diff options
Diffstat (limited to 'docs')
-rw-r--r-- | docs/qemu-block-drivers.texi | 889 | ||||
-rw-r--r-- | docs/system/conf.py | 7 | ||||
-rw-r--r-- | docs/system/index.rst | 1 | ||||
-rw-r--r-- | docs/system/qemu-block-drivers.rst | 985 |
4 files changed, 993 insertions, 889 deletions
diff --git a/docs/qemu-block-drivers.texi b/docs/qemu-block-drivers.texi deleted file mode 100644 index 2c7ea49c32..0000000000 --- a/docs/qemu-block-drivers.texi +++ /dev/null @@ -1,889 +0,0 @@ -@c man begin SYNOPSIS -QEMU block driver reference manual -@c man end - -@set qemu_system qemu-system-x86_64 - -@c man begin DESCRIPTION - -@node disk_images_formats -@subsection Disk image file formats - -QEMU supports many image file formats that can be used with VMs as well as with -any of the tools (like @code{qemu-img}). This includes the preferred formats -raw and qcow2 as well as formats that are supported for compatibility with -older QEMU versions or other hypervisors. - -Depending on the image format, different options can be passed to -@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option. -This section describes each format and the options that are supported for it. - -@table @option -@item raw - -Raw disk image format. This format has the advantage of -being simple and easily exportable to all other emulators. If your -file system supports @emph{holes} (for example in ext2 or ext3 on -Linux or NTFS on Windows), then only the written sectors will reserve -space. Use @code{qemu-img info} to know the real size used by the -image or @code{ls -ls} on Unix/Linux. - -Supported options: -@table @code -@item preallocation -Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}). -@code{falloc} mode preallocates space for image by calling posix_fallocate(). -@code{full} mode preallocates space for image by writing data to underlying -storage. This data may or may not be zero, depending on the storage location. -@end table - -@item qcow2 -QEMU image format, the most versatile format. Use it to have smaller -images (useful if your filesystem does not supports holes, for example -on Windows), zlib based compression and support of multiple VM -snapshots. - -Supported options: -@table @code -@item compat -Determines the qcow2 version to use. @code{compat=0.10} uses the -traditional image format that can be read by any QEMU since 0.10. -@code{compat=1.1} enables image format extensions that only QEMU 1.1 and -newer understand (this is the default). Amongst others, this includes -zero clusters, which allow efficient copy-on-read for sparse images. - -@item backing_file -File name of a base image (see @option{create} subcommand) -@item backing_fmt -Image format of the base image -@item encryption -This option is deprecated and equivalent to @code{encrypt.format=aes} - -@item encrypt.format - -If this is set to @code{luks}, it requests that the qcow2 payload (not -qcow2 header) be encrypted using the LUKS format. The passphrase to -use to unlock the LUKS key slot is given by the @code{encrypt.key-secret} -parameter. LUKS encryption parameters can be tuned with the other -@code{encrypt.*} parameters. - -If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC. -The encryption key is given by the @code{encrypt.key-secret} parameter. -This encryption format is considered to be flawed by modern cryptography -standards, suffering from a number of design problems: - -@itemize @minus -@item The AES-CBC cipher is used with predictable initialization vectors based -on the sector number. This makes it vulnerable to chosen plaintext attacks -which can reveal the existence of encrypted data. -@item The user passphrase is directly used as the encryption key. A poorly -chosen or short passphrase will compromise the security of the encryption. -@item In the event of the passphrase being compromised there is no way to -change the passphrase to protect data in any qcow images. The files must -be cloned, using a different encryption passphrase in the new file. The -original file must then be securely erased using a program like shred, -though even this is ineffective with many modern storage technologies. -@end itemize - -The use of this is no longer supported in system emulators. Support only -remains in the command line utilities, for the purposes of data liberation -and interoperability with old versions of QEMU. The @code{luks} format -should be used instead. - -@item encrypt.key-secret - -Provides the ID of a @code{secret} object that contains the passphrase -(@code{encrypt.format=luks}) or encryption key (@code{encrypt.format=aes}). - -@item encrypt.cipher-alg - -Name of the cipher algorithm and key length. Currently defaults -to @code{aes-256}. Only used when @code{encrypt.format=luks}. - -@item encrypt.cipher-mode - -Name of the encryption mode to use. Currently defaults to @code{xts}. -Only used when @code{encrypt.format=luks}. - -@item encrypt.ivgen-alg - -Name of the initialization vector generator algorithm. Currently defaults -to @code{plain64}. Only used when @code{encrypt.format=luks}. - -@item encrypt.ivgen-hash-alg - -Name of the hash algorithm to use with the initialization vector generator -(if required). Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}. - -@item encrypt.hash-alg - -Name of the hash algorithm to use for PBKDF algorithm -Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}. - -@item encrypt.iter-time - -Amount of time, in milliseconds, to use for PBKDF algorithm per key slot. -Defaults to @code{2000}. Only used when @code{encrypt.format=luks}. - -@item cluster_size -Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster -sizes can improve the image file size whereas larger cluster sizes generally -provide better performance. - -@item preallocation -Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc}, -@code{full}). An image with preallocated metadata is initially larger but can -improve performance when the image needs to grow. @code{falloc} and @code{full} -preallocations are like the same options of @code{raw} format, but sets up -metadata also. - -@item lazy_refcounts -If this option is set to @code{on}, reference count updates are postponed with -the goal of avoiding metadata I/O and improving performance. This is -particularly interesting with @option{cache=writethrough} which doesn't batch -metadata updates. The tradeoff is that after a host crash, the reference count -tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img -check -r all} is required, which may take some time. - -This option can only be enabled if @code{compat=1.1} is specified. - -@item nocow -If this option is set to @code{on}, it will turn off COW of the file. It's only -valid on btrfs, no effect on other file systems. - -Btrfs has low performance when hosting a VM image file, even more when the guest -on the VM also using btrfs as file system. Turning off COW is a way to mitigate -this bad performance. Generally there are two ways to turn off COW on btrfs: -a) Disable it by mounting with nodatacow, then all newly created files will be -NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option -does. - -Note: this option is only valid to new or empty files. If there is an existing -file which is COW and has data blocks already, it couldn't be changed to NOCOW -by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if -the NOCOW flag is set or not (Capital 'C' is NOCOW flag). - -@end table - -@item qed -Old QEMU image format with support for backing files and compact image files -(when your filesystem or transport medium does not support holes). - -When converting QED images to qcow2, you might want to consider using the -@code{lazy_refcounts=on} option to get a more QED-like behaviour. - -Supported options: -@table @code -@item backing_file -File name of a base image (see @option{create} subcommand). -@item backing_fmt -Image file format of backing file (optional). Useful if the format cannot be -autodetected because it has no header, like some vhd/vpc files. -@item cluster_size -Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller -cluster sizes can improve the image file size whereas larger cluster sizes -generally provide better performance. -@item table_size -Changes the number of clusters per L1/L2 table (must be power-of-2 between 1 -and 16). There is normally no need to change this value but this option can be -used for performance benchmarking. -@end table - -@item qcow -Old QEMU image format with support for backing files, compact image files, -encryption and compression. - -Supported options: -@table @code -@item backing_file -File name of a base image (see @option{create} subcommand) -@item encryption -This option is deprecated and equivalent to @code{encrypt.format=aes} - -@item encrypt.format -If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC. -The encryption key is given by the @code{encrypt.key-secret} parameter. -This encryption format is considered to be flawed by modern cryptography -standards, suffering from a number of design problems enumerated previously -against the @code{qcow2} image format. - -The use of this is no longer supported in system emulators. Support only -remains in the command line utilities, for the purposes of data liberation -and interoperability with old versions of QEMU. - -Users requiring native encryption should use the @code{qcow2} format -instead with @code{encrypt.format=luks}. - -@item encrypt.key-secret - -Provides the ID of a @code{secret} object that contains the encryption -key (@code{encrypt.format=aes}). - -@end table - -@item luks - -LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup - -Supported options: -@table @code - -@item key-secret - -Provides the ID of a @code{secret} object that contains the passphrase. - -@item cipher-alg - -Name of the cipher algorithm and key length. Currently defaults -to @code{aes-256}. - -@item cipher-mode - -Name of the encryption mode to use. Currently defaults to @code{xts}. - -@item ivgen-alg - -Name of the initialization vector generator algorithm. Currently defaults -to @code{plain64}. - -@item ivgen-hash-alg - -Name of the hash algorithm to use with the initialization vector generator -(if required). Defaults to @code{sha256}. - -@item hash-alg - -Name of the hash algorithm to use for PBKDF algorithm -Defaults to @code{sha256}. - -@item iter-time - -Amount of time, in milliseconds, to use for PBKDF algorithm per key slot. -Defaults to @code{2000}. - -@end table - -@item vdi -VirtualBox 1.1 compatible image format. -Supported options: -@table @code -@item static -If this option is set to @code{on}, the image is created with metadata -preallocation. -@end table - -@item vmdk -VMware 3 and 4 compatible image format. - -Supported options: -@table @code -@item backing_file -File name of a base image (see @option{create} subcommand). -@item compat6 -Create a VMDK version 6 image (instead of version 4) -@item hwversion -Specify vmdk virtual hardware version. Compat6 flag cannot be enabled -if hwversion is specified. -@item subformat -Specifies which VMDK subformat to use. Valid options are -@code{monolithicSparse} (default), -@code{monolithicFlat}, -@code{twoGbMaxExtentSparse}, -@code{twoGbMaxExtentFlat} and -@code{streamOptimized}. -@end table - -@item vpc -VirtualPC compatible image format (VHD). -Supported options: -@table @code -@item subformat -Specifies which VHD subformat to use. Valid options are -@code{dynamic} (default) and @code{fixed}. -@end table - -@item VHDX -Hyper-V compatible image format (VHDX). -Supported options: -@table @code -@item subformat -Specifies which VHDX subformat to use. Valid options are -@code{dynamic} (default) and @code{fixed}. -@item block_state_zero -Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default) -or @code{off}. When set to @code{off}, new blocks will be created as -@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return -arbitrary data for those blocks. Do not set to @code{off} when using -@code{qemu-img convert} with @code{subformat=dynamic}. -@item block_size -Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size. -@item log_size -Log size; min 1 MB. -@end table -@end table - -@subsubsection Read-only formats -More disk image file formats are supported in a read-only mode. -@table @option -@item bochs -Bochs images of @code{growing} type. -@item cloop -Linux Compressed Loop image, useful only to reuse directly compressed -CD-ROM images present for example in the Knoppix CD-ROMs. -@item dmg -Apple disk image. -@item parallels -Parallels disk image format. -@end table - - -@node host_drives -@subsection Using host drives - -In addition to disk image files, QEMU can directly access host -devices. We describe here the usage for QEMU version >= 0.8.3. - -@subsubsection Linux - -On Linux, you can directly use the host device filename instead of a -disk image filename provided you have enough privileges to access -it. For example, use @file{/dev/cdrom} to access to the CDROM. - -@table @code -@item CD -You can specify a CDROM device even if no CDROM is loaded. QEMU has -specific code to detect CDROM insertion or removal. CDROM ejection by -the guest OS is supported. Currently only data CDs are supported. -@item Floppy -You can specify a floppy device even if no floppy is loaded. Floppy -removal is currently not detected accurately (if you change floppy -without doing floppy access while the floppy is not loaded, the guest -OS will think that the same floppy is loaded). -Use of the host's floppy device is deprecated, and support for it will -be removed in a future release. -@item Hard disks -Hard disks can be used. Normally you must specify the whole disk -(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can -see it as a partitioned disk. WARNING: unless you know what you do, it -is better to only make READ-ONLY accesses to the hard disk otherwise -you may corrupt your host data (use the @option{-snapshot} command -line option or modify the device permissions accordingly). -@end table - -@subsubsection Windows - -@table @code -@item CD -The preferred syntax is the drive letter (e.g. @file{d:}). The -alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is -supported as an alias to the first CDROM drive. - -Currently there is no specific code to handle removable media, so it -is better to use the @code{change} or @code{eject} monitor commands to -change or eject media. -@item Hard disks -Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}} -where @var{N} is the drive number (0 is the first hard disk). - -WARNING: unless you know what you do, it is better to only make -READ-ONLY accesses to the hard disk otherwise you may corrupt your -host data (use the @option{-snapshot} command line so that the -modifications are written in a temporary file). -@end table - - -@subsubsection Mac OS X - -@file{/dev/cdrom} is an alias to the first CDROM. - -Currently there is no specific code to handle removable media, so it -is better to use the @code{change} or @code{eject} monitor commands to -change or eject media. - -@node disk_images_fat_images -@subsection Virtual FAT disk images - -QEMU can automatically create a virtual FAT disk image from a -directory tree. In order to use it, just type: - -@example -@value{qemu_system} linux.img -hdb fat:/my_directory -@end example - -Then you access access to all the files in the @file{/my_directory} -directory without having to copy them in a disk image or to export -them via SAMBA or NFS. The default access is @emph{read-only}. - -Floppies can be emulated with the @code{:floppy:} option: - -@example -@value{qemu_system} linux.img -fda fat:floppy:/my_directory -@end example - -A read/write support is available for testing (beta stage) with the -@code{:rw:} option: - -@example -@value{qemu_system} linux.img -fda fat:floppy:rw:/my_directory -@end example - -What you should @emph{never} do: -@itemize -@item use non-ASCII filenames ; -@item use "-snapshot" together with ":rw:" ; -@item expect it to work when loadvm'ing ; -@item write to the FAT directory on the host system while accessing it with the guest system. -@end itemize - -@node disk_images_nbd -@subsection NBD access - -QEMU can access directly to block device exported using the Network Block Device -protocol. - -@example -@value{qemu_system} linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/ -@end example - -If the NBD server is located on the same host, you can use an unix socket instead -of an inet socket: - -@example -@value{qemu_system} linux.img -hdb nbd+unix://?socket=/tmp/my_socket -@end example - -In this case, the block device must be exported using qemu-nbd: - -@example -qemu-nbd --socket=/tmp/my_socket my_disk.qcow2 -@end example - -The use of qemu-nbd allows sharing of a disk between several guests: -@example -qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2 -@end example - -@noindent -and then you can use it with two guests: -@example -@value{qemu_system} linux1.img -hdb nbd+unix://?socket=/tmp/my_socket -@value{qemu_system} linux2.img -hdb nbd+unix://?socket=/tmp/my_socket -@end example - -If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's -own embedded NBD server), you must specify an export name in the URI: -@example -@value{qemu_system} -cdrom nbd://localhost/debian-500-ppc-netinst -@value{qemu_system} -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst -@end example - -The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is -also available. Here are some example of the older syntax: -@example -@value{qemu_system} linux.img -hdb nbd:my_nbd_server.mydomain.org:1024 -@value{qemu_system} linux2.img -hdb nbd:unix:/tmp/my_socket -@value{qemu_system} -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst -@end example - -@node disk_images_sheepdog -@subsection Sheepdog disk images - -Sheepdog is a distributed storage system for QEMU. It provides highly -available block level storage volumes that can be attached to -QEMU-based virtual machines. - -You can create a Sheepdog disk image with the command: -@example -qemu-img create sheepdog:///@var{image} @var{size} -@end example -where @var{image} is the Sheepdog image name and @var{size} is its -size. - -To import the existing @var{filename} to Sheepdog, you can use a -convert command. -@example -qemu-img convert @var{filename} sheepdog:///@var{image} -@end example - -You can boot from the Sheepdog disk image with the command: -@example -@value{qemu_system} sheepdog:///@var{image} -@end example - -You can also create a snapshot of the Sheepdog image like qcow2. -@example -qemu-img snapshot -c @var{tag} sheepdog:///@var{image} -@end example -where @var{tag} is a tag name of the newly created snapshot. - -To boot from the Sheepdog snapshot, specify the tag name of the -snapshot. -@example -@value{qemu_system} sheepdog:///@var{image}#@var{tag} -@end example - -You can create a cloned image from the existing snapshot. -@example -qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image} -@end example -where @var{base} is an image name of the source snapshot and @var{tag} -is its tag name. - -You can use an unix socket instead of an inet socket: - -@example -@value{qemu_system} sheepdog+unix:///@var{image}?socket=@var{path} -@end example - -If the Sheepdog daemon doesn't run on the local host, you need to -specify one of the Sheepdog servers to connect to. -@example -qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size} -@value{qemu_system} sheepdog://@var{hostname}:@var{port}/@var{image} -@end example - -@node disk_images_iscsi -@subsection iSCSI LUNs - -iSCSI is a popular protocol used to access SCSI devices across a computer -network. - -There are two different ways iSCSI devices can be used by QEMU. - -The first method is to mount the iSCSI LUN on the host, and make it appear as -any other ordinary SCSI device on the host and then to access this device as a -/dev/sd device from QEMU. How to do this differs between host OSes. - -The second method involves using the iSCSI initiator that is built into -QEMU. This provides a mechanism that works the same way regardless of which -host OS you are running QEMU on. This section will describe this second method -of using iSCSI together with QEMU. - -In QEMU, iSCSI devices are described using special iSCSI URLs - -@example -URL syntax: -iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun> -@end example - -Username and password are optional and only used if your target is set up -using CHAP authentication for access control. -Alternatively the username and password can also be set via environment -variables to have these not show up in the process list - -@example -export LIBISCSI_CHAP_USERNAME=<username> -export LIBISCSI_CHAP_PASSWORD=<password> -iscsi://<host>/<target-iqn-name>/<lun> -@end example - -Various session related parameters can be set via special options, either -in a configuration file provided via '-readconfig' or directly on the -command line. - -If the initiator-name is not specified qemu will use a default name -of 'iqn.2008-11.org.linux-kvm[:<uuid>'] where <uuid> is the UUID of the -virtual machine. If the UUID is not specified qemu will use -'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the -virtual machine. - -@example -Setting a specific initiator name to use when logging in to the target --iscsi initiator-name=iqn.qemu.test:my-initiator -@end example - -@example -Controlling which type of header digest to negotiate with the target --iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE -@end example - -These can also be set via a configuration file -@example -[iscsi] - user = "CHAP username" - password = "CHAP password" - initiator-name = "iqn.qemu.test:my-initiator" - # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE - header-digest = "CRC32C" -@end example - - -Setting the target name allows different options for different targets -@example -[iscsi "iqn.target.name"] - user = "CHAP username" - password = "CHAP password" - initiator-name = "iqn.qemu.test:my-initiator" - # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE - header-digest = "CRC32C" -@end example - - -Howto use a configuration file to set iSCSI configuration options: -@example -cat >iscsi.conf <<EOF -[iscsi] - user = "me" - password = "my password" - initiator-name = "iqn.qemu.test:my-initiator" - header-digest = "CRC32C" -EOF - -@value{qemu_system} -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \ - -readconfig iscsi.conf -@end example - - -How to set up a simple iSCSI target on loopback and access it via QEMU: -@example -This example shows how to set up an iSCSI target with one CDROM and one DISK -using the Linux STGT software target. This target is available on Red Hat based -systems as the package 'scsi-target-utils'. - -tgtd --iscsi portal=127.0.0.1:3260 -tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test -tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \ - -b /IMAGES/disk.img --device-type=disk -tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \ - -b /IMAGES/cd.iso --device-type=cd -tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL - -@value{qemu_system} -iscsi initiator-name=iqn.qemu.test:my-initiator \ - -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \ - -cdrom iscsi://127.0.0.1/iqn.qemu.test/2 -@end example - -@node disk_images_gluster -@subsection GlusterFS disk images - -GlusterFS is a user space distributed file system. - -You can boot from the GlusterFS disk image with the command: -@example -URI: -@value{qemu_system} -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path} - [?socket=...][,file.debug=9][,file.logfile=...] - -JSON: -@value{qemu_system} 'json:@{"driver":"qcow2", - "file":@{"driver":"gluster", - "volume":"testvol","path":"a.img","debug":9,"logfile":"...", - "server":[@{"type":"tcp","host":"...","port":"..."@}, - @{"type":"unix","socket":"..."@}]@}@}' -@end example - -@var{gluster} is the protocol. - -@var{type} specifies the transport type used to connect to gluster -management daemon (glusterd). Valid transport types are -tcp and unix. In the URI form, if a transport type isn't specified, -then tcp type is assumed. - -@var{host} specifies the server where the volume file specification for -the given volume resides. This can be either a hostname or an ipv4 address. -If transport type is unix, then @var{host} field should not be specified. -Instead @var{socket} field needs to be populated with the path to unix domain -socket. - -@var{port} is the port number on which glusterd is listening. This is optional -and if not specified, it defaults to port 24007. If the transport type is unix, -then @var{port} should not be specified. - -@var{volume} is the name of the gluster volume which contains the disk image. - -@var{path} is the path to the actual disk image that resides on gluster volume. - -@var{debug} is the logging level of the gluster protocol driver. Debug levels -are 0-9, with 9 being the most verbose, and 0 representing no debugging output. -The default level is 4. The current logging levels defined in the gluster source -are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning, -6 - Notice, 7 - Info, 8 - Debug, 9 - Trace - -@var{logfile} is a commandline option to mention log file path which helps in -logging to the specified file and also help in persisting the gfapi logs. The -default is stderr. - - - - -You can create a GlusterFS disk image with the command: -@example -qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size} -@end example - -Examples -@example -@value{qemu_system} -drive file=gluster://1.2.3.4/testvol/a.img -@value{qemu_system} -drive file=gluster+tcp://1.2.3.4/testvol/a.img -@value{qemu_system} -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img -@value{qemu_system} -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img -@value{qemu_system} -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img -@value{qemu_system} -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img -@value{qemu_system} -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket -@value{qemu_system} -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img -@value{qemu_system} -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log -@value{qemu_system} 'json:@{"driver":"qcow2", - "file":@{"driver":"gluster", - "volume":"testvol","path":"a.img", - "debug":9,"logfile":"/var/log/qemu-gluster.log", - "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@}, - @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}' -@value{qemu_system} -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img, - file.debug=9,file.logfile=/var/log/qemu-gluster.log, - file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007, - file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket -@end example - -@node disk_images_ssh -@subsection Secure Shell (ssh) disk images - -You can access disk images located on a remote ssh server -by using the ssh protocol: - -@example -@value{qemu_system} -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}] -@end example - -Alternative syntax using properties: - -@example -@value{qemu_system} -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}] -@end example - -@var{ssh} is the protocol. - -@var{user} is the remote user. If not specified, then the local -username is tried. - -@var{server} specifies the remote ssh server. Any ssh server can be -used, but it must implement the sftp-server protocol. Most Unix/Linux -systems should work without requiring any extra configuration. - -@var{port} is the port number on which sshd is listening. By default -the standard ssh port (22) is used. - -@var{path} is the path to the disk image. - -The optional @var{host_key_check} parameter controls how the remote -host's key is checked. The default is @code{yes} which means to use -the local @file{.ssh/known_hosts} file. Setting this to @code{no} -turns off known-hosts checking. Or you can check that the host key -matches a specific fingerprint: -@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8} -(@code{sha1:} can also be used as a prefix, but note that OpenSSH -tools only use MD5 to print fingerprints). - -Currently authentication must be done using ssh-agent. Other -authentication methods may be supported in future. - -Note: Many ssh servers do not support an @code{fsync}-style operation. -The ssh driver cannot guarantee that disk flush requests are -obeyed, and this causes a risk of disk corruption if the remote -server or network goes down during writes. The driver will -print a warning when @code{fsync} is not supported: - -warning: ssh server @code{ssh.example.com:22} does not support fsync - -With sufficiently new versions of libssh and OpenSSH, @code{fsync} is -supported. - -@node disk_images_nvme -@subsection NVMe disk images - -NVM Express (NVMe) storage controllers can be accessed directly by a userspace -driver in QEMU. This bypasses the host kernel file system and block layers -while retaining QEMU block layer functionalities, such as block jobs, I/O -throttling, image formats, etc. Disk I/O performance is typically higher than -with @code{-drive file=/dev/sda} using either thread pool or linux-aio. - -The controller will be exclusively used by the QEMU process once started. To be -able to share storage between multiple VMs and other applications on the host, -please use the file based protocols. - -Before starting QEMU, bind the host NVMe controller to the host vfio-pci -driver. For example: - -@example -# modprobe vfio-pci -# lspci -n -s 0000:06:0d.0 -06:0d.0 0401: 1102:0002 (rev 08) -# echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind -# echo 1102 0002 > /sys/bus/pci/drivers/vfio-pci/new_id - -# @value{qemu_system} -drive file=nvme://@var{host}:@var{bus}:@var{slot}.@var{func}/@var{namespace} -@end example - -Alternative syntax using properties: - -@example -@value{qemu_system} -drive file.driver=nvme,file.device=@var{host}:@var{bus}:@var{slot}.@var{func},file.namespace=@var{namespace} -@end example - -@var{host}:@var{bus}:@var{slot}.@var{func} is the NVMe controller's PCI device -address on the host. - -@var{namespace} is the NVMe namespace number, starting from 1. - -@node disk_image_locking -@subsection Disk image file locking - -By default, QEMU tries to protect image files from unexpected concurrent -access, as long as it's supported by the block protocol driver and host -operating system. If multiple QEMU processes (including QEMU emulators and -utilities) try to open the same image with conflicting accessing modes, all but -the first one will get an error. - -This feature is currently supported by the file protocol on Linux with the Open -File Descriptor (OFD) locking API, and can be configured to fall back to POSIX -locking if the POSIX host doesn't support Linux OFD locking. - -To explicitly enable image locking, specify "locking=on" in the file protocol -driver options. If OFD locking is not possible, a warning will be printed and -the POSIX locking API will be used. In this case there is a risk that the lock -will get silently lost when doing hot plugging and block jobs, due to the -shortcomings of the POSIX locking API. - -QEMU transparently handles lock handover during shared storage migration. For -shared virtual disk images between multiple VMs, the "share-rw" device option -should be used. - -By default, the guest has exclusive write access to its disk image. If the -guest can safely share the disk image with other writers the @code{-device -...,share-rw=on} parameter can be used. This is only safe if the guest is -running software, such as a cluster file system, that coordinates disk accesses -to avoid corruption. - -Note that share-rw=on only declares the guest's ability to share the disk. -Some QEMU features, such as image file formats, require exclusive write access -to the disk image and this is unaffected by the share-rw=on option. - -Alternatively, locking can be fully disabled by "locking=off" block device -option. In the command line, the option is usually in the form of -"file.locking=off" as the protocol driver is normally placed as a "file" child -under a format driver. For example: - -@code{-blockdev driver=qcow2,file.filename=/path/to/image,file.locking=off,file.driver=file} - -To check if image locking is active, check the output of the "lslocks" command -on host and see if there are locks held by the QEMU process on the image file. -More than one byte could be locked by the QEMU instance, each byte of which -reflects a particular permission that is acquired or protected by the running -block driver. - -@c man end - -@ignore - -@setfilename qemu-block-drivers -@settitle QEMU block drivers reference - -@c man begin SEEALSO -The HTML documentation of QEMU for more precise information and Linux -user mode emulator invocation. -@c man end - -@c man begin AUTHOR -Fabrice Bellard and the QEMU Project developers -@c man end - -@end ignore diff --git a/docs/system/conf.py b/docs/system/conf.py index 6435b4d3f8..7ca115f5e0 100644 --- a/docs/system/conf.py +++ b/docs/system/conf.py @@ -13,3 +13,10 @@ exec(compile(open(parent_config, "rb").read(), parent_config, 'exec')) # This slightly misuses the 'description', but is the best way to get # the manual title to appear in the sidebar. html_theme_options['description'] = u'System Emulation User''s Guide' +# One entry per manual page. List of tuples +# (source start file, name, description, authors, manual section). +man_pages = [ + ('qemu-block-drivers', 'qemu-block-drivers', + u'QEMU block drivers reference', + ['Fabrice Bellard and the QEMU Project developers'], 7) +] diff --git a/docs/system/index.rst b/docs/system/index.rst index ea8ea5fe3d..f66e6ea585 100644 --- a/docs/system/index.rst +++ b/docs/system/index.rst @@ -14,3 +14,4 @@ Contents: .. toctree:: :maxdepth: 2 + qemu-block-drivers diff --git a/docs/system/qemu-block-drivers.rst b/docs/system/qemu-block-drivers.rst new file mode 100644 index 0000000000..388adbefbf --- /dev/null +++ b/docs/system/qemu-block-drivers.rst @@ -0,0 +1,985 @@ +QEMU block drivers reference +============================ + +.. |qemu_system| replace:: qemu-system-x86_64 + +.. + We put the 'Synopsis' and 'See also' sections into the manpage, but not + the HTML. This makes the HTML docs read better and means the ToC in + the index has a more useful set of entries. Ideally, the section + headings 'Disk image file formats' would be top-level headings for + the HTML, but sub-headings of the conventional manpage 'Description' + header for the manpage. Unfortunately, due to deficiencies in + the Sphinx 'only' directive, this isn't possible: they must be headers + at the same level as 'Synopsis' and 'See also', otherwise Sphinx's + identification of which header underline style is which gets confused. + +.. only:: man + + Synopsis + -------- + + QEMU block driver reference manual + +Disk image file formats +----------------------- + +QEMU supports many image file formats that can be used with VMs as well as with +any of the tools (like ``qemu-img``). This includes the preferred formats +raw and qcow2 as well as formats that are supported for compatibility with +older QEMU versions or other hypervisors. + +Depending on the image format, different options can be passed to +``qemu-img create`` and ``qemu-img convert`` using the ``-o`` option. +This section describes each format and the options that are supported for it. + +.. program:: image-formats +.. option:: raw + + Raw disk image format. This format has the advantage of + being simple and easily exportable to all other emulators. If your + file system supports *holes* (for example in ext2 or ext3 on + Linux or NTFS on Windows), then only the written sectors will reserve + space. Use ``qemu-img info`` to know the real size used by the + image or ``ls -ls`` on Unix/Linux. + + Supported options: + + .. program:: raw + .. option:: preallocation + + Preallocation mode (allowed values: ``off``, ``falloc``, + ``full``). ``falloc`` mode preallocates space for image by + calling ``posix_fallocate()``. ``full`` mode preallocates space + for image by writing data to underlying storage. This data may or + may not be zero, depending on the storage location. + +.. program:: image-formats +.. option:: qcow2 + + QEMU image format, the most versatile format. Use it to have smaller + images (useful if your filesystem does not supports holes, for example + on Windows), zlib based compression and support of multiple VM + snapshots. + + Supported options: + + .. program:: qcow2 + .. option:: compat + + Determines the qcow2 version to use. ``compat=0.10`` uses the + traditional image format that can be read by any QEMU since 0.10. + ``compat=1.1`` enables image format extensions that only QEMU 1.1 and + newer understand (this is the default). Amongst others, this includes + zero clusters, which allow efficient copy-on-read for sparse images. + + .. option:: backing_file + + File name of a base image (see ``create`` subcommand) + + .. option:: backing_fmt + + Image format of the base image + + .. option:: encryption + + This option is deprecated and equivalent to ``encrypt.format=aes`` + + .. option:: encrypt.format + + If this is set to ``luks``, it requests that the qcow2 payload (not + qcow2 header) be encrypted using the LUKS format. The passphrase to + use to unlock the LUKS key slot is given by the ``encrypt.key-secret`` + parameter. LUKS encryption parameters can be tuned with the other + ``encrypt.*`` parameters. + + If this is set to ``aes``, the image is encrypted with 128-bit AES-CBC. + The encryption key is given by the ``encrypt.key-secret`` parameter. + This encryption format is considered to be flawed by modern cryptography + standards, suffering from a number of design problems: + + - The AES-CBC cipher is used with predictable initialization vectors based + on the sector number. This makes it vulnerable to chosen plaintext attacks + which can reveal the existence of encrypted data. + - The user passphrase is directly used as the encryption key. A poorly + chosen or short passphrase will compromise the security of the encryption. + - In the event of the passphrase being compromised there is no way to + change the passphrase to protect data in any qcow images. The files must + be cloned, using a different encryption passphrase in the new file. The + original file must then be securely erased using a program like shred, + though even this is ineffective with many modern storage technologies. + + The use of this is no longer supported in system emulators. Support only + remains in the command line utilities, for the purposes of data liberation + and interoperability with old versions of QEMU. The ``luks`` format + should be used instead. + + .. option:: encrypt.key-secret + + Provides the ID of a ``secret`` object that contains the passphrase + (``encrypt.format=luks``) or encryption key (``encrypt.format=aes``). + + .. option:: encrypt.cipher-alg + + Name of the cipher algorithm and key length. Currently defaults + to ``aes-256``. Only used when ``encrypt.format=luks``. + + .. option:: encrypt.cipher-mode + + Name of the encryption mode to use. Currently defaults to ``xts``. + Only used when ``encrypt.format=luks``. + + .. option:: encrypt.ivgen-alg + + Name of the initialization vector generator algorithm. Currently defaults + to ``plain64``. Only used when ``encrypt.format=luks``. + + .. option:: encrypt.ivgen-hash-alg + + Name of the hash algorithm to use with the initialization vector generator + (if required). Defaults to ``sha256``. Only used when ``encrypt.format=luks``. + + .. option:: encrypt.hash-alg + + Name of the hash algorithm to use for PBKDF algorithm + Defaults to ``sha256``. Only used when ``encrypt.format=luks``. + + .. option:: encrypt.iter-time + + Amount of time, in milliseconds, to use for PBKDF algorithm per key slot. + Defaults to ``2000``. Only used when ``encrypt.format=luks``. + + .. option:: cluster_size + + Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster + sizes can improve the image file size whereas larger cluster sizes generally + provide better performance. + + .. option:: preallocation + + Preallocation mode (allowed values: ``off``, ``metadata``, ``falloc``, + ``full``). An image with preallocated metadata is initially larger but can + improve performance when the image needs to grow. ``falloc`` and ``full`` + preallocations are like the same options of ``raw`` format, but sets up + metadata also. + + .. option:: lazy_refcounts + + If this option is set to ``on``, reference count updates are postponed with + the goal of avoiding metadata I/O and improving performance. This is + particularly interesting with :option:`cache=writethrough` which doesn't batch + metadata updates. The tradeoff is that after a host crash, the reference count + tables must be rebuilt, i.e. on the next open an (automatic) ``qemu-img + check -r all`` is required, which may take some time. + + This option can only be enabled if ``compat=1.1`` is specified. + + .. option:: nocow + + If this option is set to ``on``, it will turn off COW of the file. It's only + valid on btrfs, no effect on other file systems. + + Btrfs has low performance when hosting a VM image file, even more + when the guest on the VM also using btrfs as file system. Turning off + COW is a way to mitigate this bad performance. Generally there are two + ways to turn off COW on btrfs: + + - Disable it by mounting with nodatacow, then all newly created files + will be NOCOW. + - For an empty file, add the NOCOW file attribute. That's what this + option does. + + Note: this option is only valid to new or empty files. If there is + an existing file which is COW and has data blocks already, it couldn't + be changed to NOCOW by setting ``nocow=on``. One can issue ``lsattr + filename`` to check if the NOCOW flag is set or not (Capital 'C' is + NOCOW flag). + +.. program:: image-formats +.. option:: qed + + Old QEMU image format with support for backing files and compact image files + (when your filesystem or transport medium does not support holes). + + When converting QED images to qcow2, you might want to consider using the + ``lazy_refcounts=on`` option to get a more QED-like behaviour. + + Supported options: + + .. program:: qed + .. option:: backing_file + + File name of a base image (see ``create`` subcommand). + + .. option:: backing_fmt + + Image file format of backing file (optional). Useful if the format cannot be + autodetected because it has no header, like some vhd/vpc files. + + .. option:: cluster_size + + Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller + cluster sizes can improve the image file size whereas larger cluster sizes + generally provide better performance. + + .. option:: table_size + + Changes the number of clusters per L1/L2 table (must be + power-of-2 between 1 and 16). There is normally no need to + change this value but this option can between used for + performance benchmarking. + +.. program:: image-formats +.. option:: qcow + + Old QEMU image format with support for backing files, compact image files, + encryption and compression. + + Supported options: + + .. program:: qcow + .. option:: backing_file + + File name of a base image (see ``create`` subcommand) + + .. option:: encryption + + This option is deprecated and equivalent to ``encrypt.format=aes`` + + .. option:: encrypt.format + + If this is set to ``aes``, the image is encrypted with 128-bit AES-CBC. + The encryption key is given by the ``encrypt.key-secret`` parameter. + This encryption format is considered to be flawed by modern cryptography + standards, suffering from a number of design problems enumerated previously + against the ``qcow2`` image format. + + The use of this is no longer supported in system emulators. Support only + remains in the command line utilities, for the purposes of data liberation + and interoperability with old versions of QEMU. + + Users requiring native encryption should use the ``qcow2`` format + instead with ``encrypt.format=luks``. + + .. option:: encrypt.key-secret + + Provides the ID of a ``secret`` object that contains the encryption + key (``encrypt.format=aes``). + +.. program:: image-formats +.. option:: luks + + LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup + + Supported options: + + .. program:: luks + .. option:: key-secret + + Provides the ID of a ``secret`` object that contains the passphrase. + + .. option:: cipher-alg + + Name of the cipher algorithm and key length. Currently defaults + to ``aes-256``. + + .. option:: cipher-mode + + Name of the encryption mode to use. Currently defaults to ``xts``. + + .. option:: ivgen-alg + + Name of the initialization vector generator algorithm. Currently defaults + to ``plain64``. + + .. option:: ivgen-hash-alg + + Name of the hash algorithm to use with the initialization vector generator + (if required). Defaults to ``sha256``. + + .. option:: hash-alg + + Name of the hash algorithm to use for PBKDF algorithm + Defaults to ``sha256``. + + .. option:: iter-time + + Amount of time, in milliseconds, to use for PBKDF algorithm per key slot. + Defaults to ``2000``. + +.. program:: image-formats +.. option:: vdi + + VirtualBox 1.1 compatible image format. + + Supported options: + + .. program:: vdi + .. option:: static + + If this option is set to ``on``, the image is created with metadata + preallocation. + +.. program:: image-formats +.. option:: vmdk + + VMware 3 and 4 compatible image format. + + Supported options: + + .. program: vmdk + .. option:: backing_file + + File name of a base image (see ``create`` subcommand). + + .. option:: compat6 + + Create a VMDK version 6 image (instead of version 4) + + .. option:: hwversion + + Specify vmdk virtual hardware version. Compat6 flag cannot be enabled + if hwversion is specified. + + .. option:: subformat + + Specifies which VMDK subformat to use. Valid options are + ``monolithicSparse`` (default), + ``monolithicFlat``, + ``twoGbMaxExtentSparse``, + ``twoGbMaxExtentFlat`` and + ``streamOptimized``. + +.. program:: image-formats +.. option:: vpc + + VirtualPC compatible image format (VHD). + + Supported options: + + .. program:: vpc + .. option:: subformat + + Specifies which VHD subformat to use. Valid options are + ``dynamic`` (default) and ``fixed``. + +.. program:: image-formats +.. option:: VHDX + + Hyper-V compatible image format (VHDX). + + Supported options: + + .. program:: VHDX + .. option:: subformat + + Specifies which VHDX subformat to use. Valid options are + ``dynamic`` (default) and ``fixed``. + + .. option:: block_state_zero + + Force use of payload blocks of type 'ZERO'. Can be set to ``on`` (default) + or ``off``. When set to ``off``, new blocks will be created as + ``PAYLOAD_BLOCK_NOT_PRESENT``, which means parsers are free to return + arbitrary data for those blocks. Do not set to ``off`` when using + ``qemu-img convert`` with ``subformat=dynamic``. + + .. option:: block_size + + Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on + image size. + + .. option:: log_size + + Log size; min 1 MB. + +Read-only formats +----------------- + +More disk image file formats are supported in a read-only mode. + +.. program:: image-formats +.. option:: bochs + + Bochs images of ``growing`` type. + +.. program:: image-formats +.. option:: cloop + + Linux Compressed Loop image, useful only to reuse directly compressed + CD-ROM images present for example in the Knoppix CD-ROMs. + +.. program:: image-formats +.. option:: dmg + + Apple disk image. + +.. program:: image-formats +.. option:: parallels + + Parallels disk image format. + +Using host drives +----------------- + +In addition to disk image files, QEMU can directly access host +devices. We describe here the usage for QEMU version >= 0.8.3. + +Linux +''''' + +On Linux, you can directly use the host device filename instead of a +disk image filename provided you have enough privileges to access +it. For example, use ``/dev/cdrom`` to access to the CDROM. + +CD + You can specify a CDROM device even if no CDROM is loaded. QEMU has + specific code to detect CDROM insertion or removal. CDROM ejection by + the guest OS is supported. Currently only data CDs are supported. + +Floppy + You can specify a floppy device even if no floppy is loaded. Floppy + removal is currently not detected accurately (if you change floppy + without doing floppy access while the floppy is not loaded, the guest + OS will think that the same floppy is loaded). + Use of the host's floppy device is deprecated, and support for it will + be removed in a future release. + +Hard disks + Hard disks can be used. Normally you must specify the whole disk + (``/dev/hdb`` instead of ``/dev/hdb1``) so that the guest OS can + see it as a partitioned disk. WARNING: unless you know what you do, it + is better to only make READ-ONLY accesses to the hard disk otherwise + you may corrupt your host data (use the ``-snapshot`` command + line option or modify the device permissions accordingly). + +Windows +''''''' + +CD + The preferred syntax is the drive letter (e.g. ``d:``). The + alternate syntax ``\\.\d:`` is supported. ``/dev/cdrom`` is + supported as an alias to the first CDROM drive. + + Currently there is no specific code to handle removable media, so it + is better to use the ``change`` or ``eject`` monitor commands to + change or eject media. + +Hard disks + Hard disks can be used with the syntax: ``\\.\PhysicalDriveN`` + where *N* is the drive number (0 is the first hard disk). + + WARNING: unless you know what you do, it is better to only make + READ-ONLY accesses to the hard disk otherwise you may corrupt your + host data (use the ``-snapshot`` command line so that the + modifications are written in a temporary file). + +Mac OS X +'''''''' + +``/dev/cdrom`` is an alias to the first CDROM. + +Currently there is no specific code to handle removable media, so it +is better to use the ``change`` or ``eject`` monitor commands to +change or eject media. + +Virtual FAT disk images +----------------------- + +QEMU can automatically create a virtual FAT disk image from a +directory tree. In order to use it, just type: + +.. parsed-literal:: + + |qemu_system| linux.img -hdb fat:/my_directory + +Then you access access to all the files in the ``/my_directory`` +directory without having to copy them in a disk image or to export +them via SAMBA or NFS. The default access is *read-only*. + +Floppies can be emulated with the ``:floppy:`` option: + +.. parsed-literal:: + + |qemu_system| linux.img -fda fat:floppy:/my_directory + +A read/write support is available for testing (beta stage) with the +``:rw:`` option: + +.. parsed-literal:: + + |qemu_system| linux.img -fda fat:floppy:rw:/my_directory + +What you should *never* do: + +- use non-ASCII filenames +- use "-snapshot" together with ":rw:" +- expect it to work when loadvm'ing +- write to the FAT directory on the host system while accessing it with the guest system + +NBD access +---------- + +QEMU can access directly to block device exported using the Network Block Device +protocol. + +.. parsed-literal:: + + |qemu_system| linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/ + +If the NBD server is located on the same host, you can use an unix socket instead +of an inet socket: + +.. parsed-literal:: + + |qemu_system| linux.img -hdb nbd+unix://?socket=/tmp/my_socket + +In this case, the block device must be exported using qemu-nbd: + +.. parsed-literal:: + + qemu-nbd --socket=/tmp/my_socket my_disk.qcow2 + +The use of qemu-nbd allows sharing of a disk between several guests: + +.. parsed-literal:: + + qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2 + +and then you can use it with two guests: + +.. parsed-literal:: + + |qemu_system| linux1.img -hdb nbd+unix://?socket=/tmp/my_socket + |qemu_system| linux2.img -hdb nbd+unix://?socket=/tmp/my_socket + +If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's +own embedded NBD server), you must specify an export name in the URI: + +.. parsed-literal:: + + |qemu_system| -cdrom nbd://localhost/debian-500-ppc-netinst + |qemu_system| -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst + +The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is +also available. Here are some example of the older syntax: + +.. parsed-literal:: + + |qemu_system| linux.img -hdb nbd:my_nbd_server.mydomain.org:1024 + |qemu_system| linux2.img -hdb nbd:unix:/tmp/my_socket + |qemu_system| -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst + + + +Sheepdog disk images +-------------------- + +Sheepdog is a distributed storage system for QEMU. It provides highly +available block level storage volumes that can be attached to +QEMU-based virtual machines. + +You can create a Sheepdog disk image with the command: + +.. parsed-literal:: + + qemu-img create sheepdog:///IMAGE SIZE + +where *IMAGE* is the Sheepdog image name and *SIZE* is its +size. + +To import the existing *FILENAME* to Sheepdog, you can use a +convert command. + +.. parsed-literal:: + + qemu-img convert FILENAME sheepdog:///IMAGE + +You can boot from the Sheepdog disk image with the command: + +.. parsed-literal:: + + |qemu_system| sheepdog:///IMAGE + +You can also create a snapshot of the Sheepdog image like qcow2. + +.. parsed-literal:: + + qemu-img snapshot -c TAG sheepdog:///IMAGE + +where *TAG* is a tag name of the newly created snapshot. + +To boot from the Sheepdog snapshot, specify the tag name of the +snapshot. + +.. parsed-literal:: + + |qemu_system| sheepdog:///IMAGE#TAG + +You can create a cloned image from the existing snapshot. + +.. parsed-literal:: + + qemu-img create -b sheepdog:///BASE#TAG sheepdog:///IMAGE + +where *BASE* is an image name of the source snapshot and *TAG* +is its tag name. + +You can use an unix socket instead of an inet socket: + +.. parsed-literal:: + + |qemu_system| sheepdog+unix:///IMAGE?socket=PATH + +If the Sheepdog daemon doesn't run on the local host, you need to +specify one of the Sheepdog servers to connect to. + +.. parsed-literal:: + + qemu-img create sheepdog://HOSTNAME:PORT/IMAGE SIZE + |qemu_system| sheepdog://HOSTNAME:PORT/IMAGE + +iSCSI LUNs +---------- + +iSCSI is a popular protocol used to access SCSI devices across a computer +network. + +There are two different ways iSCSI devices can be used by QEMU. + +The first method is to mount the iSCSI LUN on the host, and make it appear as +any other ordinary SCSI device on the host and then to access this device as a +/dev/sd device from QEMU. How to do this differs between host OSes. + +The second method involves using the iSCSI initiator that is built into +QEMU. This provides a mechanism that works the same way regardless of which +host OS you are running QEMU on. This section will describe this second method +of using iSCSI together with QEMU. + +In QEMU, iSCSI devices are described using special iSCSI URLs. URL syntax: + +:: + + iscsi://[<username>[%<password>]@]<host>[:<port>]/<target-iqn-name>/<lun> + +Username and password are optional and only used if your target is set up +using CHAP authentication for access control. +Alternatively the username and password can also be set via environment +variables to have these not show up in the process list: + +:: + + export LIBISCSI_CHAP_USERNAME=<username> + export LIBISCSI_CHAP_PASSWORD=<password> + iscsi://<host>/<target-iqn-name>/<lun> + +Various session related parameters can be set via special options, either +in a configuration file provided via '-readconfig' or directly on the +command line. + +If the initiator-name is not specified qemu will use a default name +of 'iqn.2008-11.org.linux-kvm[:<uuid>'] where <uuid> is the UUID of the +virtual machine. If the UUID is not specified qemu will use +'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the +virtual machine. + +Setting a specific initiator name to use when logging in to the target: + +:: + + -iscsi initiator-name=iqn.qemu.test:my-initiator + +Controlling which type of header digest to negotiate with the target: + +:: + + -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE + +These can also be set via a configuration file: + +:: + + [iscsi] + user = "CHAP username" + password = "CHAP password" + initiator-name = "iqn.qemu.test:my-initiator" + # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE + header-digest = "CRC32C" + +Setting the target name allows different options for different targets: + +:: + + [iscsi "iqn.target.name"] + user = "CHAP username" + password = "CHAP password" + initiator-name = "iqn.qemu.test:my-initiator" + # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE + header-digest = "CRC32C" + +How to use a configuration file to set iSCSI configuration options: + +.. parsed-literal:: + + cat >iscsi.conf <<EOF + [iscsi] + user = "me" + password = "my password" + initiator-name = "iqn.qemu.test:my-initiator" + header-digest = "CRC32C" + EOF + + |qemu_system| -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \\ + -readconfig iscsi.conf + +How to set up a simple iSCSI target on loopback and access it via QEMU: +this example shows how to set up an iSCSI target with one CDROM and one DISK +using the Linux STGT software target. This target is available on Red Hat based +systems as the package 'scsi-target-utils'. + +.. parsed-literal:: + + tgtd --iscsi portal=127.0.0.1:3260 + tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test + tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \\ + -b /IMAGES/disk.img --device-type=disk + tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \\ + -b /IMAGES/cd.iso --device-type=cd + tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL + + |qemu_system| -iscsi initiator-name=iqn.qemu.test:my-initiator \\ + -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \\ + -cdrom iscsi://127.0.0.1/iqn.qemu.test/2 + +GlusterFS disk images +--------------------- + +GlusterFS is a user space distributed file system. + +You can boot from the GlusterFS disk image with the command: + +URI: + +.. parsed-literal:: + + |qemu_system| -drive file=gluster[+TYPE]://[HOST}[:PORT]]/VOLUME/PATH + [?socket=...][,file.debug=9][,file.logfile=...] + +JSON: + +.. parsed-literal:: + + |qemu_system| 'json:{"driver":"qcow2", + "file":{"driver":"gluster", + "volume":"testvol","path":"a.img","debug":9,"logfile":"...", + "server":[{"type":"tcp","host":"...","port":"..."}, + {"type":"unix","socket":"..."}]}}' + +*gluster* is the protocol. + +*TYPE* specifies the transport type used to connect to gluster +management daemon (glusterd). Valid transport types are +tcp and unix. In the URI form, if a transport type isn't specified, +then tcp type is assumed. + +*HOST* specifies the server where the volume file specification for +the given volume resides. This can be either a hostname or an ipv4 address. +If transport type is unix, then *HOST* field should not be specified. +Instead *socket* field needs to be populated with the path to unix domain +socket. + +*PORT* is the port number on which glusterd is listening. This is optional +and if not specified, it defaults to port 24007. If the transport type is unix, +then *PORT* should not be specified. + +*VOLUME* is the name of the gluster volume which contains the disk image. + +*PATH* is the path to the actual disk image that resides on gluster volume. + +*debug* is the logging level of the gluster protocol driver. Debug levels +are 0-9, with 9 being the most verbose, and 0 representing no debugging output. +The default level is 4. The current logging levels defined in the gluster source +are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning, +6 - Notice, 7 - Info, 8 - Debug, 9 - Trace + +*logfile* is a commandline option to mention log file path which helps in +logging to the specified file and also help in persisting the gfapi logs. The +default is stderr. + +You can create a GlusterFS disk image with the command: + +.. parsed-literal:: + + qemu-img create gluster://HOST/VOLUME/PATH SIZE + +Examples + +.. parsed-literal:: + + |qemu_system| -drive file=gluster://1.2.3.4/testvol/a.img + |qemu_system| -drive file=gluster+tcp://1.2.3.4/testvol/a.img + |qemu_system| -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img + |qemu_system| -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img + |qemu_system| -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img + |qemu_system| -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img + |qemu_system| -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket + |qemu_system| -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img + |qemu_system| -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log + |qemu_system| 'json:{"driver":"qcow2", + "file":{"driver":"gluster", + "volume":"testvol","path":"a.img", + "debug":9,"logfile":"/var/log/qemu-gluster.log", + "server":[{"type":"tcp","host":"1.2.3.4","port":24007}, + {"type":"unix","socket":"/var/run/glusterd.socket"}]}}' + |qemu_system| -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img, + file.debug=9,file.logfile=/var/log/qemu-gluster.log, + file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007, + file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket + +Secure Shell (ssh) disk images +------------------------------ + +You can access disk images located on a remote ssh server +by using the ssh protocol: + +.. parsed-literal:: + + |qemu_system| -drive file=ssh://[USER@]SERVER[:PORT]/PATH[?host_key_check=HOST_KEY_CHECK] + +Alternative syntax using properties: + +.. parsed-literal:: + + |qemu_system| -drive file.driver=ssh[,file.user=USER],file.host=SERVER[,file.port=PORT],file.path=PATH[,file.host_key_check=HOST_KEY_CHECK] + +*ssh* is the protocol. + +*USER* is the remote user. If not specified, then the local +username is tried. + +*SERVER* specifies the remote ssh server. Any ssh server can be +used, but it must implement the sftp-server protocol. Most Unix/Linux +systems should work without requiring any extra configuration. + +*PORT* is the port number on which sshd is listening. By default +the standard ssh port (22) is used. + +*PATH* is the path to the disk image. + +The optional *HOST_KEY_CHECK* parameter controls how the remote +host's key is checked. The default is ``yes`` which means to use +the local ``.ssh/known_hosts`` file. Setting this to ``no`` +turns off known-hosts checking. Or you can check that the host key +matches a specific fingerprint: +``host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8`` +(``sha1:`` can also be used as a prefix, but note that OpenSSH +tools only use MD5 to print fingerprints). + +Currently authentication must be done using ssh-agent. Other +authentication methods may be supported in future. + +Note: Many ssh servers do not support an ``fsync``-style operation. +The ssh driver cannot guarantee that disk flush requests are +obeyed, and this causes a risk of disk corruption if the remote +server or network goes down during writes. The driver will +print a warning when ``fsync`` is not supported: + +:: + + warning: ssh server ssh.example.com:22 does not support fsync + +With sufficiently new versions of libssh and OpenSSH, ``fsync`` is +supported. + +NVMe disk images +---------------- + +NVM Express (NVMe) storage controllers can be accessed directly by a userspace +driver in QEMU. This bypasses the host kernel file system and block layers +while retaining QEMU block layer functionalities, such as block jobs, I/O +throttling, image formats, etc. Disk I/O performance is typically higher than +with ``-drive file=/dev/sda`` using either thread pool or linux-aio. + +The controller will be exclusively used by the QEMU process once started. To be +able to share storage between multiple VMs and other applications on the host, +please use the file based protocols. + +Before starting QEMU, bind the host NVMe controller to the host vfio-pci +driver. For example: + +.. parsed-literal:: + + # modprobe vfio-pci + # lspci -n -s 0000:06:0d.0 + 06:0d.0 0401: 1102:0002 (rev 08) + # echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind + # echo 1102 0002 > /sys/bus/pci/drivers/vfio-pci/new_id + + # |qemu_system| -drive file=nvme://HOST:BUS:SLOT.FUNC/NAMESPACE + +Alternative syntax using properties: + +.. parsed-literal:: + + |qemu_system| -drive file.driver=nvme,file.device=HOST:BUS:SLOT.FUNC,file.namespace=NAMESPACE + +*HOST*:*BUS*:*SLOT*.\ *FUNC* is the NVMe controller's PCI device +address on the host. + +*NAMESPACE* is the NVMe namespace number, starting from 1. + +Disk image file locking +----------------------- + +By default, QEMU tries to protect image files from unexpected concurrent +access, as long as it's supported by the block protocol driver and host +operating system. If multiple QEMU processes (including QEMU emulators and +utilities) try to open the same image with conflicting accessing modes, all but +the first one will get an error. + +This feature is currently supported by the file protocol on Linux with the Open +File Descriptor (OFD) locking API, and can be configured to fall back to POSIX +locking if the POSIX host doesn't support Linux OFD locking. + +To explicitly enable image locking, specify "locking=on" in the file protocol +driver options. If OFD locking is not possible, a warning will be printed and +the POSIX locking API will be used. In this case there is a risk that the lock +will get silently lost when doing hot plugging and block jobs, due to the +shortcomings of the POSIX locking API. + +QEMU transparently handles lock handover during shared storage migration. For +shared virtual disk images between multiple VMs, the "share-rw" device option +should be used. + +By default, the guest has exclusive write access to its disk image. If the +guest can safely share the disk image with other writers the +``-device ...,share-rw=on`` parameter can be used. This is only safe if +the guest is running software, such as a cluster file system, that +coordinates disk accesses to avoid corruption. + +Note that share-rw=on only declares the guest's ability to share the disk. +Some QEMU features, such as image file formats, require exclusive write access +to the disk image and this is unaffected by the share-rw=on option. + +Alternatively, locking can be fully disabled by "locking=off" block device +option. In the command line, the option is usually in the form of +"file.locking=off" as the protocol driver is normally placed as a "file" child +under a format driver. For example: + +:: + + -blockdev driver=qcow2,file.filename=/path/to/image,file.locking=off,file.driver=file + +To check if image locking is active, check the output of the "lslocks" command +on host and see if there are locks held by the QEMU process on the image file. +More than one byte could be locked by the QEMU instance, each byte of which +reflects a particular permission that is acquired or protected by the running +block driver. + +.. only:: man + + See also + -------- + + The HTML documentation of QEMU for more precise information and Linux + user mode emulator invocation. |