aboutsummaryrefslogtreecommitdiff
path: root/docs
diff options
context:
space:
mode:
Diffstat (limited to 'docs')
-rw-r--r--docs/devel/decodetree.rst221
-rw-r--r--docs/devel/index.rst2
-rw-r--r--docs/interop/qcow2.txt9
3 files changed, 228 insertions, 4 deletions
diff --git a/docs/devel/decodetree.rst b/docs/devel/decodetree.rst
new file mode 100644
index 0000000000..44ac621ea8
--- /dev/null
+++ b/docs/devel/decodetree.rst
@@ -0,0 +1,221 @@
+========================
+Decodetree Specification
+========================
+
+A *decodetree* is built from instruction *patterns*. A pattern may
+represent a single architectural instruction or a group of same, depending
+on what is convenient for further processing.
+
+Each pattern has both *fixedbits* and *fixedmask*, the combination of which
+describes the condition under which the pattern is matched::
+
+ (insn & fixedmask) == fixedbits
+
+Each pattern may have *fields*, which are extracted from the insn and
+passed along to the translator. Examples of such are registers,
+immediates, and sub-opcodes.
+
+In support of patterns, one may declare *fields*, *argument sets*, and
+*formats*, each of which may be re-used to simplify further definitions.
+
+Fields
+======
+
+Syntax::
+
+ field_def := '%' identifier ( unnamed_field )+ ( !function=identifier )?
+ unnamed_field := number ':' ( 's' ) number
+
+For *unnamed_field*, the first number is the least-significant bit position
+of the field and the second number is the length of the field. If the 's' is
+present, the field is considered signed. If multiple ``unnamed_fields`` are
+present, they are concatenated. In this way one can define disjoint fields.
+
+If ``!function`` is specified, the concatenated result is passed through the
+named function, taking and returning an integral value.
+
+FIXME: the fields of the structure into which this result will be stored
+is restricted to ``int``. Which means that we cannot expand 64-bit items.
+
+Field examples:
+
++---------------------------+---------------------------------------------+
+| Input | Generated code |
++===========================+=============================================+
+| %disp 0:s16 | sextract(i, 0, 16) |
++---------------------------+---------------------------------------------+
+| %imm9 16:6 10:3 | extract(i, 16, 6) << 3 | extract(i, 10, 3) |
++---------------------------+---------------------------------------------+
+| %disp12 0:s1 1:1 2:10 | sextract(i, 0, 1) << 11 | |
+| | extract(i, 1, 1) << 10 | |
+| | extract(i, 2, 10) |
++---------------------------+---------------------------------------------+
+| %shimm8 5:s8 13:1 | expand_shimm8(sextract(i, 5, 8) << 1 | |
+| !function=expand_shimm8 | extract(i, 13, 1)) |
++---------------------------+---------------------------------------------+
+
+Argument Sets
+=============
+
+Syntax::
+
+ args_def := '&' identifier ( args_elt )+ ( !extern )?
+ args_elt := identifier
+
+Each *args_elt* defines an argument within the argument set.
+Each argument set will be rendered as a C structure "arg_$name"
+with each of the fields being one of the member arguments.
+
+If ``!extern`` is specified, the backing structure is assumed
+to have been already declared, typically via a second decoder.
+
+Argument sets are useful when one wants to define helper functions
+for the translator functions that can perform operations on a common
+set of arguments. This can ensure, for instance, that the ``AND``
+pattern and the ``OR`` pattern put their operands into the same named
+structure, so that a common ``gen_logic_insn`` may be able to handle
+the operations common between the two.
+
+Argument set examples::
+
+ &reg3 ra rb rc
+ &loadstore reg base offset
+
+
+Formats
+=======
+
+Syntax::
+
+ fmt_def := '@' identifier ( fmt_elt )+
+ fmt_elt := fixedbit_elt | field_elt | field_ref | args_ref
+ fixedbit_elt := [01.-]+
+ field_elt := identifier ':' 's'? number
+ field_ref := '%' identifier | identifier '=' '%' identifier
+ args_ref := '&' identifier
+
+Defining a format is a handy way to avoid replicating groups of fields
+across many instruction patterns.
+
+A *fixedbit_elt* describes a contiguous sequence of bits that must
+be 1, 0, or don't care. The difference between '.' and '-'
+is that '.' means that the bit will be covered with a field or a
+final 0 or 1 from the pattern, and '-' means that the bit is really
+ignored by the cpu and will not be specified.
+
+A *field_elt* describes a simple field only given a width; the position of
+the field is implied by its position with respect to other *fixedbit_elt*
+and *field_elt*.
+
+If any *fixedbit_elt* or *field_elt* appear, then all bits must be defined.
+Padding with a *fixedbit_elt* of all '.' is an easy way to accomplish that.
+
+A *field_ref* incorporates a field by reference. This is the only way to
+add a complex field to a format. A field may be renamed in the process
+via assignment to another identifier. This is intended to allow the
+same argument set be used with disjoint named fields.
+
+A single *args_ref* may specify an argument set to use for the format.
+The set of fields in the format must be a subset of the arguments in
+the argument set. If an argument set is not specified, one will be
+inferred from the set of fields.
+
+It is recommended, but not required, that all *field_ref* and *args_ref*
+appear at the end of the line, not interleaving with *fixedbit_elf* or
+*field_elt*.
+
+Format examples::
+
+ @opr ...... ra:5 rb:5 ... 0 ....... rc:5
+ @opi ...... ra:5 lit:8 1 ....... rc:5
+
+Patterns
+========
+
+Syntax::
+
+ pat_def := identifier ( pat_elt )+
+ pat_elt := fixedbit_elt | field_elt | field_ref | args_ref | fmt_ref | const_elt
+ fmt_ref := '@' identifier
+ const_elt := identifier '=' number
+
+The *fixedbit_elt* and *field_elt* specifiers are unchanged from formats.
+A pattern that does not specify a named format will have one inferred
+from a referenced argument set (if present) and the set of fields.
+
+A *const_elt* allows a argument to be set to a constant value. This may
+come in handy when fields overlap between patterns and one has to
+include the values in the *fixedbit_elt* instead.
+
+The decoder will call a translator function for each pattern matched.
+
+Pattern examples::
+
+ addl_r 010000 ..... ..... .... 0000000 ..... @opr
+ addl_i 010000 ..... ..... .... 0000000 ..... @opi
+
+which will, in part, invoke::
+
+ trans_addl_r(ctx, &arg_opr, insn)
+
+and::
+
+ trans_addl_i(ctx, &arg_opi, insn)
+
+Pattern Groups
+==============
+
+Syntax::
+
+ group := '{' ( pat_def | group )+ '}'
+
+A *group* begins with a lone open-brace, with all subsequent lines
+indented two spaces, and ending with a lone close-brace. Groups
+may be nested, increasing the required indentation of the lines
+within the nested group to two spaces per nesting level.
+
+Unlike ungrouped patterns, grouped patterns are allowed to overlap.
+Conflicts are resolved by selecting the patterns in order. If all
+of the fixedbits for a pattern match, its translate function will
+be called. If the translate function returns false, then subsequent
+patterns within the group will be matched.
+
+The following example from PA-RISC shows specialization of the *or*
+instruction::
+
+ {
+ {
+ nop 000010 ----- ----- 0000 001001 0 00000
+ copy 000010 00000 r1:5 0000 001001 0 rt:5
+ }
+ or 000010 rt2:5 r1:5 cf:4 001001 0 rt:5
+ }
+
+When the *cf* field is zero, the instruction has no side effects,
+and may be specialized. When the *rt* field is zero, the output
+is discarded and so the instruction has no effect. When the *rt2*
+field is zero, the operation is ``reg[rt] | 0`` and so encodes
+the canonical register copy operation.
+
+The output from the generator might look like::
+
+ switch (insn & 0xfc000fe0) {
+ case 0x08000240:
+ /* 000010.. ........ ....0010 010..... */
+ if ((insn & 0x0000f000) == 0x00000000) {
+ /* 000010.. ........ 00000010 010..... */
+ if ((insn & 0x0000001f) == 0x00000000) {
+ /* 000010.. ........ 00000010 01000000 */
+ extract_decode_Fmt_0(&u.f_decode0, insn);
+ if (trans_nop(ctx, &u.f_decode0)) return true;
+ }
+ if ((insn & 0x03e00000) == 0x00000000) {
+ /* 00001000 000..... 00000010 010..... */
+ extract_decode_Fmt_1(&u.f_decode1, insn);
+ if (trans_copy(ctx, &u.f_decode1)) return true;
+ }
+ }
+ extract_decode_Fmt_2(&u.f_decode2, insn);
+ if (trans_or(ctx, &u.f_decode2)) return true;
+ return false;
+ }
diff --git a/docs/devel/index.rst b/docs/devel/index.rst
index 6b11e49caa..ebbab636ce 100644
--- a/docs/devel/index.rst
+++ b/docs/devel/index.rst
@@ -19,4 +19,4 @@ Contents:
migration
stable-process
testing
-
+ decodetree
diff --git a/docs/interop/qcow2.txt b/docs/interop/qcow2.txt
index 8c3098d8d9..af5711e533 100644
--- a/docs/interop/qcow2.txt
+++ b/docs/interop/qcow2.txt
@@ -633,7 +633,10 @@ Structure of a bitmap directory entry:
Bit
0: in_use
The bitmap was not saved correctly and may be
- inconsistent.
+ inconsistent. Although the bitmap metadata is still
+ well-formed from a qcow2 perspective, the metadata
+ (such as the auto flag or bitmap size) or data
+ contents may be outdated.
1: auto
The bitmap must reflect all changes of the virtual
@@ -761,8 +764,8 @@ corresponding range of the virtual disk (see above) was written to while the
bitmap was 'enabled'. An unset bit means that this range was not written to.
The software doesn't have to sync the bitmap in the image file with its
-representation in RAM after each write. Flag 'in_use' should be set while the
-bitmap is not synced.
+representation in RAM after each write or metadata change. Flag 'in_use'
+should be set while the bitmap is not synced.
In the image file the 'enabled' state is reflected by the 'auto' flag. If this
flag is set, the software must consider the bitmap as 'enabled' and start