diff options
Diffstat (limited to 'hw/misc/stm32l4x5_rcc.c')
-rw-r--r-- | hw/misc/stm32l4x5_rcc.c | 1457 |
1 files changed, 1457 insertions, 0 deletions
diff --git a/hw/misc/stm32l4x5_rcc.c b/hw/misc/stm32l4x5_rcc.c new file mode 100644 index 0000000000..bc2d63528b --- /dev/null +++ b/hw/misc/stm32l4x5_rcc.c @@ -0,0 +1,1457 @@ +/* + * STM32L4X5 RCC (Reset and clock control) + * + * Copyright (c) 2023 Arnaud Minier <arnaud.minier@telecom-paris.fr> + * Copyright (c) 2023 Inès Varhol <ines.varhol@telecom-paris.fr> + * + * SPDX-License-Identifier: GPL-2.0-or-later + * + * This work is licensed under the terms of the GNU GPL, version 2 or later. + * See the COPYING file in the top-level directory. + * + * The reference used is the STMicroElectronics RM0351 Reference manual + * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs. + * + * Inspired by the BCM2835 CPRMAN clock manager implementation by Luc Michel. + */ + +#include "qemu/osdep.h" +#include "qemu/log.h" +#include "qemu/module.h" +#include "qemu/timer.h" +#include "qapi/error.h" +#include "migration/vmstate.h" +#include "hw/misc/stm32l4x5_rcc.h" +#include "hw/misc/stm32l4x5_rcc_internals.h" +#include "hw/clock.h" +#include "hw/irq.h" +#include "hw/qdev-clock.h" +#include "hw/qdev-properties.h" +#include "hw/qdev-properties-system.h" +#include "hw/registerfields.h" +#include "trace.h" + +#define HSE_DEFAULT_FRQ 48000000ULL +#define HSI_FRQ 16000000ULL +#define MSI_DEFAULT_FRQ 4000000ULL +#define LSE_FRQ 32768ULL +#define LSI_FRQ 32000ULL + +/* + * Function to simply acknowledge and propagate changes in a clock mux + * frequency. + * `bypass_source` allows to bypass the period of the current source and just + * consider it equal to 0. This is useful during the hold phase of reset. + */ +static void clock_mux_update(RccClockMuxState *mux, bool bypass_source) +{ + uint64_t src_freq; + Clock *current_source = mux->srcs[mux->src]; + uint32_t freq_multiplier = 0; + /* + * To avoid rounding errors, we use the clock period instead of the + * frequency. + * This means that the multiplier of the mux becomes the divider of + * the clock and the divider of the mux becomes the multiplier of the + * clock. + */ + if (!bypass_source && mux->enabled && mux->divider) { + freq_multiplier = mux->divider; + } + + clock_set_mul_div(mux->out, freq_multiplier, mux->multiplier); + clock_update(mux->out, clock_get(current_source)); + + src_freq = clock_get_hz(current_source); + /* TODO: can we simply detect if the config changed so that we reduce log spam ? */ + trace_stm32l4x5_rcc_mux_update(mux->id, mux->src, src_freq, + mux->multiplier, mux->divider); +} + +static void clock_mux_src_update(void *opaque, ClockEvent event) +{ + RccClockMuxState **backref = opaque; + RccClockMuxState *s = *backref; + /* + * The backref value is equal to: + * s->backref + (sizeof(RccClockMuxState *) * update_src). + * By subtracting we can get back the index of the updated clock. + */ + const uint32_t update_src = backref - s->backref; + /* Only update if the clock that was updated is the current source */ + if (update_src == s->src) { + clock_mux_update(s, false); + } +} + +static void clock_mux_init(Object *obj) +{ + RccClockMuxState *s = RCC_CLOCK_MUX(obj); + size_t i; + + for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) { + char *name = g_strdup_printf("srcs[%zu]", i); + s->backref[i] = s; + s->srcs[i] = qdev_init_clock_in(DEVICE(s), name, + clock_mux_src_update, + &s->backref[i], + ClockUpdate); + g_free(name); + } + + s->out = qdev_init_clock_out(DEVICE(s), "out"); +} + +static void clock_mux_reset_enter(Object *obj, ResetType type) +{ + RccClockMuxState *s = RCC_CLOCK_MUX(obj); + set_clock_mux_init_info(s, s->id); +} + +static void clock_mux_reset_hold(Object *obj) +{ + RccClockMuxState *s = RCC_CLOCK_MUX(obj); + clock_mux_update(s, true); +} + +static void clock_mux_reset_exit(Object *obj) +{ + RccClockMuxState *s = RCC_CLOCK_MUX(obj); + clock_mux_update(s, false); +} + +static const VMStateDescription clock_mux_vmstate = { + .name = TYPE_RCC_CLOCK_MUX, + .version_id = 1, + .minimum_version_id = 1, + .fields = (VMStateField[]) { + VMSTATE_UINT32(id, RccClockMuxState), + VMSTATE_ARRAY_CLOCK(srcs, RccClockMuxState, + RCC_NUM_CLOCK_MUX_SRC), + VMSTATE_BOOL(enabled, RccClockMuxState), + VMSTATE_UINT32(src, RccClockMuxState), + VMSTATE_UINT32(multiplier, RccClockMuxState), + VMSTATE_UINT32(divider, RccClockMuxState), + VMSTATE_END_OF_LIST() + } +}; + +static void clock_mux_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + ResettableClass *rc = RESETTABLE_CLASS(klass); + + rc->phases.enter = clock_mux_reset_enter; + rc->phases.hold = clock_mux_reset_hold; + rc->phases.exit = clock_mux_reset_exit; + dc->vmsd = &clock_mux_vmstate; +} + +static void clock_mux_set_enable(RccClockMuxState *mux, bool enabled) +{ + if (mux->enabled == enabled) { + return; + } + + if (enabled) { + trace_stm32l4x5_rcc_mux_enable(mux->id); + } else { + trace_stm32l4x5_rcc_mux_disable(mux->id); + } + + mux->enabled = enabled; + clock_mux_update(mux, false); +} + +static void clock_mux_set_factor(RccClockMuxState *mux, + uint32_t multiplier, uint32_t divider) +{ + if (mux->multiplier == multiplier && mux->divider == divider) { + return; + } + trace_stm32l4x5_rcc_mux_set_factor(mux->id, + mux->multiplier, multiplier, mux->divider, divider); + + mux->multiplier = multiplier; + mux->divider = divider; + clock_mux_update(mux, false); +} + +static void clock_mux_set_source(RccClockMuxState *mux, RccClockMuxSource src) +{ + if (mux->src == src) { + return; + } + + trace_stm32l4x5_rcc_mux_set_src(mux->id, mux->src, src); + mux->src = src; + clock_mux_update(mux, false); +} + +/* + * Acknowledge and propagate changes in a PLL frequency. + * `bypass_source` allows to bypass the period of the current source and just + * consider it equal to 0. This is useful during the hold phase of reset. + */ +static void pll_update(RccPllState *pll, bool bypass_source) +{ + uint64_t vco_freq, old_channel_freq, channel_freq; + int i; + + /* The common PLLM factor is handled by the PLL mux */ + vco_freq = muldiv64(clock_get_hz(pll->in), pll->vco_multiplier, 1); + + for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) { + if (!pll->channel_exists[i]) { + continue; + } + + old_channel_freq = clock_get_hz(pll->channels[i]); + if (bypass_source || + !pll->enabled || + !pll->channel_enabled[i] || + !pll->channel_divider[i]) { + channel_freq = 0; + } else { + channel_freq = muldiv64(vco_freq, + 1, + pll->channel_divider[i]); + } + + /* No change, early continue to avoid log spam and useless propagation */ + if (old_channel_freq == channel_freq) { + continue; + } + + clock_update_hz(pll->channels[i], channel_freq); + trace_stm32l4x5_rcc_pll_update(pll->id, i, vco_freq, + old_channel_freq, channel_freq); + } +} + +static void pll_src_update(void *opaque, ClockEvent event) +{ + RccPllState *s = opaque; + pll_update(s, false); +} + +static void pll_init(Object *obj) +{ + RccPllState *s = RCC_PLL(obj); + size_t i; + + s->in = qdev_init_clock_in(DEVICE(s), "in", + pll_src_update, s, ClockUpdate); + + const char *names[] = { + "out-p", "out-q", "out-r", + }; + + for (i = 0; i < RCC_NUM_CHANNEL_PLL_OUT; i++) { + s->channels[i] = qdev_init_clock_out(DEVICE(s), names[i]); + } +} + +static void pll_reset_enter(Object *obj, ResetType type) +{ + RccPllState *s = RCC_PLL(obj); + set_pll_init_info(s, s->id); +} + +static void pll_reset_hold(Object *obj) +{ + RccPllState *s = RCC_PLL(obj); + pll_update(s, true); +} + +static void pll_reset_exit(Object *obj) +{ + RccPllState *s = RCC_PLL(obj); + pll_update(s, false); +} + +static const VMStateDescription pll_vmstate = { + .name = TYPE_RCC_PLL, + .version_id = 1, + .minimum_version_id = 1, + .fields = (VMStateField[]) { + VMSTATE_UINT32(id, RccPllState), + VMSTATE_CLOCK(in, RccPllState), + VMSTATE_ARRAY_CLOCK(channels, RccPllState, + RCC_NUM_CHANNEL_PLL_OUT), + VMSTATE_BOOL(enabled, RccPllState), + VMSTATE_UINT32(vco_multiplier, RccPllState), + VMSTATE_BOOL_ARRAY(channel_enabled, RccPllState, RCC_NUM_CHANNEL_PLL_OUT), + VMSTATE_BOOL_ARRAY(channel_exists, RccPllState, RCC_NUM_CHANNEL_PLL_OUT), + VMSTATE_UINT32_ARRAY(channel_divider, RccPllState, RCC_NUM_CHANNEL_PLL_OUT), + VMSTATE_END_OF_LIST() + } +}; + +static void pll_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + ResettableClass *rc = RESETTABLE_CLASS(klass); + + rc->phases.enter = pll_reset_enter; + rc->phases.hold = pll_reset_hold; + rc->phases.exit = pll_reset_exit; + dc->vmsd = &pll_vmstate; +} + +static void pll_set_vco_multiplier(RccPllState *pll, uint32_t vco_multiplier) +{ + if (pll->vco_multiplier == vco_multiplier) { + return; + } + + if (vco_multiplier < 8 || vco_multiplier > 86) { + qemu_log_mask(LOG_GUEST_ERROR, + "%s: VCO multiplier is out of bound (%u) for PLL %u\n", + __func__, vco_multiplier, pll->id); + return; + } + + trace_stm32l4x5_rcc_pll_set_vco_multiplier(pll->id, + pll->vco_multiplier, vco_multiplier); + + pll->vco_multiplier = vco_multiplier; + pll_update(pll, false); +} + +static void pll_set_enable(RccPllState *pll, bool enabled) +{ + if (pll->enabled == enabled) { + return; + } + + pll->enabled = enabled; + pll_update(pll, false); +} + +static void pll_set_channel_enable(RccPllState *pll, + PllCommonChannels channel, + bool enabled) +{ + if (pll->channel_enabled[channel] == enabled) { + return; + } + + if (enabled) { + trace_stm32l4x5_rcc_pll_channel_enable(pll->id, channel); + } else { + trace_stm32l4x5_rcc_pll_channel_disable(pll->id, channel); + } + + pll->channel_enabled[channel] = enabled; + pll_update(pll, false); +} + +static void pll_set_channel_divider(RccPllState *pll, + PllCommonChannels channel, + uint32_t divider) +{ + if (pll->channel_divider[channel] == divider) { + return; + } + + trace_stm32l4x5_rcc_pll_set_channel_divider(pll->id, + channel, pll->channel_divider[channel], divider); + + pll->channel_divider[channel] = divider; + pll_update(pll, false); +} + +static void rcc_update_irq(Stm32l4x5RccState *s) +{ + /* + * TODO: Handle LSECSSF and CSSF flags when the CSS is implemented. + */ + if (s->cifr & CIFR_IRQ_MASK) { + qemu_irq_raise(s->irq); + } else { + qemu_irq_lower(s->irq); + } +} + +static void rcc_update_msi(Stm32l4x5RccState *s, uint32_t previous_value) +{ + uint32_t val; + + static const uint32_t msirange[] = { + 100000, 200000, 400000, 800000, 1000000, 2000000, + 4000000, 8000000, 16000000, 24000000, 32000000, 48000000 + }; + /* MSIRANGE and MSIRGSEL */ + val = extract32(s->cr, R_CR_MSIRGSEL_SHIFT, R_CR_MSIRGSEL_LENGTH); + if (val) { + /* MSIRGSEL is set, use the MSIRANGE field */ + val = extract32(s->cr, R_CR_MSIRANGE_SHIFT, R_CR_MSIRANGE_LENGTH); + } else { + /* MSIRGSEL is not set, use the MSISRANGE field */ + val = extract32(s->csr, R_CSR_MSISRANGE_SHIFT, R_CSR_MSISRANGE_LENGTH); + } + + if (val < ARRAY_SIZE(msirange)) { + clock_update_hz(s->msi_rc, msirange[val]); + } else { + /* + * There is a hardware write protection if the value is out of bound. + * Restore the previous value. + */ + s->cr = (s->cr & ~R_CSR_MSISRANGE_MASK) | + (previous_value & R_CSR_MSISRANGE_MASK); + } +} + +/* + * TODO: Add write-protection for all registers: + * DONE: CR + */ + +static void rcc_update_cr_register(Stm32l4x5RccState *s, uint32_t previous_value) +{ + int val; + const RccClockMuxSource current_pll_src = + CLOCK_MUX_INIT_INFO[RCC_CLOCK_MUX_PLL_INPUT].src_mapping[ + s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].src]; + + /* PLLSAI2ON and update PLLSAI2RDY */ + val = FIELD_EX32(s->cr, CR, PLLSAI2ON); + pll_set_enable(&s->plls[RCC_PLL_PLLSAI2], val); + s->cr = (s->cr & ~R_CR_PLLSAI2RDY_MASK) | + (val << R_CR_PLLSAI2RDY_SHIFT); + if (s->cier & R_CIER_PLLSAI2RDYIE_MASK) { + s->cifr |= R_CIFR_PLLSAI2RDYF_MASK; + } + + /* PLLSAI1ON and update PLLSAI1RDY */ + val = FIELD_EX32(s->cr, CR, PLLSAI1ON); + pll_set_enable(&s->plls[RCC_PLL_PLLSAI1], val); + s->cr = (s->cr & ~R_CR_PLLSAI1RDY_MASK) | + (val << R_CR_PLLSAI1RDY_SHIFT); + if (s->cier & R_CIER_PLLSAI1RDYIE_MASK) { + s->cifr |= R_CIFR_PLLSAI1RDYF_MASK; + } + + /* + * PLLON and update PLLRDY + * PLLON cannot be reset if the PLL clock is used as the system clock. + */ + val = FIELD_EX32(s->cr, CR, PLLON); + if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b11) { + pll_set_enable(&s->plls[RCC_PLL_PLL], val); + s->cr = (s->cr & ~R_CR_PLLRDY_MASK) | + (val << R_CR_PLLRDY_SHIFT); + if (s->cier & R_CIER_PLLRDYIE_MASK) { + s->cifr |= R_CIFR_PLLRDYF_MASK; + } + } else { + s->cr |= R_CR_PLLON_MASK; + } + + /* CSSON: TODO */ + /* HSEBYP: TODO */ + + /* + * HSEON and update HSERDY. + * HSEON cannot be reset if the HSE oscillator is used directly or + * indirectly as the system clock. + */ + val = FIELD_EX32(s->cr, CR, HSEON); + if (FIELD_EX32(s->cfgr, CFGR, SWS) != 0b10 && + current_pll_src != RCC_CLOCK_MUX_SRC_HSE) { + s->cr = (s->cr & ~R_CR_HSERDY_MASK) | + (val << R_CR_HSERDY_SHIFT); + if (val) { + clock_update_hz(s->hse, s->hse_frequency); + if (s->cier & R_CIER_HSERDYIE_MASK) { + s->cifr |= R_CIFR_HSERDYF_MASK; + } + } else { + clock_update(s->hse, 0); + } + } else { + s->cr |= R_CR_HSEON_MASK; + } + + /* HSIAFS: TODO*/ + /* HSIKERON: TODO*/ + + /* + * HSION and update HSIRDY + * HSION is set by hardware if the HSI16 is used directly + * or indirectly as system clock. + */ + if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b01 || + current_pll_src == RCC_CLOCK_MUX_SRC_HSI) { + s->cr |= (R_CR_HSION_MASK | R_CR_HSIRDY_MASK); + clock_update_hz(s->hsi16_rc, HSI_FRQ); + if (s->cier & R_CIER_HSIRDYIE_MASK) { + s->cifr |= R_CIFR_HSIRDYF_MASK; + } + } else { + val = FIELD_EX32(s->cr, CR, HSION); + if (val) { + clock_update_hz(s->hsi16_rc, HSI_FRQ); + s->cr |= R_CR_HSIRDY_MASK; + if (s->cier & R_CIER_HSIRDYIE_MASK) { + s->cifr |= R_CIFR_HSIRDYF_MASK; + } + } else { + clock_update(s->hsi16_rc, 0); + s->cr &= ~R_CR_HSIRDY_MASK; + } + } + + /* MSIPLLEN: TODO */ + + /* + * MSION and update MSIRDY + * Set by hardware when used directly or indirectly as system clock. + */ + if (FIELD_EX32(s->cfgr, CFGR, SWS) == 0b00 || + current_pll_src == RCC_CLOCK_MUX_SRC_MSI) { + s->cr |= (R_CR_MSION_MASK | R_CR_MSIRDY_MASK); + if (!(previous_value & R_CR_MSION_MASK) && (s->cier & R_CIER_MSIRDYIE_MASK)) { + s->cifr |= R_CIFR_MSIRDYF_MASK; + } + rcc_update_msi(s, previous_value); + } else { + val = FIELD_EX32(s->cr, CR, MSION); + if (val) { + s->cr |= R_CR_MSIRDY_MASK; + rcc_update_msi(s, previous_value); + if (s->cier & R_CIER_MSIRDYIE_MASK) { + s->cifr |= R_CIFR_MSIRDYF_MASK; + } + } else { + s->cr &= ~R_CR_MSIRDY_MASK; + clock_update(s->msi_rc, 0); + } + } + rcc_update_irq(s); +} + +static void rcc_update_cfgr_register(Stm32l4x5RccState *s) +{ + uint32_t val; + /* MCOPRE */ + val = FIELD_EX32(s->cfgr, CFGR, MCOPRE); + assert(val <= 0b100); + clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_MCO], + 1, 1 << val); + + /* MCOSEL */ + val = FIELD_EX32(s->cfgr, CFGR, MCOSEL); + assert(val <= 0b111); + if (val == 0) { + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], false); + } else { + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_MCO], true); + clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_MCO], + val - 1); + } + + /* STOPWUCK */ + /* TODO */ + + /* PPRE2 */ + val = FIELD_EX32(s->cfgr, CFGR, PPRE2); + if (val < 0b100) { + clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2], + 1, 1); + } else { + clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK2], + 1, 1 << (val - 0b11)); + } + + /* PPRE1 */ + val = FIELD_EX32(s->cfgr, CFGR, PPRE1); + if (val < 0b100) { + clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1], + 1, 1); + } else { + clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PCLK1], + 1, 1 << (val - 0b11)); + } + + /* HPRE */ + val = FIELD_EX32(s->cfgr, CFGR, HPRE); + if (val < 0b1000) { + clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK], + 1, 1); + } else { + clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_HCLK], + 1, 1 << (val - 0b111)); + } + + /* Update SWS */ + val = FIELD_EX32(s->cfgr, CFGR, SW); + clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_SYSCLK], + val); + s->cfgr &= ~R_CFGR_SWS_MASK; + s->cfgr |= val << R_CFGR_SWS_SHIFT; +} + +static void rcc_update_ahb1enr(Stm32l4x5RccState *s) +{ + #define AHB1ENR_SET_ENABLE(_peripheral_name) \ + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ + FIELD_EX32(s->ahb1enr, AHB1ENR, _peripheral_name##EN)) + + /* DMA2DEN: reserved for STM32L475xx */ + AHB1ENR_SET_ENABLE(TSC); + AHB1ENR_SET_ENABLE(CRC); + AHB1ENR_SET_ENABLE(FLASH); + AHB1ENR_SET_ENABLE(DMA2); + AHB1ENR_SET_ENABLE(DMA1); + + #undef AHB1ENR_SET_ENABLE +} + +static void rcc_update_ahb2enr(Stm32l4x5RccState *s) +{ + #define AHB2ENR_SET_ENABLE(_peripheral_name) \ + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ + FIELD_EX32(s->ahb2enr, AHB2ENR, _peripheral_name##EN)) + + AHB2ENR_SET_ENABLE(RNG); + /* HASHEN: reserved for STM32L475xx */ + AHB2ENR_SET_ENABLE(AES); + /* DCMIEN: reserved for STM32L475xx */ + AHB2ENR_SET_ENABLE(ADC); + AHB2ENR_SET_ENABLE(OTGFS); + /* GPIOIEN: reserved for STM32L475xx */ + AHB2ENR_SET_ENABLE(GPIOA); + AHB2ENR_SET_ENABLE(GPIOB); + AHB2ENR_SET_ENABLE(GPIOC); + AHB2ENR_SET_ENABLE(GPIOD); + AHB2ENR_SET_ENABLE(GPIOE); + AHB2ENR_SET_ENABLE(GPIOF); + AHB2ENR_SET_ENABLE(GPIOG); + AHB2ENR_SET_ENABLE(GPIOH); + + #undef AHB2ENR_SET_ENABLE +} + +static void rcc_update_ahb3enr(Stm32l4x5RccState *s) +{ + #define AHB3ENR_SET_ENABLE(_peripheral_name) \ + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ + FIELD_EX32(s->ahb3enr, AHB3ENR, _peripheral_name##EN)) + + AHB3ENR_SET_ENABLE(QSPI); + AHB3ENR_SET_ENABLE(FMC); + + #undef AHB3ENR_SET_ENABLE +} + +static void rcc_update_apb1enr(Stm32l4x5RccState *s) +{ + #define APB1ENR1_SET_ENABLE(_peripheral_name) \ + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ + FIELD_EX32(s->apb1enr1, APB1ENR1, _peripheral_name##EN)) + #define APB1ENR2_SET_ENABLE(_peripheral_name) \ + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ + FIELD_EX32(s->apb1enr2, APB1ENR2, _peripheral_name##EN)) + + /* APB1ENR1 */ + APB1ENR1_SET_ENABLE(LPTIM1); + APB1ENR1_SET_ENABLE(OPAMP); + APB1ENR1_SET_ENABLE(DAC1); + APB1ENR1_SET_ENABLE(PWR); + /* CAN2: reserved for STM32L4x5 */ + APB1ENR1_SET_ENABLE(CAN1); + /* CRSEN: reserved for STM32L4x5 */ + APB1ENR1_SET_ENABLE(I2C3); + APB1ENR1_SET_ENABLE(I2C2); + APB1ENR1_SET_ENABLE(I2C1); + APB1ENR1_SET_ENABLE(UART5); + APB1ENR1_SET_ENABLE(UART4); + APB1ENR1_SET_ENABLE(USART3); + APB1ENR1_SET_ENABLE(USART2); + APB1ENR1_SET_ENABLE(SPI3); + APB1ENR1_SET_ENABLE(SPI2); + APB1ENR1_SET_ENABLE(WWDG); + /* RTCAPB: reserved for STM32L4x5 */ + APB1ENR1_SET_ENABLE(LCD); + APB1ENR1_SET_ENABLE(TIM7); + APB1ENR1_SET_ENABLE(TIM6); + APB1ENR1_SET_ENABLE(TIM5); + APB1ENR1_SET_ENABLE(TIM4); + APB1ENR1_SET_ENABLE(TIM3); + APB1ENR1_SET_ENABLE(TIM2); + + /* APB1ENR2 */ + APB1ENR2_SET_ENABLE(LPTIM2); + APB1ENR2_SET_ENABLE(SWPMI1); + /* I2C4EN: reserved for STM32L4x5 */ + APB1ENR2_SET_ENABLE(LPUART1); + + #undef APB1ENR1_SET_ENABLE + #undef APB1ENR2_SET_ENABLE +} + +static void rcc_update_apb2enr(Stm32l4x5RccState *s) +{ + #define APB2ENR_SET_ENABLE(_peripheral_name) \ + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ + FIELD_EX32(s->apb2enr, APB2ENR, _peripheral_name##EN)) + + APB2ENR_SET_ENABLE(DFSDM1); + APB2ENR_SET_ENABLE(SAI2); + APB2ENR_SET_ENABLE(SAI1); + APB2ENR_SET_ENABLE(TIM17); + APB2ENR_SET_ENABLE(TIM16); + APB2ENR_SET_ENABLE(TIM15); + APB2ENR_SET_ENABLE(USART1); + APB2ENR_SET_ENABLE(TIM8); + APB2ENR_SET_ENABLE(SPI1); + APB2ENR_SET_ENABLE(TIM1); + APB2ENR_SET_ENABLE(SDMMC1); + APB2ENR_SET_ENABLE(FW); + APB2ENR_SET_ENABLE(SYSCFG); + + #undef APB2ENR_SET_ENABLE +} + +/* + * The 3 PLLs share the same register layout + * so we can use the same function for all of them + * Note: no frequency bounds checking is done here. + */ +static void rcc_update_pllsaixcfgr(Stm32l4x5RccState *s, RccPll pll_id) +{ + uint32_t reg, val; + switch (pll_id) { + case RCC_PLL_PLL: + reg = s->pllcfgr; + break; + case RCC_PLL_PLLSAI1: + reg = s->pllsai1cfgr; + break; + case RCC_PLL_PLLSAI2: + reg = s->pllsai2cfgr; + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, + "%s: Invalid PLL ID: %u\n", __func__, pll_id); + return; + } + + /* PLLPDIV */ + val = FIELD_EX32(reg, PLLCFGR, PLLPDIV); + /* 1 is a reserved value */ + if (val == 0) { + /* Get PLLP value */ + val = FIELD_EX32(reg, PLLCFGR, PLLP); + pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, + (val ? 17 : 7)); + } else if (val > 1) { + pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, + val); + } + + + /* PLLR */ + val = FIELD_EX32(reg, PLLCFGR, PLLR); + pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, + 2 * (val + 1)); + + /* PLLREN */ + val = FIELD_EX32(reg, PLLCFGR, PLLREN); + pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_R, val); + + /* PLLQ */ + val = FIELD_EX32(reg, PLLCFGR, PLLQ); + pll_set_channel_divider(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, + 2 * (val + 1)); + + /* PLLQEN */ + val = FIELD_EX32(reg, PLLCFGR, PLLQEN); + pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_Q, val); + + /* PLLPEN */ + val = FIELD_EX32(reg, PLLCFGR, PLLPEN); + pll_set_channel_enable(&s->plls[pll_id], RCC_PLL_COMMON_CHANNEL_P, val); + + /* PLLN */ + val = FIELD_EX32(reg, PLLCFGR, PLLN); + pll_set_vco_multiplier(&s->plls[pll_id], val); +} + +static void rcc_update_pllcfgr(Stm32l4x5RccState *s) +{ + int val; + + /* Use common layout */ + rcc_update_pllsaixcfgr(s, RCC_PLL_PLL); + + /* Fetch specific fields for pllcfgr */ + + /* PLLM */ + val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLM); + clock_mux_set_factor(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], 1, (val + 1)); + + /* PLLSRC */ + val = FIELD_EX32(s->pllcfgr, PLLCFGR, PLLSRC); + if (val == 0) { + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], false); + } else { + clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], val - 1); + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT], true); + } +} + +static void rcc_update_ccipr(Stm32l4x5RccState *s) +{ + #define CCIPR_SET_SOURCE(_peripheral_name) \ + clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_##_peripheral_name], \ + FIELD_EX32(s->ccipr, CCIPR, _peripheral_name##SEL)) + + CCIPR_SET_SOURCE(DFSDM1); + CCIPR_SET_SOURCE(SWPMI1); + CCIPR_SET_SOURCE(ADC); + CCIPR_SET_SOURCE(CLK48); + CCIPR_SET_SOURCE(SAI2); + CCIPR_SET_SOURCE(SAI1); + CCIPR_SET_SOURCE(LPTIM2); + CCIPR_SET_SOURCE(LPTIM1); + CCIPR_SET_SOURCE(I2C3); + CCIPR_SET_SOURCE(I2C2); + CCIPR_SET_SOURCE(I2C1); + CCIPR_SET_SOURCE(LPUART1); + CCIPR_SET_SOURCE(UART5); + CCIPR_SET_SOURCE(UART4); + CCIPR_SET_SOURCE(USART3); + CCIPR_SET_SOURCE(USART2); + CCIPR_SET_SOURCE(USART1); + + #undef CCIPR_SET_SOURCE +} + +static void rcc_update_bdcr(Stm32l4x5RccState *s) +{ + int val; + + /* LSCOSEL */ + val = FIELD_EX32(s->bdcr, BDCR, LSCOSEL); + clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val); + + val = FIELD_EX32(s->bdcr, BDCR, LSCOEN); + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_LSCO], val); + + /* BDRST */ + /* + * The documentation is not clear if the RTCEN flag disables the RTC and + * the LCD common mux or if it only affects the RTC. + * As the LCDEN flag exists, we assume here that it only affects the RTC. + */ + val = FIELD_EX32(s->bdcr, BDCR, RTCEN); + clock_mux_set_enable(&s->clock_muxes[RCC_CLOCK_MUX_RTC], val); + /* LCD and RTC share the same clock */ + val = FIELD_EX32(s->bdcr, BDCR, RTCSEL); + clock_mux_set_source(&s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON], val); + + /* LSECSSON */ + /* LSEDRV[1:0] */ + /* LSEBYP */ + + /* LSEON: Update LSERDY at the same time */ + val = FIELD_EX32(s->bdcr, BDCR, LSEON); + if (val) { + clock_update_hz(s->lse_crystal, LSE_FRQ); + s->bdcr |= R_BDCR_LSERDY_MASK; + if (s->cier & R_CIER_LSERDYIE_MASK) { + s->cifr |= R_CIFR_LSERDYF_MASK; + } + } else { + clock_update(s->lse_crystal, 0); + s->bdcr &= ~R_BDCR_LSERDY_MASK; + } + + rcc_update_irq(s); +} + +static void rcc_update_csr(Stm32l4x5RccState *s) +{ + int val; + + /* Reset flags: Not implemented */ + /* MSISRANGE: Not implemented after reset */ + + /* LSION: Update LSIRDY at the same time */ + val = FIELD_EX32(s->csr, CSR, LSION); + if (val) { + clock_update_hz(s->lsi_rc, LSI_FRQ); + s->csr |= R_CSR_LSIRDY_MASK; + if (s->cier & R_CIER_LSIRDYIE_MASK) { + s->cifr |= R_CIFR_LSIRDYF_MASK; + } + } else { + /* + * TODO: Handle when the LSI is set independently of LSION. + * E.g. when the LSI is set by the RTC. + * See the reference manual for more details. + */ + clock_update(s->lsi_rc, 0); + s->csr &= ~R_CSR_LSIRDY_MASK; + } + + rcc_update_irq(s); +} + +static void stm32l4x5_rcc_reset_hold(Object *obj) +{ + Stm32l4x5RccState *s = STM32L4X5_RCC(obj); + s->cr = 0x00000063; + /* + * Factory-programmed calibration data + * From the reference manual: 0x10XX 00XX + * Value taken from a real card. + */ + s->icscr = 0x106E0082; + s->cfgr = 0x0; + s->pllcfgr = 0x00001000; + s->pllsai1cfgr = 0x00001000; + s->pllsai2cfgr = 0x00001000; + s->cier = 0x0; + s->cifr = 0x0; + s->ahb1rstr = 0x0; + s->ahb2rstr = 0x0; + s->ahb3rstr = 0x0; + s->apb1rstr1 = 0x0; + s->apb1rstr2 = 0x0; + s->apb2rstr = 0x0; + s->ahb1enr = 0x00000100; + s->ahb2enr = 0x0; + s->ahb3enr = 0x0; + s->apb1enr1 = 0x0; + s->apb1enr2 = 0x0; + s->apb2enr = 0x0; + s->ahb1smenr = 0x00011303; + s->ahb2smenr = 0x000532FF; + s->ahb3smenr = 0x00000101; + s->apb1smenr1 = 0xF2FECA3F; + s->apb1smenr2 = 0x00000025; + s->apb2smenr = 0x01677C01; + s->ccipr = 0x0; + s->bdcr = 0x0; + s->csr = 0x0C000600; +} + +static uint64_t stm32l4x5_rcc_read(void *opaque, hwaddr addr, + unsigned int size) +{ + Stm32l4x5RccState *s = opaque; + uint64_t retvalue = 0; + + switch (addr) { + case A_CR: + retvalue = s->cr; + break; + case A_ICSCR: + retvalue = s->icscr; + break; + case A_CFGR: + retvalue = s->cfgr; + break; + case A_PLLCFGR: + retvalue = s->pllcfgr; + break; + case A_PLLSAI1CFGR: + retvalue = s->pllsai1cfgr; + break; + case A_PLLSAI2CFGR: + retvalue = s->pllsai2cfgr; + break; + case A_CIER: + retvalue = s->cier; + break; + case A_CIFR: + retvalue = s->cifr; + break; + case A_CICR: + /* CICR is write only, return the reset value = 0 */ + break; + case A_AHB1RSTR: + retvalue = s->ahb1rstr; + break; + case A_AHB2RSTR: + retvalue = s->ahb2rstr; + break; + case A_AHB3RSTR: + retvalue = s->ahb3rstr; + break; + case A_APB1RSTR1: + retvalue = s->apb1rstr1; + break; + case A_APB1RSTR2: + retvalue = s->apb1rstr2; + break; + case A_APB2RSTR: + retvalue = s->apb2rstr; + break; + case A_AHB1ENR: + retvalue = s->ahb1enr; + break; + case A_AHB2ENR: + retvalue = s->ahb2enr; + break; + case A_AHB3ENR: + retvalue = s->ahb3enr; + break; + case A_APB1ENR1: + retvalue = s->apb1enr1; + break; + case A_APB1ENR2: + retvalue = s->apb1enr2; + break; + case A_APB2ENR: + retvalue = s->apb2enr; + break; + case A_AHB1SMENR: + retvalue = s->ahb1smenr; + break; + case A_AHB2SMENR: + retvalue = s->ahb2smenr; + break; + case A_AHB3SMENR: + retvalue = s->ahb3smenr; + break; + case A_APB1SMENR1: + retvalue = s->apb1smenr1; + break; + case A_APB1SMENR2: + retvalue = s->apb1smenr2; + break; + case A_APB2SMENR: + retvalue = s->apb2smenr; + break; + case A_CCIPR: + retvalue = s->ccipr; + break; + case A_BDCR: + retvalue = s->bdcr; + break; + case A_CSR: + retvalue = s->csr; + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, + "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); + break; + } + + trace_stm32l4x5_rcc_read(addr, retvalue); + + return retvalue; +} + +static void stm32l4x5_rcc_write(void *opaque, hwaddr addr, + uint64_t val64, unsigned int size) +{ + Stm32l4x5RccState *s = opaque; + uint32_t previous_value = 0; + const uint32_t value = val64; + + trace_stm32l4x5_rcc_write(addr, value); + + switch (addr) { + case A_CR: + previous_value = s->cr; + s->cr = (s->cr & CR_READ_SET_MASK) | + (value & (CR_READ_SET_MASK | ~CR_READ_ONLY_MASK)); + rcc_update_cr_register(s, previous_value); + break; + case A_ICSCR: + s->icscr = value & ~ICSCR_READ_ONLY_MASK; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for ICSCR\n", __func__); + break; + case A_CFGR: + s->cfgr = value & ~CFGR_READ_ONLY_MASK; + rcc_update_cfgr_register(s); + break; + case A_PLLCFGR: + s->pllcfgr = value; + rcc_update_pllcfgr(s); + break; + case A_PLLSAI1CFGR: + s->pllsai1cfgr = value; + rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI1); + break; + case A_PLLSAI2CFGR: + s->pllsai2cfgr = value; + rcc_update_pllsaixcfgr(s, RCC_PLL_PLLSAI2); + break; + case A_CIER: + s->cier = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for CIER\n", __func__); + break; + case A_CIFR: + qemu_log_mask(LOG_GUEST_ERROR, + "%s: Write attempt into read-only register (CIFR) 0x%"PRIx32"\n", + __func__, value); + break; + case A_CICR: + /* Clear interrupt flags by writing a 1 to the CICR register */ + s->cifr &= ~value; + rcc_update_irq(s); + break; + /* Reset behaviors are not implemented */ + case A_AHB1RSTR: + s->ahb1rstr = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for AHB1RSTR\n", __func__); + break; + case A_AHB2RSTR: + s->ahb2rstr = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for AHB2RSTR\n", __func__); + break; + case A_AHB3RSTR: + s->ahb3rstr = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for AHB3RSTR\n", __func__); + break; + case A_APB1RSTR1: + s->apb1rstr1 = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for APB1RSTR1\n", __func__); + break; + case A_APB1RSTR2: + s->apb1rstr2 = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for APB1RSTR2\n", __func__); + break; + case A_APB2RSTR: + s->apb2rstr = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for APB2RSTR\n", __func__); + break; + case A_AHB1ENR: + s->ahb1enr = value; + rcc_update_ahb1enr(s); + break; + case A_AHB2ENR: + s->ahb2enr = value; + rcc_update_ahb2enr(s); + break; + case A_AHB3ENR: + s->ahb3enr = value; + rcc_update_ahb3enr(s); + break; + case A_APB1ENR1: + s->apb1enr1 = value; + rcc_update_apb1enr(s); + break; + case A_APB1ENR2: + s->apb1enr2 = value; + rcc_update_apb1enr(s); + break; + case A_APB2ENR: + s->apb2enr = (s->apb2enr & APB2ENR_READ_SET_MASK) | value; + rcc_update_apb2enr(s); + break; + /* Behaviors for Sleep and Stop modes are not implemented */ + case A_AHB1SMENR: + s->ahb1smenr = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for AHB1SMENR\n", __func__); + break; + case A_AHB2SMENR: + s->ahb2smenr = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for AHB2SMENR\n", __func__); + break; + case A_AHB3SMENR: + s->ahb3smenr = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for AHB3SMENR\n", __func__); + break; + case A_APB1SMENR1: + s->apb1smenr1 = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for APB1SMENR1\n", __func__); + break; + case A_APB1SMENR2: + s->apb1smenr2 = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for APB1SMENR2\n", __func__); + break; + case A_APB2SMENR: + s->apb2smenr = value; + qemu_log_mask(LOG_UNIMP, + "%s: Side-effects not implemented for APB2SMENR\n", __func__); + break; + case A_CCIPR: + s->ccipr = value; + rcc_update_ccipr(s); + break; + case A_BDCR: + s->bdcr = value & ~BDCR_READ_ONLY_MASK; + rcc_update_bdcr(s); + break; + case A_CSR: + s->csr = value & ~CSR_READ_ONLY_MASK; + rcc_update_csr(s); + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, + "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); + } +} + +static const MemoryRegionOps stm32l4x5_rcc_ops = { + .read = stm32l4x5_rcc_read, + .write = stm32l4x5_rcc_write, + .endianness = DEVICE_NATIVE_ENDIAN, + .valid = { + .max_access_size = 4, + .min_access_size = 4, + .unaligned = false + }, + .impl = { + .max_access_size = 4, + .min_access_size = 4, + .unaligned = false + }, +}; + +static const ClockPortInitArray stm32l4x5_rcc_clocks = { + QDEV_CLOCK_IN(Stm32l4x5RccState, hsi16_rc, NULL, 0), + QDEV_CLOCK_IN(Stm32l4x5RccState, msi_rc, NULL, 0), + QDEV_CLOCK_IN(Stm32l4x5RccState, hse, NULL, 0), + QDEV_CLOCK_IN(Stm32l4x5RccState, lsi_rc, NULL, 0), + QDEV_CLOCK_IN(Stm32l4x5RccState, lse_crystal, NULL, 0), + QDEV_CLOCK_IN(Stm32l4x5RccState, sai1_extclk, NULL, 0), + QDEV_CLOCK_IN(Stm32l4x5RccState, sai2_extclk, NULL, 0), + QDEV_CLOCK_END +}; + + +static void stm32l4x5_rcc_init(Object *obj) +{ + Stm32l4x5RccState *s = STM32L4X5_RCC(obj); + size_t i; + + sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq); + + memory_region_init_io(&s->mmio, obj, &stm32l4x5_rcc_ops, s, + TYPE_STM32L4X5_RCC, 0x400); + sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); + + qdev_init_clocks(DEVICE(s), stm32l4x5_rcc_clocks); + + for (i = 0; i < RCC_NUM_PLL; i++) { + object_initialize_child(obj, PLL_INIT_INFO[i].name, + &s->plls[i], TYPE_RCC_PLL); + set_pll_init_info(&s->plls[i], i); + } + + for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) { + char *alias; + + object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name, + &s->clock_muxes[i], + TYPE_RCC_CLOCK_MUX); + set_clock_mux_init_info(&s->clock_muxes[i], i); + + if (!CLOCK_MUX_INIT_INFO[i].hidden) { + /* Expose muxes output as RCC outputs */ + alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name); + qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias); + g_free(alias); + } + } + + s->gnd = clock_new(obj, "gnd"); +} + +static void connect_mux_sources(Stm32l4x5RccState *s, + RccClockMuxState *mux, + const RccClockMuxSource *clk_mapping) +{ + size_t i; + + Clock * const CLK_SRC_MAPPING[] = { + [RCC_CLOCK_MUX_SRC_GND] = s->gnd, + [RCC_CLOCK_MUX_SRC_HSI] = s->hsi16_rc, + [RCC_CLOCK_MUX_SRC_HSE] = s->hse, + [RCC_CLOCK_MUX_SRC_MSI] = s->msi_rc, + [RCC_CLOCK_MUX_SRC_LSI] = s->lsi_rc, + [RCC_CLOCK_MUX_SRC_LSE] = s->lse_crystal, + [RCC_CLOCK_MUX_SRC_SAI1_EXTCLK] = s->sai1_extclk, + [RCC_CLOCK_MUX_SRC_SAI2_EXTCLK] = s->sai2_extclk, + [RCC_CLOCK_MUX_SRC_PLL] = + s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLCLK], + [RCC_CLOCK_MUX_SRC_PLLSAI1] = + s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLSAI1CLK], + [RCC_CLOCK_MUX_SRC_PLLSAI2] = + s->plls[RCC_PLL_PLLSAI2].channels[RCC_PLLSAI2_CHANNEL_PLLSAI2CLK], + [RCC_CLOCK_MUX_SRC_PLLSAI3] = + s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLLSAI3CLK], + [RCC_CLOCK_MUX_SRC_PLL48M1] = + s->plls[RCC_PLL_PLL].channels[RCC_PLL_CHANNEL_PLL48M1CLK], + [RCC_CLOCK_MUX_SRC_PLL48M2] = + s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLL48M2CLK], + [RCC_CLOCK_MUX_SRC_PLLADC1] = + s->plls[RCC_PLL_PLLSAI1].channels[RCC_PLLSAI1_CHANNEL_PLLADC1CLK], + [RCC_CLOCK_MUX_SRC_PLLADC2] = + s->plls[RCC_PLL_PLLSAI2] .channels[RCC_PLLSAI2_CHANNEL_PLLADC2CLK], + [RCC_CLOCK_MUX_SRC_SYSCLK] = s->clock_muxes[RCC_CLOCK_MUX_SYSCLK].out, + [RCC_CLOCK_MUX_SRC_HCLK] = s->clock_muxes[RCC_CLOCK_MUX_HCLK].out, + [RCC_CLOCK_MUX_SRC_PCLK1] = s->clock_muxes[RCC_CLOCK_MUX_PCLK1].out, + [RCC_CLOCK_MUX_SRC_PCLK2] = s->clock_muxes[RCC_CLOCK_MUX_PCLK2].out, + [RCC_CLOCK_MUX_SRC_HSE_OVER_32] = s->clock_muxes[RCC_CLOCK_MUX_HSE_OVER_32].out, + [RCC_CLOCK_MUX_SRC_LCD_AND_RTC_COMMON] = + s->clock_muxes[RCC_CLOCK_MUX_LCD_AND_RTC_COMMON].out, + }; + + assert(ARRAY_SIZE(CLK_SRC_MAPPING) == RCC_CLOCK_MUX_SRC_NUMBER); + + for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) { + RccClockMuxSource mapping = clk_mapping[i]; + clock_set_source(mux->srcs[i], CLK_SRC_MAPPING[mapping]); + } +} + + +static const VMStateDescription vmstate_stm32l4x5_rcc = { + .name = TYPE_STM32L4X5_RCC, + .version_id = 1, + .minimum_version_id = 1, + .fields = (VMStateField[]) { + VMSTATE_UINT32(cr, Stm32l4x5RccState), + VMSTATE_UINT32(icscr, Stm32l4x5RccState), + VMSTATE_UINT32(cfgr, Stm32l4x5RccState), + VMSTATE_UINT32(pllcfgr, Stm32l4x5RccState), + VMSTATE_UINT32(pllsai1cfgr, Stm32l4x5RccState), + VMSTATE_UINT32(pllsai2cfgr, Stm32l4x5RccState), + VMSTATE_UINT32(cier, Stm32l4x5RccState), + VMSTATE_UINT32(cifr, Stm32l4x5RccState), + VMSTATE_UINT32(ahb1rstr, Stm32l4x5RccState), + VMSTATE_UINT32(ahb2rstr, Stm32l4x5RccState), + VMSTATE_UINT32(ahb3rstr, Stm32l4x5RccState), + VMSTATE_UINT32(apb1rstr1, Stm32l4x5RccState), + VMSTATE_UINT32(apb1rstr2, Stm32l4x5RccState), + VMSTATE_UINT32(apb2rstr, Stm32l4x5RccState), + VMSTATE_UINT32(ahb1enr, Stm32l4x5RccState), + VMSTATE_UINT32(ahb2enr, Stm32l4x5RccState), + VMSTATE_UINT32(ahb3enr, Stm32l4x5RccState), + VMSTATE_UINT32(apb1enr1, Stm32l4x5RccState), + VMSTATE_UINT32(apb1enr2, Stm32l4x5RccState), + VMSTATE_UINT32(apb2enr, Stm32l4x5RccState), + VMSTATE_UINT32(ahb1smenr, Stm32l4x5RccState), + VMSTATE_UINT32(ahb2smenr, Stm32l4x5RccState), + VMSTATE_UINT32(ahb3smenr, Stm32l4x5RccState), + VMSTATE_UINT32(apb1smenr1, Stm32l4x5RccState), + VMSTATE_UINT32(apb1smenr2, Stm32l4x5RccState), + VMSTATE_UINT32(apb2smenr, Stm32l4x5RccState), + VMSTATE_UINT32(ccipr, Stm32l4x5RccState), + VMSTATE_UINT32(bdcr, Stm32l4x5RccState), + VMSTATE_UINT32(csr, Stm32l4x5RccState), + VMSTATE_CLOCK(hsi16_rc, Stm32l4x5RccState), + VMSTATE_CLOCK(msi_rc, Stm32l4x5RccState), + VMSTATE_CLOCK(hse, Stm32l4x5RccState), + VMSTATE_CLOCK(lsi_rc, Stm32l4x5RccState), + VMSTATE_CLOCK(lse_crystal, Stm32l4x5RccState), + VMSTATE_CLOCK(sai1_extclk, Stm32l4x5RccState), + VMSTATE_CLOCK(sai2_extclk, Stm32l4x5RccState), + VMSTATE_END_OF_LIST() + } +}; + + +static void stm32l4x5_rcc_realize(DeviceState *dev, Error **errp) +{ + Stm32l4x5RccState *s = STM32L4X5_RCC(dev); + size_t i; + + if (s->hse_frequency < 4000000ULL || + s->hse_frequency > 48000000ULL) { + error_setg(errp, + "HSE frequency is outside of the allowed [4-48]Mhz range: %" PRIx64 "", + s->hse_frequency); + return; + } + + for (i = 0; i < RCC_NUM_PLL; i++) { + RccPllState *pll = &s->plls[i]; + + clock_set_source(pll->in, s->clock_muxes[RCC_CLOCK_MUX_PLL_INPUT].out); + + if (!qdev_realize(DEVICE(pll), NULL, errp)) { + return; + } + } + + for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) { + RccClockMuxState *clock_mux = &s->clock_muxes[i]; + + connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping); + + if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) { + return; + } + } + + /* + * Start clocks after everything is connected + * to propagate the frequencies along the tree. + */ + clock_update_hz(s->msi_rc, MSI_DEFAULT_FRQ); + clock_update_hz(s->sai1_extclk, s->sai1_extclk_frequency); + clock_update_hz(s->sai2_extclk, s->sai2_extclk_frequency); + clock_update(s->gnd, 0); +} + +static Property stm32l4x5_rcc_properties[] = { + DEFINE_PROP_UINT64("hse_frequency", Stm32l4x5RccState, + hse_frequency, HSE_DEFAULT_FRQ), + DEFINE_PROP_UINT64("sai1_extclk_frequency", Stm32l4x5RccState, + sai1_extclk_frequency, 0), + DEFINE_PROP_UINT64("sai2_extclk_frequency", Stm32l4x5RccState, + sai2_extclk_frequency, 0), + DEFINE_PROP_END_OF_LIST(), +}; + +static void stm32l4x5_rcc_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + ResettableClass *rc = RESETTABLE_CLASS(klass); + + assert(ARRAY_SIZE(CLOCK_MUX_INIT_INFO) == RCC_NUM_CLOCK_MUX); + + rc->phases.hold = stm32l4x5_rcc_reset_hold; + device_class_set_props(dc, stm32l4x5_rcc_properties); + dc->realize = stm32l4x5_rcc_realize; + dc->vmsd = &vmstate_stm32l4x5_rcc; +} + +static const TypeInfo stm32l4x5_rcc_types[] = { + { + .name = TYPE_STM32L4X5_RCC, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(Stm32l4x5RccState), + .instance_init = stm32l4x5_rcc_init, + .class_init = stm32l4x5_rcc_class_init, + }, { + .name = TYPE_RCC_CLOCK_MUX, + .parent = TYPE_DEVICE, + .instance_size = sizeof(RccClockMuxState), + .instance_init = clock_mux_init, + .class_init = clock_mux_class_init, + }, { + .name = TYPE_RCC_PLL, + .parent = TYPE_DEVICE, + .instance_size = sizeof(RccPllState), + .instance_init = pll_init, + .class_init = pll_class_init, + } +}; + +DEFINE_TYPES(stm32l4x5_rcc_types) |