diff options
Diffstat (limited to 'fpu/softfloat-parts.c.inc')
-rw-r--r-- | fpu/softfloat-parts.c.inc | 206 |
1 files changed, 206 insertions, 0 deletions
diff --git a/fpu/softfloat-parts.c.inc b/fpu/softfloat-parts.c.inc index bf935c4fc2..d69f357352 100644 --- a/fpu/softfloat-parts.c.inc +++ b/fpu/softfloat-parts.c.inc @@ -598,6 +598,212 @@ static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b, } /* + * Square Root + * + * The base algorithm is lifted from + * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtf.c + * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt.c + * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtl.c + * and is thus MIT licenced. + */ +static void partsN(sqrt)(FloatPartsN *a, float_status *status, + const FloatFmt *fmt) +{ + const uint32_t three32 = 3u << 30; + const uint64_t three64 = 3ull << 62; + uint32_t d32, m32, r32, s32, u32; /* 32-bit computation */ + uint64_t d64, m64, r64, s64, u64; /* 64-bit computation */ + uint64_t dh, dl, rh, rl, sh, sl, uh, ul; /* 128-bit computation */ + uint64_t d0h, d0l, d1h, d1l, d2h, d2l; + uint64_t discard; + bool exp_odd; + size_t index; + + if (unlikely(a->cls != float_class_normal)) { + switch (a->cls) { + case float_class_snan: + case float_class_qnan: + parts_return_nan(a, status); + return; + case float_class_zero: + return; + case float_class_inf: + if (unlikely(a->sign)) { + goto d_nan; + } + return; + default: + g_assert_not_reached(); + } + } + + if (unlikely(a->sign)) { + goto d_nan; + } + + /* + * Argument reduction. + * x = 4^e frac; with integer e, and frac in [1, 4) + * m = frac fixed point at bit 62, since we're in base 4. + * If base-2 exponent is odd, exchange that for multiply by 2, + * which results in no shift. + */ + exp_odd = a->exp & 1; + index = extract64(a->frac_hi, 57, 6) | (!exp_odd << 6); + if (!exp_odd) { + frac_shr(a, 1); + } + + /* + * Approximate r ~= 1/sqrt(m) and s ~= sqrt(m) when m in [1, 4). + * + * Initial estimate: + * 7-bit lookup table (1-bit exponent and 6-bit significand). + * + * The relative error (e = r0*sqrt(m)-1) of a linear estimate + * (r0 = a*m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best; + * a table lookup is faster and needs one less iteration. + * The 7-bit table gives |e| < 0x1.fdp-9. + * + * A Newton-Raphson iteration for r is + * s = m*r + * d = s*r + * u = 3 - d + * r = r*u/2 + * + * Fixed point representations: + * m, s, d, u, three are all 2.30; r is 0.32 + */ + m64 = a->frac_hi; + m32 = m64 >> 32; + + r32 = rsqrt_tab[index] << 16; + /* |r*sqrt(m) - 1| < 0x1.FDp-9 */ + + s32 = ((uint64_t)m32 * r32) >> 32; + d32 = ((uint64_t)s32 * r32) >> 32; + u32 = three32 - d32; + + if (N == 64) { + /* float64 or smaller */ + + r32 = ((uint64_t)r32 * u32) >> 31; + /* |r*sqrt(m) - 1| < 0x1.7Bp-16 */ + + s32 = ((uint64_t)m32 * r32) >> 32; + d32 = ((uint64_t)s32 * r32) >> 32; + u32 = three32 - d32; + + if (fmt->frac_size <= 23) { + /* float32 or smaller */ + + s32 = ((uint64_t)s32 * u32) >> 32; /* 3.29 */ + s32 = (s32 - 1) >> 6; /* 9.23 */ + /* s < sqrt(m) < s + 0x1.08p-23 */ + + /* compute nearest rounded result to 2.23 bits */ + uint32_t d0 = (m32 << 16) - s32 * s32; + uint32_t d1 = s32 - d0; + uint32_t d2 = d1 + s32 + 1; + s32 += d1 >> 31; + a->frac_hi = (uint64_t)s32 << (64 - 25); + + /* increment or decrement for inexact */ + if (d2 != 0) { + a->frac_hi += ((int32_t)(d1 ^ d2) < 0 ? -1 : 1); + } + goto done; + } + + /* float64 */ + + r64 = (uint64_t)r32 * u32 * 2; + /* |r*sqrt(m) - 1| < 0x1.37-p29; convert to 64-bit arithmetic */ + mul64To128(m64, r64, &s64, &discard); + mul64To128(s64, r64, &d64, &discard); + u64 = three64 - d64; + + mul64To128(s64, u64, &s64, &discard); /* 3.61 */ + s64 = (s64 - 2) >> 9; /* 12.52 */ + + /* Compute nearest rounded result */ + uint64_t d0 = (m64 << 42) - s64 * s64; + uint64_t d1 = s64 - d0; + uint64_t d2 = d1 + s64 + 1; + s64 += d1 >> 63; + a->frac_hi = s64 << (64 - 54); + + /* increment or decrement for inexact */ + if (d2 != 0) { + a->frac_hi += ((int64_t)(d1 ^ d2) < 0 ? -1 : 1); + } + goto done; + } + + r64 = (uint64_t)r32 * u32 * 2; + /* |r*sqrt(m) - 1| < 0x1.7Bp-16; convert to 64-bit arithmetic */ + + mul64To128(m64, r64, &s64, &discard); + mul64To128(s64, r64, &d64, &discard); + u64 = three64 - d64; + mul64To128(u64, r64, &r64, &discard); + r64 <<= 1; + /* |r*sqrt(m) - 1| < 0x1.a5p-31 */ + + mul64To128(m64, r64, &s64, &discard); + mul64To128(s64, r64, &d64, &discard); + u64 = three64 - d64; + mul64To128(u64, r64, &rh, &rl); + add128(rh, rl, rh, rl, &rh, &rl); + /* |r*sqrt(m) - 1| < 0x1.c001p-59; change to 128-bit arithmetic */ + + mul128To256(a->frac_hi, a->frac_lo, rh, rl, &sh, &sl, &discard, &discard); + mul128To256(sh, sl, rh, rl, &dh, &dl, &discard, &discard); + sub128(three64, 0, dh, dl, &uh, &ul); + mul128To256(uh, ul, sh, sl, &sh, &sl, &discard, &discard); /* 3.125 */ + /* -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 */ + + sub128(sh, sl, 0, 4, &sh, &sl); + shift128Right(sh, sl, 13, &sh, &sl); /* 16.112 */ + /* s < sqrt(m) < s + 1ulp */ + + /* Compute nearest rounded result */ + mul64To128(sl, sl, &d0h, &d0l); + d0h += 2 * sh * sl; + sub128(a->frac_lo << 34, 0, d0h, d0l, &d0h, &d0l); + sub128(sh, sl, d0h, d0l, &d1h, &d1l); + add128(sh, sl, 0, 1, &d2h, &d2l); + add128(d2h, d2l, d1h, d1l, &d2h, &d2l); + add128(sh, sl, 0, d1h >> 63, &sh, &sl); + shift128Left(sh, sl, 128 - 114, &sh, &sl); + + /* increment or decrement for inexact */ + if (d2h | d2l) { + if ((int64_t)(d1h ^ d2h) < 0) { + sub128(sh, sl, 0, 1, &sh, &sl); + } else { + add128(sh, sl, 0, 1, &sh, &sl); + } + } + a->frac_lo = sl; + a->frac_hi = sh; + + done: + /* Convert back from base 4 to base 2. */ + a->exp >>= 1; + if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) { + frac_add(a, a, a); + } else { + a->exp += 1; + } + return; + + d_nan: + float_raise(float_flag_invalid, status); + parts_default_nan(a, status); +} + +/* * Rounds the floating-point value `a' to an integer, and returns the * result as a floating-point value. The operation is performed * according to the IEC/IEEE Standard for Binary Floating-Point |