aboutsummaryrefslogtreecommitdiff
path: root/docs/devel/ci-definitions.rst.inc
diff options
context:
space:
mode:
Diffstat (limited to 'docs/devel/ci-definitions.rst.inc')
-rw-r--r--docs/devel/ci-definitions.rst.inc121
1 files changed, 121 insertions, 0 deletions
diff --git a/docs/devel/ci-definitions.rst.inc b/docs/devel/ci-definitions.rst.inc
new file mode 100644
index 0000000000..32e22ff468
--- /dev/null
+++ b/docs/devel/ci-definitions.rst.inc
@@ -0,0 +1,121 @@
+Definition of terms
+===================
+
+This section defines the terms used in this document and correlates them with
+what is currently used on QEMU.
+
+Automated tests
+---------------
+
+An automated test is written on a test framework using its generic test
+functions/classes. The test framework can run the tests and report their
+success or failure [1]_.
+
+An automated test has essentially three parts:
+
+1. The test initialization of the parameters, where the expected parameters,
+ like inputs and expected results, are set up;
+2. The call to the code that should be tested;
+3. An assertion, comparing the result from the previous call with the expected
+ result set during the initialization of the parameters. If the result
+ matches the expected result, the test has been successful; otherwise, it has
+ failed.
+
+Unit testing
+------------
+
+A unit test is responsible for exercising individual software components as a
+unit, like interfaces, data structures, and functionality, uncovering errors
+within the boundaries of a component. The verification effort is in the
+smallest software unit and focuses on the internal processing logic and data
+structures. A test case of unit tests should be designed to uncover errors due
+to erroneous computations, incorrect comparisons, or improper control flow [2]_.
+
+On QEMU, unit testing is represented by the 'check-unit' target from 'make'.
+
+Functional testing
+------------------
+
+A functional test focuses on the functional requirement of the software.
+Deriving sets of input conditions, the functional tests should fully exercise
+all the functional requirements for a program. Functional testing is
+complementary to other testing techniques, attempting to find errors like
+incorrect or missing functions, interface errors, behavior errors, and
+initialization and termination errors [3]_.
+
+On QEMU, functional testing is represented by the 'check-qtest' target from
+'make'.
+
+System testing
+--------------
+
+System tests ensure all application elements mesh properly while the overall
+functionality and performance are achieved [4]_. Some or all system components
+are integrated to create a complete system to be tested as a whole. System
+testing ensures that components are compatible, interact correctly, and
+transfer the right data at the right time across their interfaces. As system
+testing focuses on interactions, use case-based testing is a practical approach
+to system testing [5]_. Note that, in some cases, system testing may require
+interaction with third-party software, like operating system images, databases,
+networks, and so on.
+
+On QEMU, system testing is represented by the 'check-acceptance' target from
+'make'.
+
+Flaky tests
+-----------
+
+A flaky test is defined as a test that exhibits both a passing and a failing
+result with the same code on different runs. Some usual reasons for an
+intermittent/flaky test are async wait, concurrency, and test order dependency
+[6]_.
+
+Gating
+------
+
+A gate restricts the move of code from one stage to another on a
+test/deployment pipeline. The step move is granted with approval. The approval
+can be a manual intervention or a set of tests succeeding [7]_.
+
+On QEMU, the gating process happens during the pull request. The approval is
+done by the project leader running its own set of tests. The pull request gets
+merged when the tests succeed.
+
+Continuous Integration (CI)
+---------------------------
+
+Continuous integration (CI) requires the builds of the entire application and
+the execution of a comprehensive set of automated tests every time there is a
+need to commit any set of changes [8]_. The automated tests can be composed of
+the unit, functional, system, and other tests.
+
+Keynotes about continuous integration (CI) [9]_:
+
+1. System tests may depend on external software (operating system images,
+ firmware, database, network).
+2. It may take a long time to build and test. It may be impractical to build
+ the system being developed several times per day.
+3. If the development platform is different from the target platform, it may
+ not be possible to run system tests in the developer’s private workspace.
+ There may be differences in hardware, operating system, or installed
+ software. Therefore, more time is required for testing the system.
+
+References
+----------
+
+.. [1] Sommerville, Ian (2016). Software Engineering. p. 233.
+.. [2] Pressman, Roger S. & Maxim, Bruce R. (2020). Software Engineering,
+ A Practitioner’s Approach. p. 48, 376, 378, 381.
+.. [3] Pressman, Roger S. & Maxim, Bruce R. (2020). Software Engineering,
+ A Practitioner’s Approach. p. 388.
+.. [4] Pressman, Roger S. & Maxim, Bruce R. (2020). Software Engineering,
+ A Practitioner’s Approach. Software Engineering, p. 377.
+.. [5] Sommerville, Ian (2016). Software Engineering. p. 59, 232, 240.
+.. [6] Luo, Qingzhou, et al. An empirical analysis of flaky tests.
+ Proceedings of the 22nd ACM SIGSOFT International Symposium on
+ Foundations of Software Engineering. 2014.
+.. [7] Humble, Jez & Farley, David (2010). Continuous Delivery:
+ Reliable Software Releases Through Build, Test, and Deployment, p. 122.
+.. [8] Humble, Jez & Farley, David (2010). Continuous Delivery:
+ Reliable Software Releases Through Build, Test, and Deployment, p. 55.
+.. [9] Sommerville, Ian (2016). Software Engineering. p. 743.