aboutsummaryrefslogtreecommitdiff
path: root/target-arm/neon_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target-arm/neon_helper.c')
-rw-r--r--target-arm/neon_helper.c139
1 files changed, 127 insertions, 12 deletions
diff --git a/target-arm/neon_helper.c b/target-arm/neon_helper.c
index bcc1b4ba1e..a32a2c80f4 100644
--- a/target-arm/neon_helper.c
+++ b/target-arm/neon_helper.c
@@ -558,9 +558,28 @@ uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
}} while (0)
NEON_VOP(rshl_s8, neon_s8, 4)
NEON_VOP(rshl_s16, neon_s16, 2)
-NEON_VOP(rshl_s32, neon_s32, 1)
#undef NEON_FN
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bits accumulator. */
+uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
+{
+ int32_t dest;
+ int32_t val = (int32_t)valop;
+ int8_t shift = (int8_t)shiftop;
+ if ((shift >= 32) || (shift <= -32)) {
+ dest = 0;
+ } else if (shift < 0) {
+ int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
+ dest = big_dest >> -shift;
+ } else {
+ dest = val << shift;
+ }
+ return dest;
+}
+
+/* Handling addition overflow with 64 bits inputs values is more
+ * tricky than with 32 bits values. */
uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
{
int8_t shift = (int8_t)shiftop;
@@ -574,7 +593,16 @@ uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
val++;
val >>= 1;
} else if (shift < 0) {
- val = (val + ((int64_t)1 << (-1 - shift))) >> -shift;
+ val >>= (-shift - 1);
+ if (val == INT64_MAX) {
+ /* In this case, it means that the rounding constant is 1,
+ * and the addition would overflow. Return the actual
+ * result directly. */
+ val = 0x4000000000000000LL;
+ } else {
+ val++;
+ val >>= 1;
+ }
} else {
val <<= shift;
}
@@ -596,9 +624,29 @@ uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
}} while (0)
NEON_VOP(rshl_u8, neon_u8, 4)
NEON_VOP(rshl_u16, neon_u16, 2)
-NEON_VOP(rshl_u32, neon_u32, 1)
#undef NEON_FN
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bits accumulator. */
+uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
+{
+ uint32_t dest;
+ int8_t shift = (int8_t)shiftop;
+ if (shift >= 32 || shift < -32) {
+ dest = 0;
+ } else if (shift == -32) {
+ dest = val >> 31;
+ } else if (shift < 0) {
+ uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
+ dest = big_dest >> -shift;
+ } else {
+ dest = val << shift;
+ }
+ return dest;
+}
+
+/* Handling addition overflow with 64 bits inputs values is more
+ * tricky than with 32 bits values. */
uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
{
int8_t shift = (uint8_t)shiftop;
@@ -607,9 +655,17 @@ uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
} else if (shift == -64) {
/* Rounding a 1-bit result just preserves that bit. */
val >>= 63;
- } if (shift < 0) {
- val = (val + ((uint64_t)1 << (-1 - shift))) >> -shift;
- val >>= -shift;
+ } else if (shift < 0) {
+ val >>= (-shift - 1);
+ if (val == UINT64_MAX) {
+ /* In this case, it means that the rounding constant is 1,
+ * and the addition would overflow. Return the actual
+ * result directly. */
+ val = 0x8000000000000000ULL;
+ } else {
+ val++;
+ val >>= 1;
+ }
} else {
val <<= shift;
}
@@ -784,14 +840,43 @@ uint64_t HELPER(neon_qshlu_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
}} while (0)
NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
-NEON_VOP_ENV(qrshl_u32, neon_u32, 1)
#undef NEON_FN
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bits accumulator. */
+uint32_t HELPER(neon_qrshl_u32)(CPUState *env, uint32_t val, uint32_t shiftop)
+{
+ uint32_t dest;
+ int8_t shift = (int8_t)shiftop;
+ if (shift < 0) {
+ uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
+ dest = big_dest >> -shift;
+ } else {
+ dest = val << shift;
+ if ((dest >> shift) != val) {
+ SET_QC();
+ dest = ~0;
+ }
+ }
+ return dest;
+}
+
+/* Handling addition overflow with 64 bits inputs values is more
+ * tricky than with 32 bits values. */
uint64_t HELPER(neon_qrshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
{
int8_t shift = (int8_t)shiftop;
if (shift < 0) {
- val = (val + (1 << (-1 - shift))) >> -shift;
+ val >>= (-shift - 1);
+ if (val == UINT64_MAX) {
+ /* In this case, it means that the rounding constant is 1,
+ * and the addition would overflow. Return the actual
+ * result directly. */
+ val = 0x8000000000000000ULL;
+ } else {
+ val++;
+ val >>= 1;
+ }
} else { \
uint64_t tmp = val;
val <<= shift;
@@ -817,22 +902,52 @@ uint64_t HELPER(neon_qrshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
}} while (0)
NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
-NEON_VOP_ENV(qrshl_s32, neon_s32, 1)
#undef NEON_FN
+/* The addition of the rounding constant may overflow, so we use an
+ * intermediate 64 bits accumulator. */
+uint32_t HELPER(neon_qrshl_s32)(CPUState *env, uint32_t valop, uint32_t shiftop)
+{
+ int32_t dest;
+ int32_t val = (int32_t)valop;
+ int8_t shift = (int8_t)shiftop;
+ if (shift < 0) {
+ int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
+ dest = big_dest >> -shift;
+ } else {
+ dest = val << shift;
+ if ((dest >> shift) != val) {
+ SET_QC();
+ dest = (val >> 31) ^ ~SIGNBIT;
+ }
+ }
+ return dest;
+}
+
+/* Handling addition overflow with 64 bits inputs values is more
+ * tricky than with 32 bits values. */
uint64_t HELPER(neon_qrshl_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
{
int8_t shift = (uint8_t)shiftop;
int64_t val = valop;
if (shift < 0) {
- val = (val + (1 << (-1 - shift))) >> -shift;
+ val >>= (-shift - 1);
+ if (val == INT64_MAX) {
+ /* In this case, it means that the rounding constant is 1,
+ * and the addition would overflow. Return the actual
+ * result directly. */
+ val = 0x4000000000000000ULL;
+ } else {
+ val++;
+ val >>= 1;
+ }
} else {
- int64_t tmp = val;;
+ int64_t tmp = val;
val <<= shift;
if ((val >> shift) != tmp) {
SET_QC();
- val = tmp >> 31;
+ val = (tmp >> 63) ^ ~SIGNBIT64;
}
}
return val;