aboutsummaryrefslogtreecommitdiff
path: root/docs/config/mach-virt-graphical.cfg
diff options
context:
space:
mode:
Diffstat (limited to 'docs/config/mach-virt-graphical.cfg')
-rw-r--r--docs/config/mach-virt-graphical.cfg281
1 files changed, 281 insertions, 0 deletions
diff --git a/docs/config/mach-virt-graphical.cfg b/docs/config/mach-virt-graphical.cfg
new file mode 100644
index 0000000000..0fdf6846dd
--- /dev/null
+++ b/docs/config/mach-virt-graphical.cfg
@@ -0,0 +1,281 @@
+# mach-virt - VirtIO guest (graphical console)
+# =========================================================
+#
+# Usage:
+#
+# $ qemu-system-aarch64 \
+# -nodefaults \
+# -readconfig mach-virt-graphical.cfg \
+# -cpu host
+#
+# You will probably need to tweak the lines marked as
+# CHANGE ME before being able to use this configuration!
+#
+# The guest will have a selection of VirtIO devices
+# tailored towards optimal performance with modern guests,
+# and will be accessed through a graphical console.
+#
+# ---------------------------------------------------------
+#
+# Using -nodefaults is required to have full control over
+# the virtual hardware: when it's specified, QEMU will
+# populate the board with only the builtin peripherals,
+# such as the PL011 UART, plus a PCI Express Root Bus; the
+# user will then have to explicitly add further devices.
+#
+# The PCI Express Root Bus shows up in the guest as:
+#
+# 00:00.0 Host bridge
+#
+# This configuration file adds a number of other useful
+# devices, more specifically:
+#
+# 00:01.0 Display controller
+# 00.1c.* PCI bridge (PCI Express Root Ports)
+# 01:00.0 SCSI storage controller
+# 02:00.0 Ethernet controller
+# 03:00.0 USB controller
+#
+# More information about these devices is available below.
+
+
+# Machine options
+# =========================================================
+#
+# We use the virt machine type and enable KVM acceleration
+# for better performance.
+#
+# Using less than 1 GiB of memory is probably not going to
+# yield good performance in the guest, and might even lead
+# to obscure boot issues in some cases.
+#
+# Unfortunately, there is no way to configure the CPU model
+# in this file, so it will have to be provided on the
+# command line, but we can configure the guest to use the
+# same GIC version as the host.
+
+[machine]
+ type = "virt"
+ accel = "kvm"
+ gic-version = "host"
+
+[memory]
+ size = "1024"
+
+
+# Firmware configuration
+# =========================================================
+#
+# There are two parts to the firmware: a read-only image
+# containing the executable code, which is shared between
+# guests, and a read/write variable store that is owned
+# by one specific guest, exclusively, and is used to
+# record information such as the UEFI boot order.
+#
+# For any new guest, its permanent, private variable store
+# should initially be copied from the template file
+# provided along with the firmware binary.
+#
+# Depending on the OS distribution you're using on the
+# host, the name of the package containing the firmware
+# binary and variable store template, as well as the paths
+# to the files themselves, will be different. For example:
+#
+# Fedora
+# edk2-aarch64 (pkg)
+# /usr/share/edk2/aarch64/QEMU_EFI-pflash.raw (bin)
+# /usr/share/edk2/aarch64/vars-template-pflash.raw (var)
+#
+# RHEL
+# AAVMF (pkg)
+# /usr/share/AAVMF/AAVMF_CODE.fd (bin)
+# /usr/share/AAVMF/AAVMF_VARS.fd (var)
+#
+# Debian/Ubuntu
+# qemu-efi (pkg)
+# /usr/share/AAVMF/AAVMF_CODE.fd (bin)
+# /usr/share/AAVMF/AAVMF_VARS.fd (var)
+
+[drive "uefi-binary"]
+ file = "/usr/share/AAVMF/AAVMF_CODE.fd" # CHANGE ME
+ format = "raw"
+ if = "pflash"
+ unit = "0"
+ readonly = "on"
+
+[drive "uefi-varstore"]
+ file = "guest_VARS.fd" # CHANGE ME
+ format = "raw"
+ if = "pflash"
+ unit = "1"
+
+
+# PCI bridge (PCI Express Root Ports)
+# =========================================================
+#
+# We create eight PCI Express Root Ports, and we plug them
+# all into separate functions of the same slot. Some of
+# them will be used by devices, the rest will remain
+# available for hotplug.
+
+[device "pcie.1"]
+ driver = "pcie-root-port"
+ bus = "pcie.0"
+ addr = "1c.0"
+ port = "1"
+ chassis = "1"
+ multifunction = "on"
+
+[device "pcie.2"]
+ driver = "pcie-root-port"
+ bus = "pcie.0"
+ addr = "1c.1"
+ port = "2"
+ chassis = "2"
+
+[device "pcie.3"]
+ driver = "pcie-root-port"
+ bus = "pcie.0"
+ addr = "1c.2"
+ port = "3"
+ chassis = "3"
+
+[device "pcie.4"]
+ driver = "pcie-root-port"
+ bus = "pcie.0"
+ addr = "1c.3"
+ port = "4"
+ chassis = "4"
+
+[device "pcie.5"]
+ driver = "pcie-root-port"
+ bus = "pcie.0"
+ addr = "1c.4"
+ port = "5"
+ chassis = "5"
+
+[device "pcie.6"]
+ driver = "pcie-root-port"
+ bus = "pcie.0"
+ addr = "1c.5"
+ port = "6"
+ chassis = "6"
+
+[device "pcie.7"]
+ driver = "pcie-root-port"
+ bus = "pcie.0"
+ addr = "1c.6"
+ port = "7"
+ chassis = "7"
+
+[device "pcie.8"]
+ driver = "pcie-root-port"
+ bus = "pcie.0"
+ addr = "1c.7"
+ port = "8"
+ chassis = "8"
+
+
+# SCSI storage controller (and storage)
+# =========================================================
+#
+# We use virtio-scsi here so that we can (hot)plug a large
+# number of disks without running into issues; a SCSI disk,
+# backed by a qcow2 disk image on the host's filesystem, is
+# attached to it.
+#
+# We also create an optical disk, mostly for installation
+# purposes: once the guest OS has been succesfully
+# installed, the guest will no longer boot from optical
+# media. If you don't want, or no longer want, to have an
+# optical disk in the guest you can safely comment out
+# all relevant sections below.
+
+[device "scsi"]
+ driver = "virtio-scsi-pci"
+ bus = "pcie.1"
+ addr = "00.0"
+
+[device "scsi-disk"]
+ driver = "scsi-hd"
+ bus = "scsi.0"
+ drive = "disk"
+ bootindex = "1"
+
+[drive "disk"]
+ file = "guest.qcow2" # CHANGE ME
+ format = "qcow2"
+ if = "none"
+
+[device "scsi-optical-disk"]
+ driver = "scsi-cd"
+ bus = "scsi.0"
+ drive = "optical-disk"
+ bootindex = "2"
+
+[drive "optical-disk"]
+ file = "install.iso" # CHANGE ME
+ format = "raw"
+ if = "none"
+
+
+# Ethernet controller
+# =========================================================
+#
+# We use virtio-net for improved performance over emulated
+# hardware; on the host side, we take advantage of user
+# networking so that the QEMU process doesn't require any
+# additional privileges.
+
+[netdev "hostnet"]
+ type = "user"
+
+[device "net"]
+ driver = "virtio-net-pci"
+ netdev = "hostnet"
+ bus = "pcie.2"
+ addr = "00.0"
+
+
+# USB controller (and input devices)
+# =========================================================
+#
+# We add a virtualization-friendly USB 3.0 controller and
+# a USB keyboard / USB tablet combo so that graphical
+# guests can be controlled appropriately.
+
+[device "usb"]
+ driver = "nec-usb-xhci"
+ bus = "pcie.3"
+ addr = "00.0"
+
+[device "keyboard"]
+ driver = "usb-kbd"
+ bus = "usb.0"
+
+[device "tablet"]
+ driver = "usb-tablet"
+ bus = "usb.0"
+
+
+# Display controller
+# =========================================================
+#
+# We use virtio-gpu because the legacy VGA framebuffer is
+# very troublesome on aarch64, and virtio-gpu is the only
+# video device that doesn't implement it.
+#
+# If you're running the guest on a remote, potentially
+# headless host, you will probably want to append something
+# like
+#
+# -display vnc=127.0.0.1:0
+#
+# to the command line in order to prevent QEMU from
+# creating a graphical display window on the host and
+# enable remote access instead.
+
+[device "video"]
+ driver = "virtio-gpu"
+ bus = "pcie.0"
+ addr = "01.0"