + uint32_t c15_cpar; /* XScale Coprocessor Access Register */ + uint32_t c15_ticonfig; /* TI925T configuration byte. */ + uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ + uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ + uint32_t c15_threadid; /* TI debugger thread-ID. */ + uint32_t c15_config_base_address; /* SCU base address. */ + uint32_t c15_diagnostic; /* diagnostic register */ + uint32_t c15_power_diagnostic; + uint32_t c15_power_control; /* power control */ + uint64_t dbgbvr[16]; /* breakpoint value registers */ + uint64_t dbgbcr[16]; /* breakpoint control registers */ + uint64_t dbgwvr[16]; /* watchpoint value registers */ + uint64_t dbgwcr[16]; /* watchpoint control registers */ + uint64_t mdscr_el1; + uint64_t oslsr_el1; /* OS Lock Status */ + uint64_t mdcr_el2; + uint64_t mdcr_el3; + /* If the counter is enabled, this stores the last time the counter + * was reset. Otherwise it stores the counter value + */ + uint64_t c15_ccnt; + uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ + uint64_t vpidr_el2; /* Virtualization Processor ID Register */ + uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ + } cp15; + + struct { + uint32_t other_sp; + uint32_t vecbase; + uint32_t basepri; + uint32_t control; + int current_sp; + int exception; + } v7m; + + /* Information associated with an exception about to be taken: + * code which raises an exception must set cs->exception_index and + * the relevant parts of this structure; the cpu_do_interrupt function + * will then set the guest-visible registers as part of the exception + * entry process. + */ + struct { + uint32_t syndrome; /* AArch64 format syndrome register */ + uint32_t fsr; /* AArch32 format fault status register info */ + uint64_t vaddress; /* virtual addr associated with exception, if any */ + uint32_t target_el; /* EL the exception should be targeted for */ + /* If we implement EL2 we will also need to store information + * about the intermediate physical address for stage 2 faults. + */ + } exception; + + /* Thumb-2 EE state. */ + uint32_t teecr; + uint32_t teehbr; + + /* VFP coprocessor state. */ + struct { + /* VFP/Neon register state. Note that the mapping between S, D and Q + * views of the register bank differs between AArch64 and AArch32: + * In AArch32: + * Qn = regs[2n+1]:regs[2n] + * Dn = regs[n] + * Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n + * (and regs[32] to regs[63] are inaccessible) + * In AArch64: + * Qn = regs[2n+1]:regs[2n] + * Dn = regs[2n] + * Sn = regs[2n] bits 31..0 + * This corresponds to the architecturally defined mapping between + * the two execution states, and means we do not need to explicitly + * map these registers when changing states. + */ + float64 regs[64]; + + uint32_t xregs[16]; + /* We store these fpcsr fields separately for convenience. */ + int vec_len; + int vec_stride; + + /* scratch space when Tn are not sufficient. */ + uint32_t scratch[8]; + + /* fp_status is the "normal" fp status. standard_fp_status retains + * values corresponding to the ARM "Standard FPSCR Value", ie + * default-NaN, flush-to-zero, round-to-nearest and is used by + * any operations (generally Neon) which the architecture defines + * as controlled by the standard FPSCR value rather than the FPSCR. + * + * To avoid having to transfer exception bits around, we simply + * say that the FPSCR cumulative exception flags are the logical + * OR of the flags in the two fp statuses. This relies on the + * only thing which needs to read the exception flags being + * an explicit FPSCR read. + */ + float_status fp_status; + float_status standard_fp_status; + } vfp; + uint64_t exclusive_addr; + uint64_t exclusive_val; + uint64_t exclusive_high; + + /* iwMMXt coprocessor state. */ + struct { + uint64_t regs[16]; + uint64_t val; + + uint32_t cregs[16]; + } iwmmxt; + +#if defined(CONFIG_USER_ONLY) + /* For usermode syscall translation. */ + int eabi; +#endif + + struct CPUBreakpoint *cpu_breakpoint[16]; + struct CPUWatchpoint *cpu_watchpoint[16]; + + CPU_COMMON + + /* These fields after the common ones so they are preserved on reset. */ + + /* Internal CPU feature flags. */ + uint64_t features; + + /* PMSAv7 MPU */ + struct { + uint32_t *drbar; + uint32_t *drsr; + uint32_t *dracr; + } pmsav7; + + void *nvic; + const struct arm_boot_info *boot_info; +} CPUARMState; + +/** + * ARMELChangeHook: + * type of a function which can be registered via arm_register_el_change_hook() + * to get callbacks when the CPU changes its exception level or mode. + */ +typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque); + +/** + * ARMCPU: + * @env: #CPUARMState + * + * An ARM CPU core. + */ +struct ARMCPU { + /*< private >*/ + CPUState parent_obj; + /*< public >*/ + + CPUARMState env; + + /* Coprocessor information */ + GHashTable *cp_regs; + /* For marshalling (mostly coprocessor) register state between the + * kernel and QEMU (for KVM) and between two QEMUs (for migration), + * we use these arrays. + */ + /* List of register indexes managed via these arrays; (full KVM style + * 64 bit indexes, not CPRegInfo 32 bit indexes) + */ + uint64_t *cpreg_indexes; + /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ + uint64_t *cpreg_values; + /* Length of the indexes, values, reset_values arrays */ + int32_t cpreg_array_len; + /* These are used only for migration: incoming data arrives in + * these fields and is sanity checked in post_load before copying + * to the working data structures above. + */ + uint64_t *cpreg_vmstate_indexes; + uint64_t *cpreg_vmstate_values; + int32_t cpreg_vmstate_array_len; + + /* Timers used by the generic (architected) timer */ + QEMUTimer *gt_timer[NUM_GTIMERS]; + /* GPIO outputs for generic timer */ + qemu_irq gt_timer_outputs[NUM_GTIMERS]; + + /* MemoryRegion to use for secure physical accesses */ + MemoryRegion *secure_memory; + + /* 'compatible' string for this CPU for Linux device trees */ + const char *dtb_compatible; + + /* PSCI version for this CPU + * Bits[31:16] = Major Version + * Bits[15:0] = Minor Version + */ + uint32_t psci_version; + + /* Should CPU start in PSCI powered-off state? */ + bool start_powered_off; + /* CPU currently in PSCI powered-off state */ + bool powered_off; + /* CPU has security extension */ + bool has_el3; + /* CPU has PMU (Performance Monitor Unit) */ + bool has_pmu; + + /* CPU has memory protection unit */ + bool has_mpu; + /* PMSAv7 MPU number of supported regions */ + uint32_t pmsav7_dregion; + + /* PSCI conduit used to invoke PSCI methods + * 0 - disabled, 1 - smc, 2 - hvc + */ + uint32_t psci_conduit; + + /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or + * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. + */ + uint32_t kvm_target; + + /* KVM init features for this CPU */ + uint32_t kvm_init_features[7]; + + /* Uniprocessor system with MP extensions */ + bool mp_is_up; + + /* The instance init functions for implementation-specific subclasses + * set these fields to specify the implementation-dependent values of + * various constant registers and reset values of non-constant + * registers. + * Some of these might become QOM properties eventually. + * Field names match the official register names as defined in the + * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix + * is used for reset values of non-constant registers; no reset_ + * prefix means a constant register. + */ + uint32_t midr; + uint32_t revidr; + uint32_t reset_fpsid; + uint32_t mvfr0; + uint32_t mvfr1; + uint32_t mvfr2; + uint32_t ctr; + uint32_t reset_sctlr; + uint32_t id_pfr0; + uint32_t id_pfr1; + uint32_t id_dfr0; + uint32_t pmceid0; + uint32_t pmceid1; + uint32_t id_afr0; + uint32_t id_mmfr0; + uint32_t id_mmfr1; + uint32_t id_mmfr2; + uint32_t id_mmfr3; + uint32_t id_mmfr4; + uint32_t id_isar0; + uint32_t id_isar1; + uint32_t id_isar2; + uint32_t id_isar3; + uint32_t id_isar4; + uint32_t id_isar5; + uint64_t id_aa64pfr0; + uint64_t id_aa64pfr1; + uint64_t id_aa64dfr0; + uint64_t id_aa64dfr1; + uint64_t id_aa64afr0; + uint64_t id_aa64afr1; + uint64_t id_aa64isar0; + uint64_t id_aa64isar1; + uint64_t id_aa64mmfr0; + uint64_t id_aa64mmfr1; + uint32_t dbgdidr; + uint32_t clidr; + uint64_t mp_affinity; /* MP ID without feature bits */ + /* The elements of this array are the CCSIDR values for each cache, + * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. + */ + uint32_t ccsidr[16]; + uint64_t reset_cbar; + uint32_t reset_auxcr; + bool reset_hivecs; + /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ + uint32_t dcz_blocksize; + uint64_t rvbar; + + ARMELChangeHook *el_change_hook; + void *el_change_hook_opaque; +}; + +static inline ARMCPU *arm_env_get_cpu(CPUARMState *env) +{ + return container_of(env, ARMCPU, env); +} + +#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e)) + +#define ENV_OFFSET offsetof(ARMCPU, env) + +#ifndef CONFIG_USER_ONLY +extern const struct VMStateDescription vmstate_arm_cpu; +#endif + +void arm_cpu_do_interrupt(CPUState *cpu); +void arm_v7m_cpu_do_interrupt(CPUState *cpu); +bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req); + +void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, + int flags); + +hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, + MemTxAttrs *attrs); + +int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); +int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); + +int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, + int cpuid, void *opaque); +int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, + int cpuid, void *opaque); + +#ifdef TARGET_AARCH64 +int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); +int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); +#endif + +ARMCPU *cpu_arm_init(const char *cpu_model); +target_ulong do_arm_semihosting(CPUARMState *env); +void aarch64_sync_32_to_64(CPUARMState *env); +void aarch64_sync_64_to_32(CPUARMState *env); + +static inline bool is_a64(CPUARMState *env) +{ + return env->aarch64; +} + +/* you can call this signal handler from your SIGBUS and SIGSEGV + signal handlers to inform the virtual CPU of exceptions. non zero + is returned if the signal was handled by the virtual CPU. */ +int cpu_arm_signal_handler(int host_signum, void *pinfo, + void *puc); + +/** + * pmccntr_sync + * @env: CPUARMState + * + * Synchronises the counter in the PMCCNTR. This must always be called twice, + * once before any action that might affect the timer and again afterwards. + * The function is used to swap the state of the register if required. + * This only happens when not in user mode (!CONFIG_USER_ONLY) + */ +void pmccntr_sync(CPUARMState *env); + +/* SCTLR bit meanings. Several bits have been reused in newer + * versions of the architecture; in that case we define constants + * for both old and new bit meanings. Code which tests against those + * bits should probably check or otherwise arrange that the CPU + * is the architectural version it expects. + */ +#define SCTLR_M (1U << 0) +#define SCTLR_A (1U << 1) +#define SCTLR_C (1U << 2) +#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ +#define SCTLR_SA (1U << 3) +#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ +#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ +#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ +#define SCTLR_CP15BEN (1U << 5) /* v7 onward */ +#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ +#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ +#define SCTLR_ITD (1U << 7) /* v8 onward */ +#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ +#define SCTLR_SED (1U << 8) /* v8 onward */ +#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ +#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ +#define SCTLR_F (1U << 10) /* up to v6 */ +#define SCTLR_SW (1U << 10) /* v7 onward */ +#define SCTLR_Z (1U << 11) +#define SCTLR_I (1U << 12) +#define SCTLR_V (1U << 13) +#define SCTLR_RR (1U << 14) /* up to v7 */ +#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ +#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ +#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ +#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ +#define SCTLR_nTWI (1U << 16) /* v8 onward */ +#define SCTLR_HA (1U << 17) +#define SCTLR_BR (1U << 17) /* PMSA only */ +#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ +#define SCTLR_nTWE (1U << 18) /* v8 onward */ +#define SCTLR_WXN (1U << 19) +#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ +#define SCTLR_UWXN (1U << 20) /* v7 onward */ +#define SCTLR_FI (1U << 21) +#define SCTLR_U (1U << 22) +#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ +#define SCTLR_VE (1U << 24) /* up to v7 */ +#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ +#define SCTLR_EE (1U << 25) +#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ +#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ +#define SCTLR_NMFI (1U << 27) +#define SCTLR_TRE (1U << 28) +#define SCTLR_AFE (1U << 29) +#define SCTLR_TE (1U << 30) + +#define CPTR_TCPAC (1U << 31) +#define CPTR_TTA (1U << 20) +#define CPTR_TFP (1U << 10) + +#define MDCR_EPMAD (1U << 21) +#define MDCR_EDAD (1U << 20) +#define MDCR_SPME (1U << 17) +#define MDCR_SDD (1U << 16) +#define MDCR_SPD (3U << 14) +#define MDCR_TDRA (1U << 11) +#define MDCR_TDOSA (1U << 10) +#define MDCR_TDA (1U << 9) +#define MDCR_TDE (1U << 8) +#define MDCR_HPME (1U << 7) +#define MDCR_TPM (1U << 6) +#define MDCR_TPMCR (1U << 5) + +/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */ +#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD) + +#define CPSR_M (0x1fU) +#define CPSR_T (1U << 5) +#define CPSR_F (1U << 6) +#define CPSR_I (1U << 7) +#define CPSR_A (1U << 8) +#define CPSR_E (1U << 9) +#define CPSR_IT_2_7 (0xfc00U) +#define CPSR_GE (0xfU << 16) +#define CPSR_IL (1U << 20) +/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in + * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use + * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32, + * where it is live state but not accessible to the AArch32 code. + */ +#define CPSR_RESERVED (0x7U << 21) +#define CPSR_J (1U << 24) +#define CPSR_IT_0_1 (3U << 25) +#define CPSR_Q (1U << 27) +#define CPSR_V (1U << 28) +#define CPSR_C (1U << 29) +#define CPSR_Z (1U << 30) +#define CPSR_N (1U << 31) +#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) +#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) + +#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) +#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ + | CPSR_NZCV) +/* Bits writable in user mode. */ +#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE) +/* Execution state bits. MRS read as zero, MSR writes ignored. */ +#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) +/* Mask of bits which may be set by exception return copying them from SPSR */ +#define CPSR_ERET_MASK (~CPSR_RESERVED) + +#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */ +#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */ +#define TTBCR_PD0 (1U << 4) +#define TTBCR_PD1 (1U << 5) +#define TTBCR_EPD0 (1U << 7) +#define TTBCR_IRGN0 (3U << 8) +#define TTBCR_ORGN0 (3U << 10) +#define TTBCR_SH0 (3U << 12) +#define TTBCR_T1SZ (3U << 16) +#define TTBCR_A1 (1U << 22) +#define TTBCR_EPD1 (1U << 23) +#define TTBCR_IRGN1 (3U << 24) +#define TTBCR_ORGN1 (3U << 26) +#define TTBCR_SH1 (1U << 28) +#define TTBCR_EAE (1U << 31) + +/* Bit definitions for ARMv8 SPSR (PSTATE) format. + * Only these are valid when in AArch64 mode; in + * AArch32 mode SPSRs are basically CPSR-format. + */ +#define PSTATE_SP (1U) +#define PSTATE_M (0xFU) +#define PSTATE_nRW (1U << 4) +#define PSTATE_F (1U << 6) +#define PSTATE_I (1U << 7) +#define PSTATE_A (1U << 8) +#define PSTATE_D (1U << 9) +#define PSTATE_IL (1U << 20) +#define PSTATE_SS (1U << 21) +#define PSTATE_V (1U << 28) +#define PSTATE_C (1U << 29) +#define PSTATE_Z (1U << 30) +#define PSTATE_N (1U << 31) +#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) +#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) +#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF) +/* Mode values for AArch64 */ +#define PSTATE_MODE_EL3h 13 +#define PSTATE_MODE_EL3t 12 +#define PSTATE_MODE_EL2h 9 +#define PSTATE_MODE_EL2t 8 +#define PSTATE_MODE_EL1h 5 +#define PSTATE_MODE_EL1t 4 +#define PSTATE_MODE_EL0t 0 + +/* Map EL and handler into a PSTATE_MODE. */ +static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) +{ + return (el << 2) | handler; +} + +/* Return the current PSTATE value. For the moment we don't support 32<->64 bit + * interprocessing, so we don't attempt to sync with the cpsr state used by + * the 32 bit decoder. + */ +static inline uint32_t pstate_read(CPUARMState *env) +{ + int ZF; + + ZF = (env->ZF == 0); + return (env->NF & 0x80000000) | (ZF << 30) + | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) + | env->pstate | env->daif; +} + +static inline void pstate_write(CPUARMState *env, uint32_t val) +{ + env->ZF = (~val) & PSTATE_Z; + env->NF = val; + env->CF = (val >> 29) & 1; + env->VF = (val << 3) & 0x80000000; + env->daif = val & PSTATE_DAIF; + env->pstate = val & ~CACHED_PSTATE_BITS; +} + +/* Return the current CPSR value. */ +uint32_t cpsr_read(CPUARMState *env); + +typedef enum CPSRWriteType { + CPSRWriteByInstr = 0, /* from guest MSR or CPS */ + CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ + CPSRWriteRaw = 2, /* trust values, do not switch reg banks */ + CPSRWriteByGDBStub = 3, /* from the GDB stub */ +} CPSRWriteType; + +/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/ +void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, + CPSRWriteType write_type); + +/* Return the current xPSR value. */ +static inline uint32_t xpsr_read(CPUARMState *env) +{ + int ZF; + ZF = (env->ZF == 0); + return (env->NF & 0x80000000) | (ZF << 30) + | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) + | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) + | ((env->condexec_bits & 0xfc) << 8) + | env->v7m.exception; +} + +/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ +static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) +{ + if (mask & CPSR_NZCV) { + env->ZF = (~val) & CPSR_Z; + env->NF = val; + env->CF = (val >> 29) & 1; + env->VF = (val << 3) & 0x80000000; + } + if (mask & CPSR_Q) + env->QF = ((val & CPSR_Q) != 0); + if (mask & (1 << 24)) + env->thumb = ((val & (1 << 24)) != 0); + if (mask & CPSR_IT_0_1) { + env->condexec_bits &= ~3; + env->condexec_bits |= (val >> 25) & 3; + } + if (mask & CPSR_IT_2_7) { + env->condexec_bits &= 3; + env->condexec_bits |= (val >> 8) & 0xfc; + } + if (mask & 0x1ff) { + env->v7m.exception = val & 0x1ff; + } +} + +#define HCR_VM (1ULL << 0) +#define HCR_SWIO (1ULL << 1) +#define HCR_PTW (1ULL << 2) +#define HCR_FMO (1ULL << 3) +#define HCR_IMO (1ULL << 4) +#define HCR_AMO (1ULL << 5) +#define HCR_VF (1ULL << 6) +#define HCR_VI (1ULL << 7) +#define HCR_VSE (1ULL << 8) +#define HCR_FB (1ULL << 9) +#define HCR_BSU_MASK (3ULL << 10) +#define HCR_DC (1ULL << 12) +#define HCR_TWI (1ULL << 13) +#define HCR_TWE (1ULL << 14) +#define HCR_TID0 (1ULL << 15) +#define HCR_TID1 (1ULL << 16) +#define HCR_TID2 (1ULL << 17) +#define HCR_TID3 (1ULL << 18) +#define HCR_TSC (1ULL << 19) +#define HCR_TIDCP (1ULL << 20) +#define HCR_TACR (1ULL << 21) +#define HCR_TSW (1ULL << 22) +#define HCR_TPC (1ULL << 23) +#define HCR_TPU (1ULL << 24) +#define HCR_TTLB (1ULL << 25) +#define HCR_TVM (1ULL << 26) +#define HCR_TGE (1ULL << 27) +#define HCR_TDZ (1ULL << 28) +#define HCR_HCD (1ULL << 29) +#define HCR_TRVM (1ULL << 30) +#define HCR_RW (1ULL << 31) +#define HCR_CD (1ULL << 32) +#define HCR_ID (1ULL << 33) +#define HCR_MASK ((1ULL << 34) - 1) + +#define SCR_NS (1U << 0) +#define SCR_IRQ (1U << 1) +#define SCR_FIQ (1U << 2) +#define SCR_EA (1U << 3) +#define SCR_FW (1U << 4) +#define SCR_AW (1U << 5) +#define SCR_NET (1U << 6) +#define SCR_SMD (1U << 7) +#define SCR_HCE (1U << 8) +#define SCR_SIF (1U << 9) +#define SCR_RW (1U << 10) +#define SCR_ST (1U << 11) +#define SCR_TWI (1U << 12) +#define SCR_TWE (1U << 13) +#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST)) +#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET) + +/* Return the current FPSCR value. */ +uint32_t vfp_get_fpscr(CPUARMState *env); +void vfp_set_fpscr(CPUARMState *env, uint32_t val); + +/* For A64 the FPSCR is split into two logically distinct registers, + * FPCR and FPSR. However since they still use non-overlapping bits + * we store the underlying state in fpscr and just mask on read/write. + */ +#define FPSR_MASK 0xf800009f +#define FPCR_MASK 0x07f79f00 +static inline uint32_t vfp_get_fpsr(CPUARMState *env) +{ + return vfp_get_fpscr(env) & FPSR_MASK; +} + +static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val) +{ + uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK); + vfp_set_fpscr(env, new_fpscr); +} + +static inline uint32_t vfp_get_fpcr(CPUARMState *env) +{ + return vfp_get_fpscr(env) & FPCR_MASK; +} + +static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val) +{ + uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK); + vfp_set_fpscr(env, new_fpscr); +} + +enum arm_cpu_mode { + ARM_CPU_MODE_USR = 0x10, + ARM_CPU_MODE_FIQ = 0x11, + ARM_CPU_MODE_IRQ = 0x12, + ARM_CPU_MODE_SVC = 0x13, + ARM_CPU_MODE_MON = 0x16, + ARM_CPU_MODE_ABT = 0x17, + ARM_CPU_MODE_HYP = 0x1a, + ARM_CPU_MODE_UND = 0x1b, + ARM_CPU_MODE_SYS = 0x1f +}; + +/* VFP system registers. */ +#define ARM_VFP_FPSID 0 +#define ARM_VFP_FPSCR 1 +#define ARM_VFP_MVFR2 5 +#define ARM_VFP_MVFR1 6 +#define ARM_VFP_MVFR0 7 +#define ARM_VFP_FPEXC 8 +#define ARM_VFP_FPINST 9 +#define ARM_VFP_FPINST2 10 + +/* iwMMXt coprocessor control registers. */ +#define ARM_IWMMXT_wCID 0 +#define ARM_IWMMXT_wCon 1 +#define ARM_IWMMXT_wCSSF 2 +#define ARM_IWMMXT_wCASF 3 +#define ARM_IWMMXT_wCGR0 8 +#define ARM_IWMMXT_wCGR1 9 +#define ARM_IWMMXT_wCGR2 10 +#define ARM_IWMMXT_wCGR3 11 + +/* If adding a feature bit which corresponds to a Linux ELF + * HWCAP bit, remember to update the feature-bit-to-hwcap + * mapping in linux-user/elfload.c:get_elf_hwcap(). + */ +enum arm_features { + ARM_FEATURE_VFP, + ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ + ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ + ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ + ARM_FEATURE_V6, + ARM_FEATURE_V6K, + ARM_FEATURE_V7, + ARM_FEATURE_THUMB2, + ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */ + ARM_FEATURE_VFP3, + ARM_FEATURE_VFP_FP16, + ARM_FEATURE_NEON, + ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */ + ARM_FEATURE_M, /* Microcontroller profile. */ + ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ + ARM_FEATURE_THUMB2EE, + ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ + ARM_FEATURE_V4T, + ARM_FEATURE_V5, + ARM_FEATURE_STRONGARM, + ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ + ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */ + ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */ + ARM_FEATURE_GENERIC_TIMER, + ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ + ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ + ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ + ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ + ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ + ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ + ARM_FEATURE_PXN, /* has Privileged Execute Never bit */ + ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ + ARM_FEATURE_V8, + ARM_FEATURE_AARCH64, /* supports 64 bit mode */ + ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */ + ARM_FEATURE_CBAR, /* has cp15 CBAR */ + ARM_FEATURE_CRC, /* ARMv8 CRC instructions */ + ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ + ARM_FEATURE_EL2, /* has EL2 Virtualization support */ + ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ + ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */ + ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */ + ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */ + ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ + ARM_FEATURE_PMU, /* has PMU support */ +}; + +static inline int arm_feature(CPUARMState *env, int feature) +{ + return (env->features & (1ULL << feature)) != 0; +} + +#if !defined(CONFIG_USER_ONLY) +/* Return true if exception levels below EL3 are in secure state, + * or would be following an exception return to that level. + * Unlike arm_is_secure() (which is always a question about the + * _current_ state of the CPU) this doesn't care about the current + * EL or mode. + */ +static inline bool arm_is_secure_below_el3(CPUARMState *env) +{ + if (arm_feature(env, ARM_FEATURE_EL3)) { + return !(env->cp15.scr_el3 & SCR_NS); + } else { + /* If EL3 is not supported then the secure state is implementation + * defined, in which case QEMU defaults to non-secure. + */ + return false; + } +} + +/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ +static inline bool arm_is_el3_or_mon(CPUARMState *env) +{ + if (arm_feature(env, ARM_FEATURE_EL3)) { + if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { + /* CPU currently in AArch64 state and EL3 */ + return true; + } else if (!is_a64(env) && + (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { + /* CPU currently in AArch32 state and monitor mode */ + return true; + } + } + return false; +} + +/* Return true if the processor is in secure state */ +static inline bool arm_is_secure(CPUARMState *env) +{ + if (arm_is_el3_or_mon(env)) { + return true; + } + return arm_is_secure_below_el3(env); +} + +#else +static inline bool arm_is_secure_below_el3(CPUARMState *env) +{ + return false; +} + +static inline bool arm_is_secure(CPUARMState *env) +{ + return false; +} +#endif + +/* Return true if the specified exception level is running in AArch64 state. */ +static inline bool arm_el_is_aa64(CPUARMState *env, int el) +{ + /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, + * and if we're not in EL0 then the state of EL0 isn't well defined.) + */ + assert(el >= 1 && el <= 3); + bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); + + /* The highest exception level is always at the maximum supported + * register width, and then lower levels have a register width controlled + * by bits in the SCR or HCR registers. + */ + if (el == 3) { + return aa64; + } + + if (arm_feature(env, ARM_FEATURE_EL3)) { + aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); + } + + if (el == 2) { + return aa64; + } + + if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) { + aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); + } + + return aa64; +} + +/* Function for determing whether guest cp register reads and writes should + * access the secure or non-secure bank of a cp register. When EL3 is + * operating in AArch32 state, the NS-bit determines whether the secure + * instance of a cp register should be used. When EL3 is AArch64 (or if + * it doesn't exist at all) then there is no register banking, and all + * accesses are to the non-secure version. + */ +static inline bool access_secure_reg(CPUARMState *env) +{ + bool ret = (arm_feature(env, ARM_FEATURE_EL3) && + !arm_el_is_aa64(env, 3) && + !(env->cp15.scr_el3 & SCR_NS)); + + return ret; +} + +/* Macros for accessing a specified CP register bank */ +#define A32_BANKED_REG_GET(_env, _regname, _secure) \ + ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) + +#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ + do { \ + if (_secure) { \ + (_env)->cp15._regname##_s = (_val); \ + } else { \ + (_env)->cp15._regname##_ns = (_val); \ + } \ + } while (0) + +/* Macros for automatically accessing a specific CP register bank depending on + * the current secure state of the system. These macros are not intended for + * supporting instruction translation reads/writes as these are dependent + * solely on the SCR.NS bit and not the mode. + */ +#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ + A32_BANKED_REG_GET((_env), _regname, \ + (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) + +#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ + A32_BANKED_REG_SET((_env), _regname, \ + (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ + (_val)) + +void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); +uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, + uint32_t cur_el, bool secure); + +/* Interface between CPU and Interrupt controller. */ +void armv7m_nvic_set_pending(void *opaque, int irq); +int armv7m_nvic_acknowledge_irq(void *opaque); +void armv7m_nvic_complete_irq(void *opaque, int irq); + +/* Interface for defining coprocessor registers. + * Registers are defined in tables of arm_cp_reginfo structs + * which are passed to define_arm_cp_regs(). + */ + +/* When looking up a coprocessor register we look for it + * via an integer which encodes all of: + * coprocessor number + * Crn, Crm, opc1, opc2 fields + * 32 or 64 bit register (ie is it accessed via MRC/MCR + * or via MRRC/MCRR?) + * non-secure/secure bank (AArch32 only) + * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. + * (In this case crn and opc2 should be zero.) + * For AArch64, there is no 32/64 bit size distinction; + * instead all registers have a 2 bit op0, 3 bit op1 and op2, + * and 4 bit CRn and CRm. The encoding patterns are chosen + * to be easy to convert to and from the KVM encodings, and also + * so that the hashtable can contain both AArch32 and AArch64 + * registers (to allow for interprocessing where we might run + * 32 bit code on a 64 bit core). + */ +/* This bit is private to our hashtable cpreg; in KVM register + * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 + * in the upper bits of the 64 bit ID. + */ +#define CP_REG_AA64_SHIFT 28 +#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) + +/* To enable banking of coprocessor registers depending on ns-bit we + * add a bit to distinguish between secure and non-secure cpregs in the + * hashtable. + */ +#define CP_REG_NS_SHIFT 29 +#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) + +#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ + ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ + ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) + +#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ + (CP_REG_AA64_MASK | \ + ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ + ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ + ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ + ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ + ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ + ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) + +/* Convert a full 64 bit KVM register ID to the truncated 32 bit + * version used as a key for the coprocessor register hashtable + */ +static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) +{ + uint32_t cpregid = kvmid; + if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { + cpregid |= CP_REG_AA64_MASK; + } else { + if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { + cpregid |= (1 << 15); + } + + /* KVM is always non-secure so add the NS flag on AArch32 register + * entries. + */ + cpregid |= 1 << CP_REG_NS_SHIFT; + } + return cpregid; +} + +/* Convert a truncated 32 bit hashtable key into the full + * 64 bit KVM register ID. + */ +static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) +{ + uint64_t kvmid; + + if (cpregid & CP_REG_AA64_MASK) { + kvmid = cpregid & ~CP_REG_AA64_MASK; + kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; + } else { + kvmid = cpregid & ~(1 << 15); + if (cpregid & (1 << 15)) { + kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; + } else { + kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; + } + } + return kvmid; +} + +/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a + * special-behaviour cp reg and bits [15..8] indicate what behaviour + * it has. Otherwise it is a simple cp reg, where CONST indicates that + * TCG can assume the value to be constant (ie load at translate time) + * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END + * indicates that the TB should not be ended after a write to this register + * (the default is that the TB ends after cp writes). OVERRIDE permits + * a register definition to override a previous definition for the + * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the + * old must have the OVERRIDE bit set. + * ALIAS indicates that this register is an alias view of some underlying + * state which is also visible via another register, and that the other + * register is handling migration and reset; registers marked ALIAS will not be + * migrated but may have their state set by syncing of register state from KVM. + * NO_RAW indicates that this register has no underlying state and does not + * support raw access for state saving/loading; it will not be used for either + * migration or KVM state synchronization. (Typically this is for "registers" + * which are actually used as instructions for cache maintenance and so on.) + * IO indicates that this register does I/O and therefore its accesses + * need to be surrounded by gen_io_start()/gen_io_end(). In particular, + * registers which implement clocks or timers require this. + */ +#define ARM_CP_SPECIAL 1 +#define ARM_CP_CONST 2 +#define ARM_CP_64BIT 4 +#define ARM_CP_SUPPRESS_TB_END 8 +#define ARM_CP_OVERRIDE 16 +#define ARM_CP_ALIAS 32 +#define ARM_CP_IO 64 +#define ARM_CP_NO_RAW 128 +#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8)) +#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8)) +#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8)) +#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8)) +#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8)) +#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA +/* Used only as a terminator for ARMCPRegInfo lists */ +#define ARM_CP_SENTINEL 0xffff +/* Mask of only the flag bits in a type field */ +#define ARM_CP_FLAG_MASK 0xff + +/* Valid values for ARMCPRegInfo state field, indicating which of + * the AArch32 and AArch64 execution states this register is visible in. + * If the reginfo doesn't explicitly specify then it is AArch32 only. + * If the reginfo is declared to be visible in both states then a second + * reginfo is synthesised for the AArch32 view of the AArch64 register, + * such that the AArch32 view is the lower 32 bits of the AArch64 one. + * Note that we rely on the values of these enums as we iterate through + * the various states in some places. + */ +enum { + ARM_CP_STATE_AA32 = 0, + ARM_CP_STATE_AA64 = 1, + ARM_CP_STATE_BOTH = 2, +}; + +/* ARM CP register secure state flags. These flags identify security state + * attributes for a given CP register entry. + * The existence of both or neither secure and non-secure flags indicates that + * the register has both a secure and non-secure hash entry. A single one of + * these flags causes the register to only be hashed for the specified + * security state. + * Although definitions may have any combination of the S/NS bits, each + * registered entry will only have one to identify whether the entry is secure + * or non-secure. + */ +enum { + ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ + ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ +}; + +/* Return true if cptype is a valid type field. This is used to try to + * catch errors where the sentinel has been accidentally left off the end + * of a list of registers. + */ +static inline bool cptype_valid(int cptype) +{ + return ((cptype & ~ARM_CP_FLAG_MASK) == 0) + || ((cptype & ARM_CP_SPECIAL) && + ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL)); +} + +/* Access rights: + * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM + * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and + * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 + * (ie any of the privileged modes in Secure state, or Monitor mode). + * If a register is accessible in one privilege level it's always accessible + * in higher privilege levels too. Since "Secure PL1" also follows this rule + * (ie anything visible in PL2 is visible in S-PL1, some things are only + * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the + * terminology a little and call this PL3. + * In AArch64 things are somewhat simpler as the PLx bits line up exactly + * with the ELx exception levels. + * + * If access permissions for a register are more complex than can be + * described with these bits, then use a laxer set of restrictions, and + * do the more restrictive/complex check inside a helper function. + */ +#define PL3_R 0x80 +#define PL3_W 0x40 +#define PL2_R (0x20 | PL3_R) +#define PL2_W (0x10 | PL3_W) +#define PL1_R (0x08 | PL2_R) +#define PL1_W (0x04 | PL2_W) +#define PL0_R (0x02 | PL1_R) +#define PL0_W (0x01 | PL1_W) + +#define PL3_RW (PL3_R | PL3_W) +#define PL2_RW (PL2_R | PL2_W) +#define PL1_RW (PL1_R | PL1_W) +#define PL0_RW (PL0_R | PL0_W) + +/* Return the highest implemented Exception Level */ +static inline int arm_highest_el(CPUARMState *env) +{ + if (arm_feature(env, ARM_FEATURE_EL3)) { + return 3; + } + if (arm_feature(env, ARM_FEATURE_EL2)) { + return 2; + } + return 1; +} + +/* Return the current Exception Level (as per ARMv8; note that this differs + * from the ARMv7 Privilege Level). + */ +static inline int arm_current_el(CPUARMState *env) +{ + if (arm_feature(env, ARM_FEATURE_M)) { + return !((env->v7m.exception == 0) && (env->v7m.control & 1)); + } + + if (is_a64(env)) { + return extract32(env->pstate, 2, 2); + } + + switch (env->uncached_cpsr & 0x1f) { + case ARM_CPU_MODE_USR: + return 0; + case ARM_CPU_MODE_HYP: + return 2; + case ARM_CPU_MODE_MON: + return 3; + default: + if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { + /* If EL3 is 32-bit then all secure privileged modes run in + * EL3 + */ + return 3; + } + + return 1; + } +} + +typedef struct ARMCPRegInfo ARMCPRegInfo; + +typedef enum CPAccessResult { + /* Access is permitted */ + CP_ACCESS_OK = 0, + /* Access fails due to a configurable trap or enable which would + * result in a categorized exception syndrome giving information about + * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, + * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or + * PL1 if in EL0, otherwise to the current EL). + */ + CP_ACCESS_TRAP = 1, + /* Access fails and results in an exception syndrome 0x0 ("uncategorized"). + * Note that this is not a catch-all case -- the set of cases which may + * result in this failure is specifically defined by the architecture. + */ + CP_ACCESS_TRAP_UNCATEGORIZED = 2, + /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */ + CP_ACCESS_TRAP_EL2 = 3, + CP_ACCESS_TRAP_EL3 = 4, + /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */ + CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5, + CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6, + /* Access fails and results in an exception syndrome for an FP access, + * trapped directly to EL2 or EL3 + */ + CP_ACCESS_TRAP_FP_EL2 = 7, + CP_ACCESS_TRAP_FP_EL3 = 8, +} CPAccessResult; + +/* Access functions for coprocessor registers. These cannot fail and + * may not raise exceptions. + */ +typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); +typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, + uint64_t value); +/* Access permission check functions for coprocessor registers. */ +typedef CPAccessResult CPAccessFn(CPUARMState *env, + const ARMCPRegInfo *opaque, + bool isread); +/* Hook function for register reset */ +typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); + +#define CP_ANY 0xff + +/* Definition of an ARM coprocessor register */ +struct ARMCPRegInfo { + /* Name of register (useful mainly for debugging, need not be unique) */ + const char *name; + /* Location of register: coprocessor number and (crn,crm,opc1,opc2) + * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a + * 'wildcard' field -- any value of that field in the MRC/MCR insn + * will be decoded to this register. The register read and write + * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 + * used by the program, so it is possible to register a wildcard and + * then behave differently on read/write if necessary. + * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 + * must both be zero. + * For AArch64-visible registers, opc0 is also used. + * Since there are no "coprocessors" in AArch64, cp is purely used as a + * way to distinguish (for KVM's benefit) guest-visible system registers + * from demuxed ones provided to preserve the "no side effects on + * KVM register read/write from QEMU" semantics. cp==0x13 is guest + * visible (to match KVM's encoding); cp==0 will be converted to + * cp==0x13 when the ARMCPRegInfo is registered, for convenience. + */ + uint8_t cp; + uint8_t crn; + uint8_t crm; + uint8_t opc0; + uint8_t opc1; + uint8_t opc2; + /* Execution state in which this register is visible: ARM_CP_STATE_* */ + int state; + /* Register type: ARM_CP_* bits/values */ + int type; + /* Access rights: PL*_[RW] */ + int access; + /* Security state: ARM_CP_SECSTATE_* bits/values */ + int secure; + /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when + * this register was defined: can be used to hand data through to the + * register read/write functions, since they are passed the ARMCPRegInfo*. + */ + void *opaque; + /* Value of this register, if it is ARM_CP_CONST. Otherwise, if + * fieldoffset is non-zero, the reset value of the register. + */ + uint64_t resetvalue; + /* Offset of the field in CPUARMState for this register. + * + * This is not needed if either: + * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs + * 2. both readfn and writefn are specified + */ + ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ + + /* Offsets of the secure and non-secure fields in CPUARMState for the + * register if it is banked. These fields are only used during the static + * registration of a register. During hashing the bank associated + * with a given security state is copied to fieldoffset which is used from + * there on out. + * + * It is expected that register definitions use either fieldoffset or + * bank_fieldoffsets in the definition but not both. It is also expected + * that both bank offsets are set when defining a banked register. This + * use indicates that a register is banked. + */ + ptrdiff_t bank_fieldoffsets[2]; + + /* Function for making any access checks for this register in addition to + * those specified by the 'access' permissions bits. If NULL, no extra + * checks required. The access check is performed at runtime, not at + * translate time. + */ + CPAccessFn *accessfn; + /* Function for handling reads of this register. If NULL, then reads + * will be done by loading from the offset into CPUARMState specified + * by fieldoffset. + */ + CPReadFn *readfn; + /* Function for handling writes of this register. If NULL, then writes + * will be done by writing to the offset into CPUARMState specified + * by fieldoffset. + */ + CPWriteFn *writefn; + /* Function for doing a "raw" read; used when we need to copy + * coprocessor state to the kernel for KVM or out for + * migration. This only needs to be provided if there is also a + * readfn and it has side effects (for instance clear-on-read bits). + */ + CPReadFn *raw_readfn; + /* Function for doing a "raw" write; used when we need to copy KVM + * kernel coprocessor state into userspace, or for inbound + * migration. This only needs to be provided if there is also a + * writefn and it masks out "unwritable" bits or has write-one-to-clear + * or similar behaviour. + */ + CPWriteFn *raw_writefn; + /* Function for resetting the register. If NULL, then reset will be done + * by writing resetvalue to the field specified in fieldoffset. If + * fieldoffset is 0 then no reset will be done. + */ + CPResetFn *resetfn; +}; + +/* Macros which are lvalues for the field in CPUARMState for the + * ARMCPRegInfo *ri. + */ +#define CPREG_FIELD32(env, ri) \ + (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) +#define CPREG_FIELD64(env, ri) \ + (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) + +#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL } + +void define_arm_cp_regs_with_opaque(ARMCPU *cpu, + const ARMCPRegInfo *regs, void *opaque); +void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, + const ARMCPRegInfo *regs, void *opaque); +static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs) +{ + define_arm_cp_regs_with_opaque(cpu, regs, 0); +} +static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) +{ + define_one_arm_cp_reg_with_opaque(cpu, regs, 0); +} +const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); + +/* CPWriteFn that can be used to implement writes-ignored behaviour */ +void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value); +/* CPReadFn that can be used for read-as-zero behaviour */ +uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); + +/* CPResetFn that does nothing, for use if no reset is required even + * if fieldoffset is non zero. + */ +void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); + +/* Return true if this reginfo struct's field in the cpu state struct + * is 64 bits wide. + */ +static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) +{ + return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); +} + +static inline bool cp_access_ok(int current_el, + const ARMCPRegInfo *ri, int isread) +{ + return (ri->access >> ((current_el * 2) + isread)) & 1; +} + +/* Raw read of a coprocessor register (as needed for migration, etc) */ +uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); + +/** + * write_list_to_cpustate + * @cpu: ARMCPU + * + * For each register listed in the ARMCPU cpreg_indexes list, write + * its value from the cpreg_values list into the ARMCPUState structure. + * This updates TCG's working data structures from KVM data or + * from incoming migration state. + * + * Returns: true if all register values were updated correctly, + * false if some register was unknown or could not be written. + * Note that we do not stop early on failure -- we will attempt + * writing all registers in the list. + */ +bool write_list_to_cpustate(ARMCPU *cpu); + +/** + * write_cpustate_to_list: + * @cpu: ARMCPU + * + * For each register listed in the ARMCPU cpreg_indexes list, write + * its value from the ARMCPUState structure into the cpreg_values list. + * This is used to copy info from TCG's working data structures into + * KVM or for outbound migration. + * + * Returns: true if all register values were read correctly, + * false if some register was unknown or could not be read. + * Note that we do not stop early on failure -- we will attempt + * reading all registers in the list. + */ +bool write_cpustate_to_list(ARMCPU *cpu); + +/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3. + Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are + conventional cores (ie. Application or Realtime profile). */ + +#define IS_M(env) arm_feature(env, ARM_FEATURE_M) + +#define ARM_CPUID_TI915T 0x54029152 +#define ARM_CPUID_TI925T 0x54029252 + +#if defined(CONFIG_USER_ONLY) +#define TARGET_PAGE_BITS 12 +#else +/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6 + * have to support 1K tiny pages. + */ +#define TARGET_PAGE_BITS_VARY +#define TARGET_PAGE_BITS_MIN 10 +#endif + +#if defined(TARGET_AARCH64) +# define TARGET_PHYS_ADDR_SPACE_BITS 48 +# define TARGET_VIRT_ADDR_SPACE_BITS 64 +#else +# define TARGET_PHYS_ADDR_SPACE_BITS 40 +# define TARGET_VIRT_ADDR_SPACE_BITS 32 +#endif + +static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, + unsigned int target_el) +{ + CPUARMState *env = cs->env_ptr; + unsigned int cur_el = arm_current_el(env); + bool secure = arm_is_secure(env); + bool pstate_unmasked; + int8_t unmasked = 0; + + /* Don't take exceptions if they target a lower EL. + * This check should catch any exceptions that would not be taken but left + * pending. + */ + if (cur_el > target_el) { + return false; + } + + switch (excp_idx) { + case EXCP_FIQ: + pstate_unmasked = !(env->daif & PSTATE_F); + break; + + case EXCP_IRQ: + pstate_unmasked = !(env->daif & PSTATE_I); + break; + + case EXCP_VFIQ: + if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { + /* VFIQs are only taken when hypervized and non-secure. */ + return false; + } + return !(env->daif & PSTATE_F); + case EXCP_VIRQ: + if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { + /* VIRQs are only taken when hypervized and non-secure. */ + return false; + } + return !(env->daif & PSTATE_I); + default: + g_assert_not_reached(); + } + + /* Use the target EL, current execution state and SCR/HCR settings to + * determine whether the corresponding CPSR bit is used to mask the + * interrupt. + */ + if ((target_el > cur_el) && (target_el != 1)) { + /* Exceptions targeting a higher EL may not be maskable */ + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + /* 64-bit masking rules are simple: exceptions to EL3 + * can't be masked, and exceptions to EL2 can only be + * masked from Secure state. The HCR and SCR settings + * don't affect the masking logic, only the interrupt routing. + */ + if (target_el == 3 || !secure) { + unmasked = 1; + } + } else { + /* The old 32-bit-only environment has a more complicated + * masking setup. HCR and SCR bits not only affect interrupt + * routing but also change the behaviour of masking. + */ + bool hcr, scr; + + switch (excp_idx) { + case EXCP_FIQ: + /* If FIQs are routed to EL3 or EL2 then there are cases where + * we override the CPSR.F in determining if the exception is + * masked or not. If neither of these are set then we fall back + * to the CPSR.F setting otherwise we further assess the state + * below. + */ + hcr = (env->cp15.hcr_el2 & HCR_FMO); + scr = (env->cp15.scr_el3 & SCR_FIQ); + + /* When EL3 is 32-bit, the SCR.FW bit controls whether the + * CPSR.F bit masks FIQ interrupts when taken in non-secure + * state. If SCR.FW is set then FIQs can be masked by CPSR.F + * when non-secure but only when FIQs are only routed to EL3. + */ + scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); + break; + case EXCP_IRQ: + /* When EL3 execution state is 32-bit, if HCR.IMO is set then + * we may override the CPSR.I masking when in non-secure state. + * The SCR.IRQ setting has already been taken into consideration + * when setting the target EL, so it does not have a further + * affect here. + */ + hcr = (env->cp15.hcr_el2 & HCR_IMO); + scr = false; + break; + default: + g_assert_not_reached(); + } + + if ((scr || hcr) && !secure) { + unmasked = 1; + } + } + } + + /* The PSTATE bits only mask the interrupt if we have not overriden the + * ability above. + */ + return unmasked || pstate_unmasked; +} + +#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model)) + +#define cpu_signal_handler cpu_arm_signal_handler +#define cpu_list arm_cpu_list + +/* ARM has the following "translation regimes" (as the ARM ARM calls them): + * + * If EL3 is 64-bit: + * + NonSecure EL1 & 0 stage 1 + * + NonSecure EL1 & 0 stage 2 + * + NonSecure EL2 + * + Secure EL1 & EL0 + * + Secure EL3 + * If EL3 is 32-bit: + * + NonSecure PL1 & 0 stage 1 + * + NonSecure PL1 & 0 stage 2 + * + NonSecure PL2 + * + Secure PL0 & PL1 + * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) + * + * For QEMU, an mmu_idx is not quite the same as a translation regime because: + * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they + * may differ in access permissions even if the VA->PA map is the same + * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 + * translation, which means that we have one mmu_idx that deals with two + * concatenated translation regimes [this sort of combined s1+2 TLB is + * architecturally permitted] + * 3. we don't need to allocate an mmu_idx to translations that we won't be + * handling via the TLB. The only way to do a stage 1 translation without + * the immediate stage 2 translation is via the ATS or AT system insns, + * which can be slow-pathed and always do a page table walk. + * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" + * translation regimes, because they map reasonably well to each other + * and they can't both be active at the same time. + * This gives us the following list of mmu_idx values: + * + * NS EL0 (aka NS PL0) stage 1+2 + * NS EL1 (aka NS PL1) stage 1+2 + * NS EL2 (aka NS PL2) + * S EL3 (aka S PL1) + * S EL0 (aka S PL0) + * S EL1 (not used if EL3 is 32 bit) + * NS EL0+1 stage 2 + * + * (The last of these is an mmu_idx because we want to be able to use the TLB + * for the accesses done as part of a stage 1 page table walk, rather than + * having to walk the stage 2 page table over and over.) + * + * Our enumeration includes at the end some entries which are not "true" + * mmu_idx values in that they don't have corresponding TLBs and are only + * valid for doing slow path page table walks. + * + * The constant names here are patterned after the general style of the names + * of the AT/ATS operations. + * The values used are carefully arranged to make mmu_idx => EL lookup easy. + */ +typedef enum ARMMMUIdx { + ARMMMUIdx_S12NSE0 = 0, + ARMMMUIdx_S12NSE1 = 1, + ARMMMUIdx_S1E2 = 2, + ARMMMUIdx_S1E3 = 3, + ARMMMUIdx_S1SE0 = 4, + ARMMMUIdx_S1SE1 = 5, + ARMMMUIdx_S2NS = 6, + /* Indexes below here don't have TLBs and are used only for AT system + * instructions or for the first stage of an S12 page table walk. + */ + ARMMMUIdx_S1NSE0 = 7, + ARMMMUIdx_S1NSE1 = 8, +} ARMMMUIdx; + +#define MMU_USER_IDX 0 + +/* Return the exception level we're running at if this is our mmu_idx */ +static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) +{ + assert(mmu_idx < ARMMMUIdx_S2NS); + return mmu_idx & 3; +} + +/* Determine the current mmu_idx to use for normal loads/stores */ +static inline int cpu_mmu_index(CPUARMState *env, bool ifetch) +{ + int el = arm_current_el(env); + + if (el < 2 && arm_is_secure_below_el3(env)) { + return ARMMMUIdx_S1SE0 + el; + } + return el; +} + +/* Indexes used when registering address spaces with cpu_address_space_init */ +typedef enum ARMASIdx { + ARMASIdx_NS = 0, + ARMASIdx_S = 1, +} ARMASIdx; + +/* Return the Exception Level targeted by debug exceptions. */ +static inline int arm_debug_target_el(CPUARMState *env) +{ + bool secure = arm_is_secure(env); + bool route_to_el2 = false; + + if (arm_feature(env, ARM_FEATURE_EL2) && !secure) { + route_to_el2 = env->cp15.hcr_el2 & HCR_TGE || + env->cp15.mdcr_el2 & (1 << 8); + } + + if (route_to_el2) { + return 2; + } else if (arm_feature(env, ARM_FEATURE_EL3) && + !arm_el_is_aa64(env, 3) && secure) { + return 3; + } else { + return 1; + } +} + +static inline bool aa64_generate_debug_exceptions(CPUARMState *env) +{ + if (arm_is_secure(env)) { + /* MDCR_EL3.SDD disables debug events from Secure state */ + if (extract32(env->cp15.mdcr_el3, 16, 1) != 0 + || arm_current_el(env) == 3) { + return false; + } + } + + if (arm_current_el(env) == arm_debug_target_el(env)) { + if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0) + || (env->daif & PSTATE_D)) { + return false; + } + } + return true; +} + +static inline bool aa32_generate_debug_exceptions(CPUARMState *env) +{ + int el = arm_current_el(env); + + if (el == 0 && arm_el_is_aa64(env, 1)) { + return aa64_generate_debug_exceptions(env); + } + + if (arm_is_secure(env)) { + int spd; + + if (el == 0 && (env->cp15.sder & 1)) { + /* SDER.SUIDEN means debug exceptions from Secure EL0 + * are always enabled. Otherwise they are controlled by + * SDCR.SPD like those from other Secure ELs. + */ + return true; + } + + spd = extract32(env->cp15.mdcr_el3, 14, 2); + switch (spd) { + case 1: + /* SPD == 0b01 is reserved, but behaves as 0b00. */ + case 0: + /* For 0b00 we return true if external secure invasive debug + * is enabled. On real hardware this is controlled by external + * signals to the core. QEMU always permits debug, and behaves + * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high. + */ + return true; + case 2: + return false; + case 3: + return true; + } + } + + return el != 2; +} + +/* Return true if debugging exceptions are currently enabled. + * This corresponds to what in ARM ARM pseudocode would be + * if UsingAArch32() then + * return AArch32.GenerateDebugExceptions() + * else + * return AArch64.GenerateDebugExceptions() + * We choose to push the if() down into this function for clarity, + * since the pseudocode has it at all callsites except for the one in + * CheckSoftwareStep(), where it is elided because both branches would + * always return the same value. + * + * Parts of the pseudocode relating to EL2 and EL3 are omitted because we + * don't yet implement those exception levels or their associated trap bits. + */ +static inline bool arm_generate_debug_exceptions(CPUARMState *env) +{ + if (env->aarch64) { + return aa64_generate_debug_exceptions(env); + } else { + return aa32_generate_debug_exceptions(env); + } +} + +/* Is single-stepping active? (Note that the "is EL_D AArch64?" check + * implicitly means this always returns false in pre-v8 CPUs.) + */ +static inline bool arm_singlestep_active(CPUARMState *env) +{ + return extract32(env->cp15.mdscr_el1, 0, 1) + && arm_el_is_aa64(env, arm_debug_target_el(env)) + && arm_generate_debug_exceptions(env); +} + +static inline bool arm_sctlr_b(CPUARMState *env) +{ + return + /* We need not implement SCTLR.ITD in user-mode emulation, so + * let linux-user ignore the fact that it conflicts with SCTLR_B. + * This lets people run BE32 binaries with "-cpu any". + */ +#ifndef CONFIG_USER_ONLY + !arm_feature(env, ARM_FEATURE_V7) && +#endif + (env->cp15.sctlr_el[1] & SCTLR_B) != 0; +} + +/* Return true if the processor is in big-endian mode. */ +static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) +{ + int cur_el; + + /* In 32bit endianness is determined by looking at CPSR's E bit */ + if (!is_a64(env)) { + return +#ifdef CONFIG_USER_ONLY + /* In system mode, BE32 is modelled in line with the + * architecture (as word-invariant big-endianness), where loads + * and stores are done little endian but from addresses which + * are adjusted by XORing with the appropriate constant. So the + * endianness to use for the raw data access is not affected by + * SCTLR.B. + * In user mode, however, we model BE32 as byte-invariant + * big-endianness (because user-only code cannot tell the + * difference), and so we need to use a data access endianness + * that depends on SCTLR.B. + */ + arm_sctlr_b(env) || +#endif + ((env->uncached_cpsr & CPSR_E) ? 1 : 0); + } + + cur_el = arm_current_el(env); + + if (cur_el == 0) { + return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0; + } + + return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0; +} + +#include "exec/cpu-all.h" + +/* Bit usage in the TB flags field: bit 31 indicates whether we are + * in 32 or 64 bit mode. The meaning of the other bits depends on that. + * We put flags which are shared between 32 and 64 bit mode at the top + * of the word, and flags which apply to only one mode at the bottom. + */ +#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31 +#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT) +#define ARM_TBFLAG_MMUIDX_SHIFT 28 +#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT) +#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27 +#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT) +#define ARM_TBFLAG_PSTATE_SS_SHIFT 26 +#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT) +/* Target EL if we take a floating-point-disabled exception */ +#define ARM_TBFLAG_FPEXC_EL_SHIFT 24 +#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT) + +/* Bit usage when in AArch32 state: */ +#define ARM_TBFLAG_THUMB_SHIFT 0 +#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT) +#define ARM_TBFLAG_VECLEN_SHIFT 1 +#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT) +#define ARM_TBFLAG_VECSTRIDE_SHIFT 4 +#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT) +#define ARM_TBFLAG_VFPEN_SHIFT 7 +#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT) +#define ARM_TBFLAG_CONDEXEC_SHIFT 8 +#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT) +#define ARM_TBFLAG_SCTLR_B_SHIFT 16 +#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT) +/* We store the bottom two bits of the CPAR as TB flags and handle + * checks on the other bits at runtime + */ +#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17 +#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) +/* Indicates whether cp register reads and writes by guest code should access + * the secure or nonsecure bank of banked registers; note that this is not + * the same thing as the current security state of the processor! + */ +#define ARM_TBFLAG_NS_SHIFT 19 +#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) +#define ARM_TBFLAG_BE_DATA_SHIFT 20 +#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT) + +/* Bit usage when in AArch64 state */ +#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */ +#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT) +#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */ +#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT) + +/* some convenience accessor macros */ +#define ARM_TBFLAG_AARCH64_STATE(F) \ + (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT) +#define ARM_TBFLAG_MMUIDX(F) \ + (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT) +#define ARM_TBFLAG_SS_ACTIVE(F) \ + (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT) +#define ARM_TBFLAG_PSTATE_SS(F) \ + (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT) +#define ARM_TBFLAG_FPEXC_EL(F) \ + (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT) +#define ARM_TBFLAG_THUMB(F) \ + (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT) +#define ARM_TBFLAG_VECLEN(F) \ + (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT) +#define ARM_TBFLAG_VECSTRIDE(F) \ + (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT) +#define ARM_TBFLAG_VFPEN(F) \ + (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT) +#define ARM_TBFLAG_CONDEXEC(F) \ + (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT) +#define ARM_TBFLAG_SCTLR_B(F) \ + (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT) +#define ARM_TBFLAG_XSCALE_CPAR(F) \ + (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT) +#define ARM_TBFLAG_NS(F) \ + (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) +#define ARM_TBFLAG_BE_DATA(F) \ + (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT) +#define ARM_TBFLAG_TBI0(F) \ + (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT) +#define ARM_TBFLAG_TBI1(F) \ + (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT) + +static inline bool bswap_code(bool sctlr_b) +{ +#ifdef CONFIG_USER_ONLY + /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian. + * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0 + * would also end up as a mixed-endian mode with BE code, LE data. + */ + return +#ifdef TARGET_WORDS_BIGENDIAN + 1 ^ +#endif + sctlr_b; +#else + /* All code access in ARM is little endian, and there are no loaders + * doing swaps that need to be reversed + */ + return 0; +#endif +} + +/* Return the exception level to which FP-disabled exceptions should + * be taken, or 0 if FP is enabled. + */ +static inline int fp_exception_el(CPUARMState *env) +{ + int fpen; + int cur_el = arm_current_el(env); + + /* CPACR and the CPTR registers don't exist before v6, so FP is + * always accessible + */ + if (!arm_feature(env, ARM_FEATURE_V6)) { + return 0; + } + + /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: + * 0, 2 : trap EL0 and EL1/PL1 accesses + * 1 : trap only EL0 accesses + * 3 : trap no accesses + */ + fpen = extract32(env->cp15.cpacr_el1, 20, 2); + switch (fpen) { + case 0: + case 2: + if (cur_el == 0 || cur_el == 1) { + /* Trap to PL1, which might be EL1 or EL3 */ + if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { + return 3; + } + return 1; + } + if (cur_el == 3 && !is_a64(env)) { + /* Secure PL1 running at EL3 */ + return 3; + } + break; + case 1: + if (cur_el == 0) { + return 1; + } + break; + case 3: + break; + } + + /* For the CPTR registers we don't need to guard with an ARM_FEATURE + * check because zero bits in the registers mean "don't trap". + */ + + /* CPTR_EL2 : present in v7VE or v8 */ + if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) + && !arm_is_secure_below_el3(env)) { + /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ + return 2; + } + + /* CPTR_EL3 : present in v8 */ + if (extract32(env->cp15.cptr_el[3], 10, 1)) { + /* Trap all FP ops to EL3 */ + return 3; + } + + return 0; +} + +#ifdef CONFIG_USER_ONLY +static inline bool arm_cpu_bswap_data(CPUARMState *env) +{ + return +#ifdef TARGET_WORDS_BIGENDIAN + 1 ^ +#endif + arm_cpu_data_is_big_endian(env); +} +#endif + +#ifndef CONFIG_USER_ONLY +/** + * arm_regime_tbi0: + * @env: CPUARMState + * @mmu_idx: MMU index indicating required translation regime + * + * Extracts the TBI0 value from the appropriate TCR for the current EL + * + * Returns: the TBI0 value. + */ +uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx); + +/** + * arm_regime_tbi1: + * @env: CPUARMState + * @mmu_idx: MMU index indicating required translation regime + * + * Extracts the TBI1 value from the appropriate TCR for the current EL + * + * Returns: the TBI1 value. + */ +uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx); +#else +/* We can't handle tagged addresses properly in user-only mode */ +static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) +{ + return 0; +} + +static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) +{ + return 0; +} +#endif + +static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, + target_ulong *cs_base, uint32_t *flags) +{ + ARMMMUIdx mmu_idx = cpu_mmu_index(env, false); + if (is_a64(env)) { + *pc = env->pc; + *flags = ARM_TBFLAG_AARCH64_STATE_MASK; + /* Get control bits for tagged addresses */ + *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); + *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); + } else { + *pc = env->regs[15]; + *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) + | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) + | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) + | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) + | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); + if (!(access_secure_reg(env))) { + *flags |= ARM_TBFLAG_NS_MASK; + } + if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) + || arm_el_is_aa64(env, 1)) { + *flags |= ARM_TBFLAG_VFPEN_MASK; + } + *flags |= (extract32(env->cp15.c15_cpar, 0, 2) + << ARM_TBFLAG_XSCALE_CPAR_SHIFT); + } + + *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT); + + /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine + * states defined in the ARM ARM for software singlestep: + * SS_ACTIVE PSTATE.SS State + * 0 x Inactive (the TB flag for SS is always 0) + * 1 0 Active-pending + * 1 1 Active-not-pending + */ + if (arm_singlestep_active(env)) { + *flags |= ARM_TBFLAG_SS_ACTIVE_MASK; + if (is_a64(env)) { + if (env->pstate & PSTATE_SS) { + *flags |= ARM_TBFLAG_PSTATE_SS_MASK; + } + } else { + if (env->uncached_cpsr & PSTATE_SS) { + *flags |= ARM_TBFLAG_PSTATE_SS_MASK; + } + } + } + if (arm_cpu_data_is_big_endian(env)) { + *flags |= ARM_TBFLAG_BE_DATA_MASK; + } + *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT; + + *cs_base = 0; +} + +enum { + QEMU_PSCI_CONDUIT_DISABLED = 0, + QEMU_PSCI_CONDUIT_SMC = 1, + QEMU_PSCI_CONDUIT_HVC = 2, +}; + +#ifndef CONFIG_USER_ONLY +/* Return the address space index to use for a memory access */ +static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) +{ + return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; +} + +/* Return the AddressSpace to use for a memory access + * (which depends on whether the access is S or NS, and whether + * the board gave us a separate AddressSpace for S accesses). + */ +static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) +{ + return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); +} +#endif + +/** + * arm_register_el_change_hook: + * Register a hook function which will be called back whenever this + * CPU changes exception level or mode. The hook function will be + * passed a pointer to the ARMCPU and the opaque data pointer passed + * to this function when the hook was registered. + * + * Note that we currently only support registering a single hook function, + * and will assert if this function is called twice. + * This facility is intended for the use of the GICv3 emulation. + */ +void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook, + void *opaque); + +/** + * arm_get_el_change_hook_opaque: + * Return the opaque data that will be used by the el_change_hook + * for this CPU. + */ +static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu) +{ + return cpu->el_change_hook_opaque; +} + +#endif |