aboutsummaryrefslogtreecommitdiff
path: root/hw/timer
diff options
context:
space:
mode:
Diffstat (limited to 'hw/timer')
-rw-r--r--hw/timer/Kconfig6
-rw-r--r--hw/timer/cmsdk-apb-dualtimer.c5
-rw-r--r--hw/timer/cmsdk-apb-timer.c4
-rw-r--r--hw/timer/meson.build2
-rw-r--r--hw/timer/npcm7xx_timer.c6
-rw-r--r--hw/timer/renesas_tmr.c33
-rw-r--r--hw/timer/sse-counter.c474
-rw-r--r--hw/timer/sse-timer.c470
-rw-r--r--hw/timer/trace-events12
9 files changed, 994 insertions, 18 deletions
diff --git a/hw/timer/Kconfig b/hw/timer/Kconfig
index 18936ef55b..bac2511715 100644
--- a/hw/timer/Kconfig
+++ b/hw/timer/Kconfig
@@ -46,5 +46,11 @@ config RENESAS_TMR
config RENESAS_CMT
bool
+config SSE_COUNTER
+ bool
+
+config SSE_TIMER
+ bool
+
config AVR_TIMER16
bool
diff --git a/hw/timer/cmsdk-apb-dualtimer.c b/hw/timer/cmsdk-apb-dualtimer.c
index ef49f5852d..d4a509c798 100644
--- a/hw/timer/cmsdk-apb-dualtimer.c
+++ b/hw/timer/cmsdk-apb-dualtimer.c
@@ -449,7 +449,7 @@ static void cmsdk_apb_dualtimer_reset(DeviceState *dev)
s->timeritop = 0;
}
-static void cmsdk_apb_dualtimer_clk_update(void *opaque)
+static void cmsdk_apb_dualtimer_clk_update(void *opaque, ClockEvent event)
{
CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(opaque);
int i;
@@ -478,7 +478,8 @@ static void cmsdk_apb_dualtimer_init(Object *obj)
sysbus_init_irq(sbd, &s->timermod[i].timerint);
}
s->timclk = qdev_init_clock_in(DEVICE(s), "TIMCLK",
- cmsdk_apb_dualtimer_clk_update, s);
+ cmsdk_apb_dualtimer_clk_update, s,
+ ClockUpdate);
}
static void cmsdk_apb_dualtimer_realize(DeviceState *dev, Error **errp)
diff --git a/hw/timer/cmsdk-apb-timer.c b/hw/timer/cmsdk-apb-timer.c
index ee51ce3369..68aa1a7636 100644
--- a/hw/timer/cmsdk-apb-timer.c
+++ b/hw/timer/cmsdk-apb-timer.c
@@ -204,7 +204,7 @@ static void cmsdk_apb_timer_reset(DeviceState *dev)
ptimer_transaction_commit(s->timer);
}
-static void cmsdk_apb_timer_clk_update(void *opaque)
+static void cmsdk_apb_timer_clk_update(void *opaque, ClockEvent event)
{
CMSDKAPBTimer *s = CMSDK_APB_TIMER(opaque);
@@ -223,7 +223,7 @@ static void cmsdk_apb_timer_init(Object *obj)
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->timerint);
s->pclk = qdev_init_clock_in(DEVICE(s), "pclk",
- cmsdk_apb_timer_clk_update, s);
+ cmsdk_apb_timer_clk_update, s, ClockUpdate);
}
static void cmsdk_apb_timer_realize(DeviceState *dev, Error **errp)
diff --git a/hw/timer/meson.build b/hw/timer/meson.build
index 26c2701fd7..a429792b08 100644
--- a/hw/timer/meson.build
+++ b/hw/timer/meson.build
@@ -32,6 +32,8 @@ softmmu_ss.add(when: 'CONFIG_PXA2XX', if_true: files('pxa2xx_timer.c'))
softmmu_ss.add(when: 'CONFIG_RASPI', if_true: files('bcm2835_systmr.c'))
softmmu_ss.add(when: 'CONFIG_SH_TIMER', if_true: files('sh_timer.c'))
softmmu_ss.add(when: 'CONFIG_SLAVIO', if_true: files('slavio_timer.c'))
+softmmu_ss.add(when: 'CONFIG_SSE_COUNTER', if_true: files('sse-counter.c'))
+softmmu_ss.add(when: 'CONFIG_SSE_TIMER', if_true: files('sse-timer.c'))
softmmu_ss.add(when: 'CONFIG_STM32F2XX_TIMER', if_true: files('stm32f2xx_timer.c'))
softmmu_ss.add(when: 'CONFIG_XILINX', if_true: files('xilinx_timer.c'))
diff --git a/hw/timer/npcm7xx_timer.c b/hw/timer/npcm7xx_timer.c
index 36e2c07db2..32f5e021f8 100644
--- a/hw/timer/npcm7xx_timer.c
+++ b/hw/timer/npcm7xx_timer.c
@@ -138,8 +138,8 @@ static int64_t npcm7xx_timer_count_to_ns(NPCM7xxTimer *t, uint32_t count)
/* Convert a time interval in nanoseconds to a timer cycle count. */
static uint32_t npcm7xx_timer_ns_to_count(NPCM7xxTimer *t, int64_t ns)
{
- return ns / clock_ticks_to_ns(t->ctrl->clock,
- npcm7xx_tcsr_prescaler(t->tcsr));
+ return clock_ns_to_ticks(t->ctrl->clock, ns) /
+ npcm7xx_tcsr_prescaler(t->tcsr);
}
static uint32_t npcm7xx_watchdog_timer_prescaler(const NPCM7xxWatchdogTimer *t)
@@ -627,7 +627,7 @@ static void npcm7xx_timer_init(Object *obj)
sysbus_init_mmio(sbd, &s->iomem);
qdev_init_gpio_out_named(dev, &w->reset_signal,
NPCM7XX_WATCHDOG_RESET_GPIO_OUT, 1);
- s->clock = qdev_init_clock_in(dev, "clock", NULL, NULL);
+ s->clock = qdev_init_clock_in(dev, "clock", NULL, NULL, 0);
}
static const VMStateDescription vmstate_npcm7xx_base_timer = {
diff --git a/hw/timer/renesas_tmr.c b/hw/timer/renesas_tmr.c
index e03a8155b2..eed39917fe 100644
--- a/hw/timer/renesas_tmr.c
+++ b/hw/timer/renesas_tmr.c
@@ -46,8 +46,10 @@ REG8(TCCR, 10)
FIELD(TCCR, CSS, 3, 2)
FIELD(TCCR, TMRIS, 7, 1)
-#define INTERNAL 0x01
-#define CASCADING 0x03
+#define CSS_EXTERNAL 0x00
+#define CSS_INTERNAL 0x01
+#define CSS_INVALID 0x02
+#define CSS_CASCADING 0x03
#define CCLR_A 0x01
#define CCLR_B 0x02
@@ -72,7 +74,7 @@ static void update_events(RTMRState *tmr, int ch)
/* event not happened */
return ;
}
- if (FIELD_EX8(tmr->tccr[0], TCCR, CSS) == CASCADING) {
+ if (FIELD_EX8(tmr->tccr[0], TCCR, CSS) == CSS_CASCADING) {
/* cascading mode */
if (ch == 1) {
tmr->next[ch] = none;
@@ -130,23 +132,32 @@ static uint16_t read_tcnt(RTMRState *tmr, unsigned size, int ch)
if (delta > 0) {
tmr->tick = now;
- if (FIELD_EX8(tmr->tccr[1], TCCR, CSS) == INTERNAL) {
+ switch (FIELD_EX8(tmr->tccr[1], TCCR, CSS)) {
+ case CSS_INTERNAL:
/* timer1 count update */
elapsed = elapsed_time(tmr, 1, delta);
if (elapsed >= 0x100) {
ovf = elapsed >> 8;
}
tcnt[1] = tmr->tcnt[1] + (elapsed & 0xff);
+ break;
+ case CSS_INVALID: /* guest error to have set this */
+ case CSS_EXTERNAL: /* QEMU doesn't implement these */
+ case CSS_CASCADING:
+ tcnt[1] = tmr->tcnt[1];
+ break;
}
switch (FIELD_EX8(tmr->tccr[0], TCCR, CSS)) {
- case INTERNAL:
+ case CSS_INTERNAL:
elapsed = elapsed_time(tmr, 0, delta);
tcnt[0] = tmr->tcnt[0] + elapsed;
break;
- case CASCADING:
- if (ovf > 0) {
- tcnt[0] = tmr->tcnt[0] + ovf;
- }
+ case CSS_CASCADING:
+ tcnt[0] = tmr->tcnt[0] + ovf;
+ break;
+ case CSS_INVALID: /* guest error to have set this */
+ case CSS_EXTERNAL: /* QEMU doesn't implement this */
+ tcnt[0] = tmr->tcnt[0];
break;
}
} else {
@@ -330,7 +341,7 @@ static uint16_t issue_event(RTMRState *tmr, int ch, int sz,
qemu_irq_pulse(tmr->cmia[ch]);
}
if (sz == 8 && ch == 0 &&
- FIELD_EX8(tmr->tccr[1], TCCR, CSS) == CASCADING) {
+ FIELD_EX8(tmr->tccr[1], TCCR, CSS) == CSS_CASCADING) {
tmr->tcnt[1]++;
timer_events(tmr, 1);
}
@@ -362,7 +373,7 @@ static void timer_events(RTMRState *tmr, int ch)
uint16_t tcnt;
tmr->tcnt[ch] = read_tcnt(tmr, 1, ch);
- if (FIELD_EX8(tmr->tccr[0], TCCR, CSS) != CASCADING) {
+ if (FIELD_EX8(tmr->tccr[0], TCCR, CSS) != CSS_CASCADING) {
tmr->tcnt[ch] = issue_event(tmr, ch, 8,
tmr->tcnt[ch],
tmr->tcora[ch],
diff --git a/hw/timer/sse-counter.c b/hw/timer/sse-counter.c
new file mode 100644
index 0000000000..0384051f15
--- /dev/null
+++ b/hw/timer/sse-counter.c
@@ -0,0 +1,474 @@
+/*
+ * Arm SSE Subsystem System Counter
+ *
+ * Copyright (c) 2020 Linaro Limited
+ * Written by Peter Maydell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 or
+ * (at your option) any later version.
+ */
+
+/*
+ * This is a model of the "System counter" which is documented in
+ * the Arm SSE-123 Example Subsystem Technical Reference Manual:
+ * https://developer.arm.com/documentation/101370/latest/
+ *
+ * The system counter is a non-stop 64-bit up-counter. It provides
+ * this count value to other devices like the SSE system timer,
+ * which are driven by this system timestamp rather than directly
+ * from a clock. Internally to the counter the count is actually
+ * 88-bit precision (64.24 fixed point), with a programmable scale factor.
+ *
+ * The hardware has the optional feature that it supports dynamic
+ * clock switching, where two clock inputs are connected, and which
+ * one is used is selected via a CLKSEL input signal. Since the
+ * users of this device in QEMU don't use this feature, we only model
+ * the HWCLKSW=0 configuration.
+ */
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "qemu/timer.h"
+#include "qapi/error.h"
+#include "trace.h"
+#include "hw/timer/sse-counter.h"
+#include "hw/sysbus.h"
+#include "hw/irq.h"
+#include "hw/registerfields.h"
+#include "hw/clock.h"
+#include "hw/qdev-clock.h"
+#include "migration/vmstate.h"
+
+/* Registers in the control frame */
+REG32(CNTCR, 0x0)
+ FIELD(CNTCR, EN, 0, 1)
+ FIELD(CNTCR, HDBG, 1, 1)
+ FIELD(CNTCR, SCEN, 2, 1)
+ FIELD(CNTCR, INTRMASK, 3, 1)
+ FIELD(CNTCR, PSLVERRDIS, 4, 1)
+ FIELD(CNTCR, INTRCLR, 5, 1)
+/*
+ * Although CNTCR defines interrupt-related bits, the counter doesn't
+ * appear to actually have an interrupt output. So INTRCLR is
+ * effectively a RAZ/WI bit, as are the reserved bits [31:6].
+ */
+#define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
+ R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
+ R_CNTCR_PSLVERRDIS_MASK)
+REG32(CNTSR, 0x4)
+REG32(CNTCV_LO, 0x8)
+REG32(CNTCV_HI, 0xc)
+REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
+REG32(CNTID, 0x1c)
+ FIELD(CNTID, CNTSC, 0, 4)
+ FIELD(CNTID, CNTCS, 16, 1)
+ FIELD(CNTID, CNTSELCLK, 17, 2)
+ FIELD(CNTID, CNTSCR_OVR, 19, 1)
+REG32(CNTSCR0, 0xd0)
+REG32(CNTSCR1, 0xd4)
+
+/* Registers in the status frame */
+REG32(STATUS_CNTCV_LO, 0x0)
+REG32(STATUS_CNTCV_HI, 0x4)
+
+/* Standard ID registers, present in both frames */
+REG32(PID4, 0xFD0)
+REG32(PID5, 0xFD4)
+REG32(PID6, 0xFD8)
+REG32(PID7, 0xFDC)
+REG32(PID0, 0xFE0)
+REG32(PID1, 0xFE4)
+REG32(PID2, 0xFE8)
+REG32(PID3, 0xFEC)
+REG32(CID0, 0xFF0)
+REG32(CID1, 0xFF4)
+REG32(CID2, 0xFF8)
+REG32(CID3, 0xFFC)
+
+/* PID/CID values */
+static const int control_id[] = {
+ 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
+ 0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
+ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
+};
+
+static const int status_id[] = {
+ 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
+ 0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
+ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
+};
+
+static void sse_counter_notify_users(SSECounter *s)
+{
+ /*
+ * Notify users of the count timestamp that they may
+ * need to recalculate.
+ */
+ notifier_list_notify(&s->notifier_list, NULL);
+}
+
+static bool sse_counter_enabled(SSECounter *s)
+{
+ return (s->cntcr & R_CNTCR_EN_MASK) != 0;
+}
+
+uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
+{
+ if (!sse_counter_enabled(s)) {
+ return UINT64_MAX;
+ }
+
+ tick -= s->ticks_then;
+
+ if (s->cntcr & R_CNTCR_SCEN_MASK) {
+ /* Adjust the tick count to account for the scale factor */
+ tick = muldiv64(tick, 0x01000000, s->cntscr0);
+ }
+
+ return s->ns_then + clock_ticks_to_ns(s->clk, tick);
+}
+
+void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
+{
+ /*
+ * For the moment we assume that both we and the devices
+ * which consume us last for the life of the simulation,
+ * and so there is no mechanism for removing a notifier.
+ */
+ notifier_list_add(&s->notifier_list, notifier);
+}
+
+uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
+{
+ /* Return the CNTCV value for a particular timestamp (clock ns value). */
+ uint64_t ticks;
+
+ if (!sse_counter_enabled(s)) {
+ /* Counter is disabled and does not increment */
+ return s->ticks_then;
+ }
+
+ ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
+ if (s->cntcr & R_CNTCR_SCEN_MASK) {
+ /*
+ * Scaling is enabled. The CNTSCR value is the amount added to
+ * the underlying 88-bit counter for every tick of the
+ * underlying clock; CNTCV is the top 64 bits of that full
+ * 88-bit value. Multiplying the tick count by CNTSCR tells us
+ * how much the full 88-bit counter has moved on; we then
+ * divide that by 0x01000000 to find out how much the 64-bit
+ * visible portion has advanced. muldiv64() gives us the
+ * necessary at-least-88-bit precision for the intermediate
+ * result.
+ */
+ ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
+ }
+ return s->ticks_then + ticks;
+}
+
+static uint64_t sse_cntcv(SSECounter *s)
+{
+ /* Return the CNTCV value for the current time */
+ return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
+}
+
+static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
+{
+ /*
+ * Write one 32-bit half of the counter value; startbit is the
+ * bit position of this half in the 64-bit word, either 0 or 32.
+ */
+ uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ uint64_t cntcv = sse_counter_for_timestamp(s, now);
+
+ cntcv = deposit64(cntcv, startbit, 32, value);
+ s->ticks_then = cntcv;
+ s->ns_then = now;
+ sse_counter_notify_users(s);
+}
+
+static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
+ unsigned size)
+{
+ SSECounter *s = SSE_COUNTER(opaque);
+ uint64_t r;
+
+ switch (offset) {
+ case A_CNTCR:
+ r = s->cntcr;
+ break;
+ case A_CNTSR:
+ /*
+ * The only bit here is DBGH, indicating that the counter has been
+ * halted via the Halt-on-Debug signal. We don't implement halting
+ * debug, so the whole register always reads as zero.
+ */
+ r = 0;
+ break;
+ case A_CNTCV_LO:
+ r = extract64(sse_cntcv(s), 0, 32);
+ break;
+ case A_CNTCV_HI:
+ r = extract64(sse_cntcv(s), 32, 32);
+ break;
+ case A_CNTID:
+ /*
+ * For our implementation:
+ * - CNTSCR can only be written when CNTCR.EN == 0
+ * - HWCLKSW=0, so selected clock is always CLK0
+ * - counter scaling is implemented
+ */
+ r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
+ break;
+ case A_CNTSCR:
+ case A_CNTSCR0:
+ r = s->cntscr0;
+ break;
+ case A_CNTSCR1:
+ /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
+ r = 0;
+ break;
+ case A_PID4 ... A_CID3:
+ r = control_id[(offset - A_PID4) / 4];
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE System Counter control frame read: bad offset 0x%x",
+ (unsigned)offset);
+ r = 0;
+ break;
+ }
+
+ trace_sse_counter_control_read(offset, r, size);
+ return r;
+}
+
+static void sse_counter_control_write(void *opaque, hwaddr offset,
+ uint64_t value, unsigned size)
+{
+ SSECounter *s = SSE_COUNTER(opaque);
+
+ trace_sse_counter_control_write(offset, value, size);
+
+ switch (offset) {
+ case A_CNTCR:
+ /*
+ * Although CNTCR defines interrupt-related bits, the counter doesn't
+ * appear to actually have an interrupt output. So INTRCLR is
+ * effectively a RAZ/WI bit, as are the reserved bits [31:6].
+ * The documentation does not explicitly say so, but we assume
+ * that changing the scale factor while the counter is enabled
+ * by toggling CNTCR.SCEN has the same behaviour (making the counter
+ * value UNKNOWN) as changing it by writing to CNTSCR, and so we
+ * don't need to try to recalculate for that case.
+ */
+ value &= CNTCR_VALID_MASK;
+ if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
+ /*
+ * Whether the counter is being enabled or disabled, the
+ * required action is the same: sync the (ns_then, ticks_then)
+ * tuple.
+ */
+ uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ s->ticks_then = sse_counter_for_timestamp(s, now);
+ s->ns_then = now;
+ sse_counter_notify_users(s);
+ }
+ s->cntcr = value;
+ break;
+ case A_CNTCV_LO:
+ sse_write_cntcv(s, value, 0);
+ break;
+ case A_CNTCV_HI:
+ sse_write_cntcv(s, value, 32);
+ break;
+ case A_CNTSCR:
+ case A_CNTSCR0:
+ /*
+ * If the scale registers are changed when the counter is enabled,
+ * the count value becomes UNKNOWN. So we don't try to recalculate
+ * anything here but only do it on a write to CNTCR.EN.
+ */
+ s->cntscr0 = value;
+ break;
+ case A_CNTSCR1:
+ /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
+ break;
+ case A_CNTSR:
+ case A_CNTID:
+ case A_PID4 ... A_CID3:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE System Counter control frame: write to RO offset 0x%x\n",
+ (unsigned)offset);
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE System Counter control frame: write to bad offset 0x%x\n",
+ (unsigned)offset);
+ break;
+ }
+}
+
+static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
+ unsigned size)
+{
+ SSECounter *s = SSE_COUNTER(opaque);
+ uint64_t r;
+
+ switch (offset) {
+ case A_STATUS_CNTCV_LO:
+ r = extract64(sse_cntcv(s), 0, 32);
+ break;
+ case A_STATUS_CNTCV_HI:
+ r = extract64(sse_cntcv(s), 32, 32);
+ break;
+ case A_PID4 ... A_CID3:
+ r = status_id[(offset - A_PID4) / 4];
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE System Counter status frame read: bad offset 0x%x",
+ (unsigned)offset);
+ r = 0;
+ break;
+ }
+
+ trace_sse_counter_status_read(offset, r, size);
+ return r;
+}
+
+static void sse_counter_status_write(void *opaque, hwaddr offset,
+ uint64_t value, unsigned size)
+{
+ trace_sse_counter_status_write(offset, value, size);
+
+ switch (offset) {
+ case A_STATUS_CNTCV_LO:
+ case A_STATUS_CNTCV_HI:
+ case A_PID4 ... A_CID3:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE System Counter status frame: write to RO offset 0x%x\n",
+ (unsigned)offset);
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE System Counter status frame: write to bad offset 0x%x\n",
+ (unsigned)offset);
+ break;
+ }
+}
+
+static const MemoryRegionOps sse_counter_control_ops = {
+ .read = sse_counter_control_read,
+ .write = sse_counter_control_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .valid.min_access_size = 4,
+ .valid.max_access_size = 4,
+};
+
+static const MemoryRegionOps sse_counter_status_ops = {
+ .read = sse_counter_status_read,
+ .write = sse_counter_status_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .valid.min_access_size = 4,
+ .valid.max_access_size = 4,
+};
+
+static void sse_counter_reset(DeviceState *dev)
+{
+ SSECounter *s = SSE_COUNTER(dev);
+
+ trace_sse_counter_reset();
+
+ s->cntcr = 0;
+ s->cntscr0 = 0x01000000;
+ s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ s->ticks_then = 0;
+}
+
+static void sse_clk_callback(void *opaque, ClockEvent event)
+{
+ SSECounter *s = SSE_COUNTER(opaque);
+ uint64_t now;
+
+ switch (event) {
+ case ClockPreUpdate:
+ /*
+ * Before the clock period updates, set (ticks_then, ns_then)
+ * to the current time and tick count (as calculated with
+ * the old clock period).
+ */
+ if (sse_counter_enabled(s)) {
+ now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ s->ticks_then = sse_counter_for_timestamp(s, now);
+ s->ns_then = now;
+ }
+ break;
+ case ClockUpdate:
+ sse_counter_notify_users(s);
+ break;
+ default:
+ break;
+ }
+}
+
+static void sse_counter_init(Object *obj)
+{
+ SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
+ SSECounter *s = SSE_COUNTER(obj);
+
+ notifier_list_init(&s->notifier_list);
+
+ s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
+ ClockPreUpdate | ClockUpdate);
+ memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
+ s, "sse-counter-control", 0x1000);
+ memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
+ s, "sse-counter-status", 0x1000);
+ sysbus_init_mmio(sbd, &s->control_mr);
+ sysbus_init_mmio(sbd, &s->status_mr);
+}
+
+static void sse_counter_realize(DeviceState *dev, Error **errp)
+{
+ SSECounter *s = SSE_COUNTER(dev);
+
+ if (!clock_has_source(s->clk)) {
+ error_setg(errp, "SSE system counter: CLK must be connected");
+ return;
+ }
+}
+
+static const VMStateDescription sse_counter_vmstate = {
+ .name = "sse-counter",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_CLOCK(clk, SSECounter),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static void sse_counter_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+
+ dc->realize = sse_counter_realize;
+ dc->vmsd = &sse_counter_vmstate;
+ dc->reset = sse_counter_reset;
+}
+
+static const TypeInfo sse_counter_info = {
+ .name = TYPE_SSE_COUNTER,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(SSECounter),
+ .instance_init = sse_counter_init,
+ .class_init = sse_counter_class_init,
+};
+
+static void sse_counter_register_types(void)
+{
+ type_register_static(&sse_counter_info);
+}
+
+type_init(sse_counter_register_types);
diff --git a/hw/timer/sse-timer.c b/hw/timer/sse-timer.c
new file mode 100644
index 0000000000..8dbe6ac651
--- /dev/null
+++ b/hw/timer/sse-timer.c
@@ -0,0 +1,470 @@
+/*
+ * Arm SSE Subsystem System Timer
+ *
+ * Copyright (c) 2020 Linaro Limited
+ * Written by Peter Maydell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 or
+ * (at your option) any later version.
+ */
+
+/*
+ * This is a model of the "System timer" which is documented in
+ * the Arm SSE-123 Example Subsystem Technical Reference Manual:
+ * https://developer.arm.com/documentation/101370/latest/
+ *
+ * The timer is based around a simple 64-bit incrementing counter
+ * (readable from CNTPCT_HI/LO). The timer fires when
+ * Counter - CompareValue >= 0.
+ * The CompareValue is guest-writable, via CNTP_CVAL_HI/LO.
+ * CNTP_TVAL is an alternative view of the CompareValue defined by
+ * TimerValue = CompareValue[31:0] - Counter[31:0]
+ * which can be both read and written.
+ * This part is similar to the generic timer in an Arm A-class CPU.
+ *
+ * The timer also has a separate auto-increment timer. When this
+ * timer is enabled, then the AutoIncrValue is set to:
+ * AutoIncrValue = Reload + Counter
+ * and this timer fires when
+ * Counter - AutoIncrValue >= 0
+ * at which point, an interrupt is generated and the new AutoIncrValue
+ * is calculated.
+ * When the auto-increment timer is enabled, interrupt generation
+ * via the compare/timervalue registers is disabled.
+ */
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "qemu/timer.h"
+#include "qapi/error.h"
+#include "trace.h"
+#include "hw/timer/sse-timer.h"
+#include "hw/timer/sse-counter.h"
+#include "hw/sysbus.h"
+#include "hw/irq.h"
+#include "hw/registerfields.h"
+#include "hw/clock.h"
+#include "hw/qdev-clock.h"
+#include "hw/qdev-properties.h"
+#include "migration/vmstate.h"
+
+REG32(CNTPCT_LO, 0x0)
+REG32(CNTPCT_HI, 0x4)
+REG32(CNTFRQ, 0x10)
+REG32(CNTP_CVAL_LO, 0x20)
+REG32(CNTP_CVAL_HI, 0x24)
+REG32(CNTP_TVAL, 0x28)
+REG32(CNTP_CTL, 0x2c)
+ FIELD(CNTP_CTL, ENABLE, 0, 1)
+ FIELD(CNTP_CTL, IMASK, 1, 1)
+ FIELD(CNTP_CTL, ISTATUS, 2, 1)
+REG32(CNTP_AIVAL_LO, 0x40)
+REG32(CNTP_AIVAL_HI, 0x44)
+REG32(CNTP_AIVAL_RELOAD, 0x48)
+REG32(CNTP_AIVAL_CTL, 0x4c)
+ FIELD(CNTP_AIVAL_CTL, EN, 0, 1)
+ FIELD(CNTP_AIVAL_CTL, CLR, 1, 1)
+REG32(CNTP_CFG, 0x50)
+ FIELD(CNTP_CFG, AIVAL, 0, 4)
+#define R_CNTP_CFG_AIVAL_IMPLEMENTED 1
+REG32(PID4, 0xFD0)
+REG32(PID5, 0xFD4)
+REG32(PID6, 0xFD8)
+REG32(PID7, 0xFDC)
+REG32(PID0, 0xFE0)
+REG32(PID1, 0xFE4)
+REG32(PID2, 0xFE8)
+REG32(PID3, 0xFEC)
+REG32(CID0, 0xFF0)
+REG32(CID1, 0xFF4)
+REG32(CID2, 0xFF8)
+REG32(CID3, 0xFFC)
+
+/* PID/CID values */
+static const int timer_id[] = {
+ 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
+ 0xb7, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
+ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
+};
+
+static bool sse_is_autoinc(SSETimer *s)
+{
+ return (s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_EN_MASK) != 0;
+}
+
+static bool sse_enabled(SSETimer *s)
+{
+ return (s->cntp_ctl & R_CNTP_CTL_ENABLE_MASK) != 0;
+}
+
+static uint64_t sse_cntpct(SSETimer *s)
+{
+ /* Return the CNTPCT value for the current time */
+ return sse_counter_for_timestamp(s->counter,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
+}
+
+static bool sse_timer_status(SSETimer *s)
+{
+ /*
+ * Return true if timer condition is met. This is used for both
+ * the CNTP_CTL.ISTATUS bit and for whether (unless masked) we
+ * assert our IRQ.
+ * The documentation is unclear about the behaviour of ISTATUS when
+ * in autoincrement mode; we assume that it follows CNTP_AIVAL_CTL.CLR
+ * (ie whether the autoincrement timer is asserting the interrupt).
+ */
+ if (!sse_enabled(s)) {
+ return false;
+ }
+
+ if (sse_is_autoinc(s)) {
+ return s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_CLR_MASK;
+ } else {
+ return sse_cntpct(s) >= s->cntp_cval;
+ }
+}
+
+static void sse_update_irq(SSETimer *s)
+{
+ bool irqstate = (!(s->cntp_ctl & R_CNTP_CTL_IMASK_MASK) &&
+ sse_timer_status(s));
+
+ qemu_set_irq(s->irq, irqstate);
+}
+
+static void sse_set_timer(SSETimer *s, uint64_t nexttick)
+{
+ /* Set the timer to expire at nexttick */
+ uint64_t expiry = sse_counter_tick_to_time(s->counter, nexttick);
+
+ if (expiry <= INT64_MAX) {
+ timer_mod_ns(&s->timer, expiry);
+ } else {
+ /*
+ * nexttick is so far in the future that it would overflow the
+ * signed 64-bit range of a QEMUTimer. Since timer_mod_ns()
+ * expiry times are absolute, not relative, we are never going
+ * to be able to set the timer to this value, so we must just
+ * assume that guest execution can never run so long that it
+ * reaches the theoretical point when the timer fires.
+ * This is also the code path for "counter is not running",
+ * which is signalled by expiry == UINT64_MAX.
+ */
+ timer_del(&s->timer);
+ }
+}
+
+static void sse_recalc_timer(SSETimer *s)
+{
+ /* Recalculate the normal timer */
+ uint64_t count, nexttick;
+
+ if (sse_is_autoinc(s)) {
+ return;
+ }
+
+ if (!sse_enabled(s)) {
+ timer_del(&s->timer);
+ return;
+ }
+
+ count = sse_cntpct(s);
+
+ if (count >= s->cntp_cval) {
+ /*
+ * Timer condition already met. In theory we have a transition when
+ * the count rolls back over to 0, but that is so far in the future
+ * that it is not representable as a timer_mod() expiry, so in
+ * fact sse_set_timer() will always just delete the timer.
+ */
+ nexttick = UINT64_MAX;
+ } else {
+ /* Next transition is when count hits cval */
+ nexttick = s->cntp_cval;
+ }
+ sse_set_timer(s, nexttick);
+ sse_update_irq(s);
+}
+
+static void sse_autoinc(SSETimer *s)
+{
+ /* Auto-increment the AIVAL, and set the timer accordingly */
+ s->cntp_aival = sse_cntpct(s) + s->cntp_aival_reload;
+ sse_set_timer(s, s->cntp_aival);
+}
+
+static void sse_timer_cb(void *opaque)
+{
+ SSETimer *s = SSE_TIMER(opaque);
+
+ if (sse_is_autoinc(s)) {
+ uint64_t count = sse_cntpct(s);
+
+ if (count >= s->cntp_aival) {
+ /* Timer condition met, set CLR and do another autoinc */
+ s->cntp_aival_ctl |= R_CNTP_AIVAL_CTL_CLR_MASK;
+ s->cntp_aival = count + s->cntp_aival_reload;
+ }
+ sse_set_timer(s, s->cntp_aival);
+ sse_update_irq(s);
+ } else {
+ sse_recalc_timer(s);
+ }
+}
+
+static uint64_t sse_timer_read(void *opaque, hwaddr offset, unsigned size)
+{
+ SSETimer *s = SSE_TIMER(opaque);
+ uint64_t r;
+
+ switch (offset) {
+ case A_CNTPCT_LO:
+ r = extract64(sse_cntpct(s), 0, 32);
+ break;
+ case A_CNTPCT_HI:
+ r = extract64(sse_cntpct(s), 32, 32);
+ break;
+ case A_CNTFRQ:
+ r = s->cntfrq;
+ break;
+ case A_CNTP_CVAL_LO:
+ r = extract64(s->cntp_cval, 0, 32);
+ break;
+ case A_CNTP_CVAL_HI:
+ r = extract64(s->cntp_cval, 32, 32);
+ break;
+ case A_CNTP_TVAL:
+ r = extract64(s->cntp_cval - sse_cntpct(s), 0, 32);
+ break;
+ case A_CNTP_CTL:
+ r = s->cntp_ctl;
+ if (sse_timer_status(s)) {
+ r |= R_CNTP_CTL_ISTATUS_MASK;
+ }
+ break;
+ case A_CNTP_AIVAL_LO:
+ r = extract64(s->cntp_aival, 0, 32);
+ break;
+ case A_CNTP_AIVAL_HI:
+ r = extract64(s->cntp_aival, 32, 32);
+ break;
+ case A_CNTP_AIVAL_RELOAD:
+ r = s->cntp_aival_reload;
+ break;
+ case A_CNTP_AIVAL_CTL:
+ /*
+ * All the bits of AIVAL_CTL are documented as WO, but this is probably
+ * a documentation error. We implement them as readable.
+ */
+ r = s->cntp_aival_ctl;
+ break;
+ case A_CNTP_CFG:
+ r = R_CNTP_CFG_AIVAL_IMPLEMENTED << R_CNTP_CFG_AIVAL_SHIFT;
+ break;
+ case A_PID4 ... A_CID3:
+ r = timer_id[(offset - A_PID4) / 4];
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE System Timer read: bad offset 0x%x",
+ (unsigned) offset);
+ r = 0;
+ break;
+ }
+
+ trace_sse_timer_read(offset, r, size);
+ return r;
+}
+
+static void sse_timer_write(void *opaque, hwaddr offset, uint64_t value,
+ unsigned size)
+{
+ SSETimer *s = SSE_TIMER(opaque);
+
+ trace_sse_timer_write(offset, value, size);
+
+ switch (offset) {
+ case A_CNTFRQ:
+ s->cntfrq = value;
+ break;
+ case A_CNTP_CVAL_LO:
+ s->cntp_cval = deposit64(s->cntp_cval, 0, 32, value);
+ sse_recalc_timer(s);
+ break;
+ case A_CNTP_CVAL_HI:
+ s->cntp_cval = deposit64(s->cntp_cval, 32, 32, value);
+ sse_recalc_timer(s);
+ break;
+ case A_CNTP_TVAL:
+ s->cntp_cval = sse_cntpct(s) + sextract64(value, 0, 32);
+ sse_recalc_timer(s);
+ break;
+ case A_CNTP_CTL:
+ {
+ uint32_t old_ctl = s->cntp_ctl;
+ value &= R_CNTP_CTL_ENABLE_MASK | R_CNTP_CTL_IMASK_MASK;
+ s->cntp_ctl = value;
+ if ((old_ctl ^ s->cntp_ctl) & R_CNTP_CTL_ENABLE_MASK) {
+ if (sse_enabled(s)) {
+ if (sse_is_autoinc(s)) {
+ sse_autoinc(s);
+ } else {
+ sse_recalc_timer(s);
+ }
+ }
+ }
+ sse_update_irq(s);
+ break;
+ }
+ case A_CNTP_AIVAL_RELOAD:
+ s->cntp_aival_reload = value;
+ break;
+ case A_CNTP_AIVAL_CTL:
+ {
+ uint32_t old_ctl = s->cntp_aival_ctl;
+
+ /* EN bit is writeable; CLR bit is write-0-to-clear, write-1-ignored */
+ s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_EN_MASK;
+ s->cntp_aival_ctl |= value & R_CNTP_AIVAL_CTL_EN_MASK;
+ if (!(value & R_CNTP_AIVAL_CTL_CLR_MASK)) {
+ s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_CLR_MASK;
+ }
+ if ((old_ctl ^ s->cntp_aival_ctl) & R_CNTP_AIVAL_CTL_EN_MASK) {
+ /* Auto-increment toggled on/off */
+ if (sse_enabled(s)) {
+ if (sse_is_autoinc(s)) {
+ sse_autoinc(s);
+ } else {
+ sse_recalc_timer(s);
+ }
+ }
+ }
+ sse_update_irq(s);
+ break;
+ }
+ case A_CNTPCT_LO:
+ case A_CNTPCT_HI:
+ case A_CNTP_CFG:
+ case A_CNTP_AIVAL_LO:
+ case A_CNTP_AIVAL_HI:
+ case A_PID4 ... A_CID3:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE System Timer write: write to RO offset 0x%x\n",
+ (unsigned)offset);
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "SSE System Timer write: bad offset 0x%x\n",
+ (unsigned)offset);
+ break;
+ }
+}
+
+static const MemoryRegionOps sse_timer_ops = {
+ .read = sse_timer_read,
+ .write = sse_timer_write,
+ .endianness = DEVICE_LITTLE_ENDIAN,
+ .valid.min_access_size = 4,
+ .valid.max_access_size = 4,
+};
+
+static void sse_timer_reset(DeviceState *dev)
+{
+ SSETimer *s = SSE_TIMER(dev);
+
+ trace_sse_timer_reset();
+
+ timer_del(&s->timer);
+ s->cntfrq = 0;
+ s->cntp_ctl = 0;
+ s->cntp_cval = 0;
+ s->cntp_aival = 0;
+ s->cntp_aival_ctl = 0;
+ s->cntp_aival_reload = 0;
+}
+
+static void sse_timer_counter_callback(Notifier *notifier, void *data)
+{
+ SSETimer *s = container_of(notifier, SSETimer, counter_notifier);
+
+ /* System counter told us we need to recalculate */
+ if (sse_enabled(s)) {
+ if (sse_is_autoinc(s)) {
+ sse_set_timer(s, s->cntp_aival);
+ } else {
+ sse_recalc_timer(s);
+ }
+ }
+}
+
+static void sse_timer_init(Object *obj)
+{
+ SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
+ SSETimer *s = SSE_TIMER(obj);
+
+ memory_region_init_io(&s->iomem, obj, &sse_timer_ops,
+ s, "sse-timer", 0x1000);
+ sysbus_init_mmio(sbd, &s->iomem);
+ sysbus_init_irq(sbd, &s->irq);
+}
+
+static void sse_timer_realize(DeviceState *dev, Error **errp)
+{
+ SSETimer *s = SSE_TIMER(dev);
+
+ if (!s->counter) {
+ error_setg(errp, "counter property was not set");
+ }
+
+ s->counter_notifier.notify = sse_timer_counter_callback;
+ sse_counter_register_consumer(s->counter, &s->counter_notifier);
+
+ timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, sse_timer_cb, s);
+}
+
+static const VMStateDescription sse_timer_vmstate = {
+ .name = "sse-timer",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_TIMER(timer, SSETimer),
+ VMSTATE_UINT32(cntfrq, SSETimer),
+ VMSTATE_UINT32(cntp_ctl, SSETimer),
+ VMSTATE_UINT64(cntp_cval, SSETimer),
+ VMSTATE_UINT64(cntp_aival, SSETimer),
+ VMSTATE_UINT32(cntp_aival_ctl, SSETimer),
+ VMSTATE_UINT32(cntp_aival_reload, SSETimer),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static Property sse_timer_properties[] = {
+ DEFINE_PROP_LINK("counter", SSETimer, counter, TYPE_SSE_COUNTER, SSECounter *),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static void sse_timer_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+
+ dc->realize = sse_timer_realize;
+ dc->vmsd = &sse_timer_vmstate;
+ dc->reset = sse_timer_reset;
+ device_class_set_props(dc, sse_timer_properties);
+}
+
+static const TypeInfo sse_timer_info = {
+ .name = TYPE_SSE_TIMER,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(SSETimer),
+ .instance_init = sse_timer_init,
+ .class_init = sse_timer_class_init,
+};
+
+static void sse_timer_register_types(void)
+{
+ type_register_static(&sse_timer_info);
+}
+
+type_init(sse_timer_register_types);
diff --git a/hw/timer/trace-events b/hw/timer/trace-events
index 7a4326d956..f8b9db25c2 100644
--- a/hw/timer/trace-events
+++ b/hw/timer/trace-events
@@ -93,3 +93,15 @@ avr_timer16_interrupt_count(uint8_t cnt) "count: %u"
avr_timer16_interrupt_overflow(const char *reason) "overflow: %s"
avr_timer16_next_alarm(uint64_t delay_ns) "next alarm: %" PRIu64 " ns from now"
avr_timer16_clksrc_update(uint64_t freq_hz, uint64_t period_ns, uint64_t delay_s) "timer frequency: %" PRIu64 " Hz, period: %" PRIu64 " ns (%" PRId64 " us)"
+
+# sse_counter.c
+sse_counter_control_read(uint64_t offset, uint64_t data, unsigned size) "SSE system counter control frame read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
+sse_counter_control_write(uint64_t offset, uint64_t data, unsigned size) "SSE system counter control framen write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
+sse_counter_status_read(uint64_t offset, uint64_t data, unsigned size) "SSE system counter status frame read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
+sse_counter_status_write(uint64_t offset, uint64_t data, unsigned size) "SSE system counter status frame write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
+sse_counter_reset(void) "SSE system counter: reset"
+
+# sse_timer.c
+sse_timer_read(uint64_t offset, uint64_t data, unsigned size) "SSE system timer read: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
+sse_timer_write(uint64_t offset, uint64_t data, unsigned size) "SSE system timer write: offset 0x%" PRIx64 " data 0x%" PRIx64 " size %u"
+sse_timer_reset(void) "SSE system timer: reset"