diff options
Diffstat (limited to 'docs/specs/ivshmem_device_spec.txt')
-rw-r--r-- | docs/specs/ivshmem_device_spec.txt | 161 |
1 files changed, 0 insertions, 161 deletions
diff --git a/docs/specs/ivshmem_device_spec.txt b/docs/specs/ivshmem_device_spec.txt deleted file mode 100644 index d318d65c32..0000000000 --- a/docs/specs/ivshmem_device_spec.txt +++ /dev/null @@ -1,161 +0,0 @@ - -Device Specification for Inter-VM shared memory device ------------------------------------------------------- - -The Inter-VM shared memory device is designed to share a memory region (created -on the host via the POSIX shared memory API) between multiple QEMU processes -running different guests. In order for all guests to be able to pick up the -shared memory area, it is modeled by QEMU as a PCI device exposing said memory -to the guest as a PCI BAR. -The memory region does not belong to any guest, but is a POSIX memory object on -the host. The host can access this shared memory if needed. - -The device also provides an optional communication mechanism between guests -sharing the same memory object. More details about that in the section 'Guest to -guest communication' section. - - -The Inter-VM PCI device ------------------------ - -From the VM point of view, the ivshmem PCI device supports three BARs. - -- BAR0 is a 1 Kbyte MMIO region to support registers and interrupts when MSI is - not used. -- BAR1 is used for MSI-X when it is enabled in the device. -- BAR2 is used to access the shared memory object. - -It is your choice how to use the device but you must choose between two -behaviors : - -- basically, if you only need the shared memory part, you will map BAR2. - This way, you have access to the shared memory in guest and can use it as you - see fit (memnic, for example, uses it in userland - http://dpdk.org/browse/memnic). - -- BAR0 and BAR1 are used to implement an optional communication mechanism - through interrupts in the guests. If you need an event mechanism between the - guests accessing the shared memory, you will most likely want to write a - kernel driver that will handle interrupts. See details in the section 'Guest - to guest communication' section. - -The behavior is chosen when starting your QEMU processes: -- no communication mechanism needed, the first QEMU to start creates the shared - memory on the host, subsequent QEMU processes will use it. - -- communication mechanism needed, an ivshmem server must be started before any - QEMU processes, then each QEMU process connects to the server unix socket. - -For more details on the QEMU ivshmem parameters, see qemu-doc documentation. - - -Guest to guest communication ----------------------------- - -This section details the communication mechanism between the guests accessing -the ivhsmem shared memory. - -*ivshmem server* - -This server code is available in qemu.git/contrib/ivshmem-server. - -The server must be started on the host before any guest. -It creates a shared memory object then waits for clients to connect on a unix -socket. All the messages are little-endian int64_t integer. - -For each client (QEMU process) that connects to the server: -- the server sends a protocol version, if client does not support it, the client - closes the communication, -- the server assigns an ID for this client and sends this ID to him as the first - message, -- the server sends a fd to the shared memory object to this client, -- the server creates a new set of host eventfds associated to the new client and - sends this set to all already connected clients, -- finally, the server sends all the eventfds sets for all clients to the new - client. - -The server signals all clients when one of them disconnects. - -The client IDs are limited to 16 bits because of the current implementation (see -Doorbell register in 'PCI device registers' subsection). Hence only 65536 -clients are supported. - -All the file descriptors (fd to the shared memory, eventfds for each client) -are passed to clients using SCM_RIGHTS over the server unix socket. - -Apart from the current ivshmem implementation in QEMU, an ivshmem client has -been provided in qemu.git/contrib/ivshmem-client for debug. - -*QEMU as an ivshmem client* - -At initialisation, when creating the ivshmem device, QEMU first receives a -protocol version and closes communication with server if it does not match. -Then, QEMU gets its ID from the server then makes it available through BAR0 -IVPosition register for the VM to use (see 'PCI device registers' subsection). -QEMU then uses the fd to the shared memory to map it to BAR2. -eventfds for all other clients received from the server are stored to implement -BAR0 Doorbell register (see 'PCI device registers' subsection). -Finally, eventfds assigned to this QEMU process are used to send interrupts in -this VM. - -*PCI device registers* - -From the VM point of view, the ivshmem PCI device supports 4 registers of -32-bits each. - -enum ivshmem_registers { - IntrMask = 0, - IntrStatus = 4, - IVPosition = 8, - Doorbell = 12 -}; - -The first two registers are the interrupt mask and status registers. Mask and -status are only used with pin-based interrupts. They are unused with MSI -interrupts. - -Status Register: The status register is set to 1 when an interrupt occurs. - -Mask Register: The mask register is bitwise ANDed with the interrupt status -and the result will raise an interrupt if it is non-zero. However, since 1 is -the only value the status will be set to, it is only the first bit of the mask -that has any effect. Therefore interrupts can be masked by setting the first -bit to 0 and unmasked by setting the first bit to 1. - -IVPosition Register: The IVPosition register is read-only and reports the -guest's ID number. The guest IDs are non-negative integers. When using the -server, since the server is a separate process, the VM ID will only be set when -the device is ready (shared memory is received from the server and accessible -via the device). If the device is not ready, the IVPosition will return -1. -Applications should ensure that they have a valid VM ID before accessing the -shared memory. - -Doorbell Register: To interrupt another guest, a guest must write to the -Doorbell register. The doorbell register is 32-bits, logically divided into -two 16-bit fields. The high 16-bits are the guest ID to interrupt and the low -16-bits are the interrupt vector to trigger. The semantics of the value -written to the doorbell depends on whether the device is using MSI or a regular -pin-based interrupt. In short, MSI uses vectors while regular interrupts set -the status register. - -Regular Interrupts - -If regular interrupts are used (due to either a guest not supporting MSI or the -user specifying not to use them on startup) then the value written to the lower -16-bits of the Doorbell register results is arbitrary and will trigger an -interrupt in the destination guest. - -Message Signalled Interrupts - -An ivshmem device may support multiple MSI vectors. If so, the lower 16-bits -written to the Doorbell register must be between 0 and the maximum number of -vectors the guest supports. The lower 16 bits written to the doorbell is the -MSI vector that will be raised in the destination guest. The number of MSI -vectors is configurable but it is set when the VM is started. - -The important thing to remember with MSI is that it is only a signal, no status -is set (since MSI interrupts are not shared). All information other than the -interrupt itself should be communicated via the shared memory region. Devices -supporting multiple MSI vectors can use different vectors to indicate different -events have occurred. The semantics of interrupt vectors are left to the -user's discretion. |