aboutsummaryrefslogtreecommitdiff
path: root/include/exec
diff options
context:
space:
mode:
Diffstat (limited to 'include/exec')
-rw-r--r--include/exec/ram_addr.h189
1 files changed, 165 insertions, 24 deletions
diff --git a/include/exec/ram_addr.h b/include/exec/ram_addr.h
index f2e872d87a..b1413a1286 100644
--- a/include/exec/ram_addr.h
+++ b/include/exec/ram_addr.h
@@ -49,13 +49,43 @@ static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
return (char *)block->host + offset;
}
+/* The dirty memory bitmap is split into fixed-size blocks to allow growth
+ * under RCU. The bitmap for a block can be accessed as follows:
+ *
+ * rcu_read_lock();
+ *
+ * DirtyMemoryBlocks *blocks =
+ * atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
+ *
+ * ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
+ * unsigned long *block = blocks.blocks[idx];
+ * ...access block bitmap...
+ *
+ * rcu_read_unlock();
+ *
+ * Remember to check for the end of the block when accessing a range of
+ * addresses. Move on to the next block if you reach the end.
+ *
+ * Organization into blocks allows dirty memory to grow (but not shrink) under
+ * RCU. When adding new RAMBlocks requires the dirty memory to grow, a new
+ * DirtyMemoryBlocks array is allocated with pointers to existing blocks kept
+ * the same. Other threads can safely access existing blocks while dirty
+ * memory is being grown. When no threads are using the old DirtyMemoryBlocks
+ * anymore it is freed by RCU (but the underlying blocks stay because they are
+ * pointed to from the new DirtyMemoryBlocks).
+ */
+#define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8)
+typedef struct {
+ struct rcu_head rcu;
+ unsigned long *blocks[];
+} DirtyMemoryBlocks;
+
typedef struct RAMList {
QemuMutex mutex;
- /* Protected by the iothread lock. */
- unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
RAMBlock *mru_block;
/* RCU-enabled, writes protected by the ramlist lock. */
QLIST_HEAD(, RAMBlock) blocks;
+ DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM];
uint32_t version;
} RAMList;
extern RAMList ram_list;
@@ -89,30 +119,70 @@ static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
- unsigned long end, page, next;
+ DirtyMemoryBlocks *blocks;
+ unsigned long end, page;
+ bool dirty = false;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
- next = find_next_bit(ram_list.dirty_memory[client], end, page);
- return next < end;
+ rcu_read_lock();
+
+ blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
+
+ while (page < end) {
+ unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
+
+ if (find_next_bit(blocks->blocks[idx], offset, num) < num) {
+ dirty = true;
+ break;
+ }
+
+ page += num;
+ }
+
+ rcu_read_unlock();
+
+ return dirty;
}
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
- unsigned long end, page, next;
+ DirtyMemoryBlocks *blocks;
+ unsigned long end, page;
+ bool dirty = true;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
- next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
- return next >= end;
+ rcu_read_lock();
+
+ blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
+
+ while (page < end) {
+ unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
+
+ if (find_next_zero_bit(blocks->blocks[idx], offset, num) < num) {
+ dirty = false;
+ break;
+ }
+
+ page += num;
+ }
+
+ rcu_read_unlock();
+
+ return dirty;
}
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
@@ -154,16 +224,31 @@ static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
unsigned client)
{
+ unsigned long page, idx, offset;
+ DirtyMemoryBlocks *blocks;
+
assert(client < DIRTY_MEMORY_NUM);
- set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
+
+ page = addr >> TARGET_PAGE_BITS;
+ idx = page / DIRTY_MEMORY_BLOCK_SIZE;
+ offset = page % DIRTY_MEMORY_BLOCK_SIZE;
+
+ rcu_read_lock();
+
+ blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
+
+ set_bit_atomic(offset, blocks->blocks[idx]);
+
+ rcu_read_unlock();
}
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
ram_addr_t length,
uint8_t mask)
{
+ DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
unsigned long end, page;
- unsigned long **d = ram_list.dirty_memory;
+ int i;
if (!mask && !xen_enabled()) {
return;
@@ -171,15 +256,36 @@ static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
- if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
- bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
- }
- if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
- bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
+
+ rcu_read_lock();
+
+ for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
+ blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
}
- if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
- bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
+
+ while (page < end) {
+ unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
+
+ if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
+ bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
+ offset, num);
+ }
+ if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
+ bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
+ offset, num);
+ }
+ if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
+ bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
+ offset, num);
+ }
+
+ page += num;
}
+
+ rcu_read_unlock();
+
xen_modified_memory(start, length);
}
@@ -199,21 +305,41 @@ static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
/* start address is aligned at the start of a word? */
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
(hpratio == 1)) {
+ unsigned long **blocks[DIRTY_MEMORY_NUM];
+ unsigned long idx;
+ unsigned long offset;
long k;
long nr = BITS_TO_LONGS(pages);
+ idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
+ offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
+ DIRTY_MEMORY_BLOCK_SIZE);
+
+ rcu_read_lock();
+
+ for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
+ blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
+ }
+
for (k = 0; k < nr; k++) {
if (bitmap[k]) {
unsigned long temp = leul_to_cpu(bitmap[k]);
- unsigned long **d = ram_list.dirty_memory;
- atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
- atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
+ atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
+ atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
if (tcg_enabled()) {
- atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
+ atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
}
}
+
+ if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
+ offset = 0;
+ idx++;
+ }
}
+
+ rcu_read_unlock();
+
xen_modified_memory(start, pages << TARGET_PAGE_BITS);
} else {
uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
@@ -265,18 +391,33 @@ uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
int k;
int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
- unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
+ unsigned long * const *src;
+ unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
+ unsigned long offset = BIT_WORD((page * BITS_PER_LONG) %
+ DIRTY_MEMORY_BLOCK_SIZE);
+
+ rcu_read_lock();
+
+ src = atomic_rcu_read(
+ &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
for (k = page; k < page + nr; k++) {
- if (src[k]) {
- unsigned long bits = atomic_xchg(&src[k], 0);
+ if (src[idx][offset]) {
+ unsigned long bits = atomic_xchg(&src[idx][offset], 0);
unsigned long new_dirty;
new_dirty = ~dest[k];
dest[k] |= bits;
new_dirty &= bits;
num_dirty += ctpopl(new_dirty);
}
+
+ if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
+ offset = 0;
+ idx++;
+ }
}
+
+ rcu_read_unlock();
} else {
for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
if (cpu_physical_memory_test_and_clear_dirty(