aboutsummaryrefslogtreecommitdiff
path: root/target-alpha/fpu_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target-alpha/fpu_helper.c')
-rw-r--r--target-alpha/fpu_helper.c553
1 files changed, 0 insertions, 553 deletions
diff --git a/target-alpha/fpu_helper.c b/target-alpha/fpu_helper.c
deleted file mode 100644
index 9645978aaa..0000000000
--- a/target-alpha/fpu_helper.c
+++ /dev/null
@@ -1,553 +0,0 @@
-/*
- * Helpers for floating point instructions.
- *
- * Copyright (c) 2007 Jocelyn Mayer
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see <http://www.gnu.org/licenses/>.
- */
-
-#include "qemu/osdep.h"
-#include "cpu.h"
-#include "exec/exec-all.h"
-#include "exec/helper-proto.h"
-#include "fpu/softfloat.h"
-
-#define FP_STATUS (env->fp_status)
-
-
-void helper_setroundmode(CPUAlphaState *env, uint32_t val)
-{
- set_float_rounding_mode(val, &FP_STATUS);
-}
-
-void helper_setflushzero(CPUAlphaState *env, uint32_t val)
-{
- set_flush_to_zero(val, &FP_STATUS);
-}
-
-#define CONVERT_BIT(X, SRC, DST) \
- (SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
-
-static uint32_t soft_to_fpcr_exc(CPUAlphaState *env)
-{
- uint8_t exc = get_float_exception_flags(&FP_STATUS);
- uint32_t ret = 0;
-
- if (unlikely(exc)) {
- set_float_exception_flags(0, &FP_STATUS);
- ret |= CONVERT_BIT(exc, float_flag_invalid, FPCR_INV);
- ret |= CONVERT_BIT(exc, float_flag_divbyzero, FPCR_DZE);
- ret |= CONVERT_BIT(exc, float_flag_overflow, FPCR_OVF);
- ret |= CONVERT_BIT(exc, float_flag_underflow, FPCR_UNF);
- ret |= CONVERT_BIT(exc, float_flag_inexact, FPCR_INE);
- }
-
- return ret;
-}
-
-static void fp_exc_raise1(CPUAlphaState *env, uintptr_t retaddr,
- uint32_t exc, uint32_t regno, uint32_t hw_exc)
-{
- hw_exc |= CONVERT_BIT(exc, FPCR_INV, EXC_M_INV);
- hw_exc |= CONVERT_BIT(exc, FPCR_DZE, EXC_M_DZE);
- hw_exc |= CONVERT_BIT(exc, FPCR_OVF, EXC_M_FOV);
- hw_exc |= CONVERT_BIT(exc, FPCR_UNF, EXC_M_UNF);
- hw_exc |= CONVERT_BIT(exc, FPCR_INE, EXC_M_INE);
- hw_exc |= CONVERT_BIT(exc, FPCR_IOV, EXC_M_IOV);
-
- arith_excp(env, retaddr, hw_exc, 1ull << regno);
-}
-
-/* Raise exceptions for ieee fp insns without software completion.
- In that case there are no exceptions that don't trap; the mask
- doesn't apply. */
-void helper_fp_exc_raise(CPUAlphaState *env, uint32_t ignore, uint32_t regno)
-{
- uint32_t exc = env->error_code;
- if (exc) {
- env->fpcr |= exc;
- exc &= ~ignore;
- if (exc) {
- fp_exc_raise1(env, GETPC(), exc, regno, 0);
- }
- }
-}
-
-/* Raise exceptions for ieee fp insns with software completion. */
-void helper_fp_exc_raise_s(CPUAlphaState *env, uint32_t ignore, uint32_t regno)
-{
- uint32_t exc = env->error_code & ~ignore;
- if (exc) {
- env->fpcr |= exc;
- exc &= ~ignore;
- if (exc) {
- exc &= env->fpcr_exc_enable;
- fp_exc_raise1(env, GETPC(), exc, regno, EXC_M_SWC);
- }
- }
-}
-
-/* Input handing without software completion. Trap for all
- non-finite numbers. */
-void helper_ieee_input(CPUAlphaState *env, uint64_t val)
-{
- uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
- uint64_t frac = val & 0xfffffffffffffull;
-
- if (exp == 0) {
- /* Denormals without /S raise an exception. */
- if (frac != 0) {
- arith_excp(env, GETPC(), EXC_M_INV, 0);
- }
- } else if (exp == 0x7ff) {
- /* Infinity or NaN. */
- env->fpcr |= FPCR_INV;
- arith_excp(env, GETPC(), EXC_M_INV, 0);
- }
-}
-
-/* Similar, but does not trap for infinities. Used for comparisons. */
-void helper_ieee_input_cmp(CPUAlphaState *env, uint64_t val)
-{
- uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
- uint64_t frac = val & 0xfffffffffffffull;
-
- if (exp == 0) {
- /* Denormals without /S raise an exception. */
- if (frac != 0) {
- arith_excp(env, GETPC(), EXC_M_INV, 0);
- }
- } else if (exp == 0x7ff && frac) {
- /* NaN. */
- env->fpcr |= FPCR_INV;
- arith_excp(env, GETPC(), EXC_M_INV, 0);
- }
-}
-
-/* Input handing with software completion. Trap for denorms, unless DNZ
- is set. If we try to support DNOD (which none of the produced hardware
- did, AFAICS), we'll need to suppress the trap when FPCR.DNOD is set;
- then the code downstream of that will need to cope with denorms sans
- flush_input_to_zero. Most of it should work sanely, but there's
- nothing to compare with. */
-void helper_ieee_input_s(CPUAlphaState *env, uint64_t val)
-{
- if (unlikely(2 * val - 1 < 0x1fffffffffffffull)
- && !env->fp_status.flush_inputs_to_zero) {
- arith_excp(env, GETPC(), EXC_M_INV | EXC_M_SWC, 0);
- }
-}
-
-/* S floating (single) */
-
-/* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */
-static inline uint64_t float32_to_s_int(uint32_t fi)
-{
- uint32_t frac = fi & 0x7fffff;
- uint32_t sign = fi >> 31;
- uint32_t exp_msb = (fi >> 30) & 1;
- uint32_t exp_low = (fi >> 23) & 0x7f;
- uint32_t exp;
-
- exp = (exp_msb << 10) | exp_low;
- if (exp_msb) {
- if (exp_low == 0x7f) {
- exp = 0x7ff;
- }
- } else {
- if (exp_low != 0x00) {
- exp |= 0x380;
- }
- }
-
- return (((uint64_t)sign << 63)
- | ((uint64_t)exp << 52)
- | ((uint64_t)frac << 29));
-}
-
-static inline uint64_t float32_to_s(float32 fa)
-{
- CPU_FloatU a;
- a.f = fa;
- return float32_to_s_int(a.l);
-}
-
-static inline uint32_t s_to_float32_int(uint64_t a)
-{
- return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
-}
-
-static inline float32 s_to_float32(uint64_t a)
-{
- CPU_FloatU r;
- r.l = s_to_float32_int(a);
- return r.f;
-}
-
-uint32_t helper_s_to_memory(uint64_t a)
-{
- return s_to_float32_int(a);
-}
-
-uint64_t helper_memory_to_s(uint32_t a)
-{
- return float32_to_s_int(a);
-}
-
-uint64_t helper_adds(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float32 fa, fb, fr;
-
- fa = s_to_float32(a);
- fb = s_to_float32(b);
- fr = float32_add(fa, fb, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float32_to_s(fr);
-}
-
-uint64_t helper_subs(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float32 fa, fb, fr;
-
- fa = s_to_float32(a);
- fb = s_to_float32(b);
- fr = float32_sub(fa, fb, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float32_to_s(fr);
-}
-
-uint64_t helper_muls(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float32 fa, fb, fr;
-
- fa = s_to_float32(a);
- fb = s_to_float32(b);
- fr = float32_mul(fa, fb, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float32_to_s(fr);
-}
-
-uint64_t helper_divs(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float32 fa, fb, fr;
-
- fa = s_to_float32(a);
- fb = s_to_float32(b);
- fr = float32_div(fa, fb, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float32_to_s(fr);
-}
-
-uint64_t helper_sqrts(CPUAlphaState *env, uint64_t a)
-{
- float32 fa, fr;
-
- fa = s_to_float32(a);
- fr = float32_sqrt(fa, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float32_to_s(fr);
-}
-
-
-/* T floating (double) */
-static inline float64 t_to_float64(uint64_t a)
-{
- /* Memory format is the same as float64 */
- CPU_DoubleU r;
- r.ll = a;
- return r.d;
-}
-
-static inline uint64_t float64_to_t(float64 fa)
-{
- /* Memory format is the same as float64 */
- CPU_DoubleU r;
- r.d = fa;
- return r.ll;
-}
-
-uint64_t helper_addt(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float64 fa, fb, fr;
-
- fa = t_to_float64(a);
- fb = t_to_float64(b);
- fr = float64_add(fa, fb, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float64_to_t(fr);
-}
-
-uint64_t helper_subt(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float64 fa, fb, fr;
-
- fa = t_to_float64(a);
- fb = t_to_float64(b);
- fr = float64_sub(fa, fb, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float64_to_t(fr);
-}
-
-uint64_t helper_mult(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float64 fa, fb, fr;
-
- fa = t_to_float64(a);
- fb = t_to_float64(b);
- fr = float64_mul(fa, fb, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float64_to_t(fr);
-}
-
-uint64_t helper_divt(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float64 fa, fb, fr;
-
- fa = t_to_float64(a);
- fb = t_to_float64(b);
- fr = float64_div(fa, fb, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float64_to_t(fr);
-}
-
-uint64_t helper_sqrtt(CPUAlphaState *env, uint64_t a)
-{
- float64 fa, fr;
-
- fa = t_to_float64(a);
- fr = float64_sqrt(fa, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float64_to_t(fr);
-}
-
-/* Comparisons */
-uint64_t helper_cmptun(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float64 fa, fb;
- uint64_t ret = 0;
-
- fa = t_to_float64(a);
- fb = t_to_float64(b);
-
- if (float64_unordered_quiet(fa, fb, &FP_STATUS)) {
- ret = 0x4000000000000000ULL;
- }
- env->error_code = soft_to_fpcr_exc(env);
-
- return ret;
-}
-
-uint64_t helper_cmpteq(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float64 fa, fb;
- uint64_t ret = 0;
-
- fa = t_to_float64(a);
- fb = t_to_float64(b);
-
- if (float64_eq_quiet(fa, fb, &FP_STATUS)) {
- ret = 0x4000000000000000ULL;
- }
- env->error_code = soft_to_fpcr_exc(env);
-
- return ret;
-}
-
-uint64_t helper_cmptle(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float64 fa, fb;
- uint64_t ret = 0;
-
- fa = t_to_float64(a);
- fb = t_to_float64(b);
-
- if (float64_le(fa, fb, &FP_STATUS)) {
- ret = 0x4000000000000000ULL;
- }
- env->error_code = soft_to_fpcr_exc(env);
-
- return ret;
-}
-
-uint64_t helper_cmptlt(CPUAlphaState *env, uint64_t a, uint64_t b)
-{
- float64 fa, fb;
- uint64_t ret = 0;
-
- fa = t_to_float64(a);
- fb = t_to_float64(b);
-
- if (float64_lt(fa, fb, &FP_STATUS)) {
- ret = 0x4000000000000000ULL;
- }
- env->error_code = soft_to_fpcr_exc(env);
-
- return ret;
-}
-
-/* Floating point format conversion */
-uint64_t helper_cvtts(CPUAlphaState *env, uint64_t a)
-{
- float64 fa;
- float32 fr;
-
- fa = t_to_float64(a);
- fr = float64_to_float32(fa, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float32_to_s(fr);
-}
-
-uint64_t helper_cvtst(CPUAlphaState *env, uint64_t a)
-{
- float32 fa;
- float64 fr;
-
- fa = s_to_float32(a);
- fr = float32_to_float64(fa, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float64_to_t(fr);
-}
-
-uint64_t helper_cvtqs(CPUAlphaState *env, uint64_t a)
-{
- float32 fr = int64_to_float32(a, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
-
- return float32_to_s(fr);
-}
-
-/* Implement float64 to uint64_t conversion without saturation -- we must
- supply the truncated result. This behaviour is used by the compiler
- to get unsigned conversion for free with the same instruction. */
-
-static uint64_t do_cvttq(CPUAlphaState *env, uint64_t a, int roundmode)
-{
- uint64_t frac, ret = 0;
- uint32_t exp, sign, exc = 0;
- int shift;
-
- sign = (a >> 63);
- exp = (uint32_t)(a >> 52) & 0x7ff;
- frac = a & 0xfffffffffffffull;
-
- if (exp == 0) {
- if (unlikely(frac != 0) && !env->fp_status.flush_inputs_to_zero) {
- goto do_underflow;
- }
- } else if (exp == 0x7ff) {
- exc = FPCR_INV;
- } else {
- /* Restore implicit bit. */
- frac |= 0x10000000000000ull;
-
- shift = exp - 1023 - 52;
- if (shift >= 0) {
- /* In this case the number is so large that we must shift
- the fraction left. There is no rounding to do. */
- if (shift < 64) {
- ret = frac << shift;
- }
- /* Check for overflow. Note the special case of -0x1p63. */
- if (shift >= 11 && a != 0xC3E0000000000000ull) {
- exc = FPCR_IOV | FPCR_INE;
- }
- } else {
- uint64_t round;
-
- /* In this case the number is smaller than the fraction as
- represented by the 52 bit number. Here we must think
- about rounding the result. Handle this by shifting the
- fractional part of the number into the high bits of ROUND.
- This will let us efficiently handle round-to-nearest. */
- shift = -shift;
- if (shift < 63) {
- ret = frac >> shift;
- round = frac << (64 - shift);
- } else {
- /* The exponent is so small we shift out everything.
- Leave a sticky bit for proper rounding below. */
- do_underflow:
- round = 1;
- }
-
- if (round) {
- exc = FPCR_INE;
- switch (roundmode) {
- case float_round_nearest_even:
- if (round == (1ull << 63)) {
- /* Fraction is exactly 0.5; round to even. */
- ret += (ret & 1);
- } else if (round > (1ull << 63)) {
- ret += 1;
- }
- break;
- case float_round_to_zero:
- break;
- case float_round_up:
- ret += 1 - sign;
- break;
- case float_round_down:
- ret += sign;
- break;
- }
- }
- }
- if (sign) {
- ret = -ret;
- }
- }
- env->error_code = exc;
-
- return ret;
-}
-
-uint64_t helper_cvttq(CPUAlphaState *env, uint64_t a)
-{
- return do_cvttq(env, a, FP_STATUS.float_rounding_mode);
-}
-
-uint64_t helper_cvttq_c(CPUAlphaState *env, uint64_t a)
-{
- return do_cvttq(env, a, float_round_to_zero);
-}
-
-uint64_t helper_cvtqt(CPUAlphaState *env, uint64_t a)
-{
- float64 fr = int64_to_float64(a, &FP_STATUS);
- env->error_code = soft_to_fpcr_exc(env);
- return float64_to_t(fr);
-}
-
-uint64_t helper_cvtql(CPUAlphaState *env, uint64_t val)
-{
- uint32_t exc = 0;
- if (val != (int32_t)val) {
- exc = FPCR_IOV | FPCR_INE;
- }
- env->error_code = exc;
-
- return ((val & 0xc0000000) << 32) | ((val & 0x3fffffff) << 29);
-}