diff options
Diffstat (limited to 'hw/pxa2xx.c')
-rw-r--r-- | hw/pxa2xx.c | 1673 |
1 files changed, 1673 insertions, 0 deletions
diff --git a/hw/pxa2xx.c b/hw/pxa2xx.c new file mode 100644 index 0000000000..f9d2925bf4 --- /dev/null +++ b/hw/pxa2xx.c @@ -0,0 +1,1673 @@ +/* + * Intel XScale PXA255/270 processor support. + * + * Copyright (c) 2006 Openedhand Ltd. + * Written by Andrzej Zaborowski <balrog@zabor.org> + * + * This code is licenced under the GPL. + */ + +# include "vl.h" + +static struct { + target_phys_addr_t io_base; + int irqn; +} pxa255_serial[] = { + { 0x40100000, PXA2XX_PIC_FFUART }, + { 0x40200000, PXA2XX_PIC_BTUART }, + { 0x40700000, PXA2XX_PIC_STUART }, + { 0x41600000, PXA25X_PIC_HWUART }, + { 0, 0 } +}, pxa270_serial[] = { + { 0x40100000, PXA2XX_PIC_FFUART }, + { 0x40200000, PXA2XX_PIC_BTUART }, + { 0x40700000, PXA2XX_PIC_STUART }, + { 0, 0 } +}; + +static struct { + target_phys_addr_t io_base; + int irqn; +} pxa250_ssp[] = { + { 0x41000000, PXA2XX_PIC_SSP }, + { 0, 0 } +}, pxa255_ssp[] = { + { 0x41000000, PXA2XX_PIC_SSP }, + { 0x41400000, PXA25X_PIC_NSSP }, + { 0, 0 } +}, pxa26x_ssp[] = { + { 0x41000000, PXA2XX_PIC_SSP }, + { 0x41400000, PXA25X_PIC_NSSP }, + { 0x41500000, PXA26X_PIC_ASSP }, + { 0, 0 } +}, pxa27x_ssp[] = { + { 0x41000000, PXA2XX_PIC_SSP }, + { 0x41700000, PXA27X_PIC_SSP2 }, + { 0x41900000, PXA2XX_PIC_SSP3 }, + { 0, 0 } +}; + +#define PMCR 0x00 /* Power Manager Control register */ +#define PSSR 0x04 /* Power Manager Sleep Status register */ +#define PSPR 0x08 /* Power Manager Scratch-Pad register */ +#define PWER 0x0c /* Power Manager Wake-Up Enable register */ +#define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */ +#define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */ +#define PEDR 0x18 /* Power Manager Edge-Detect Status register */ +#define PCFR 0x1c /* Power Manager General Configuration register */ +#define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */ +#define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */ +#define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */ +#define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */ +#define RCSR 0x30 /* Reset Controller Status register */ +#define PSLR 0x34 /* Power Manager Sleep Configuration register */ +#define PTSR 0x38 /* Power Manager Standby Configuration register */ +#define PVCR 0x40 /* Power Manager Voltage Change Control register */ +#define PUCR 0x4c /* Power Manager USIM Card Control/Status register */ +#define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */ +#define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */ +#define PCMD0 0x80 /* Power Manager I2C Command register File 0 */ +#define PCMD31 0xfc /* Power Manager I2C Command register File 31 */ + +static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + addr -= s->pm_base; + + switch (addr) { + case PMCR ... PCMD31: + if (addr & 3) + goto fail; + + return s->pm_regs[addr >> 2]; + default: + fail: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } + return 0; +} + +static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + addr -= s->pm_base; + + switch (addr) { + case PMCR: + s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a); + s->pm_regs[addr >> 2] |= value & 0x15; + break; + + case PSSR: /* Read-clean registers */ + case RCSR: + case PKSR: + s->pm_regs[addr >> 2] &= ~value; + break; + + default: /* Read-write registers */ + if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) { + s->pm_regs[addr >> 2] = value; + break; + } + + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } +} + +static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = { + pxa2xx_pm_read, + pxa2xx_pm_read, + pxa2xx_pm_read, +}; + +static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = { + pxa2xx_pm_write, + pxa2xx_pm_write, + pxa2xx_pm_write, +}; + +#define CCCR 0x00 /* Core Clock Configuration register */ +#define CKEN 0x04 /* Clock Enable register */ +#define OSCC 0x08 /* Oscillator Configuration register */ +#define CCSR 0x0c /* Core Clock Status register */ + +static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + addr -= s->cm_base; + + switch (addr) { + case CCCR: + case CKEN: + case OSCC: + return s->cm_regs[addr >> 2]; + + case CCSR: + return s->cm_regs[CCCR >> 2] | (3 << 28); + + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } + return 0; +} + +static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + addr -= s->cm_base; + + switch (addr) { + case CCCR: + case CKEN: + s->cm_regs[addr >> 2] = value; + break; + + case OSCC: + s->cm_regs[addr >> 2] &= ~0x6e; + s->cm_regs[addr >> 2] |= value & 0x6e; + break; + + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } +} + +static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = { + pxa2xx_cm_read, + pxa2xx_cm_read, + pxa2xx_cm_read, +}; + +static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = { + pxa2xx_cm_write, + pxa2xx_cm_write, + pxa2xx_cm_write, +}; + +static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + + switch (reg) { + case 6: /* Clock Configuration register */ + return s->clkcfg; + + case 7: /* Power Mode register */ + return 0; + + default: + printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); + break; + } + return 0; +} + +static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm, + uint32_t value) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + static const char *pwrmode[8] = { + "Normal", "Idle", "Deep-idle", "Standby", + "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep", + }; + + switch (reg) { + case 6: /* Clock Configuration register */ + s->clkcfg = value & 0xf; + if (value & 2) + printf("%s: CPU frequency change attempt\n", __FUNCTION__); + break; + + case 7: /* Power Mode register */ + if (value & 8) + printf("%s: CPU voltage change attempt\n", __FUNCTION__); + switch (value & 7) { + case 0: + /* Do nothing */ + break; + + case 1: + /* Idle */ + if (!(s->cm_regs[CCCR] & (1 << 31))) { /* CPDIS */ + cpu_interrupt(s->env, CPU_INTERRUPT_HALT); + break; + } + /* Fall through. */ + + case 2: + /* Deep-Idle */ + cpu_interrupt(s->env, CPU_INTERRUPT_HALT); + s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ + goto message; + + case 3: + cpu_reset(s->env); + s->env->cp15.c1_sys = 0; + s->env->cp15.c1_coproc = 0; + s->env->cp15.c2 = 0; + s->env->cp15.c3 = 0; + s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */ + s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ + + /* + * The scratch-pad register is almost universally used + * for storing the return address on suspend. For the + * lack of a resuming bootloader, perform a jump + * directly to that address. + */ + memset(s->env->regs, 0, 4 * 15); + s->env->regs[15] = s->pm_regs[PSPR >> 2]; + +#if 0 + buffer = 0xe59ff000; /* ldr pc, [pc, #0] */ + cpu_physical_memory_write(0, &buffer, 4); + buffer = s->pm_regs[PSPR >> 2]; + cpu_physical_memory_write(8, &buffer, 4); +#endif + + /* Suspend */ + cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT); + + goto message; + + default: + message: + printf("%s: machine entered %s mode\n", __FUNCTION__, + pwrmode[value & 7]); + } + break; + + default: + printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); + break; + } +} + +/* Performace Monitoring Registers */ +#define CPPMNC 0 /* Performance Monitor Control register */ +#define CPCCNT 1 /* Clock Counter register */ +#define CPINTEN 4 /* Interrupt Enable register */ +#define CPFLAG 5 /* Overflow Flag register */ +#define CPEVTSEL 8 /* Event Selection register */ + +#define CPPMN0 0 /* Performance Count register 0 */ +#define CPPMN1 1 /* Performance Count register 1 */ +#define CPPMN2 2 /* Performance Count register 2 */ +#define CPPMN3 3 /* Performance Count register 3 */ + +static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + + switch (reg) { + case CPPMNC: + return s->pmnc; + case CPCCNT: + if (s->pmnc & 1) + return qemu_get_clock(vm_clock); + else + return 0; + case CPINTEN: + case CPFLAG: + case CPEVTSEL: + return 0; + + default: + printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); + break; + } + return 0; +} + +static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm, + uint32_t value) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + + switch (reg) { + case CPPMNC: + s->pmnc = value; + break; + + case CPCCNT: + case CPINTEN: + case CPFLAG: + case CPEVTSEL: + break; + + default: + printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); + break; + } +} + +static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm) +{ + switch (crm) { + case 0: + return pxa2xx_clkpwr_read(opaque, op2, reg, crm); + case 1: + return pxa2xx_perf_read(opaque, op2, reg, crm); + case 2: + switch (reg) { + case CPPMN0: + case CPPMN1: + case CPPMN2: + case CPPMN3: + return 0; + } + /* Fall through */ + default: + printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); + break; + } + return 0; +} + +static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm, + uint32_t value) +{ + switch (crm) { + case 0: + pxa2xx_clkpwr_write(opaque, op2, reg, crm, value); + break; + case 1: + pxa2xx_perf_write(opaque, op2, reg, crm, value); + break; + case 2: + switch (reg) { + case CPPMN0: + case CPPMN1: + case CPPMN2: + case CPPMN3: + return; + } + /* Fall through */ + default: + printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); + break; + } +} + +#define MDCNFG 0x00 /* SDRAM Configuration register */ +#define MDREFR 0x04 /* SDRAM Refresh Control register */ +#define MSC0 0x08 /* Static Memory Control register 0 */ +#define MSC1 0x0c /* Static Memory Control register 1 */ +#define MSC2 0x10 /* Static Memory Control register 2 */ +#define MECR 0x14 /* Expansion Memory Bus Config register */ +#define SXCNFG 0x1c /* Synchronous Static Memory Config register */ +#define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */ +#define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */ +#define MCATT0 0x30 /* PC Card Attribute Socket 0 register */ +#define MCATT1 0x34 /* PC Card Attribute Socket 1 register */ +#define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */ +#define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */ +#define MDMRS 0x40 /* SDRAM Mode Register Set Config register */ +#define BOOT_DEF 0x44 /* Boot-time Default Configuration register */ +#define ARB_CNTL 0x48 /* Arbiter Control register */ +#define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */ +#define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */ +#define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */ +#define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */ +#define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */ +#define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */ +#define SA1110 0x64 /* SA-1110 Memory Compatibility register */ + +static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + addr -= s->mm_base; + + switch (addr) { + case MDCNFG ... SA1110: + if ((addr & 3) == 0) + return s->mm_regs[addr >> 2]; + + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } + return 0; +} + +static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + addr -= s->mm_base; + + switch (addr) { + case MDCNFG ... SA1110: + if ((addr & 3) == 0) { + s->mm_regs[addr >> 2] = value; + break; + } + + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } +} + +static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = { + pxa2xx_mm_read, + pxa2xx_mm_read, + pxa2xx_mm_read, +}; + +static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = { + pxa2xx_mm_write, + pxa2xx_mm_write, + pxa2xx_mm_write, +}; + +/* Synchronous Serial Ports */ +struct pxa2xx_ssp_s { + target_phys_addr_t base; + qemu_irq irq; + int enable; + + uint32_t sscr[2]; + uint32_t sspsp; + uint32_t ssto; + uint32_t ssitr; + uint32_t sssr; + uint8_t sstsa; + uint8_t ssrsa; + uint8_t ssacd; + + uint32_t rx_fifo[16]; + int rx_level; + int rx_start; + + uint32_t (*readfn)(void *opaque); + void (*writefn)(void *opaque, uint32_t value); + void *opaque; +}; + +#define SSCR0 0x00 /* SSP Control register 0 */ +#define SSCR1 0x04 /* SSP Control register 1 */ +#define SSSR 0x08 /* SSP Status register */ +#define SSITR 0x0c /* SSP Interrupt Test register */ +#define SSDR 0x10 /* SSP Data register */ +#define SSTO 0x28 /* SSP Time-Out register */ +#define SSPSP 0x2c /* SSP Programmable Serial Protocol register */ +#define SSTSA 0x30 /* SSP TX Time Slot Active register */ +#define SSRSA 0x34 /* SSP RX Time Slot Active register */ +#define SSTSS 0x38 /* SSP Time Slot Status register */ +#define SSACD 0x3c /* SSP Audio Clock Divider register */ + +/* Bitfields for above registers */ +#define SSCR0_SPI(x) (((x) & 0x30) == 0x00) +#define SSCR0_SSP(x) (((x) & 0x30) == 0x10) +#define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20) +#define SSCR0_PSP(x) (((x) & 0x30) == 0x30) +#define SSCR0_SSE (1 << 7) +#define SSCR0_RIM (1 << 22) +#define SSCR0_TIM (1 << 23) +#define SSCR0_MOD (1 << 31) +#define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1) +#define SSCR1_RIE (1 << 0) +#define SSCR1_TIE (1 << 1) +#define SSCR1_LBM (1 << 2) +#define SSCR1_MWDS (1 << 5) +#define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1) +#define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1) +#define SSCR1_EFWR (1 << 14) +#define SSCR1_PINTE (1 << 18) +#define SSCR1_TINTE (1 << 19) +#define SSCR1_RSRE (1 << 20) +#define SSCR1_TSRE (1 << 21) +#define SSCR1_EBCEI (1 << 29) +#define SSITR_INT (7 << 5) +#define SSSR_TNF (1 << 2) +#define SSSR_RNE (1 << 3) +#define SSSR_TFS (1 << 5) +#define SSSR_RFS (1 << 6) +#define SSSR_ROR (1 << 7) +#define SSSR_PINT (1 << 18) +#define SSSR_TINT (1 << 19) +#define SSSR_EOC (1 << 20) +#define SSSR_TUR (1 << 21) +#define SSSR_BCE (1 << 23) +#define SSSR_RW 0x00bc0080 + +static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s) +{ + int level = 0; + + level |= s->ssitr & SSITR_INT; + level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI); + level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM); + level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT)); + level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE); + level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE); + level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM); + level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE); + level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE); + qemu_set_irq(s->irq, !!level); +} + +static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s) +{ + s->sssr &= ~(0xf << 12); /* Clear RFL */ + s->sssr &= ~(0xf << 8); /* Clear TFL */ + s->sssr &= ~SSSR_TNF; + if (s->enable) { + s->sssr |= ((s->rx_level - 1) & 0xf) << 12; + if (s->rx_level >= SSCR1_RFT(s->sscr[1])) + s->sssr |= SSSR_RFS; + else + s->sssr &= ~SSSR_RFS; + if (0 <= SSCR1_TFT(s->sscr[1])) + s->sssr |= SSSR_TFS; + else + s->sssr &= ~SSSR_TFS; + if (s->rx_level) + s->sssr |= SSSR_RNE; + else + s->sssr &= ~SSSR_RNE; + s->sssr |= SSSR_TNF; + } + + pxa2xx_ssp_int_update(s); +} + +static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr) +{ + struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque; + uint32_t retval; + addr -= s->base; + + switch (addr) { + case SSCR0: + return s->sscr[0]; + case SSCR1: + return s->sscr[1]; + case SSPSP: + return s->sspsp; + case SSTO: + return s->ssto; + case SSITR: + return s->ssitr; + case SSSR: + return s->sssr | s->ssitr; + case SSDR: + if (!s->enable) + return 0xffffffff; + if (s->rx_level < 1) { + printf("%s: SSP Rx Underrun\n", __FUNCTION__); + return 0xffffffff; + } + s->rx_level --; + retval = s->rx_fifo[s->rx_start ++]; + s->rx_start &= 0xf; + pxa2xx_ssp_fifo_update(s); + return retval; + case SSTSA: + return s->sstsa; + case SSRSA: + return s->ssrsa; + case SSTSS: + return 0; + case SSACD: + return s->ssacd; + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } + return 0; +} + +static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque; + addr -= s->base; + + switch (addr) { + case SSCR0: + s->sscr[0] = value & 0xc7ffffff; + s->enable = value & SSCR0_SSE; + if (value & SSCR0_MOD) + printf("%s: Attempt to use network mode\n", __FUNCTION__); + if (s->enable && SSCR0_DSS(value) < 4) + printf("%s: Wrong data size: %i bits\n", __FUNCTION__, + SSCR0_DSS(value)); + if (!(value & SSCR0_SSE)) { + s->sssr = 0; + s->ssitr = 0; + s->rx_level = 0; + } + pxa2xx_ssp_fifo_update(s); + break; + + case SSCR1: + s->sscr[1] = value; + if (value & (SSCR1_LBM | SSCR1_EFWR)) + printf("%s: Attempt to use SSP test mode\n", __FUNCTION__); + pxa2xx_ssp_fifo_update(s); + break; + + case SSPSP: + s->sspsp = value; + break; + + case SSTO: + s->ssto = value; + break; + + case SSITR: + s->ssitr = value & SSITR_INT; + pxa2xx_ssp_int_update(s); + break; + + case SSSR: + s->sssr &= ~(value & SSSR_RW); + pxa2xx_ssp_int_update(s); + break; + + case SSDR: + if (SSCR0_UWIRE(s->sscr[0])) { + if (s->sscr[1] & SSCR1_MWDS) + value &= 0xffff; + else + value &= 0xff; + } else + /* Note how 32bits overflow does no harm here */ + value &= (1 << SSCR0_DSS(s->sscr[0])) - 1; + + /* Data goes from here to the Tx FIFO and is shifted out from + * there directly to the slave, no need to buffer it. + */ + if (s->enable) { + if (s->writefn) + s->writefn(s->opaque, value); + + if (s->rx_level < 0x10) { + if (s->readfn) + s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = + s->readfn(s->opaque); + else + s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0; + } else + s->sssr |= SSSR_ROR; + } + pxa2xx_ssp_fifo_update(s); + break; + + case SSTSA: + s->sstsa = value; + break; + + case SSRSA: + s->ssrsa = value; + break; + + case SSACD: + s->ssacd = value; + break; + + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } +} + +void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port, + uint32_t (*readfn)(void *opaque), + void (*writefn)(void *opaque, uint32_t value), void *opaque) +{ + if (!port) { + printf("%s: no such SSP\n", __FUNCTION__); + exit(-1); + } + + port->opaque = opaque; + port->readfn = readfn; + port->writefn = writefn; +} + +static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = { + pxa2xx_ssp_read, + pxa2xx_ssp_read, + pxa2xx_ssp_read, +}; + +static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = { + pxa2xx_ssp_write, + pxa2xx_ssp_write, + pxa2xx_ssp_write, +}; + +/* Real-Time Clock */ +#define RCNR 0x00 /* RTC Counter register */ +#define RTAR 0x04 /* RTC Alarm register */ +#define RTSR 0x08 /* RTC Status register */ +#define RTTR 0x0c /* RTC Timer Trim register */ +#define RDCR 0x10 /* RTC Day Counter register */ +#define RYCR 0x14 /* RTC Year Counter register */ +#define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */ +#define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */ +#define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */ +#define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */ +#define SWCR 0x28 /* RTC Stopwatch Counter register */ +#define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */ +#define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */ +#define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */ +#define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */ + +static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s) +{ + qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553)); +} + +static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s) +{ + int64_t rt = qemu_get_clock(rt_clock); + s->last_rcnr += ((rt - s->last_hz) << 15) / + (1000 * ((s->rttr & 0xffff) + 1)); + s->last_rdcr += ((rt - s->last_hz) << 15) / + (1000 * ((s->rttr & 0xffff) + 1)); + s->last_hz = rt; +} + +static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s) +{ + int64_t rt = qemu_get_clock(rt_clock); + if (s->rtsr & (1 << 12)) + s->last_swcr += (rt - s->last_sw) / 10; + s->last_sw = rt; +} + +static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s) +{ + int64_t rt = qemu_get_clock(rt_clock); + if (s->rtsr & (1 << 15)) + s->last_swcr += rt - s->last_pi; + s->last_pi = rt; +} + +static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s, + uint32_t rtsr) +{ + if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0))) + qemu_mod_timer(s->rtc_hz, s->last_hz + + (((s->rtar - s->last_rcnr) * 1000 * + ((s->rttr & 0xffff) + 1)) >> 15)); + else + qemu_del_timer(s->rtc_hz); + + if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4))) + qemu_mod_timer(s->rtc_rdal1, s->last_hz + + (((s->rdar1 - s->last_rdcr) * 1000 * + ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ + else + qemu_del_timer(s->rtc_rdal1); + + if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6))) + qemu_mod_timer(s->rtc_rdal2, s->last_hz + + (((s->rdar2 - s->last_rdcr) * 1000 * + ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ + else + qemu_del_timer(s->rtc_rdal2); + + if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8))) + qemu_mod_timer(s->rtc_swal1, s->last_sw + + (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */ + else + qemu_del_timer(s->rtc_swal1); + + if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10))) + qemu_mod_timer(s->rtc_swal2, s->last_sw + + (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */ + else + qemu_del_timer(s->rtc_swal2); + + if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13))) + qemu_mod_timer(s->rtc_pi, s->last_pi + + (s->piar & 0xffff) - s->last_rtcpicr); + else + qemu_del_timer(s->rtc_pi); +} + +static inline void pxa2xx_rtc_hz_tick(void *opaque) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + s->rtsr |= (1 << 0); + pxa2xx_rtc_alarm_update(s, s->rtsr); + pxa2xx_rtc_int_update(s); +} + +static inline void pxa2xx_rtc_rdal1_tick(void *opaque) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + s->rtsr |= (1 << 4); + pxa2xx_rtc_alarm_update(s, s->rtsr); + pxa2xx_rtc_int_update(s); +} + +static inline void pxa2xx_rtc_rdal2_tick(void *opaque) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + s->rtsr |= (1 << 6); + pxa2xx_rtc_alarm_update(s, s->rtsr); + pxa2xx_rtc_int_update(s); +} + +static inline void pxa2xx_rtc_swal1_tick(void *opaque) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + s->rtsr |= (1 << 8); + pxa2xx_rtc_alarm_update(s, s->rtsr); + pxa2xx_rtc_int_update(s); +} + +static inline void pxa2xx_rtc_swal2_tick(void *opaque) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + s->rtsr |= (1 << 10); + pxa2xx_rtc_alarm_update(s, s->rtsr); + pxa2xx_rtc_int_update(s); +} + +static inline void pxa2xx_rtc_pi_tick(void *opaque) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + s->rtsr |= (1 << 13); + pxa2xx_rtc_piupdate(s); + s->last_rtcpicr = 0; + pxa2xx_rtc_alarm_update(s, s->rtsr); + pxa2xx_rtc_int_update(s); +} + +static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + addr -= s->rtc_base; + + switch (addr) { + case RTTR: + return s->rttr; + case RTSR: + return s->rtsr; + case RTAR: + return s->rtar; + case RDAR1: + return s->rdar1; + case RDAR2: + return s->rdar2; + case RYAR1: + return s->ryar1; + case RYAR2: + return s->ryar2; + case SWAR1: + return s->swar1; + case SWAR2: + return s->swar2; + case PIAR: + return s->piar; + case RCNR: + return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) / + (1000 * ((s->rttr & 0xffff) + 1)); + case RDCR: + return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) / + (1000 * ((s->rttr & 0xffff) + 1)); + case RYCR: + return s->last_rycr; + case SWCR: + if (s->rtsr & (1 << 12)) + return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10; + else + return s->last_swcr; + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } + return 0; +} + +static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + addr -= s->rtc_base; + + switch (addr) { + case RTTR: + if (!(s->rttr & (1 << 31))) { + pxa2xx_rtc_hzupdate(s); + s->rttr = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + } + break; + + case RTSR: + if ((s->rtsr ^ value) & (1 << 15)) + pxa2xx_rtc_piupdate(s); + + if ((s->rtsr ^ value) & (1 << 12)) + pxa2xx_rtc_swupdate(s); + + if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac)) + pxa2xx_rtc_alarm_update(s, value); + + s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac)); + pxa2xx_rtc_int_update(s); + break; + + case RTAR: + s->rtar = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case RDAR1: + s->rdar1 = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case RDAR2: + s->rdar2 = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case RYAR1: + s->ryar1 = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case RYAR2: + s->ryar2 = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case SWAR1: + pxa2xx_rtc_swupdate(s); + s->swar1 = value; + s->last_swcr = 0; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case SWAR2: + s->swar2 = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case PIAR: + s->piar = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case RCNR: + pxa2xx_rtc_hzupdate(s); + s->last_rcnr = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case RDCR: + pxa2xx_rtc_hzupdate(s); + s->last_rdcr = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case RYCR: + s->last_rycr = value; + break; + + case SWCR: + pxa2xx_rtc_swupdate(s); + s->last_swcr = value; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + case RTCPICR: + pxa2xx_rtc_piupdate(s); + s->last_rtcpicr = value & 0xffff; + pxa2xx_rtc_alarm_update(s, s->rtsr); + break; + + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + } +} + +static void pxa2xx_rtc_reset(struct pxa2xx_state_s *s) +{ + struct tm *tm; + time_t ti; + int wom; + + s->rttr = 0x7fff; + s->rtsr = 0; + + time(&ti); + if (rtc_utc) + tm = gmtime(&ti); + else + tm = localtime(&ti); + wom = ((tm->tm_mday - 1) / 7) + 1; + + s->last_rcnr = (uint32_t) ti; + s->last_rdcr = (wom << 20) | ((tm->tm_wday + 1) << 17) | + (tm->tm_hour << 12) | (tm->tm_min << 6) | tm->tm_sec; + s->last_rycr = ((tm->tm_year + 1900) << 9) | + ((tm->tm_mon + 1) << 5) | tm->tm_mday; + s->last_swcr = (tm->tm_hour << 19) | + (tm->tm_min << 13) | (tm->tm_sec << 7); + s->last_rtcpicr = 0; + s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock); + + s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s); + s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s); + s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s); + s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s); + s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s); + s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s); +} + +static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = { + pxa2xx_rtc_read, + pxa2xx_rtc_read, + pxa2xx_rtc_read, +}; + +static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = { + pxa2xx_rtc_write, + pxa2xx_rtc_write, + pxa2xx_rtc_write, +}; + +/* PXA Inter-IC Sound Controller */ +static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s) +{ + i2s->rx_len = 0; + i2s->tx_len = 0; + i2s->fifo_len = 0; + i2s->clk = 0x1a; + i2s->control[0] = 0x00; + i2s->control[1] = 0x00; + i2s->status = 0x00; + i2s->mask = 0x00; +} + +#define SACR_TFTH(val) ((val >> 8) & 0xf) +#define SACR_RFTH(val) ((val >> 12) & 0xf) +#define SACR_DREC(val) (val & (1 << 3)) +#define SACR_DPRL(val) (val & (1 << 4)) + +static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s) +{ + int rfs, tfs; + rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len && + !SACR_DREC(i2s->control[1]); + tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) && + i2s->enable && !SACR_DPRL(i2s->control[1]); + + pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs); + pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs); + + i2s->status &= 0xe0; + if (i2s->rx_len) + i2s->status |= 1 << 1; /* RNE */ + if (i2s->enable) + i2s->status |= 1 << 2; /* BSY */ + if (tfs) + i2s->status |= 1 << 3; /* TFS */ + if (rfs) + i2s->status |= 1 << 4; /* RFS */ + if (!(i2s->tx_len && i2s->enable)) + i2s->status |= i2s->fifo_len << 8; /* TFL */ + i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */ + + qemu_set_irq(i2s->irq, i2s->status & i2s->mask); +} + +#define SACR0 0x00 /* Serial Audio Global Control register */ +#define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */ +#define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */ +#define SAIMR 0x14 /* Serial Audio Interrupt Mask register */ +#define SAICR 0x18 /* Serial Audio Interrupt Clear register */ +#define SADIV 0x60 /* Serial Audio Clock Divider register */ +#define SADR 0x80 /* Serial Audio Data register */ + +static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr) +{ + struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque; + addr -= s->base; + + switch (addr) { + case SACR0: + return s->control[0]; + case SACR1: + return s->control[1]; + case SASR0: + return s->status; + case SAIMR: + return s->mask; + case SAICR: + return 0; + case SADIV: + return s->clk; + case SADR: + if (s->rx_len > 0) { + s->rx_len --; + pxa2xx_i2s_update(s); + return s->codec_in(s->opaque); + } + return 0; + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } + return 0; +} + +static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque; + uint32_t *sample; + addr -= s->base; + + switch (addr) { + case SACR0: + if (value & (1 << 3)) /* RST */ + pxa2xx_i2s_reset(s); + s->control[0] = value & 0xff3d; + if (!s->enable && (value & 1) && s->tx_len) { /* ENB */ + for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++) + s->codec_out(s->opaque, *sample); + s->status &= ~(1 << 7); /* I2SOFF */ + } + if (value & (1 << 4)) /* EFWR */ + printf("%s: Attempt to use special function\n", __FUNCTION__); + s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/ + pxa2xx_i2s_update(s); + break; + case SACR1: + s->control[1] = value & 0x0039; + if (value & (1 << 5)) /* ENLBF */ + printf("%s: Attempt to use loopback function\n", __FUNCTION__); + if (value & (1 << 4)) /* DPRL */ + s->fifo_len = 0; + pxa2xx_i2s_update(s); + break; + case SAIMR: + s->mask = value & 0x0078; + pxa2xx_i2s_update(s); + break; + case SAICR: + s->status &= ~(value & (3 << 5)); + pxa2xx_i2s_update(s); + break; + case SADIV: + s->clk = value & 0x007f; + break; + case SADR: + if (s->tx_len && s->enable) { + s->tx_len --; + pxa2xx_i2s_update(s); + s->codec_out(s->opaque, value); + } else if (s->fifo_len < 16) { + s->fifo[s->fifo_len ++] = value; + pxa2xx_i2s_update(s); + } + break; + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + } +} + +static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = { + pxa2xx_i2s_read, + pxa2xx_i2s_read, + pxa2xx_i2s_read, +}; + +static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = { + pxa2xx_i2s_write, + pxa2xx_i2s_write, + pxa2xx_i2s_write, +}; + +static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx) +{ + struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque; + uint32_t *sample; + + /* Signal FIFO errors */ + if (s->enable && s->tx_len) + s->status |= 1 << 5; /* TUR */ + if (s->enable && s->rx_len) + s->status |= 1 << 6; /* ROR */ + + /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to + * handle the cases where it makes a difference. */ + s->tx_len = tx - s->fifo_len; + s->rx_len = rx; + /* Note that is s->codec_out wasn't set, we wouldn't get called. */ + if (s->enable) + for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++) + s->codec_out(s->opaque, *sample); + pxa2xx_i2s_update(s); +} + +static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base, + qemu_irq irq, struct pxa2xx_dma_state_s *dma) +{ + int iomemtype; + struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) + qemu_mallocz(sizeof(struct pxa2xx_i2s_s)); + + s->base = base; + s->irq = irq; + s->dma = dma; + s->data_req = pxa2xx_i2s_data_req; + + pxa2xx_i2s_reset(s); + + iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn, + pxa2xx_i2s_writefn, s); + cpu_register_physical_memory(s->base & 0xfff00000, 0xfffff, iomemtype); + + return s; +} + +/* PXA Fast Infra-red Communications Port */ +struct pxa2xx_fir_s { + target_phys_addr_t base; + qemu_irq irq; + struct pxa2xx_dma_state_s *dma; + int enable; + CharDriverState *chr; + + uint8_t control[3]; + uint8_t status[2]; + + int rx_len; + int rx_start; + uint8_t rx_fifo[64]; +}; + +static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s) +{ + s->control[0] = 0x00; + s->control[1] = 0x00; + s->control[2] = 0x00; + s->status[0] = 0x00; + s->status[1] = 0x00; + s->enable = 0; +} + +static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s) +{ + static const int tresh[4] = { 8, 16, 32, 0 }; + int intr = 0; + if ((s->control[0] & (1 << 4)) && /* RXE */ + s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */ + s->status[0] |= 1 << 4; /* RFS */ + else + s->status[0] &= ~(1 << 4); /* RFS */ + if (s->control[0] & (1 << 3)) /* TXE */ + s->status[0] |= 1 << 3; /* TFS */ + else + s->status[0] &= ~(1 << 3); /* TFS */ + if (s->rx_len) + s->status[1] |= 1 << 2; /* RNE */ + else + s->status[1] &= ~(1 << 2); /* RNE */ + if (s->control[0] & (1 << 4)) /* RXE */ + s->status[1] |= 1 << 0; /* RSY */ + else + s->status[1] &= ~(1 << 0); /* RSY */ + + intr |= (s->control[0] & (1 << 5)) && /* RIE */ + (s->status[0] & (1 << 4)); /* RFS */ + intr |= (s->control[0] & (1 << 6)) && /* TIE */ + (s->status[0] & (1 << 3)); /* TFS */ + intr |= (s->control[2] & (1 << 4)) && /* TRAIL */ + (s->status[0] & (1 << 6)); /* EOC */ + intr |= (s->control[0] & (1 << 2)) && /* TUS */ + (s->status[0] & (1 << 1)); /* TUR */ + intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */ + + pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1); + pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1); + + qemu_set_irq(s->irq, intr && s->enable); +} + +#define ICCR0 0x00 /* FICP Control register 0 */ +#define ICCR1 0x04 /* FICP Control register 1 */ +#define ICCR2 0x08 /* FICP Control register 2 */ +#define ICDR 0x0c /* FICP Data register */ +#define ICSR0 0x14 /* FICP Status register 0 */ +#define ICSR1 0x18 /* FICP Status register 1 */ +#define ICFOR 0x1c /* FICP FIFO Occupancy Status register */ + +static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr) +{ + struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; + uint8_t ret; + addr -= s->base; + + switch (addr) { + case ICCR0: + return s->control[0]; + case ICCR1: + return s->control[1]; + case ICCR2: + return s->control[2]; + case ICDR: + s->status[0] &= ~0x01; + s->status[1] &= ~0x72; + if (s->rx_len) { + s->rx_len --; + ret = s->rx_fifo[s->rx_start ++]; + s->rx_start &= 63; + pxa2xx_fir_update(s); + return ret; + } + printf("%s: Rx FIFO underrun.\n", __FUNCTION__); + break; + case ICSR0: + return s->status[0]; + case ICSR1: + return s->status[1] | (1 << 3); /* TNF */ + case ICFOR: + return s->rx_len; + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + break; + } + return 0; +} + +static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; + uint8_t ch; + addr -= s->base; + + switch (addr) { + case ICCR0: + s->control[0] = value; + if (!(value & (1 << 4))) /* RXE */ + s->rx_len = s->rx_start = 0; + if (!(value & (1 << 3))) /* TXE */ + /* Nop */; + s->enable = value & 1; /* ITR */ + if (!s->enable) + s->status[0] = 0; + pxa2xx_fir_update(s); + break; + case ICCR1: + s->control[1] = value; + break; + case ICCR2: + s->control[2] = value & 0x3f; + pxa2xx_fir_update(s); + break; + case ICDR: + if (s->control[2] & (1 << 2)) /* TXP */ + ch = value; + else + ch = ~value; + if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */ + qemu_chr_write(s->chr, &ch, 1); + break; + case ICSR0: + s->status[0] &= ~(value & 0x66); + pxa2xx_fir_update(s); + break; + case ICFOR: + break; + default: + printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); + } +} + +static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = { + pxa2xx_fir_read, + pxa2xx_fir_read, + pxa2xx_fir_read, +}; + +static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = { + pxa2xx_fir_write, + pxa2xx_fir_write, + pxa2xx_fir_write, +}; + +static int pxa2xx_fir_is_empty(void *opaque) +{ + struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; + return (s->rx_len < 64); +} + +static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size) +{ + struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; + if (!(s->control[0] & (1 << 4))) /* RXE */ + return; + + while (size --) { + s->status[1] |= 1 << 4; /* EOF */ + if (s->rx_len >= 64) { + s->status[1] |= 1 << 6; /* ROR */ + break; + } + + if (s->control[2] & (1 << 3)) /* RXP */ + s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++); + else + s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++); + } + + pxa2xx_fir_update(s); +} + +static void pxa2xx_fir_event(void *opaque, int event) +{ +} + +static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base, + qemu_irq irq, struct pxa2xx_dma_state_s *dma, + CharDriverState *chr) +{ + int iomemtype; + struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) + qemu_mallocz(sizeof(struct pxa2xx_fir_s)); + + s->base = base; + s->irq = irq; + s->dma = dma; + s->chr = chr; + + pxa2xx_fir_reset(s); + + iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn, + pxa2xx_fir_writefn, s); + cpu_register_physical_memory(s->base, 0xfff, iomemtype); + + if (chr) + qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty, + pxa2xx_fir_rx, pxa2xx_fir_event, s); + + return s; +} + +void pxa2xx_reset(int line, int level, void *opaque) +{ + struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; + if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */ + cpu_reset(s->env); + /* TODO: reset peripherals */ + } +} + +/* Initialise a PXA270 integrated chip (ARM based core). */ +struct pxa2xx_state_s *pxa270_init(DisplayState *ds, const char *revision) +{ + struct pxa2xx_state_s *s; + struct pxa2xx_ssp_s *ssp; + char *cpu_model; + int iomemtype, i; + s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s)); + + s->env = cpu_init(); + asprintf(&cpu_model, "pxa270-%s", revision); + cpu_arm_set_model(s->env, cpu_model); + free(cpu_model); + + s->pic = pxa2xx_pic_init(0x40d00000, s->env); + + s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]); + + s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121); + + for (i = 0; pxa270_serial[i].io_base; i ++) + if (serial_hds[i]) + serial_mm_init(pxa270_serial[i].io_base, 2, + s->pic[pxa270_serial[i].irqn], serial_hds[i], 1); + else + break; + if (serial_hds[i]) + s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP], + s->dma, serial_hds[i]); + + s->cm_base = 0x41300000; + s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */ + s->clkcfg = 0x00000009; /* Turbo mode active */ + iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn, + pxa2xx_cm_writefn, s); + cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype); + + cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s); + + s->mm_base = 0x48000000; + s->mm_regs[MDMRS >> 2] = 0x00020002; + s->mm_regs[MDREFR >> 2] = 0x03ca4000; + s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ + iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn, + pxa2xx_mm_writefn, s); + cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype); + + for (i = 0; pxa27x_ssp[i].io_base; i ++); + s->ssp = (struct pxa2xx_ssp_s **) + qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i); + ssp = (struct pxa2xx_ssp_s *) + qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i); + for (i = 0; pxa27x_ssp[i].io_base; i ++) { + s->ssp[i] = &ssp[i]; + ssp[i].base = pxa27x_ssp[i].io_base; + ssp[i].irq = s->pic[pxa27x_ssp[i].irqn]; + + iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn, + pxa2xx_ssp_writefn, &ssp[i]); + cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype); + } + + s->rtc_base = 0x40900000; + iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn, + pxa2xx_rtc_writefn, s); + cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype); + pxa2xx_rtc_reset(s); + + s->pm_base = 0x40f00000; + iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn, + pxa2xx_pm_writefn, s); + cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype); + + s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma); + + /* GPIO1 resets the processor */ + /* The handler can be overriden by board-specific code */ + pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s); + return s; +} + +/* Initialise a PXA255 integrated chip (ARM based core). */ +struct pxa2xx_state_s *pxa255_init(DisplayState *ds) +{ + struct pxa2xx_state_s *s; + struct pxa2xx_ssp_s *ssp; + int iomemtype, i; + s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s)); + + s->env = cpu_init(); + cpu_arm_set_model(s->env, "pxa255"); + + s->pic = pxa2xx_pic_init(0x40d00000, s->env); + + s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]); + + s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121); + + for (i = 0; pxa255_serial[i].io_base; i ++) + if (serial_hds[i]) + serial_mm_init(pxa255_serial[i].io_base, 2, + s->pic[pxa255_serial[i].irqn], serial_hds[i], 1); + else + break; + if (serial_hds[i]) + s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP], + s->dma, serial_hds[i]); + + s->cm_base = 0x41300000; + s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */ + s->clkcfg = 0x00000009; /* Turbo mode active */ + iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn, + pxa2xx_cm_writefn, s); + cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype); + + cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s); + + s->mm_base = 0x48000000; + s->mm_regs[MDMRS >> 2] = 0x00020002; + s->mm_regs[MDREFR >> 2] = 0x03ca4000; + s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ + iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn, + pxa2xx_mm_writefn, s); + cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype); + + for (i = 0; pxa255_ssp[i].io_base; i ++); + s->ssp = (struct pxa2xx_ssp_s **) + qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i); + ssp = (struct pxa2xx_ssp_s *) + qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i); + for (i = 0; pxa255_ssp[i].io_base; i ++) { + s->ssp[i] = &ssp[i]; + ssp[i].base = pxa255_ssp[i].io_base; + ssp[i].irq = s->pic[pxa255_ssp[i].irqn]; + + iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn, + pxa2xx_ssp_writefn, &ssp[i]); + cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype); + } + + s->rtc_base = 0x40900000; + iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn, + pxa2xx_rtc_writefn, s); + cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype); + pxa2xx_rtc_reset(s); + + s->pm_base = 0x40f00000; + iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn, + pxa2xx_pm_writefn, s); + cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype); + + s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma); + + /* GPIO1 resets the processor */ + /* The handler can be overriden by board-specific code */ + pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s); + return s; +} |