aboutsummaryrefslogtreecommitdiff
path: root/qemu-coroutine.h
diff options
context:
space:
mode:
Diffstat (limited to 'qemu-coroutine.h')
-rw-r--r--qemu-coroutine.h95
1 files changed, 95 insertions, 0 deletions
diff --git a/qemu-coroutine.h b/qemu-coroutine.h
new file mode 100644
index 0000000000..08255c7c41
--- /dev/null
+++ b/qemu-coroutine.h
@@ -0,0 +1,95 @@
+/*
+ * QEMU coroutine implementation
+ *
+ * Copyright IBM, Corp. 2011
+ *
+ * Authors:
+ * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
+ *
+ * This work is licensed under the terms of the GNU LGPL, version 2 or later.
+ * See the COPYING.LIB file in the top-level directory.
+ *
+ */
+
+#ifndef QEMU_COROUTINE_H
+#define QEMU_COROUTINE_H
+
+#include <stdbool.h>
+
+/**
+ * Coroutines are a mechanism for stack switching and can be used for
+ * cooperative userspace threading. These functions provide a simple but
+ * useful flavor of coroutines that is suitable for writing sequential code,
+ * rather than callbacks, for operations that need to give up control while
+ * waiting for events to complete.
+ *
+ * These functions are re-entrant and may be used outside the global mutex.
+ */
+
+/**
+ * Mark a function that executes in coroutine context
+ *
+ * Functions that execute in coroutine context cannot be called directly from
+ * normal functions. In the future it would be nice to enable compiler or
+ * static checker support for catching such errors. This annotation might make
+ * it possible and in the meantime it serves as documentation.
+ *
+ * For example:
+ *
+ * static void coroutine_fn foo(void) {
+ * ....
+ * }
+ */
+#define coroutine_fn
+
+typedef struct Coroutine Coroutine;
+
+/**
+ * Coroutine entry point
+ *
+ * When the coroutine is entered for the first time, opaque is passed in as an
+ * argument.
+ *
+ * When this function returns, the coroutine is destroyed automatically and
+ * execution continues in the caller who last entered the coroutine.
+ */
+typedef void coroutine_fn CoroutineEntry(void *opaque);
+
+/**
+ * Create a new coroutine
+ *
+ * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
+ */
+Coroutine *qemu_coroutine_create(CoroutineEntry *entry);
+
+/**
+ * Transfer control to a coroutine
+ *
+ * The opaque argument is passed as the argument to the entry point when
+ * entering the coroutine for the first time. It is subsequently ignored.
+ */
+void qemu_coroutine_enter(Coroutine *coroutine, void *opaque);
+
+/**
+ * Transfer control back to a coroutine's caller
+ *
+ * This function does not return until the coroutine is re-entered using
+ * qemu_coroutine_enter().
+ */
+void coroutine_fn qemu_coroutine_yield(void);
+
+/**
+ * Get the currently executing coroutine
+ */
+Coroutine *coroutine_fn qemu_coroutine_self(void);
+
+/**
+ * Return whether or not currently inside a coroutine
+ *
+ * This can be used to write functions that work both when in coroutine context
+ * and when not in coroutine context. Note that such functions cannot use the
+ * coroutine_fn annotation since they work outside coroutine context.
+ */
+bool qemu_in_coroutine(void);
+
+#endif /* QEMU_COROUTINE_H */