aboutsummaryrefslogtreecommitdiff
path: root/hw/misc/stm32l4x5_rcc.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/misc/stm32l4x5_rcc.c')
-rw-r--r--hw/misc/stm32l4x5_rcc.c1457
1 files changed, 1457 insertions, 0 deletions
diff --git a/hw/misc/stm32l4x5_rcc.c b/hw/misc/stm32l4x5_rcc.c
new file mode 100644
index 0000000000..bc2d63528b
--- /dev/null
+++ b/hw/misc/stm32l4x5_rcc.c
@@ -0,0 +1,1457 @@
+/*
+ * STM32L4X5 RCC (Reset and clock control)
+ *
+ * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr>
+ * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr>
+ *
+ * SPDX-License-Identifier: GPL-2.0-or-later
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ * The reference used is the STMicroElectronics RM0351 Reference manual
+ * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs.
+ *
+ * Inspired by the BCM2835 CPRMAN clock manager implementation by Luc Michel.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "qemu/module.h"
+#include "qemu/timer.h"
+#include "qapi/error.h"
+#include "migration/vmstate.h"
+#include "hw/misc/stm32l4x5_rcc.h"
+#include "hw/misc/stm32l4x5_rcc_internals.h"
+#include "hw/clock.h"
+#include "hw/irq.h"
+#include "hw/qdev-clock.h"
+#include "hw/qdev-properties.h"
+#include "hw/qdev-properties-system.h"
+#include "hw/registerfields.h"
+#include "trace.h"
+
+#define HSE_DEFAULT_FRQ 48000000ULL
+#define HSI_FRQ 16000000ULL
+#define MSI_DEFAULT_FRQ 4000000ULL
+#define LSE_FRQ 32768ULL
+#define LSI_FRQ 32000ULL
+
+/*
+ * Function to simply acknowledge and propagate changes in a clock mux
+ * frequency.
+ * `bypass_source` allows to bypass the period of the current source and just
+ * consider it equal to 0. This is useful during the hold phase of reset.
+ */
+static void clock_mux_update(RccClockMuxState *mux, bool bypass_source)
+{
+ uint64_t src_freq;
+ Clock *current_source = mux->srcs[mux->src];
+ uint32_t freq_multiplier = 0;
+ /*
+ * To avoid rounding errors, we use the clock period instead of the
+ * frequency.
+ * This means that the multiplier of the mux becomes the divider of
+ * the clock and the divider of the mux becomes the multiplier of the
+ * clock.
+ */
+ if (!bypass_source && mux->enabled && mux->divider) {
+ freq_multiplier = mux->divider;
+ }
+
+ clock_set_mul_div(mux->out, freq_multiplier, mux->multiplier);
+ clock_update(mux->out, clock_get(current_source));
+
+ src_freq = clock_get_hz(current_source);
+ /* TODO: can we simply detect if the config changed so that we reduce log spam ? */
+ trace_stm32l4x5_rcc_mux_update(mux->id, mux->src, src_freq,
+ mux->multiplier, mux->divider);
+}
+
+static void clock_mux_src_update(void *opaque, ClockEvent event)
+{
+ RccClockMuxState **backref = opaque;
+ RccClockMuxState *s = *backref;
+ /*
+ * The backref value is equal to:
+ * s->backref + (sizeof(RccClockMuxState *) * update_src).
+ * By subtracting we can get back the index of the updated clock.
+ */
+ const uint32_t update_src = backref - s->backref;
+ /* Only update if the clock that was updated is the current source */
+ if (update_src == s->src) {
+ clock_mux_update(s, false);
+ }
+}
+
+static void clock_mux_init(Object *obj)
+{
+ RccClockMuxState *s = RCC_CLOCK_MUX(obj);
+ size_t i;
+
+ for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
+ char *name = g_strdup_printf("srcs[%zu]", i);
+ s->backref[i] = s;
+ s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
+ clock_mux_src_update,
+ &s->backref[i],
+ ClockUpdate);
+ g_free(name);
+ }
+
+ s->out = qdev_init_clock_out(DEVICE(s), "out");
+}
+
+static void clock_mux_reset_enter(Object *obj, ResetType type)
+{
+ RccClockMuxState *s = RCC_CLOCK_MUX(obj);
+ set_clock_mux_init_info(s, s->id);
+}
+
+static void clock_mux_reset_hold(Object *obj)
+{
+ RccClockMuxState *s = RCC_CLOCK_MUX(obj);
+ clock_mux_update(s, true);
+}
+
+static void clock_mux_reset_exit(Object *obj)
+{
+ RccClockMuxState *s = RCC_CLOCK_MUX(obj);
+ clock_mux_update(s, false);
+}
+
+static const VMStateDescription clock_mux_vmstate = {
+ .name = TYPE_RCC_CLOCK_MUX,
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT32(id, RccClockMuxState),
+ VMSTATE_ARRAY_CLOCK(srcs, RccClockMuxState,
+ RCC_NUM_CLOCK_MUX_SRC),
+ VMSTATE_BOOL(enabled, RccClockMuxState),
+ VMSTATE_UINT32(src, RccClockMuxState),
+ VMSTATE_UINT32(multiplier, RccClockMuxState),
+ VMSTATE_UINT32(divider, RccClockMuxState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static void clock_mux_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ ResettableClass *rc = RESETTABLE_CLASS(klass);
+
+ rc->phases.enter = clock_mux_reset_enter;
+ rc->phases.hold = clock_mux_reset_hold;
+ rc->phases.exit = clock_mux_reset_exit;
+ dc->vmsd = &clock_mux_vmstate;
+}
+
+static void clock_mux_set_enable(RccClockMuxState *mux, bool enabled)
+{
+ if (mux->enabled == enabled) {
+ return;
+ }
+
+ if (enabled) {
+ trace_stm32l4x5_rcc_mux_enable(mux->id);
+ } else {
+ trace_stm32l4x5_rcc_mux_disable(mux->id);
+ }
+
+ mux->enabled = enabled;
+ clock_mux_update(mux, false);
+}
+
+static void clock_mux_set_factor(RccClockMuxState *mux,
+ uint32_t multiplier, uint32_t divider)
+{
+ if (mux->multiplier == multiplier && mux->divider == divider) {
+ return;
+ }
+ trace_stm32l4x5_rcc_mux_set_factor(mux->id,
+ mux->multiplier, multiplier, mux->divider, divider);
+
+ mux->multiplier = multiplier;
+ mux->divider = divider;
+ clock_mux_update(mux, false);
+}
+
+static void clock_mux_set_source(RccClockMuxState *mux, RccClockMuxSource src)
+{
+ if (mux->src == src) {
+ return;
+ }
+
+ trace_stm32l4x5_rcc_mux_set_src(mux->id, mux->src, src);
+ mux->src = src;
+ clock_mux_update(mux, false);
+}
+
+/*
+ * Acknowledge and propagate changes in a PLL frequency.
+ * `bypass_source` allows to bypass the period of the current source and just
+ * consider it equal to 0. This is useful during the hold phase of reset.
+ */
+static void pll_update(RccPllState *pll, bool bypass_source)
+{
+ uint64_t vco_freq, old_channel_freq, channel_freq;
+ int i;
+
+ /* The common PLLM factor is handled by the PLL mux */
+ vco_freq = muldiv64(clock_get_hz(pll->in), pll->vco_multiplier, 1);
+
+ for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
+ if (!pll->channel_exists[i]) {
+ continue;
+ }
+
+ old_channel_freq = clock_get_hz(pll->channels[i]);
+ if (bypass_source ||
+ !pll->enabled ||
+ !pll->channel_enabled[i] ||
+ !pll->channel_divider[i]) {
+ channel_freq = 0;
+ } else {
+ channel_freq = muldiv64(vco_freq,
+ 1,
+ pll->channel_divider[i]);
+ }
+
+ /* No change, early continue to avoid log spam and useless propagation */
+ if (old_channel_freq == channel_freq) {
+ continue;
+ }
+
+ clock_update_hz(pll->channels[i], channel_freq);
+ trace_stm32l4x5_rcc_pll_update(pll->id, i, vco_freq,
+ old_channel_freq, channel_freq);
+ }
+}
+
+static void pll_src_update(void *opaque, ClockEvent event)
+{
+ RccPllState *s = opaque;
+ pll_update(s, false);
+}
+
+static void pll_init(Object *obj)
+{
+ RccPllState *s = RCC_PLL(obj);
+ size_t i;
+
+ s->in = qdev_init_clock_in(DEVICE(s), "in",
+ pll_src_update, s, ClockUpdate);
+
+ const char *names[] = {
+ "out-p", "out-q", "out-r",
+ };
+
+ for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) {
+ s->channels[i] = qdev_init_clock_out(DEVICE(s), names[i]);
+ }
+}
+
+static void pll_reset_enter(Object *obj, ResetType type)
+{
+ RccPllState *s = RCC_PLL(obj);
+ set_pll_init_info(s, s->id);
+}
+
+static void pll_reset_hold(Object *obj)
+{
+ RccPllState *s = RCC_PLL(obj);
+ pll_update(s, true);
+}
+
+static void pll_reset_exit(Object *obj)
+{
+ RccPllState *s = RCC_PLL(obj);
+ pll_update(s, false);
+}
+
+static const VMStateDescription pll_vmstate = {
+ .name = TYPE_RCC_PLL,
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT32(id, RccPllState),
+ VMSTATE_CLOCK(in, RccPllState),
+ VMSTATE_ARRAY_CLOCK(channels, RccPllState,
+ RCC_NUM_CHANNEL_PLL_OUT),
+ VMSTATE_BOOL(enabled, RccPllState),
+ VMSTATE_UINT32(vco_multiplier, RccPllState),
+ VMSTATE_BOOL_ARRAY(channel_enabled, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
+ VMSTATE_BOOL_ARRAY(channel_exists, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
+ VMSTATE_UINT32_ARRAY(channel_divider, RccPllState, RCC_NUM_CHANNEL_PLL_OUT),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static void pll_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ ResettableClass *rc = RESETTABLE_CLASS(klass);
+
+ rc->phases.enter = pll_reset_enter;
+ rc->phases.hold = pll_reset_hold;
+ rc->phases.exit = pll_reset_exit;
+ dc->vmsd = &pll_vmstate;
+}
+
+static void pll_set_vco_multiplier(RccPllState *pll, uint32_t vco_multiplier)
+{
+ if (pll->vco_multiplier == vco_multiplier) {
+ return;
+ }
+
+ if (vco_multiplier < 8 || vco_multiplier > 86) {
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: VCO multiplier is out of bound (%u) for PLL %u\n",
+ __func__, vco_multiplier, pll->id);
+ return;
+ }
+
+ trace_stm32l4x5_rcc_pll_set_vco_multiplier(pll->id,
+ pll->vco_multiplier, vco_multiplier);
+
+ pll->vco_multiplier = vco_multiplier;
+ pll_update(pll, false);
+}
+
+static void pll_set_enable(RccPllState *pll, bool enabled)
+{
+ if (pll->enabled == enabled) {
+ return;
+ }
+
+ pll->enabled = enabled;
+ pll_update(pll, false);
+}
+
+static void pll_set_channel_enable(RccPllState *pll,
+ PllCommonChannels channel,
+ bool enabled)
+{
+ if (pll->channel_enabled[channel] == enabled) {
+ return;
+ }
+
+ if (enabled) {
+ trace_stm32l4x5_rcc_pll_channel_enable(pll->id, channel);
+ } else {
+ trace_stm32l4x5_rcc_pll_channel_disable(pll->id, channel);
+ }
+
+ pll->channel_enabled[channel] = enabled;
+ pll_update(pll, false);
+}
+
+static void pll_set_channel_divider(RccPllState *pll,
+ PllCommonChannels channel,
+ uint32_t divider)
+{
+ if (pll->channel_divider[channel] == divider) {
+ return;
+ }
+
+ trace_stm32l4x5_rcc_pll_set_channel_divider(pll->id,
+ channel, pll->channel_divider[channel], divider);
+
+ pll->channel_divider[channel] = divider;
+ pll_update(pll, false);
+}
+
+static void rcc_update_irq(Stm32l4x5RccState *s)
+{
+ /*
+ * TODO: Handle LSECSSF and CSSF flags when the CSS is implemented.
+ */
+ if (s->cifr & CIFR_IRQ_MASK) {
+ qemu_irq_raise(s->irq);
+ } else {
+ qemu_irq_lower(s->irq);
+ }
+}
+
+static void rcc_update_msi(Stm32l4x5RccState *s, uint32_t previous_value)
+{
+ uint32_t val;
+
+ static const uint32_t msirange[] = {
+ 100000, 200000, 400000, 800000, 1000000, 2000000,
+ 4000000, 8000000, 16000000, 24000000, 32000000, 48000000
+ };
+ /* MSIRANGE and MSIRGSEL */
+ val = extract32(s->cr, R_CR_MSIRGSEL_SHIFT, R_CR_MSIRGSEL_LENGTH);
+ if (val) {
+ /* MSIRGSEL is set, use the MSIRANGE field */
+ val = extract32(s->cr, R_CR_MSIRANGE_SHIFT, R_CR_MSIRANGE_LENGTH);
+ } else {
+ /* MSIRGSEL is not set, use the MSISRANGE field */
+ val = extract32(s->csr, R_CSR_MSISRANGE_SHIFT, R_CSR_MSISRANGE_LENGTH);
+ }
+
+ if (val < ARRAY_SIZE(msirange)) {
+ clock_update_hz(s->msi_rc, msirange[val]);
+ } else {
+ /*
+ * There is a hardware write protection if the value is out of bound.
+ * Restore the previous value.
+ */
+ s->cr = (s->cr & ~R_CSR_MSISRANGE_MASK) |
+ (previous_value & R_CSR_MSISRANGE_MASK);
+ }
+}
+
+/*
+ * TODO: Add write-protection for all registers:
+ * DONE: CR
+ */
+
+static void rcc_update_cr_register(Stm32l4x5RccState *s, uint32_t previous_value)
+{
+ int val;
+ const RccClockMuxSource current_pll_src =
+ CLOCK_MUX_INIT_INFO[RCC_CLOCK_MUX_PLL_INPUT].src_mapping[
+ s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].src];
+
+ /* PLLSAI2ON and update PLLSAI2RDY */
+ val = FIELD_EX32(s->cr, CR, PLLSAI2ON);
+ pll_set_enable(&s->plls[RCC_PLL_PLLSAI2], val);
+ s->cr = (s->cr & ~R_CR_PLLSAI2RDY_MASK) |
+ (val << R_CR_PLLSAI2RDY_SHIFT);
+ if (s->cier & R_CIER_PLLSAI2RDYIE_MASK) {
+ s->cifr |= R_CIFR_PLLSAI2RDYF_MASK;
+ }
+
+ /* PLLSAI1ON and update PLLSAI1RDY */
+ val = FIELD_EX32(s->cr, CR, PLLSAI1ON);
+ pll_set_enable(&s->plls[RCC_PLL_PLLSAI1], val);
+ s->cr = (s->cr & ~R_CR_PLLSAI1RDY_MASK) |
+ (val << R_CR_PLLSAI1RDY_SHIFT);
+ if (s->cier & R_CIER_PLLSAI1RDYIE_MASK) {
+ s->cifr |= R_CIFR_PLLSAI1RDYF_MASK;
+ }
+
+ /*
+ * PLLON and update PLLRDY
+ * PLLON cannot be reset if the PLL clock is used as the system clock.
+ */
+ val = FIELD_EX32(s->cr, CR, PLLON);
+ if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b11) {
+ pll_set_enable(&s->plls[RCC_PLL_PLL], val);
+ s->cr = (s->cr & ~R_CR_PLLRDY_MASK) |
+ (val << R_CR_PLLRDY_SHIFT);
+ if (s->cier & R_CIER_PLLRDYIE_MASK) {
+ s->cifr |= R_CIFR_PLLRDYF_MASK;
+ }
+ } else {
+ s->cr |= R_CR_PLLON_MASK;
+ }
+
+ /* CSSON: TODO */
+ /* HSEBYP: TODO */
+
+ /*
+ * HSEON and update HSERDY.
+ * HSEON cannot be reset if the HSE oscillator is used directly or
+ * indirectly as the system clock.
+ */
+ val = FIELD_EX32(s->cr, CR, HSEON);
+ if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b10 &&
+ current_pll_src != RCC_CLOCK_MUX_SRC_HSE) {
+ s->cr = (s->cr & ~R_CR_HSERDY_MASK) |
+ (val << R_CR_HSERDY_SHIFT);
+ if (val) {
+ clock_update_hz(s->hse, s->hse_frequency);
+ if (s->cier & R_CIER_HSERDYIE_MASK) {
+ s->cifr |= R_CIFR_HSERDYF_MASK;
+ }
+ } else {
+ clock_update(s->hse, 0);
+ }
+ } else {
+ s->cr |= R_CR_HSEON_MASK;
+ }
+
+ /* HSIAFS: TODO*/
+ /* HSIKERON: TODO*/
+
+ /*
+ * HSION and update HSIRDY
+ * HSION is set by hardware if the HSI16 is used directly
+ * or indirectly as system clock.
+ */
+ if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b01 ||
+ current_pll_src == RCC_CLOCK_MUX_SRC_HSI) {
+ s->cr |= (R_CR_HSION_MASK | R_CR_HSIRDY_MASK);
+ clock_update_hz(s->hsi16_rc, HSI_FRQ);
+ if (s->cier & R_CIER_HSIRDYIE_MASK) {
+ s->cifr |= R_CIFR_HSIRDYF_MASK;
+ }
+ } else {
+ val = FIELD_EX32(s->cr, CR, HSION);
+ if (val) {
+ clock_update_hz(s->hsi16_rc, HSI_FRQ);
+ s->cr |= R_CR_HSIRDY_MASK;
+ if (s->cier & R_CIER_HSIRDYIE_MASK) {
+ s->cifr |= R_CIFR_HSIRDYF_MASK;
+ }
+ } else {
+ clock_update(s->hsi16_rc, 0);
+ s->cr &= ~R_CR_HSIRDY_MASK;
+ }
+ }
+
+ /* MSIPLLEN: TODO */
+
+ /*
+ * MSION and update MSIRDY
+ * Set by hardware when used directly or indirectly as system clock.
+ */
+ if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b00 ||
+ current_pll_src == RCC_CLOCK_MUX_SRC_MSI) {
+ s->cr |= (R_CR_MSION_MASK | R_CR_MSIRDY_MASK);
+ if (!(previous_value & R_CR_MSION_MASK) && (s->cier & R_CIER_MSIRDYIE_MASK)) {
+ s->cifr |= R_CIFR_MSIRDYF_MASK;
+ }
+ rcc_update_msi(s, previous_value);
+ } else {
+ val = FIELD_EX32(s->cr, CR, MSION);
+ if (val) {
+ s->cr |= R_CR_MSIRDY_MASK;
+ rcc_update_msi(s, previous_value);
+ if (s->cier & R_CIER_MSIRDYIE_MASK) {
+ s->cifr |= R_CIFR_MSIRDYF_MASK;
+ }
+ } else {
+ s->cr &= ~R_CR_MSIRDY_MASK;
+ clock_update(s->msi_rc, 0);
+ }
+ }
+ rcc_update_irq(s);
+}
+
+static void rcc_update_cfgr_register(Stm32l4x5RccState *s)
+{
+ uint32_t val;
+ /* MCOPRE */
+ val = FIELD_EX32(s->cfgr, CFGR, MCOPRE);
+ assert(val <= 0b100);
+ clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
+ 1, 1 << val);
+
+ /* MCOSEL */
+ val = FIELD_EX32(s->cfgr, CFGR, MCOSEL);
+ assert(val <= 0b111);
+ if (val == 0) {
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false);
+ } else {
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], true);
+ clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_MCO],
+ val - 1);
+ }
+
+ /* STOPWUCK */
+ /* TODO */
+
+ /* PPRE2 */
+ val = FIELD_EX32(s->cfgr, CFGR, PPRE2);
+ if (val < 0b100) {
+ clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
+ 1, 1);
+ } else {
+ clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2],
+ 1, 1 << (val - 0b11));
+ }
+
+ /* PPRE1 */
+ val = FIELD_EX32(s->cfgr, CFGR, PPRE1);
+ if (val < 0b100) {
+ clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
+ 1, 1);
+ } else {
+ clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1],
+ 1, 1 << (val - 0b11));
+ }
+
+ /* HPRE */
+ val = FIELD_EX32(s->cfgr, CFGR, HPRE);
+ if (val < 0b1000) {
+ clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
+ 1, 1);
+ } else {
+ clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK],
+ 1, 1 << (val - 0b111));
+ }
+
+ /* Update SWS */
+ val = FIELD_EX32(s->cfgr, CFGR, SW);
+ clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_SYSCLK],
+ val);
+ s->cfgr &= ~R_CFGR_SWS_MASK;
+ s->cfgr |= val << R_CFGR_SWS_SHIFT;
+}
+
+static void rcc_update_ahb1enr(Stm32l4x5RccState *s)
+{
+ #define AHB1ENR_SET_ENABLE(_peripheral_name) \
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
+ FIELD_EX32(s->ahb1enr, AHB1ENR, _peripheral_name##EN))
+
+ /* DMA2DEN: reserved for STM32L475xx */
+ AHB1ENR_SET_ENABLE(TSC);
+ AHB1ENR_SET_ENABLE(CRC);
+ AHB1ENR_SET_ENABLE(FLASH);
+ AHB1ENR_SET_ENABLE(DMA2);
+ AHB1ENR_SET_ENABLE(DMA1);
+
+ #undef AHB1ENR_SET_ENABLE
+}
+
+static void rcc_update_ahb2enr(Stm32l4x5RccState *s)
+{
+ #define AHB2ENR_SET_ENABLE(_peripheral_name) \
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
+ FIELD_EX32(s->ahb2enr, AHB2ENR, _peripheral_name##EN))
+
+ AHB2ENR_SET_ENABLE(RNG);
+ /* HASHEN: reserved for STM32L475xx */
+ AHB2ENR_SET_ENABLE(AES);
+ /* DCMIEN: reserved for STM32L475xx */
+ AHB2ENR_SET_ENABLE(ADC);
+ AHB2ENR_SET_ENABLE(OTGFS);
+ /* GPIOIEN: reserved for STM32L475xx */
+ AHB2ENR_SET_ENABLE(GPIOA);
+ AHB2ENR_SET_ENABLE(GPIOB);
+ AHB2ENR_SET_ENABLE(GPIOC);
+ AHB2ENR_SET_ENABLE(GPIOD);
+ AHB2ENR_SET_ENABLE(GPIOE);
+ AHB2ENR_SET_ENABLE(GPIOF);
+ AHB2ENR_SET_ENABLE(GPIOG);
+ AHB2ENR_SET_ENABLE(GPIOH);
+
+ #undef AHB2ENR_SET_ENABLE
+}
+
+static void rcc_update_ahb3enr(Stm32l4x5RccState *s)
+{
+ #define AHB3ENR_SET_ENABLE(_peripheral_name) \
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
+ FIELD_EX32(s->ahb3enr, AHB3ENR, _peripheral_name##EN))
+
+ AHB3ENR_SET_ENABLE(QSPI);
+ AHB3ENR_SET_ENABLE(FMC);
+
+ #undef AHB3ENR_SET_ENABLE
+}
+
+static void rcc_update_apb1enr(Stm32l4x5RccState *s)
+{
+ #define APB1ENR1_SET_ENABLE(_peripheral_name) \
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
+ FIELD_EX32(s->apb1enr1, APB1ENR1, _peripheral_name##EN))
+ #define APB1ENR2_SET_ENABLE(_peripheral_name) \
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
+ FIELD_EX32(s->apb1enr2, APB1ENR2, _peripheral_name##EN))
+
+ /* APB1ENR1 */
+ APB1ENR1_SET_ENABLE(LPTIM1);
+ APB1ENR1_SET_ENABLE(OPAMP);
+ APB1ENR1_SET_ENABLE(DAC1);
+ APB1ENR1_SET_ENABLE(PWR);
+ /* CAN2: reserved for STM32L4x5 */
+ APB1ENR1_SET_ENABLE(CAN1);
+ /* CRSEN: reserved for STM32L4x5 */
+ APB1ENR1_SET_ENABLE(I2C3);
+ APB1ENR1_SET_ENABLE(I2C2);
+ APB1ENR1_SET_ENABLE(I2C1);
+ APB1ENR1_SET_ENABLE(UART5);
+ APB1ENR1_SET_ENABLE(UART4);
+ APB1ENR1_SET_ENABLE(USART3);
+ APB1ENR1_SET_ENABLE(USART2);
+ APB1ENR1_SET_ENABLE(SPI3);
+ APB1ENR1_SET_ENABLE(SPI2);
+ APB1ENR1_SET_ENABLE(WWDG);
+ /* RTCAPB: reserved for STM32L4x5 */
+ APB1ENR1_SET_ENABLE(LCD);
+ APB1ENR1_SET_ENABLE(TIM7);
+ APB1ENR1_SET_ENABLE(TIM6);
+ APB1ENR1_SET_ENABLE(TIM5);
+ APB1ENR1_SET_ENABLE(TIM4);
+ APB1ENR1_SET_ENABLE(TIM3);
+ APB1ENR1_SET_ENABLE(TIM2);
+
+ /* APB1ENR2 */
+ APB1ENR2_SET_ENABLE(LPTIM2);
+ APB1ENR2_SET_ENABLE(SWPMI1);
+ /* I2C4EN: reserved for STM32L4x5 */
+ APB1ENR2_SET_ENABLE(LPUART1);
+
+ #undef APB1ENR1_SET_ENABLE
+ #undef APB1ENR2_SET_ENABLE
+}
+
+static void rcc_update_apb2enr(Stm32l4x5RccState *s)
+{
+ #define APB2ENR_SET_ENABLE(_peripheral_name) \
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
+ FIELD_EX32(s->apb2enr, APB2ENR, _peripheral_name##EN))
+
+ APB2ENR_SET_ENABLE(DFSDM1);
+ APB2ENR_SET_ENABLE(SAI2);
+ APB2ENR_SET_ENABLE(SAI1);
+ APB2ENR_SET_ENABLE(TIM17);
+ APB2ENR_SET_ENABLE(TIM16);
+ APB2ENR_SET_ENABLE(TIM15);
+ APB2ENR_SET_ENABLE(USART1);
+ APB2ENR_SET_ENABLE(TIM8);
+ APB2ENR_SET_ENABLE(SPI1);
+ APB2ENR_SET_ENABLE(TIM1);
+ APB2ENR_SET_ENABLE(SDMMC1);
+ APB2ENR_SET_ENABLE(FW);
+ APB2ENR_SET_ENABLE(SYSCFG);
+
+ #undef APB2ENR_SET_ENABLE
+}
+
+/*
+ * The 3 PLLs share the same register layout
+ * so we can use the same function for all of them
+ * Note: no frequency bounds checking is done here.
+ */
+static void rcc_update_pllsaixcfgr(Stm32l4x5RccState *s, RccPll pll_id)
+{
+ uint32_t reg, val;
+ switch (pll_id) {
+ case RCC_PLL_PLL:
+ reg = s->pllcfgr;
+ break;
+ case RCC_PLL_PLLSAI1:
+ reg = s->pllsai1cfgr;
+ break;
+ case RCC_PLL_PLLSAI2:
+ reg = s->pllsai2cfgr;
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: Invalid PLL ID: %u\n", __func__, pll_id);
+ return;
+ }
+
+ /* PLLPDIV */
+ val = FIELD_EX32(reg, PLLCFGR, PLLPDIV);
+ /* 1 is a reserved value */
+ if (val == 0) {
+ /* Get PLLP value */
+ val = FIELD_EX32(reg, PLLCFGR, PLLP);
+ pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
+ (val ? 17 : 7));
+ } else if (val > 1) {
+ pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P,
+ val);
+ }
+
+
+ /* PLLR */
+ val = FIELD_EX32(reg, PLLCFGR, PLLR);
+ pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R,
+ 2 * (val + 1));
+
+ /* PLLREN */
+ val = FIELD_EX32(reg, PLLCFGR, PLLREN);
+ pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, val);
+
+ /* PLLQ */
+ val = FIELD_EX32(reg, PLLCFGR, PLLQ);
+ pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q,
+ 2 * (val + 1));
+
+ /* PLLQEN */
+ val = FIELD_EX32(reg, PLLCFGR, PLLQEN);
+ pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, val);
+
+ /* PLLPEN */
+ val = FIELD_EX32(reg, PLLCFGR, PLLPEN);
+ pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, val);
+
+ /* PLLN */
+ val = FIELD_EX32(reg, PLLCFGR, PLLN);
+ pll_set_vco_multiplier(&s->plls[pll_id], val);
+}
+
+static void rcc_update_pllcfgr(Stm32l4x5RccState *s)
+{
+ int val;
+
+ /* Use common layout */
+ rcc_update_pllsaixcfgr(s, RCC_PLL_PLL);
+
+ /* Fetch specific fields for pllcfgr */
+
+ /* PLLM */
+ val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLM);
+ clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], 1, (val + 1));
+
+ /* PLLSRC */
+ val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLSRC);
+ if (val == 0) {
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], false);
+ } else {
+ clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], val - 1);
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], true);
+ }
+}
+
+static void rcc_update_ccipr(Stm32l4x5RccState *s)
+{
+ #define CCIPR_SET_SOURCE(_peripheral_name) \
+ clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \
+ FIELD_EX32(s->ccipr, CCIPR, _peripheral_name##SEL))
+
+ CCIPR_SET_SOURCE(DFSDM1);
+ CCIPR_SET_SOURCE(SWPMI1);
+ CCIPR_SET_SOURCE(ADC);
+ CCIPR_SET_SOURCE(CLK48);
+ CCIPR_SET_SOURCE(SAI2);
+ CCIPR_SET_SOURCE(SAI1);
+ CCIPR_SET_SOURCE(LPTIM2);
+ CCIPR_SET_SOURCE(LPTIM1);
+ CCIPR_SET_SOURCE(I2C3);
+ CCIPR_SET_SOURCE(I2C2);
+ CCIPR_SET_SOURCE(I2C1);
+ CCIPR_SET_SOURCE(LPUART1);
+ CCIPR_SET_SOURCE(UART5);
+ CCIPR_SET_SOURCE(UART4);
+ CCIPR_SET_SOURCE(USART3);
+ CCIPR_SET_SOURCE(USART2);
+ CCIPR_SET_SOURCE(USART1);
+
+ #undef CCIPR_SET_SOURCE
+}
+
+static void rcc_update_bdcr(Stm32l4x5RccState *s)
+{
+ int val;
+
+ /* LSCOSEL */
+ val = FIELD_EX32(s->bdcr, BDCR, LSCOSEL);
+ clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
+
+ val = FIELD_EX32(s->bdcr, BDCR, LSCOEN);
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val);
+
+ /* BDRST */
+ /*
+ * The documentation is not clear if the RTCEN flag disables the RTC and
+ * the LCD common mux or if it only affects the RTC.
+ * As the LCDEN flag exists, we assume here that it only affects the RTC.
+ */
+ val = FIELD_EX32(s->bdcr, BDCR, RTCEN);
+ clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_RTC], val);
+ /* LCD and RTC share the same clock */
+ val = FIELD_EX32(s->bdcr, BDCR, RTCSEL);
+ clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON], val);
+
+ /* LSECSSON */
+ /* LSEDRV[1:0] */
+ /* LSEBYP */
+
+ /* LSEON: Update LSERDY at the same time */
+ val = FIELD_EX32(s->bdcr, BDCR, LSEON);
+ if (val) {
+ clock_update_hz(s->lse_crystal, LSE_FRQ);
+ s->bdcr |= R_BDCR_LSERDY_MASK;
+ if (s->cier & R_CIER_LSERDYIE_MASK) {
+ s->cifr |= R_CIFR_LSERDYF_MASK;
+ }
+ } else {
+ clock_update(s->lse_crystal, 0);
+ s->bdcr &= ~R_BDCR_LSERDY_MASK;
+ }
+
+ rcc_update_irq(s);
+}
+
+static void rcc_update_csr(Stm32l4x5RccState *s)
+{
+ int val;
+
+ /* Reset flags: Not implemented */
+ /* MSISRANGE: Not implemented after reset */
+
+ /* LSION: Update LSIRDY at the same time */
+ val = FIELD_EX32(s->csr, CSR, LSION);
+ if (val) {
+ clock_update_hz(s->lsi_rc, LSI_FRQ);
+ s->csr |= R_CSR_LSIRDY_MASK;
+ if (s->cier & R_CIER_LSIRDYIE_MASK) {
+ s->cifr |= R_CIFR_LSIRDYF_MASK;
+ }
+ } else {
+ /*
+ * TODO: Handle when the LSI is set independently of LSION.
+ * E.g. when the LSI is set by the RTC.
+ * See the reference manual for more details.
+ */
+ clock_update(s->lsi_rc, 0);
+ s->csr &= ~R_CSR_LSIRDY_MASK;
+ }
+
+ rcc_update_irq(s);
+}
+
+static void stm32l4x5_rcc_reset_hold(Object *obj)
+{
+ Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
+ s->cr = 0x00000063;
+ /*
+ * Factory-programmed calibration data
+ * From the reference manual: 0x10XX 00XX
+ * Value taken from a real card.
+ */
+ s->icscr = 0x106E0082;
+ s->cfgr = 0x0;
+ s->pllcfgr = 0x00001000;
+ s->pllsai1cfgr = 0x00001000;
+ s->pllsai2cfgr = 0x00001000;
+ s->cier = 0x0;
+ s->cifr = 0x0;
+ s->ahb1rstr = 0x0;
+ s->ahb2rstr = 0x0;
+ s->ahb3rstr = 0x0;
+ s->apb1rstr1 = 0x0;
+ s->apb1rstr2 = 0x0;
+ s->apb2rstr = 0x0;
+ s->ahb1enr = 0x00000100;
+ s->ahb2enr = 0x0;
+ s->ahb3enr = 0x0;
+ s->apb1enr1 = 0x0;
+ s->apb1enr2 = 0x0;
+ s->apb2enr = 0x0;
+ s->ahb1smenr = 0x00011303;
+ s->ahb2smenr = 0x000532FF;
+ s->ahb3smenr = 0x00000101;
+ s->apb1smenr1 = 0xF2FECA3F;
+ s->apb1smenr2 = 0x00000025;
+ s->apb2smenr = 0x01677C01;
+ s->ccipr = 0x0;
+ s->bdcr = 0x0;
+ s->csr = 0x0C000600;
+}
+
+static uint64_t stm32l4x5_rcc_read(void *opaque, hwaddr addr,
+ unsigned int size)
+{
+ Stm32l4x5RccState *s = opaque;
+ uint64_t retvalue = 0;
+
+ switch (addr) {
+ case A_CR:
+ retvalue = s->cr;
+ break;
+ case A_ICSCR:
+ retvalue = s->icscr;
+ break;
+ case A_CFGR:
+ retvalue = s->cfgr;
+ break;
+ case A_PLLCFGR:
+ retvalue = s->pllcfgr;
+ break;
+ case A_PLLSAI1CFGR:
+ retvalue = s->pllsai1cfgr;
+ break;
+ case A_PLLSAI2CFGR:
+ retvalue = s->pllsai2cfgr;
+ break;
+ case A_CIER:
+ retvalue = s->cier;
+ break;
+ case A_CIFR:
+ retvalue = s->cifr;
+ break;
+ case A_CICR:
+ /* CICR is write only, return the reset value = 0 */
+ break;
+ case A_AHB1RSTR:
+ retvalue = s->ahb1rstr;
+ break;
+ case A_AHB2RSTR:
+ retvalue = s->ahb2rstr;
+ break;
+ case A_AHB3RSTR:
+ retvalue = s->ahb3rstr;
+ break;
+ case A_APB1RSTR1:
+ retvalue = s->apb1rstr1;
+ break;
+ case A_APB1RSTR2:
+ retvalue = s->apb1rstr2;
+ break;
+ case A_APB2RSTR:
+ retvalue = s->apb2rstr;
+ break;
+ case A_AHB1ENR:
+ retvalue = s->ahb1enr;
+ break;
+ case A_AHB2ENR:
+ retvalue = s->ahb2enr;
+ break;
+ case A_AHB3ENR:
+ retvalue = s->ahb3enr;
+ break;
+ case A_APB1ENR1:
+ retvalue = s->apb1enr1;
+ break;
+ case A_APB1ENR2:
+ retvalue = s->apb1enr2;
+ break;
+ case A_APB2ENR:
+ retvalue = s->apb2enr;
+ break;
+ case A_AHB1SMENR:
+ retvalue = s->ahb1smenr;
+ break;
+ case A_AHB2SMENR:
+ retvalue = s->ahb2smenr;
+ break;
+ case A_AHB3SMENR:
+ retvalue = s->ahb3smenr;
+ break;
+ case A_APB1SMENR1:
+ retvalue = s->apb1smenr1;
+ break;
+ case A_APB1SMENR2:
+ retvalue = s->apb1smenr2;
+ break;
+ case A_APB2SMENR:
+ retvalue = s->apb2smenr;
+ break;
+ case A_CCIPR:
+ retvalue = s->ccipr;
+ break;
+ case A_BDCR:
+ retvalue = s->bdcr;
+ break;
+ case A_CSR:
+ retvalue = s->csr;
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
+ break;
+ }
+
+ trace_stm32l4x5_rcc_read(addr, retvalue);
+
+ return retvalue;
+}
+
+static void stm32l4x5_rcc_write(void *opaque, hwaddr addr,
+ uint64_t val64, unsigned int size)
+{
+ Stm32l4x5RccState *s = opaque;
+ uint32_t previous_value = 0;
+ const uint32_t value = val64;
+
+ trace_stm32l4x5_rcc_write(addr, value);
+
+ switch (addr) {
+ case A_CR:
+ previous_value = s->cr;
+ s->cr = (s->cr & CR_READ_SET_MASK) |
+ (value & (CR_READ_SET_MASK | ~CR_READ_ONLY_MASK));
+ rcc_update_cr_register(s, previous_value);
+ break;
+ case A_ICSCR:
+ s->icscr = value & ~ICSCR_READ_ONLY_MASK;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for ICSCR\n", __func__);
+ break;
+ case A_CFGR:
+ s->cfgr = value & ~CFGR_READ_ONLY_MASK;
+ rcc_update_cfgr_register(s);
+ break;
+ case A_PLLCFGR:
+ s->pllcfgr = value;
+ rcc_update_pllcfgr(s);
+ break;
+ case A_PLLSAI1CFGR:
+ s->pllsai1cfgr = value;
+ rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI1);
+ break;
+ case A_PLLSAI2CFGR:
+ s->pllsai2cfgr = value;
+ rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI2);
+ break;
+ case A_CIER:
+ s->cier = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for CIER\n", __func__);
+ break;
+ case A_CIFR:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: Write attempt into read-only register (CIFR) 0x%"PRIx32"\n",
+ __func__, value);
+ break;
+ case A_CICR:
+ /* Clear interrupt flags by writing a 1 to the CICR register */
+ s->cifr &= ~value;
+ rcc_update_irq(s);
+ break;
+ /* Reset behaviors are not implemented */
+ case A_AHB1RSTR:
+ s->ahb1rstr = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for AHB1RSTR\n", __func__);
+ break;
+ case A_AHB2RSTR:
+ s->ahb2rstr = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for AHB2RSTR\n", __func__);
+ break;
+ case A_AHB3RSTR:
+ s->ahb3rstr = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for AHB3RSTR\n", __func__);
+ break;
+ case A_APB1RSTR1:
+ s->apb1rstr1 = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for APB1RSTR1\n", __func__);
+ break;
+ case A_APB1RSTR2:
+ s->apb1rstr2 = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for APB1RSTR2\n", __func__);
+ break;
+ case A_APB2RSTR:
+ s->apb2rstr = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for APB2RSTR\n", __func__);
+ break;
+ case A_AHB1ENR:
+ s->ahb1enr = value;
+ rcc_update_ahb1enr(s);
+ break;
+ case A_AHB2ENR:
+ s->ahb2enr = value;
+ rcc_update_ahb2enr(s);
+ break;
+ case A_AHB3ENR:
+ s->ahb3enr = value;
+ rcc_update_ahb3enr(s);
+ break;
+ case A_APB1ENR1:
+ s->apb1enr1 = value;
+ rcc_update_apb1enr(s);
+ break;
+ case A_APB1ENR2:
+ s->apb1enr2 = value;
+ rcc_update_apb1enr(s);
+ break;
+ case A_APB2ENR:
+ s->apb2enr = (s->apb2enr & APB2ENR_READ_SET_MASK) | value;
+ rcc_update_apb2enr(s);
+ break;
+ /* Behaviors for Sleep and Stop modes are not implemented */
+ case A_AHB1SMENR:
+ s->ahb1smenr = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for AHB1SMENR\n", __func__);
+ break;
+ case A_AHB2SMENR:
+ s->ahb2smenr = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for AHB2SMENR\n", __func__);
+ break;
+ case A_AHB3SMENR:
+ s->ahb3smenr = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for AHB3SMENR\n", __func__);
+ break;
+ case A_APB1SMENR1:
+ s->apb1smenr1 = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for APB1SMENR1\n", __func__);
+ break;
+ case A_APB1SMENR2:
+ s->apb1smenr2 = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for APB1SMENR2\n", __func__);
+ break;
+ case A_APB2SMENR:
+ s->apb2smenr = value;
+ qemu_log_mask(LOG_UNIMP,
+ "%s: Side-effects not implemented for APB2SMENR\n", __func__);
+ break;
+ case A_CCIPR:
+ s->ccipr = value;
+ rcc_update_ccipr(s);
+ break;
+ case A_BDCR:
+ s->bdcr = value & ~BDCR_READ_ONLY_MASK;
+ rcc_update_bdcr(s);
+ break;
+ case A_CSR:
+ s->csr = value & ~CSR_READ_ONLY_MASK;
+ rcc_update_csr(s);
+ break;
+ default:
+ qemu_log_mask(LOG_GUEST_ERROR,
+ "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr);
+ }
+}
+
+static const MemoryRegionOps stm32l4x5_rcc_ops = {
+ .read = stm32l4x5_rcc_read,
+ .write = stm32l4x5_rcc_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+ .valid = {
+ .max_access_size = 4,
+ .min_access_size = 4,
+ .unaligned = false
+ },
+ .impl = {
+ .max_access_size = 4,
+ .min_access_size = 4,
+ .unaligned = false
+ },
+};
+
+static const ClockPortInitArray stm32l4x5_rcc_clocks = {
+ QDEV_CLOCK_IN(Stm32l4x5RccState, hsi16_rc, NULL, 0),
+ QDEV_CLOCK_IN(Stm32l4x5RccState, msi_rc, NULL, 0),
+ QDEV_CLOCK_IN(Stm32l4x5RccState, hse, NULL, 0),
+ QDEV_CLOCK_IN(Stm32l4x5RccState, lsi_rc, NULL, 0),
+ QDEV_CLOCK_IN(Stm32l4x5RccState, lse_crystal, NULL, 0),
+ QDEV_CLOCK_IN(Stm32l4x5RccState, sai1_extclk, NULL, 0),
+ QDEV_CLOCK_IN(Stm32l4x5RccState, sai2_extclk, NULL, 0),
+ QDEV_CLOCK_END
+};
+
+
+static void stm32l4x5_rcc_init(Object *obj)
+{
+ Stm32l4x5RccState *s = STM32L4X5_RCC(obj);
+ size_t i;
+
+ sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
+
+ memory_region_init_io(&s->mmio, obj, &stm32l4x5_rcc_ops, s,
+ TYPE_STM32L4X5_RCC, 0x400);
+ sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
+
+ qdev_init_clocks(DEVICE(s), stm32l4x5_rcc_clocks);
+
+ for (i = 0; i < RCC_NUM_PLL; i++) {
+ object_initialize_child(obj, PLL_INIT_INFO[i].name,
+ &s->plls[i], TYPE_RCC_PLL);
+ set_pll_init_info(&s->plls[i], i);
+ }
+
+ for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
+ char *alias;
+
+ object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
+ &s->clock_muxes[i],
+ TYPE_RCC_CLOCK_MUX);
+ set_clock_mux_init_info(&s->clock_muxes[i], i);
+
+ if (!CLOCK_MUX_INIT_INFO[i].hidden) {
+ /* Expose muxes output as RCC outputs */
+ alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
+ qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
+ g_free(alias);
+ }
+ }
+
+ s->gnd = clock_new(obj, "gnd");
+}
+
+static void connect_mux_sources(Stm32l4x5RccState *s,
+ RccClockMuxState *mux,
+ const RccClockMuxSource *clk_mapping)
+{
+ size_t i;
+
+ Clock * const CLK_SRC_MAPPING[] = {
+ [RCC_CLOCK_MUX_SRC_GND] = s->gnd,
+ [RCC_CLOCK_MUX_SRC_HSI] = s->hsi16_rc,
+ [RCC_CLOCK_MUX_SRC_HSE] = s->hse,
+ [RCC_CLOCK_MUX_SRC_MSI] = s->msi_rc,
+ [RCC_CLOCK_MUX_SRC_LSI] = s->lsi_rc,
+ [RCC_CLOCK_MUX_SRC_LSE] = s->lse_crystal,
+ [RCC_CLOCK_MUX_SRC_SAI1_EXTCLK] = s->sai1_extclk,
+ [RCC_CLOCK_MUX_SRC_SAI2_EXTCLK] = s->sai2_extclk,
+ [RCC_CLOCK_MUX_SRC_PLL] =
+ s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLCLK],
+ [RCC_CLOCK_MUX_SRC_PLLSAI1] =
+ s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLSAI1CLK],
+ [RCC_CLOCK_MUX_SRC_PLLSAI2] =
+ s->plls[RCC_PLL_PLLSAI2].channels[RCC_PLLSAI2_CHANNEL_PLLSAI2CLK],
+ [RCC_CLOCK_MUX_SRC_PLLSAI3] =
+ s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLSAI3CLK],
+ [RCC_CLOCK_MUX_SRC_PLL48M1] =
+ s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLL48M1CLK],
+ [RCC_CLOCK_MUX_SRC_PLL48M2] =
+ s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLL48M2CLK],
+ [RCC_CLOCK_MUX_SRC_PLLADC1] =
+ s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLADC1CLK],
+ [RCC_CLOCK_MUX_SRC_PLLADC2] =
+ s->plls[RCC_PLL_PLLSAI2] .channels[RCC_PLLSAI2_CHANNEL_PLLADC2CLK],
+ [RCC_CLOCK_MUX_SRC_SYSCLK] = s->clock_muxes[RCC_CLOCK_MUX_SYSCLK].out,
+ [RCC_CLOCK_MUX_SRC_HCLK] = s->clock_muxes[RCC_CLOCK_MUX_HCLK].out,
+ [RCC_CLOCK_MUX_SRC_PCLK1] = s->clock_muxes[RCC_CLOCK_MUX_PCLK1].out,
+ [RCC_CLOCK_MUX_SRC_PCLK2] = s->clock_muxes[RCC_CLOCK_MUX_PCLK2].out,
+ [RCC_CLOCK_MUX_SRC_HSE_OVER_32] = s->clock_muxes[RCC_CLOCK_MUX_HSE_OVER_32].out,
+ [RCC_CLOCK_MUX_SRC_LCD_AND_RTC_COMMON] =
+ s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON].out,
+ };
+
+ assert(ARRAY_SIZE(CLK_SRC_MAPPING) == RCC_CLOCK_MUX_SRC_NUMBER);
+
+ for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) {
+ RccClockMuxSource mapping = clk_mapping[i];
+ clock_set_source(mux->srcs[i], CLK_SRC_MAPPING[mapping]);
+ }
+}
+
+
+static const VMStateDescription vmstate_stm32l4x5_rcc = {
+ .name = TYPE_STM32L4X5_RCC,
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT32(cr, Stm32l4x5RccState),
+ VMSTATE_UINT32(icscr, Stm32l4x5RccState),
+ VMSTATE_UINT32(cfgr, Stm32l4x5RccState),
+ VMSTATE_UINT32(pllcfgr, Stm32l4x5RccState),
+ VMSTATE_UINT32(pllsai1cfgr, Stm32l4x5RccState),
+ VMSTATE_UINT32(pllsai2cfgr, Stm32l4x5RccState),
+ VMSTATE_UINT32(cier, Stm32l4x5RccState),
+ VMSTATE_UINT32(cifr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ahb1rstr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ahb2rstr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ahb3rstr, Stm32l4x5RccState),
+ VMSTATE_UINT32(apb1rstr1, Stm32l4x5RccState),
+ VMSTATE_UINT32(apb1rstr2, Stm32l4x5RccState),
+ VMSTATE_UINT32(apb2rstr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ahb1enr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ahb2enr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ahb3enr, Stm32l4x5RccState),
+ VMSTATE_UINT32(apb1enr1, Stm32l4x5RccState),
+ VMSTATE_UINT32(apb1enr2, Stm32l4x5RccState),
+ VMSTATE_UINT32(apb2enr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ahb1smenr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ahb2smenr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ahb3smenr, Stm32l4x5RccState),
+ VMSTATE_UINT32(apb1smenr1, Stm32l4x5RccState),
+ VMSTATE_UINT32(apb1smenr2, Stm32l4x5RccState),
+ VMSTATE_UINT32(apb2smenr, Stm32l4x5RccState),
+ VMSTATE_UINT32(ccipr, Stm32l4x5RccState),
+ VMSTATE_UINT32(bdcr, Stm32l4x5RccState),
+ VMSTATE_UINT32(csr, Stm32l4x5RccState),
+ VMSTATE_CLOCK(hsi16_rc, Stm32l4x5RccState),
+ VMSTATE_CLOCK(msi_rc, Stm32l4x5RccState),
+ VMSTATE_CLOCK(hse, Stm32l4x5RccState),
+ VMSTATE_CLOCK(lsi_rc, Stm32l4x5RccState),
+ VMSTATE_CLOCK(lse_crystal, Stm32l4x5RccState),
+ VMSTATE_CLOCK(sai1_extclk, Stm32l4x5RccState),
+ VMSTATE_CLOCK(sai2_extclk, Stm32l4x5RccState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+
+static void stm32l4x5_rcc_realize(DeviceState *dev, Error **errp)
+{
+ Stm32l4x5RccState *s = STM32L4X5_RCC(dev);
+ size_t i;
+
+ if (s->hse_frequency < 4000000ULL ||
+ s->hse_frequency > 48000000ULL) {
+ error_setg(errp,
+ "HSE frequency is outside of the allowed [4-48]Mhz range: %" PRIx64 "",
+ s->hse_frequency);
+ return;
+ }
+
+ for (i = 0; i < RCC_NUM_PLL; i++) {
+ RccPllState *pll = &s->plls[i];
+
+ clock_set_source(pll->in, s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].out);
+
+ if (!qdev_realize(DEVICE(pll), NULL, errp)) {
+ return;
+ }
+ }
+
+ for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) {
+ RccClockMuxState *clock_mux = &s->clock_muxes[i];
+
+ connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
+
+ if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
+ return;
+ }
+ }
+
+ /*
+ * Start clocks after everything is connected
+ * to propagate the frequencies along the tree.
+ */
+ clock_update_hz(s->msi_rc, MSI_DEFAULT_FRQ);
+ clock_update_hz(s->sai1_extclk, s->sai1_extclk_frequency);
+ clock_update_hz(s->sai2_extclk, s->sai2_extclk_frequency);
+ clock_update(s->gnd, 0);
+}
+
+static Property stm32l4x5_rcc_properties[] = {
+ DEFINE_PROP_UINT64("hse_frequency", Stm32l4x5RccState,
+ hse_frequency, HSE_DEFAULT_FRQ),
+ DEFINE_PROP_UINT64("sai1_extclk_frequency", Stm32l4x5RccState,
+ sai1_extclk_frequency, 0),
+ DEFINE_PROP_UINT64("sai2_extclk_frequency", Stm32l4x5RccState,
+ sai2_extclk_frequency, 0),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static void stm32l4x5_rcc_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ ResettableClass *rc = RESETTABLE_CLASS(klass);
+
+ assert(ARRAY_SIZE(CLOCK_MUX_INIT_INFO) == RCC_NUM_CLOCK_MUX);
+
+ rc->phases.hold = stm32l4x5_rcc_reset_hold;
+ device_class_set_props(dc, stm32l4x5_rcc_properties);
+ dc->realize = stm32l4x5_rcc_realize;
+ dc->vmsd = &vmstate_stm32l4x5_rcc;
+}
+
+static const TypeInfo stm32l4x5_rcc_types[] = {
+ {
+ .name = TYPE_STM32L4X5_RCC,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(Stm32l4x5RccState),
+ .instance_init = stm32l4x5_rcc_init,
+ .class_init = stm32l4x5_rcc_class_init,
+ }, {
+ .name = TYPE_RCC_CLOCK_MUX,
+ .parent = TYPE_DEVICE,
+ .instance_size = sizeof(RccClockMuxState),
+ .instance_init = clock_mux_init,
+ .class_init = clock_mux_class_init,
+ }, {
+ .name = TYPE_RCC_PLL,
+ .parent = TYPE_DEVICE,
+ .instance_size = sizeof(RccPllState),
+ .instance_init = pll_init,
+ .class_init = pll_class_init,
+ }
+};
+
+DEFINE_TYPES(stm32l4x5_rcc_types)