diff options
Diffstat (limited to 'include/block/graph-lock.h')
-rw-r--r-- | include/block/graph-lock.h | 280 |
1 files changed, 280 insertions, 0 deletions
diff --git a/include/block/graph-lock.h b/include/block/graph-lock.h new file mode 100644 index 0000000000..4c92cd8edf --- /dev/null +++ b/include/block/graph-lock.h @@ -0,0 +1,280 @@ +/* + * Graph lock: rwlock to protect block layer graph manipulations (add/remove + * edges and nodes) + * + * Copyright (c) 2022 Red Hat + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#ifndef GRAPH_LOCK_H +#define GRAPH_LOCK_H + +#include "qemu/osdep.h" +#include "qemu/clang-tsa.h" + +#include "qemu/coroutine.h" + +/** + * Graph Lock API + * This API provides a rwlock used to protect block layer + * graph modifications like edge (BdrvChild) and node (BlockDriverState) + * addition and removal. + * Currently we have 1 writer only, the Main loop, and many + * readers, mostly coroutines running in other AioContext thus other threads. + * + * We distinguish between writer (main loop, under BQL) that modifies the + * graph, and readers (all other coroutines running in various AioContext), + * that go through the graph edges, reading + * BlockDriverState ->parents and->children. + * + * The writer (main loop) has an "exclusive" access, so it first waits for + * current read to finish, and then prevents incoming ones from + * entering while it has the exclusive access. + * + * The readers (coroutines in multiple AioContext) are free to + * access the graph as long the writer is not modifying the graph. + * In case it is, they go in a CoQueue and sleep until the writer + * is done. + * + * If a coroutine changes AioContext, the counter in the original and new + * AioContext are left intact, since the writer does not care where is the + * reader, but only if there is one. + * As a result, some AioContexts might have a negative reader count, to + * balance the positive count of the AioContext that took the lock. + * This also means that when an AioContext is deleted it may have a nonzero + * reader count. In that case we transfer the count to a global shared counter + * so that the writer is always aware of all readers. + */ +typedef struct BdrvGraphRWlock BdrvGraphRWlock; + +/* Dummy lock object to use for Thread Safety Analysis (TSA) */ +typedef struct TSA_CAPABILITY("mutex") BdrvGraphLock { +} BdrvGraphLock; + +extern BdrvGraphLock graph_lock; + +/* + * clang doesn't check consistency in locking annotations between forward + * declarations and the function definition. Having the annotation on the + * definition, but not the declaration in a header file, may give the reader + * a false sense of security because the condition actually remains unchecked + * for callers in other source files. + * + * Therefore, as a convention, for public functions, GRAPH_RDLOCK and + * GRAPH_WRLOCK annotations should be present only in the header file. + */ +#define GRAPH_WRLOCK TSA_REQUIRES(graph_lock) +#define GRAPH_RDLOCK TSA_REQUIRES_SHARED(graph_lock) + +/* + * TSA annotations are not part of function types, so checks are defeated when + * using a function pointer. As a workaround, annotate function pointers with + * this macro that will require that the lock is at least taken while reading + * the pointer. In most cases this is equivalent to actually protecting the + * function call. + */ +#define GRAPH_RDLOCK_PTR TSA_GUARDED_BY(graph_lock) +#define GRAPH_WRLOCK_PTR TSA_GUARDED_BY(graph_lock) + +/* + * register_aiocontext: + * Add AioContext @ctx to the list of AioContext. + * This list is used to obtain the total number of readers + * currently running the graph. + */ +void register_aiocontext(AioContext *ctx); + +/* + * unregister_aiocontext: + * Removes AioContext @ctx to the list of AioContext. + */ +void unregister_aiocontext(AioContext *ctx); + +/* + * bdrv_graph_wrlock: + * Start an exclusive write operation to modify the graph. This means we are + * adding or removing an edge or a node in the block layer graph. Nobody else + * is allowed to access the graph. + * + * Must only be called from outside bdrv_graph_co_rdlock. + * + * The wrlock can only be taken from the main loop, with BQL held, as only the + * main loop is allowed to modify the graph. + * + * This function polls. Callers must not hold the lock of any AioContext other + * than the current one. + */ +void bdrv_graph_wrlock(void) TSA_ACQUIRE(graph_lock) TSA_NO_TSA; + +/* + * bdrv_graph_wrunlock: + * Write finished, reset global has_writer to 0 and restart + * all readers that are waiting. + */ +void bdrv_graph_wrunlock(void) TSA_RELEASE(graph_lock) TSA_NO_TSA; + +/* + * bdrv_graph_co_rdlock: + * Read the bs graph. This usually means traversing all nodes in + * the graph, therefore it can't happen while another thread is + * modifying it. + * Increases the reader counter of the current aiocontext, + * and if has_writer is set, it means that the writer is modifying + * the graph, therefore wait in a coroutine queue. + * The writer will then wake this coroutine once it is done. + * + * This lock should be taken from Iothreads (IO_CODE() class of functions) + * because it signals the writer that there are some + * readers currently running, or waits until the current + * write is finished before continuing. + * Calling this function from the Main Loop with BQL held + * is not necessary, since the Main Loop itself is the only + * writer, thus won't be able to read and write at the same time. + * The only exception to that is when we can't take the lock in the + * function/coroutine itself, and need to delegate the caller (usually main + * loop) to take it and wait that the coroutine ends, so that + * we always signal that a reader is running. + */ +void coroutine_fn TSA_ACQUIRE_SHARED(graph_lock) TSA_NO_TSA +bdrv_graph_co_rdlock(void); + +/* + * bdrv_graph_rdunlock: + * Read terminated, decrease the count of readers in the current aiocontext. + * If the writer is waiting for reads to finish (has_writer == 1), signal + * the writer that we are done via aio_wait_kick() to let it continue. + */ +void coroutine_fn TSA_RELEASE_SHARED(graph_lock) TSA_NO_TSA +bdrv_graph_co_rdunlock(void); + +/* + * bdrv_graph_rd{un}lock_main_loop: + * Just a placeholder to mark where the graph rdlock should be taken + * in the main loop. It is just asserting that we are not + * in a coroutine and in GLOBAL_STATE_CODE. + */ +void TSA_ACQUIRE_SHARED(graph_lock) TSA_NO_TSA +bdrv_graph_rdlock_main_loop(void); + +void TSA_RELEASE_SHARED(graph_lock) TSA_NO_TSA +bdrv_graph_rdunlock_main_loop(void); + +/* + * assert_bdrv_graph_readable: + * Make sure that the reader is either the main loop, + * or there is at least a reader helding the rdlock. + * In this way an incoming writer is aware of the read and waits. + */ +void GRAPH_RDLOCK assert_bdrv_graph_readable(void); + +/* + * assert_bdrv_graph_writable: + * Make sure that the writer is the main loop and has set @has_writer, + * so that incoming readers will pause. + */ +void GRAPH_WRLOCK assert_bdrv_graph_writable(void); + +/* + * Calling this function tells TSA that we know that the lock is effectively + * taken even though we cannot prove it (yet) with GRAPH_RDLOCK. This can be + * useful in intermediate stages of a conversion to using the GRAPH_RDLOCK + * macro. + */ +static inline void TSA_ASSERT_SHARED(graph_lock) TSA_NO_TSA +assume_graph_lock(void) +{ +} + +typedef struct GraphLockable { } GraphLockable; + +/* + * In C, compound literals have the lifetime of an automatic variable. + * In C++ it would be different, but then C++ wouldn't need QemuLockable + * either... + */ +#define GML_OBJ_() (&(GraphLockable) { }) + +/* + * This is not marked as TSA_ACQUIRE() because TSA doesn't understand the + * cleanup attribute and would therefore complain that the graph is never + * unlocked. TSA_ASSERT() makes sure that the following calls know that we + * hold the lock while unlocking is left unchecked. + */ +static inline GraphLockable * TSA_ASSERT(graph_lock) TSA_NO_TSA +graph_lockable_auto_lock(GraphLockable *x) +{ + bdrv_graph_co_rdlock(); + return x; +} + +static inline void TSA_NO_TSA +graph_lockable_auto_unlock(GraphLockable *x) +{ + bdrv_graph_co_rdunlock(); +} + +G_DEFINE_AUTOPTR_CLEANUP_FUNC(GraphLockable, graph_lockable_auto_unlock) + +#define WITH_GRAPH_RDLOCK_GUARD_(var) \ + for (g_autoptr(GraphLockable) var = graph_lockable_auto_lock(GML_OBJ_()); \ + var; \ + graph_lockable_auto_unlock(var), var = NULL) + +#define WITH_GRAPH_RDLOCK_GUARD() \ + WITH_GRAPH_RDLOCK_GUARD_(glue(graph_lockable_auto, __COUNTER__)) + +#define GRAPH_RDLOCK_GUARD(x) \ + g_autoptr(GraphLockable) \ + glue(graph_lockable_auto, __COUNTER__) G_GNUC_UNUSED = \ + graph_lockable_auto_lock(GML_OBJ_()) + + +typedef struct GraphLockableMainloop { } GraphLockableMainloop; + +/* + * In C, compound literals have the lifetime of an automatic variable. + * In C++ it would be different, but then C++ wouldn't need QemuLockable + * either... + */ +#define GMLML_OBJ_() (&(GraphLockableMainloop) { }) + +/* + * This is not marked as TSA_ACQUIRE() because TSA doesn't understand the + * cleanup attribute and would therefore complain that the graph is never + * unlocked. TSA_ASSERT() makes sure that the following calls know that we + * hold the lock while unlocking is left unchecked. + */ +static inline GraphLockableMainloop * TSA_ASSERT(graph_lock) TSA_NO_TSA +graph_lockable_auto_lock_mainloop(GraphLockableMainloop *x) +{ + bdrv_graph_rdlock_main_loop(); + return x; +} + +static inline void TSA_NO_TSA +graph_lockable_auto_unlock_mainloop(GraphLockableMainloop *x) +{ + bdrv_graph_rdunlock_main_loop(); +} + +G_DEFINE_AUTOPTR_CLEANUP_FUNC(GraphLockableMainloop, + graph_lockable_auto_unlock_mainloop) + +#define GRAPH_RDLOCK_GUARD_MAINLOOP(x) \ + g_autoptr(GraphLockableMainloop) \ + glue(graph_lockable_auto, __COUNTER__) G_GNUC_UNUSED = \ + graph_lockable_auto_lock_mainloop(GMLML_OBJ_()) + +#endif /* GRAPH_LOCK_H */ + |