aboutsummaryrefslogtreecommitdiff
path: root/hw/arm/mps3r.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/arm/mps3r.c')
-rw-r--r--hw/arm/mps3r.c640
1 files changed, 640 insertions, 0 deletions
diff --git a/hw/arm/mps3r.c b/hw/arm/mps3r.c
new file mode 100644
index 0000000000..4d55a6564c
--- /dev/null
+++ b/hw/arm/mps3r.c
@@ -0,0 +1,640 @@
+/*
+ * Arm MPS3 board emulation for Cortex-R-based FPGA images.
+ * (For M-profile images see mps2.c and mps2tz.c.)
+ *
+ * Copyright (c) 2017 Linaro Limited
+ * Written by Peter Maydell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 or
+ * (at your option) any later version.
+ */
+
+/*
+ * The MPS3 is an FPGA based dev board. This file handles FPGA images
+ * which use the Cortex-R CPUs. We model these separately from the
+ * M-profile images, because on M-profile the FPGA image is based on
+ * a "Subsystem for Embedded" which is similar to an SoC, whereas
+ * the R-profile FPGA images don't have that abstraction layer.
+ *
+ * We model the following FPGA images here:
+ * "mps3-an536" -- dual Cortex-R52 as documented in Arm Application Note AN536
+ *
+ * Application Note AN536:
+ * https://developer.arm.com/documentation/dai0536/latest/
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/units.h"
+#include "qapi/error.h"
+#include "qapi/qmp/qlist.h"
+#include "exec/address-spaces.h"
+#include "cpu.h"
+#include "sysemu/sysemu.h"
+#include "hw/boards.h"
+#include "hw/or-irq.h"
+#include "hw/qdev-clock.h"
+#include "hw/qdev-properties.h"
+#include "hw/arm/boot.h"
+#include "hw/arm/bsa.h"
+#include "hw/char/cmsdk-apb-uart.h"
+#include "hw/i2c/arm_sbcon_i2c.h"
+#include "hw/intc/arm_gicv3.h"
+#include "hw/misc/mps2-scc.h"
+#include "hw/misc/mps2-fpgaio.h"
+#include "hw/misc/unimp.h"
+#include "hw/net/lan9118.h"
+#include "hw/rtc/pl031.h"
+#include "hw/ssi/pl022.h"
+#include "hw/timer/cmsdk-apb-dualtimer.h"
+#include "hw/watchdog/cmsdk-apb-watchdog.h"
+
+/* Define the layout of RAM and ROM in a board */
+typedef struct RAMInfo {
+ const char *name;
+ hwaddr base;
+ hwaddr size;
+ int mrindex; /* index into rams[]; -1 for the system RAM block */
+ int flags;
+} RAMInfo;
+
+/*
+ * The MPS3 DDR is 3GiB, but on a 32-bit host QEMU doesn't permit
+ * emulation of that much guest RAM, so artificially make it smaller.
+ */
+#if HOST_LONG_BITS == 32
+#define MPS3_DDR_SIZE (1 * GiB)
+#else
+#define MPS3_DDR_SIZE (3 * GiB)
+#endif
+
+/*
+ * Flag values:
+ * IS_MAIN: this is the main machine RAM
+ * IS_ROM: this area is read-only
+ */
+#define IS_MAIN 1
+#define IS_ROM 2
+
+#define MPS3R_RAM_MAX 9
+#define MPS3R_CPU_MAX 2
+#define MPS3R_UART_MAX 4 /* shared UART count */
+
+#define PERIPHBASE 0xf0000000
+#define NUM_SPIS 96
+
+typedef enum MPS3RFPGAType {
+ FPGA_AN536,
+} MPS3RFPGAType;
+
+struct MPS3RMachineClass {
+ MachineClass parent;
+ MPS3RFPGAType fpga_type;
+ const RAMInfo *raminfo;
+ hwaddr loader_start;
+};
+
+struct MPS3RMachineState {
+ MachineState parent;
+ struct arm_boot_info bootinfo;
+ MemoryRegion ram[MPS3R_RAM_MAX];
+ Object *cpu[MPS3R_CPU_MAX];
+ MemoryRegion cpu_sysmem[MPS3R_CPU_MAX];
+ MemoryRegion sysmem_alias[MPS3R_CPU_MAX];
+ MemoryRegion cpu_ram[MPS3R_CPU_MAX];
+ GICv3State gic;
+ /* per-CPU UARTs followed by the shared UARTs */
+ CMSDKAPBUART uart[MPS3R_CPU_MAX + MPS3R_UART_MAX];
+ OrIRQState cpu_uart_oflow[MPS3R_CPU_MAX];
+ OrIRQState uart_oflow;
+ CMSDKAPBWatchdog watchdog;
+ CMSDKAPBDualTimer dualtimer;
+ ArmSbconI2CState i2c[5];
+ PL022State spi[3];
+ MPS2SCC scc;
+ MPS2FPGAIO fpgaio;
+ UnimplementedDeviceState i2s_audio;
+ PL031State rtc;
+ Clock *clk;
+};
+
+#define TYPE_MPS3R_MACHINE "mps3r"
+#define TYPE_MPS3R_AN536_MACHINE MACHINE_TYPE_NAME("mps3-an536")
+
+OBJECT_DECLARE_TYPE(MPS3RMachineState, MPS3RMachineClass, MPS3R_MACHINE)
+
+/*
+ * Main clock frequency CLK in Hz (50MHz). In the image there are also
+ * ACLK, MCLK, GPUCLK and PERIPHCLK at the same frequency; for our
+ * model we just roll them all into one.
+ */
+#define CLK_FRQ 50000000
+
+static const RAMInfo an536_raminfo[] = {
+ {
+ .name = "ATCM",
+ .base = 0x00000000,
+ .size = 0x00008000,
+ .mrindex = 0,
+ }, {
+ /* We model the QSPI flash as simple ROM for now */
+ .name = "QSPI",
+ .base = 0x08000000,
+ .size = 0x00800000,
+ .flags = IS_ROM,
+ .mrindex = 1,
+ }, {
+ .name = "BRAM",
+ .base = 0x10000000,
+ .size = 0x00080000,
+ .mrindex = 2,
+ }, {
+ .name = "DDR",
+ .base = 0x20000000,
+ .size = MPS3_DDR_SIZE,
+ .mrindex = -1,
+ }, {
+ .name = "ATCM0",
+ .base = 0xee000000,
+ .size = 0x00008000,
+ .mrindex = 3,
+ }, {
+ .name = "BTCM0",
+ .base = 0xee100000,
+ .size = 0x00008000,
+ .mrindex = 4,
+ }, {
+ .name = "CTCM0",
+ .base = 0xee200000,
+ .size = 0x00008000,
+ .mrindex = 5,
+ }, {
+ .name = "ATCM1",
+ .base = 0xee400000,
+ .size = 0x00008000,
+ .mrindex = 6,
+ }, {
+ .name = "BTCM1",
+ .base = 0xee500000,
+ .size = 0x00008000,
+ .mrindex = 7,
+ }, {
+ .name = "CTCM1",
+ .base = 0xee600000,
+ .size = 0x00008000,
+ .mrindex = 8,
+ }, {
+ .name = NULL,
+ }
+};
+
+static const int an536_oscclk[] = {
+ 24000000, /* 24MHz reference for RTC and timers */
+ 50000000, /* 50MHz ACLK */
+ 50000000, /* 50MHz MCLK */
+ 50000000, /* 50MHz GPUCLK */
+ 24576000, /* 24.576MHz AUDCLK */
+ 23750000, /* 23.75MHz HDLCDCLK */
+ 100000000, /* 100MHz DDR4_REF_CLK */
+};
+
+static MemoryRegion *mr_for_raminfo(MPS3RMachineState *mms,
+ const RAMInfo *raminfo)
+{
+ /* Return an initialized MemoryRegion for the RAMInfo. */
+ MemoryRegion *ram;
+
+ if (raminfo->mrindex < 0) {
+ /* Means this RAMInfo is for QEMU's "system memory" */
+ MachineState *machine = MACHINE(mms);
+ assert(!(raminfo->flags & IS_ROM));
+ return machine->ram;
+ }
+
+ assert(raminfo->mrindex < MPS3R_RAM_MAX);
+ ram = &mms->ram[raminfo->mrindex];
+
+ memory_region_init_ram(ram, NULL, raminfo->name,
+ raminfo->size, &error_fatal);
+ if (raminfo->flags & IS_ROM) {
+ memory_region_set_readonly(ram, true);
+ }
+ return ram;
+}
+
+/*
+ * There is no defined secondary boot protocol for Linux for the AN536,
+ * because real hardware has a restriction that atomic operations between
+ * the two CPUs do not function correctly, and so true SMP is not
+ * possible. Therefore for cases where the user is directly booting
+ * a kernel, we treat the system as essentially uniprocessor, and
+ * put the secondary CPU into power-off state (as if the user on the
+ * real hardware had configured the secondary to be halted via the
+ * SCC config registers).
+ *
+ * Note that the default secondary boot code would not work here anyway
+ * as it assumes a GICv2, and we have a GICv3.
+ */
+static void mps3r_write_secondary_boot(ARMCPU *cpu,
+ const struct arm_boot_info *info)
+{
+ /*
+ * Power the secondary CPU off. This means we don't need to write any
+ * boot code into guest memory. Note that the 'cpu' argument to this
+ * function is the primary CPU we passed to arm_load_kernel(), not
+ * the secondary. Loop around all the other CPUs, as the boot.c
+ * code does for the "disable secondaries if PSCI is enabled" case.
+ */
+ for (CPUState *cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
+ if (cs != first_cpu) {
+ object_property_set_bool(OBJECT(cs), "start-powered-off", true,
+ &error_abort);
+ }
+ }
+}
+
+static void mps3r_secondary_cpu_reset(ARMCPU *cpu,
+ const struct arm_boot_info *info)
+{
+ /* We don't need to do anything here because the CPU will be off */
+}
+
+static void create_gic(MPS3RMachineState *mms, MemoryRegion *sysmem)
+{
+ MachineState *machine = MACHINE(mms);
+ DeviceState *gicdev;
+ QList *redist_region_count;
+
+ object_initialize_child(OBJECT(mms), "gic", &mms->gic, TYPE_ARM_GICV3);
+ gicdev = DEVICE(&mms->gic);
+ qdev_prop_set_uint32(gicdev, "num-cpu", machine->smp.cpus);
+ qdev_prop_set_uint32(gicdev, "num-irq", NUM_SPIS + GIC_INTERNAL);
+ redist_region_count = qlist_new();
+ qlist_append_int(redist_region_count, machine->smp.cpus);
+ qdev_prop_set_array(gicdev, "redist-region-count", redist_region_count);
+ object_property_set_link(OBJECT(&mms->gic), "sysmem",
+ OBJECT(sysmem), &error_fatal);
+ sysbus_realize(SYS_BUS_DEVICE(&mms->gic), &error_fatal);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 0, PERIPHBASE);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 1, PERIPHBASE + 0x100000);
+ /*
+ * Wire the outputs from each CPU's generic timer and the GICv3
+ * maintenance interrupt signal to the appropriate GIC PPI inputs,
+ * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
+ */
+ for (int i = 0; i < machine->smp.cpus; i++) {
+ DeviceState *cpudev = DEVICE(mms->cpu[i]);
+ SysBusDevice *gicsbd = SYS_BUS_DEVICE(&mms->gic);
+ int intidbase = NUM_SPIS + i * GIC_INTERNAL;
+ int irq;
+ /*
+ * Mapping from the output timer irq lines from the CPU to the
+ * GIC PPI inputs used for this board. This isn't a BSA board,
+ * but it uses the standard convention for the PPI numbers.
+ */
+ const int timer_irq[] = {
+ [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
+ [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
+ [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
+ };
+
+ for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
+ qdev_connect_gpio_out(cpudev, irq,
+ qdev_get_gpio_in(gicdev,
+ intidbase + timer_irq[irq]));
+ }
+
+ qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
+ qdev_get_gpio_in(gicdev,
+ intidbase + ARCH_GIC_MAINT_IRQ));
+
+ qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
+ qdev_get_gpio_in(gicdev,
+ intidbase + VIRTUAL_PMU_IRQ));
+
+ sysbus_connect_irq(gicsbd, i,
+ qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
+ sysbus_connect_irq(gicsbd, i + machine->smp.cpus,
+ qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
+ sysbus_connect_irq(gicsbd, i + 2 * machine->smp.cpus,
+ qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
+ sysbus_connect_irq(gicsbd, i + 3 * machine->smp.cpus,
+ qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
+ }
+}
+
+/*
+ * Create UART uartno, and map it into the MemoryRegion mem at address baseaddr.
+ * The qemu_irq arguments are where we connect the various IRQs from the UART.
+ */
+static void create_uart(MPS3RMachineState *mms, int uartno, MemoryRegion *mem,
+ hwaddr baseaddr, qemu_irq txirq, qemu_irq rxirq,
+ qemu_irq txoverirq, qemu_irq rxoverirq,
+ qemu_irq combirq)
+{
+ g_autofree char *s = g_strdup_printf("uart%d", uartno);
+ SysBusDevice *sbd;
+
+ assert(uartno < ARRAY_SIZE(mms->uart));
+ object_initialize_child(OBJECT(mms), s, &mms->uart[uartno],
+ TYPE_CMSDK_APB_UART);
+ qdev_prop_set_uint32(DEVICE(&mms->uart[uartno]), "pclk-frq", CLK_FRQ);
+ qdev_prop_set_chr(DEVICE(&mms->uart[uartno]), "chardev", serial_hd(uartno));
+ sbd = SYS_BUS_DEVICE(&mms->uart[uartno]);
+ sysbus_realize(sbd, &error_fatal);
+ memory_region_add_subregion(mem, baseaddr,
+ sysbus_mmio_get_region(sbd, 0));
+ sysbus_connect_irq(sbd, 0, txirq);
+ sysbus_connect_irq(sbd, 1, rxirq);
+ sysbus_connect_irq(sbd, 2, txoverirq);
+ sysbus_connect_irq(sbd, 3, rxoverirq);
+ sysbus_connect_irq(sbd, 4, combirq);
+}
+
+static void mps3r_common_init(MachineState *machine)
+{
+ MPS3RMachineState *mms = MPS3R_MACHINE(machine);
+ MPS3RMachineClass *mmc = MPS3R_MACHINE_GET_CLASS(mms);
+ MemoryRegion *sysmem = get_system_memory();
+ DeviceState *gicdev;
+ QList *oscclk;
+
+ mms->clk = clock_new(OBJECT(machine), "CLK");
+ clock_set_hz(mms->clk, CLK_FRQ);
+
+ for (const RAMInfo *ri = mmc->raminfo; ri->name; ri++) {
+ MemoryRegion *mr = mr_for_raminfo(mms, ri);
+ memory_region_add_subregion(sysmem, ri->base, mr);
+ }
+
+ assert(machine->smp.cpus <= MPS3R_CPU_MAX);
+ for (int i = 0; i < machine->smp.cpus; i++) {
+ g_autofree char *sysmem_name = g_strdup_printf("cpu-%d-memory", i);
+ g_autofree char *ramname = g_strdup_printf("cpu-%d-memory", i);
+ g_autofree char *alias_name = g_strdup_printf("sysmem-alias-%d", i);
+
+ /*
+ * Each CPU has some private RAM/peripherals, so create the container
+ * which will house those, with the whole-machine system memory being
+ * used where there's no CPU-specific device. Note that we need the
+ * sysmem_alias aliases because we can't put one MR (the original
+ * 'sysmem') into more than one other MR.
+ */
+ memory_region_init(&mms->cpu_sysmem[i], OBJECT(machine),
+ sysmem_name, UINT64_MAX);
+ memory_region_init_alias(&mms->sysmem_alias[i], OBJECT(machine),
+ alias_name, sysmem, 0, UINT64_MAX);
+ memory_region_add_subregion_overlap(&mms->cpu_sysmem[i], 0,
+ &mms->sysmem_alias[i], -1);
+
+ mms->cpu[i] = object_new(machine->cpu_type);
+ object_property_set_link(mms->cpu[i], "memory",
+ OBJECT(&mms->cpu_sysmem[i]), &error_abort);
+ object_property_set_int(mms->cpu[i], "reset-cbar",
+ PERIPHBASE, &error_abort);
+ qdev_realize(DEVICE(mms->cpu[i]), NULL, &error_fatal);
+ object_unref(mms->cpu[i]);
+
+ /* Per-CPU RAM */
+ memory_region_init_ram(&mms->cpu_ram[i], NULL, ramname,
+ 0x1000, &error_fatal);
+ memory_region_add_subregion(&mms->cpu_sysmem[i], 0xe7c01000,
+ &mms->cpu_ram[i]);
+ }
+
+ create_gic(mms, sysmem);
+ gicdev = DEVICE(&mms->gic);
+
+ /*
+ * UARTs 0 and 1 are per-CPU; their interrupts are wired to
+ * the relevant CPU's PPI 0..3, aka INTID 16..19
+ */
+ for (int i = 0; i < machine->smp.cpus; i++) {
+ int intidbase = NUM_SPIS + i * GIC_INTERNAL;
+ g_autofree char *s = g_strdup_printf("cpu-uart-oflow-orgate%d", i);
+ DeviceState *orgate;
+
+ /* The two overflow IRQs from the UART are ORed together into PPI 3 */
+ object_initialize_child(OBJECT(mms), s, &mms->cpu_uart_oflow[i],
+ TYPE_OR_IRQ);
+ orgate = DEVICE(&mms->cpu_uart_oflow[i]);
+ qdev_prop_set_uint32(orgate, "num-lines", 2);
+ qdev_realize(orgate, NULL, &error_fatal);
+ qdev_connect_gpio_out(orgate, 0,
+ qdev_get_gpio_in(gicdev, intidbase + 19));
+
+ create_uart(mms, i, &mms->cpu_sysmem[i], 0xe7c00000,
+ qdev_get_gpio_in(gicdev, intidbase + 17), /* tx */
+ qdev_get_gpio_in(gicdev, intidbase + 16), /* rx */
+ qdev_get_gpio_in(orgate, 0), /* txover */
+ qdev_get_gpio_in(orgate, 1), /* rxover */
+ qdev_get_gpio_in(gicdev, intidbase + 18) /* combined */);
+ }
+ /*
+ * UARTs 2 to 5 are whole-system; all overflow IRQs are ORed
+ * together into IRQ 17
+ */
+ object_initialize_child(OBJECT(mms), "uart-oflow-orgate",
+ &mms->uart_oflow, TYPE_OR_IRQ);
+ qdev_prop_set_uint32(DEVICE(&mms->uart_oflow), "num-lines",
+ MPS3R_UART_MAX * 2);
+ qdev_realize(DEVICE(&mms->uart_oflow), NULL, &error_fatal);
+ qdev_connect_gpio_out(DEVICE(&mms->uart_oflow), 0,
+ qdev_get_gpio_in(gicdev, 17));
+
+ for (int i = 0; i < MPS3R_UART_MAX; i++) {
+ hwaddr baseaddr = 0xe0205000 + i * 0x1000;
+ int rxirq = 5 + i * 2, txirq = 6 + i * 2, combirq = 13 + i;
+
+ create_uart(mms, i + MPS3R_CPU_MAX, sysmem, baseaddr,
+ qdev_get_gpio_in(gicdev, txirq),
+ qdev_get_gpio_in(gicdev, rxirq),
+ qdev_get_gpio_in(DEVICE(&mms->uart_oflow), i * 2),
+ qdev_get_gpio_in(DEVICE(&mms->uart_oflow), i * 2 + 1),
+ qdev_get_gpio_in(gicdev, combirq));
+ }
+
+ for (int i = 0; i < 4; i++) {
+ /* CMSDK GPIO controllers */
+ g_autofree char *s = g_strdup_printf("gpio%d", i);
+ create_unimplemented_device(s, 0xe0000000 + i * 0x1000, 0x1000);
+ }
+
+ object_initialize_child(OBJECT(mms), "watchdog", &mms->watchdog,
+ TYPE_CMSDK_APB_WATCHDOG);
+ qdev_connect_clock_in(DEVICE(&mms->watchdog), "WDOGCLK", mms->clk);
+ sysbus_realize(SYS_BUS_DEVICE(&mms->watchdog), &error_fatal);
+ sysbus_connect_irq(SYS_BUS_DEVICE(&mms->watchdog), 0,
+ qdev_get_gpio_in(gicdev, 0));
+ sysbus_mmio_map(SYS_BUS_DEVICE(&mms->watchdog), 0, 0xe0100000);
+
+ object_initialize_child(OBJECT(mms), "dualtimer", &mms->dualtimer,
+ TYPE_CMSDK_APB_DUALTIMER);
+ qdev_connect_clock_in(DEVICE(&mms->dualtimer), "TIMCLK", mms->clk);
+ sysbus_realize(SYS_BUS_DEVICE(&mms->dualtimer), &error_fatal);
+ sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 0,
+ qdev_get_gpio_in(gicdev, 3));
+ sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 1,
+ qdev_get_gpio_in(gicdev, 1));
+ sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 2,
+ qdev_get_gpio_in(gicdev, 2));
+ sysbus_mmio_map(SYS_BUS_DEVICE(&mms->dualtimer), 0, 0xe0101000);
+
+ for (int i = 0; i < ARRAY_SIZE(mms->i2c); i++) {
+ static const hwaddr i2cbase[] = {0xe0102000, /* Touch */
+ 0xe0103000, /* Audio */
+ 0xe0107000, /* Shield0 */
+ 0xe0108000, /* Shield1 */
+ 0xe0109000}; /* DDR4 EEPROM */
+ g_autofree char *s = g_strdup_printf("i2c%d", i);
+
+ object_initialize_child(OBJECT(mms), s, &mms->i2c[i],
+ TYPE_ARM_SBCON_I2C);
+ sysbus_realize(SYS_BUS_DEVICE(&mms->i2c[i]), &error_fatal);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&mms->i2c[i]), 0, i2cbase[i]);
+ if (i != 2 && i != 3) {
+ /*
+ * internal-only bus: mark it full to avoid user-created
+ * i2c devices being plugged into it.
+ */
+ qbus_mark_full(qdev_get_child_bus(DEVICE(&mms->i2c[i]), "i2c"));
+ }
+ }
+
+ for (int i = 0; i < ARRAY_SIZE(mms->spi); i++) {
+ g_autofree char *s = g_strdup_printf("spi%d", i);
+ hwaddr baseaddr = 0xe0104000 + i * 0x1000;
+
+ object_initialize_child(OBJECT(mms), s, &mms->spi[i], TYPE_PL022);
+ sysbus_realize(SYS_BUS_DEVICE(&mms->spi[i]), &error_fatal);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&mms->spi[i]), 0, baseaddr);
+ sysbus_connect_irq(SYS_BUS_DEVICE(&mms->spi[i]), 0,
+ qdev_get_gpio_in(gicdev, 22 + i));
+ }
+
+ object_initialize_child(OBJECT(mms), "scc", &mms->scc, TYPE_MPS2_SCC);
+ qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-cfg0", 0);
+ qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-cfg4", 0x2);
+ qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-aid", 0x00200008);
+ qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-id", 0x41055360);
+ oscclk = qlist_new();
+ for (int i = 0; i < ARRAY_SIZE(an536_oscclk); i++) {
+ qlist_append_int(oscclk, an536_oscclk[i]);
+ }
+ qdev_prop_set_array(DEVICE(&mms->scc), "oscclk", oscclk);
+ sysbus_realize(SYS_BUS_DEVICE(&mms->scc), &error_fatal);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&mms->scc), 0, 0xe0200000);
+
+ create_unimplemented_device("i2s-audio", 0xe0201000, 0x1000);
+
+ object_initialize_child(OBJECT(mms), "fpgaio", &mms->fpgaio,
+ TYPE_MPS2_FPGAIO);
+ qdev_prop_set_uint32(DEVICE(&mms->fpgaio), "prescale-clk", an536_oscclk[1]);
+ qdev_prop_set_uint32(DEVICE(&mms->fpgaio), "num-leds", 10);
+ qdev_prop_set_bit(DEVICE(&mms->fpgaio), "has-switches", true);
+ qdev_prop_set_bit(DEVICE(&mms->fpgaio), "has-dbgctrl", false);
+ sysbus_realize(SYS_BUS_DEVICE(&mms->fpgaio), &error_fatal);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&mms->fpgaio), 0, 0xe0202000);
+
+ create_unimplemented_device("clcd", 0xe0209000, 0x1000);
+
+ object_initialize_child(OBJECT(mms), "rtc", &mms->rtc, TYPE_PL031);
+ sysbus_realize(SYS_BUS_DEVICE(&mms->rtc), &error_fatal);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&mms->rtc), 0, 0xe020a000);
+ sysbus_connect_irq(SYS_BUS_DEVICE(&mms->rtc), 0,
+ qdev_get_gpio_in(gicdev, 4));
+
+ /*
+ * In hardware this is a LAN9220; the LAN9118 is software compatible
+ * except that it doesn't support the checksum-offload feature.
+ */
+ lan9118_init(0xe0300000,
+ qdev_get_gpio_in(gicdev, 18));
+
+ create_unimplemented_device("usb", 0xe0301000, 0x1000);
+ create_unimplemented_device("qspi-write-config", 0xe0600000, 0x1000);
+
+ mms->bootinfo.ram_size = machine->ram_size;
+ mms->bootinfo.board_id = -1;
+ mms->bootinfo.loader_start = mmc->loader_start;
+ mms->bootinfo.write_secondary_boot = mps3r_write_secondary_boot;
+ mms->bootinfo.secondary_cpu_reset_hook = mps3r_secondary_cpu_reset;
+ arm_load_kernel(ARM_CPU(mms->cpu[0]), machine, &mms->bootinfo);
+}
+
+static void mps3r_set_default_ram_info(MPS3RMachineClass *mmc)
+{
+ /*
+ * Set mc->default_ram_size and default_ram_id from the
+ * information in mmc->raminfo.
+ */
+ MachineClass *mc = MACHINE_CLASS(mmc);
+ const RAMInfo *p;
+
+ for (p = mmc->raminfo; p->name; p++) {
+ if (p->mrindex < 0) {
+ /* Found the entry for "system memory" */
+ mc->default_ram_size = p->size;
+ mc->default_ram_id = p->name;
+ mmc->loader_start = p->base;
+ return;
+ }
+ }
+ g_assert_not_reached();
+}
+
+static void mps3r_class_init(ObjectClass *oc, void *data)
+{
+ MachineClass *mc = MACHINE_CLASS(oc);
+
+ mc->init = mps3r_common_init;
+}
+
+static void mps3r_an536_class_init(ObjectClass *oc, void *data)
+{
+ MachineClass *mc = MACHINE_CLASS(oc);
+ MPS3RMachineClass *mmc = MPS3R_MACHINE_CLASS(oc);
+ static const char * const valid_cpu_types[] = {
+ ARM_CPU_TYPE_NAME("cortex-r52"),
+ NULL
+ };
+
+ mc->desc = "ARM MPS3 with AN536 FPGA image for Cortex-R52";
+ /*
+ * In the real FPGA image there are always two cores, but the standard
+ * initial setting for the SCC SYSCON 0x000 register is 0x21, meaning
+ * that the second core is held in reset and halted. Many images built for
+ * the board do not expect the second core to run at startup (especially
+ * since on the real FPGA image it is not possible to use LDREX/STREX
+ * in RAM between the two cores, so a true SMP setup isn't supported).
+ *
+ * As QEMU's equivalent of this, we support both -smp 1 and -smp 2,
+ * with the default being -smp 1. This seems a more intuitive UI for
+ * QEMU users than, for instance, having a machine property to allow
+ * the user to set the initial value of the SYSCON 0x000 register.
+ */
+ mc->default_cpus = 1;
+ mc->min_cpus = 1;
+ mc->max_cpus = 2;
+ mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-r52");
+ mc->valid_cpu_types = valid_cpu_types;
+ mmc->raminfo = an536_raminfo;
+ mps3r_set_default_ram_info(mmc);
+}
+
+static const TypeInfo mps3r_machine_types[] = {
+ {
+ .name = TYPE_MPS3R_MACHINE,
+ .parent = TYPE_MACHINE,
+ .abstract = true,
+ .instance_size = sizeof(MPS3RMachineState),
+ .class_size = sizeof(MPS3RMachineClass),
+ .class_init = mps3r_class_init,
+ }, {
+ .name = TYPE_MPS3R_AN536_MACHINE,
+ .parent = TYPE_MPS3R_MACHINE,
+ .class_init = mps3r_an536_class_init,
+ },
+};
+
+DEFINE_TYPES(mps3r_machine_types);