aboutsummaryrefslogtreecommitdiff
path: root/disas
diff options
context:
space:
mode:
Diffstat (limited to 'disas')
-rw-r--r--disas/arm-a64.cc2
-rw-r--r--disas/libvixl/Makefile.objs9
-rw-r--r--disas/libvixl/README3
-rw-r--r--disas/libvixl/a64/assembler-a64.h2353
-rw-r--r--disas/libvixl/a64/disasm-a64.cc1954
-rw-r--r--disas/libvixl/a64/instructions-a64.cc314
-rw-r--r--disas/libvixl/a64/instructions-a64.h384
-rw-r--r--disas/libvixl/vixl/a64/assembler-a64.h4624
-rw-r--r--disas/libvixl/vixl/a64/constants-a64.h (renamed from disas/libvixl/a64/constants-a64.h)967
-rw-r--r--disas/libvixl/vixl/a64/cpu-a64.h (renamed from disas/libvixl/a64/cpu-a64.h)6
-rw-r--r--disas/libvixl/vixl/a64/decoder-a64.cc (renamed from disas/libvixl/a64/decoder-a64.cc)210
-rw-r--r--disas/libvixl/vixl/a64/decoder-a64.h (renamed from disas/libvixl/a64/decoder-a64.h)58
-rw-r--r--disas/libvixl/vixl/a64/disasm-a64.cc3487
-rw-r--r--disas/libvixl/vixl/a64/disasm-a64.h (renamed from disas/libvixl/a64/disasm-a64.h)17
-rw-r--r--disas/libvixl/vixl/a64/instructions-a64.cc622
-rw-r--r--disas/libvixl/vixl/a64/instructions-a64.h757
-rw-r--r--disas/libvixl/vixl/code-buffer.h (renamed from disas/libvixl/code-buffer.h)2
-rw-r--r--disas/libvixl/vixl/compiler-intrinsics.cc (renamed from disas/libvixl/utils.cc)137
-rw-r--r--disas/libvixl/vixl/compiler-intrinsics.h155
-rw-r--r--disas/libvixl/vixl/globals.h (renamed from disas/libvixl/globals.h)82
-rw-r--r--disas/libvixl/vixl/invalset.h775
-rw-r--r--disas/libvixl/vixl/platform.h (renamed from disas/libvixl/platform.h)2
-rw-r--r--disas/libvixl/vixl/utils.cc142
-rw-r--r--disas/libvixl/vixl/utils.h (renamed from disas/libvixl/utils.h)115
24 files changed, 11989 insertions, 5188 deletions
diff --git a/disas/arm-a64.cc b/disas/arm-a64.cc
index b57256b267..d4d46d5ff3 100644
--- a/disas/arm-a64.cc
+++ b/disas/arm-a64.cc
@@ -17,7 +17,7 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
-#include "a64/disasm-a64.h"
+#include "vixl/a64/disasm-a64.h"
extern "C" {
#include "disas/bfd.h"
diff --git a/disas/libvixl/Makefile.objs b/disas/libvixl/Makefile.objs
index 17e6565d10..e373cf02d3 100644
--- a/disas/libvixl/Makefile.objs
+++ b/disas/libvixl/Makefile.objs
@@ -1,7 +1,8 @@
-libvixl_OBJS = utils.o \
- a64/instructions-a64.o \
- a64/decoder-a64.o \
- a64/disasm-a64.o
+libvixl_OBJS = vixl/utils.o \
+ vixl/compiler-intrinsics.o \
+ vixl/a64/instructions-a64.o \
+ vixl/a64/decoder-a64.o \
+ vixl/a64/disasm-a64.o
$(addprefix $(obj)/,$(libvixl_OBJS)): QEMU_CFLAGS := -I$(SRC_PATH)/disas/libvixl $(QEMU_CFLAGS)
diff --git a/disas/libvixl/README b/disas/libvixl/README
index 58db41c67c..932a41adf7 100644
--- a/disas/libvixl/README
+++ b/disas/libvixl/README
@@ -2,11 +2,10 @@
The code in this directory is a subset of libvixl:
https://github.com/armvixl/vixl
(specifically, it is the set of files needed for disassembly only,
-taken from libvixl 1.7).
+taken from libvixl 1.12).
Bugfixes should preferably be sent upstream initially.
The disassembler does not currently support the entire A64 instruction
set. Notably:
- * No Advanced SIMD support.
* Limited support for system instructions.
* A few miscellaneous integer and floating point instructions are missing.
diff --git a/disas/libvixl/a64/assembler-a64.h b/disas/libvixl/a64/assembler-a64.h
deleted file mode 100644
index 35aaf20f72..0000000000
--- a/disas/libvixl/a64/assembler-a64.h
+++ /dev/null
@@ -1,2353 +0,0 @@
-// Copyright 2013, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_A64_ASSEMBLER_A64_H_
-#define VIXL_A64_ASSEMBLER_A64_H_
-
-#include <list>
-#include <stack>
-
-#include "globals.h"
-#include "utils.h"
-#include "code-buffer.h"
-#include "a64/instructions-a64.h"
-
-namespace vixl {
-
-typedef uint64_t RegList;
-static const int kRegListSizeInBits = sizeof(RegList) * 8;
-
-
-// Registers.
-
-// Some CPURegister methods can return Register and FPRegister types, so we
-// need to declare them in advance.
-class Register;
-class FPRegister;
-
-
-class CPURegister {
- public:
- enum RegisterType {
- // The kInvalid value is used to detect uninitialized static instances,
- // which are always zero-initialized before any constructors are called.
- kInvalid = 0,
- kRegister,
- kFPRegister,
- kNoRegister
- };
-
- CPURegister() : code_(0), size_(0), type_(kNoRegister) {
- VIXL_ASSERT(!IsValid());
- VIXL_ASSERT(IsNone());
- }
-
- CPURegister(unsigned code, unsigned size, RegisterType type)
- : code_(code), size_(size), type_(type) {
- VIXL_ASSERT(IsValidOrNone());
- }
-
- unsigned code() const {
- VIXL_ASSERT(IsValid());
- return code_;
- }
-
- RegisterType type() const {
- VIXL_ASSERT(IsValidOrNone());
- return type_;
- }
-
- RegList Bit() const {
- VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
- return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
- }
-
- unsigned size() const {
- VIXL_ASSERT(IsValid());
- return size_;
- }
-
- int SizeInBytes() const {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(size() % 8 == 0);
- return size_ / 8;
- }
-
- int SizeInBits() const {
- VIXL_ASSERT(IsValid());
- return size_;
- }
-
- bool Is32Bits() const {
- VIXL_ASSERT(IsValid());
- return size_ == 32;
- }
-
- bool Is64Bits() const {
- VIXL_ASSERT(IsValid());
- return size_ == 64;
- }
-
- bool IsValid() const {
- if (IsValidRegister() || IsValidFPRegister()) {
- VIXL_ASSERT(!IsNone());
- return true;
- } else {
- VIXL_ASSERT(IsNone());
- return false;
- }
- }
-
- bool IsValidRegister() const {
- return IsRegister() &&
- ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
- ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
- }
-
- bool IsValidFPRegister() const {
- return IsFPRegister() &&
- ((size_ == kSRegSize) || (size_ == kDRegSize)) &&
- (code_ < kNumberOfFPRegisters);
- }
-
- bool IsNone() const {
- // kNoRegister types should always have size 0 and code 0.
- VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
- VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
-
- return type_ == kNoRegister;
- }
-
- bool Aliases(const CPURegister& other) const {
- VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
- return (code_ == other.code_) && (type_ == other.type_);
- }
-
- bool Is(const CPURegister& other) const {
- VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
- return Aliases(other) && (size_ == other.size_);
- }
-
- bool IsZero() const {
- VIXL_ASSERT(IsValid());
- return IsRegister() && (code_ == kZeroRegCode);
- }
-
- bool IsSP() const {
- VIXL_ASSERT(IsValid());
- return IsRegister() && (code_ == kSPRegInternalCode);
- }
-
- bool IsRegister() const {
- return type_ == kRegister;
- }
-
- bool IsFPRegister() const {
- return type_ == kFPRegister;
- }
-
- bool IsW() const { return IsValidRegister() && Is32Bits(); }
- bool IsX() const { return IsValidRegister() && Is64Bits(); }
- bool IsS() const { return IsValidFPRegister() && Is32Bits(); }
- bool IsD() const { return IsValidFPRegister() && Is64Bits(); }
-
- const Register& W() const;
- const Register& X() const;
- const FPRegister& S() const;
- const FPRegister& D() const;
-
- bool IsSameSizeAndType(const CPURegister& other) const {
- return (size_ == other.size_) && (type_ == other.type_);
- }
-
- protected:
- unsigned code_;
- unsigned size_;
- RegisterType type_;
-
- private:
- bool IsValidOrNone() const {
- return IsValid() || IsNone();
- }
-};
-
-
-class Register : public CPURegister {
- public:
- Register() : CPURegister() {}
- explicit Register(const CPURegister& other)
- : CPURegister(other.code(), other.size(), other.type()) {
- VIXL_ASSERT(IsValidRegister());
- }
- Register(unsigned code, unsigned size)
- : CPURegister(code, size, kRegister) {}
-
- bool IsValid() const {
- VIXL_ASSERT(IsRegister() || IsNone());
- return IsValidRegister();
- }
-
- static const Register& WRegFromCode(unsigned code);
- static const Register& XRegFromCode(unsigned code);
-
- private:
- static const Register wregisters[];
- static const Register xregisters[];
-};
-
-
-class FPRegister : public CPURegister {
- public:
- FPRegister() : CPURegister() {}
- explicit FPRegister(const CPURegister& other)
- : CPURegister(other.code(), other.size(), other.type()) {
- VIXL_ASSERT(IsValidFPRegister());
- }
- FPRegister(unsigned code, unsigned size)
- : CPURegister(code, size, kFPRegister) {}
-
- bool IsValid() const {
- VIXL_ASSERT(IsFPRegister() || IsNone());
- return IsValidFPRegister();
- }
-
- static const FPRegister& SRegFromCode(unsigned code);
- static const FPRegister& DRegFromCode(unsigned code);
-
- private:
- static const FPRegister sregisters[];
- static const FPRegister dregisters[];
-};
-
-
-// No*Reg is used to indicate an unused argument, or an error case. Note that
-// these all compare equal (using the Is() method). The Register and FPRegister
-// variants are provided for convenience.
-const Register NoReg;
-const FPRegister NoFPReg;
-const CPURegister NoCPUReg;
-
-
-#define DEFINE_REGISTERS(N) \
-const Register w##N(N, kWRegSize); \
-const Register x##N(N, kXRegSize);
-REGISTER_CODE_LIST(DEFINE_REGISTERS)
-#undef DEFINE_REGISTERS
-const Register wsp(kSPRegInternalCode, kWRegSize);
-const Register sp(kSPRegInternalCode, kXRegSize);
-
-
-#define DEFINE_FPREGISTERS(N) \
-const FPRegister s##N(N, kSRegSize); \
-const FPRegister d##N(N, kDRegSize);
-REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
-#undef DEFINE_FPREGISTERS
-
-
-// Registers aliases.
-const Register ip0 = x16;
-const Register ip1 = x17;
-const Register lr = x30;
-const Register xzr = x31;
-const Register wzr = w31;
-
-
-// AreAliased returns true if any of the named registers overlap. Arguments
-// set to NoReg are ignored. The system stack pointer may be specified.
-bool AreAliased(const CPURegister& reg1,
- const CPURegister& reg2,
- const CPURegister& reg3 = NoReg,
- const CPURegister& reg4 = NoReg,
- const CPURegister& reg5 = NoReg,
- const CPURegister& reg6 = NoReg,
- const CPURegister& reg7 = NoReg,
- const CPURegister& reg8 = NoReg);
-
-
-// AreSameSizeAndType returns true if all of the specified registers have the
-// same size, and are of the same type. The system stack pointer may be
-// specified. Arguments set to NoReg are ignored, as are any subsequent
-// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
-bool AreSameSizeAndType(const CPURegister& reg1,
- const CPURegister& reg2,
- const CPURegister& reg3 = NoCPUReg,
- const CPURegister& reg4 = NoCPUReg,
- const CPURegister& reg5 = NoCPUReg,
- const CPURegister& reg6 = NoCPUReg,
- const CPURegister& reg7 = NoCPUReg,
- const CPURegister& reg8 = NoCPUReg);
-
-
-// Lists of registers.
-class CPURegList {
- public:
- explicit CPURegList(CPURegister reg1,
- CPURegister reg2 = NoCPUReg,
- CPURegister reg3 = NoCPUReg,
- CPURegister reg4 = NoCPUReg)
- : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
- size_(reg1.size()), type_(reg1.type()) {
- VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
- VIXL_ASSERT(IsValid());
- }
-
- CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
- : list_(list), size_(size), type_(type) {
- VIXL_ASSERT(IsValid());
- }
-
- CPURegList(CPURegister::RegisterType type, unsigned size,
- unsigned first_reg, unsigned last_reg)
- : size_(size), type_(type) {
- VIXL_ASSERT(((type == CPURegister::kRegister) &&
- (last_reg < kNumberOfRegisters)) ||
- ((type == CPURegister::kFPRegister) &&
- (last_reg < kNumberOfFPRegisters)));
- VIXL_ASSERT(last_reg >= first_reg);
- list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
- list_ &= ~((UINT64_C(1) << first_reg) - 1);
- VIXL_ASSERT(IsValid());
- }
-
- CPURegister::RegisterType type() const {
- VIXL_ASSERT(IsValid());
- return type_;
- }
-
- // Combine another CPURegList into this one. Registers that already exist in
- // this list are left unchanged. The type and size of the registers in the
- // 'other' list must match those in this list.
- void Combine(const CPURegList& other) {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(other.type() == type_);
- VIXL_ASSERT(other.RegisterSizeInBits() == size_);
- list_ |= other.list();
- }
-
- // Remove every register in the other CPURegList from this one. Registers that
- // do not exist in this list are ignored. The type and size of the registers
- // in the 'other' list must match those in this list.
- void Remove(const CPURegList& other) {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(other.type() == type_);
- VIXL_ASSERT(other.RegisterSizeInBits() == size_);
- list_ &= ~other.list();
- }
-
- // Variants of Combine and Remove which take a single register.
- void Combine(const CPURegister& other) {
- VIXL_ASSERT(other.type() == type_);
- VIXL_ASSERT(other.size() == size_);
- Combine(other.code());
- }
-
- void Remove(const CPURegister& other) {
- VIXL_ASSERT(other.type() == type_);
- VIXL_ASSERT(other.size() == size_);
- Remove(other.code());
- }
-
- // Variants of Combine and Remove which take a single register by its code;
- // the type and size of the register is inferred from this list.
- void Combine(int code) {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
- list_ |= (UINT64_C(1) << code);
- }
-
- void Remove(int code) {
- VIXL_ASSERT(IsValid());
- VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
- list_ &= ~(UINT64_C(1) << code);
- }
-
- static CPURegList Union(const CPURegList& list_1, const CPURegList& list_2) {
- VIXL_ASSERT(list_1.type_ == list_2.type_);
- VIXL_ASSERT(list_1.size_ == list_2.size_);
- return CPURegList(list_1.type_, list_1.size_, list_1.list_ | list_2.list_);
- }
- static CPURegList Union(const CPURegList& list_1,
- const CPURegList& list_2,
- const CPURegList& list_3);
- static CPURegList Union(const CPURegList& list_1,
- const CPURegList& list_2,
- const CPURegList& list_3,
- const CPURegList& list_4);
-
- static CPURegList Intersection(const CPURegList& list_1,
- const CPURegList& list_2) {
- VIXL_ASSERT(list_1.type_ == list_2.type_);
- VIXL_ASSERT(list_1.size_ == list_2.size_);
- return CPURegList(list_1.type_, list_1.size_, list_1.list_ & list_2.list_);
- }
- static CPURegList Intersection(const CPURegList& list_1,
- const CPURegList& list_2,
- const CPURegList& list_3);
- static CPURegList Intersection(const CPURegList& list_1,
- const CPURegList& list_2,
- const CPURegList& list_3,
- const CPURegList& list_4);
-
- RegList list() const {
- VIXL_ASSERT(IsValid());
- return list_;
- }
-
- void set_list(RegList new_list) {
- VIXL_ASSERT(IsValid());
- list_ = new_list;
- }
-
- // Remove all callee-saved registers from the list. This can be useful when
- // preparing registers for an AAPCS64 function call, for example.
- void RemoveCalleeSaved();
-
- CPURegister PopLowestIndex();
- CPURegister PopHighestIndex();
-
- // AAPCS64 callee-saved registers.
- static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
- static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize);
-
- // AAPCS64 caller-saved registers. Note that this includes lr.
- static CPURegList GetCallerSaved(unsigned size = kXRegSize);
- static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
-
- bool IsEmpty() const {
- VIXL_ASSERT(IsValid());
- return list_ == 0;
- }
-
- bool IncludesAliasOf(const CPURegister& other) const {
- VIXL_ASSERT(IsValid());
- return (type_ == other.type()) && ((other.Bit() & list_) != 0);
- }
-
- bool IncludesAliasOf(int code) const {
- VIXL_ASSERT(IsValid());
- return ((code & list_) != 0);
- }
-
- int Count() const {
- VIXL_ASSERT(IsValid());
- return CountSetBits(list_, kRegListSizeInBits);
- }
-
- unsigned RegisterSizeInBits() const {
- VIXL_ASSERT(IsValid());
- return size_;
- }
-
- unsigned RegisterSizeInBytes() const {
- int size_in_bits = RegisterSizeInBits();
- VIXL_ASSERT((size_in_bits % 8) == 0);
- return size_in_bits / 8;
- }
-
- unsigned TotalSizeInBytes() const {
- VIXL_ASSERT(IsValid());
- return RegisterSizeInBytes() * Count();
- }
-
- private:
- RegList list_;
- unsigned size_;
- CPURegister::RegisterType type_;
-
- bool IsValid() const;
-};
-
-
-// AAPCS64 callee-saved registers.
-extern const CPURegList kCalleeSaved;
-extern const CPURegList kCalleeSavedFP;
-
-
-// AAPCS64 caller-saved registers. Note that this includes lr.
-extern const CPURegList kCallerSaved;
-extern const CPURegList kCallerSavedFP;
-
-
-// Operand.
-class Operand {
- public:
- // #<immediate>
- // where <immediate> is int64_t.
- // This is allowed to be an implicit constructor because Operand is
- // a wrapper class that doesn't normally perform any type conversion.
- Operand(int64_t immediate); // NOLINT(runtime/explicit)
-
- // rm, {<shift> #<shift_amount>}
- // where <shift> is one of {LSL, LSR, ASR, ROR}.
- // <shift_amount> is uint6_t.
- // This is allowed to be an implicit constructor because Operand is
- // a wrapper class that doesn't normally perform any type conversion.
- Operand(Register reg,
- Shift shift = LSL,
- unsigned shift_amount = 0); // NOLINT(runtime/explicit)
-
- // rm, {<extend> {#<shift_amount>}}
- // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
- // <shift_amount> is uint2_t.
- explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
-
- bool IsImmediate() const;
- bool IsShiftedRegister() const;
- bool IsExtendedRegister() const;
- bool IsZero() const;
-
- // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
- // which helps in the encoding of instructions that use the stack pointer.
- Operand ToExtendedRegister() const;
-
- int64_t immediate() const {
- VIXL_ASSERT(IsImmediate());
- return immediate_;
- }
-
- Register reg() const {
- VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
- return reg_;
- }
-
- Shift shift() const {
- VIXL_ASSERT(IsShiftedRegister());
- return shift_;
- }
-
- Extend extend() const {
- VIXL_ASSERT(IsExtendedRegister());
- return extend_;
- }
-
- unsigned shift_amount() const {
- VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
- return shift_amount_;
- }
-
- private:
- int64_t immediate_;
- Register reg_;
- Shift shift_;
- Extend extend_;
- unsigned shift_amount_;
-};
-
-
-// MemOperand represents the addressing mode of a load or store instruction.
-class MemOperand {
- public:
- explicit MemOperand(Register base,
- int64_t offset = 0,
- AddrMode addrmode = Offset);
- explicit MemOperand(Register base,
- Register regoffset,
- Shift shift = LSL,
- unsigned shift_amount = 0);
- explicit MemOperand(Register base,
- Register regoffset,
- Extend extend,
- unsigned shift_amount = 0);
- explicit MemOperand(Register base,
- const Operand& offset,
- AddrMode addrmode = Offset);
-
- const Register& base() const { return base_; }
- const Register& regoffset() const { return regoffset_; }
- int64_t offset() const { return offset_; }
- AddrMode addrmode() const { return addrmode_; }
- Shift shift() const { return shift_; }
- Extend extend() const { return extend_; }
- unsigned shift_amount() const { return shift_amount_; }
- bool IsImmediateOffset() const;
- bool IsRegisterOffset() const;
- bool IsPreIndex() const;
- bool IsPostIndex() const;
-
- private:
- Register base_;
- Register regoffset_;
- int64_t offset_;
- AddrMode addrmode_;
- Shift shift_;
- Extend extend_;
- unsigned shift_amount_;
-};
-
-
-class Label {
- public:
- Label() : location_(kLocationUnbound) {}
- ~Label() {
- // If the label has been linked to, it needs to be bound to a target.
- VIXL_ASSERT(!IsLinked() || IsBound());
- }
-
- bool IsBound() const { return location_ >= 0; }
- bool IsLinked() const { return !links_.empty(); }
-
- ptrdiff_t location() const { return location_; }
-
- private:
- // The list of linked instructions is stored in a stack-like structure. We
- // don't use std::stack directly because it's slow for the common case where
- // only one or two instructions refer to a label, and labels themselves are
- // short-lived. This class behaves like std::stack, but the first few links
- // are preallocated (configured by kPreallocatedLinks).
- //
- // If more than N links are required, this falls back to std::stack.
- class LinksStack {
- public:
- LinksStack() : size_(0), links_extended_(NULL) {}
- ~LinksStack() {
- delete links_extended_;
- }
-
- size_t size() const {
- return size_;
- }
-
- bool empty() const {
- return size_ == 0;
- }
-
- void push(ptrdiff_t value) {
- if (size_ < kPreallocatedLinks) {
- links_[size_] = value;
- } else {
- if (links_extended_ == NULL) {
- links_extended_ = new std::stack<ptrdiff_t>();
- }
- VIXL_ASSERT(size_ == (links_extended_->size() + kPreallocatedLinks));
- links_extended_->push(value);
- }
- size_++;
- }
-
- ptrdiff_t top() const {
- return (size_ <= kPreallocatedLinks) ? links_[size_ - 1]
- : links_extended_->top();
- }
-
- void pop() {
- size_--;
- if (size_ >= kPreallocatedLinks) {
- links_extended_->pop();
- VIXL_ASSERT(size_ == (links_extended_->size() + kPreallocatedLinks));
- }
- }
-
- private:
- static const size_t kPreallocatedLinks = 4;
-
- size_t size_;
- ptrdiff_t links_[kPreallocatedLinks];
- std::stack<ptrdiff_t> * links_extended_;
- };
-
- void Bind(ptrdiff_t location) {
- // Labels can only be bound once.
- VIXL_ASSERT(!IsBound());
- location_ = location;
- }
-
- void AddLink(ptrdiff_t instruction) {
- // If a label is bound, the assembler already has the information it needs
- // to write the instruction, so there is no need to add it to links_.
- VIXL_ASSERT(!IsBound());
- links_.push(instruction);
- }
-
- ptrdiff_t GetAndRemoveNextLink() {
- VIXL_ASSERT(IsLinked());
- ptrdiff_t link = links_.top();
- links_.pop();
- return link;
- }
-
- // The offsets of the instructions that have linked to this label.
- LinksStack links_;
- // The label location.
- ptrdiff_t location_;
-
- static const ptrdiff_t kLocationUnbound = -1;
-
- // It is not safe to copy labels, so disable the copy constructor by declaring
- // it private (without an implementation).
- Label(const Label&);
-
- // The Assembler class is responsible for binding and linking labels, since
- // the stored offsets need to be consistent with the Assembler's buffer.
- friend class Assembler;
-};
-
-
-// A literal is a 32-bit or 64-bit piece of data stored in the instruction
-// stream and loaded through a pc relative load. The same literal can be
-// referred to by multiple instructions but a literal can only reside at one
-// place in memory. A literal can be used by a load before or after being
-// placed in memory.
-//
-// Internally an offset of 0 is associated with a literal which has been
-// neither used nor placed. Then two possibilities arise:
-// 1) the label is placed, the offset (stored as offset + 1) is used to
-// resolve any subsequent load using the label.
-// 2) the label is not placed and offset is the offset of the last load using
-// the literal (stored as -offset -1). If multiple loads refer to this
-// literal then the last load holds the offset of the preceding load and
-// all loads form a chain. Once the offset is placed all the loads in the
-// chain are resolved and future loads fall back to possibility 1.
-class RawLiteral {
- public:
- RawLiteral() : size_(0), offset_(0), raw_value_(0) {}
-
- size_t size() {
- VIXL_STATIC_ASSERT(kDRegSizeInBytes == kXRegSizeInBytes);
- VIXL_STATIC_ASSERT(kSRegSizeInBytes == kWRegSizeInBytes);
- VIXL_ASSERT((size_ == kXRegSizeInBytes) || (size_ == kWRegSizeInBytes));
- return size_;
- }
- uint64_t raw_value64() {
- VIXL_ASSERT(size_ == kXRegSizeInBytes);
- return raw_value_;
- }
- uint32_t raw_value32() {
- VIXL_ASSERT(size_ == kWRegSizeInBytes);
- VIXL_ASSERT(is_uint32(raw_value_) || is_int32(raw_value_));
- return static_cast<uint32_t>(raw_value_);
- }
- bool IsUsed() { return offset_ < 0; }
- bool IsPlaced() { return offset_ > 0; }
-
- protected:
- ptrdiff_t offset() {
- VIXL_ASSERT(IsPlaced());
- return offset_ - 1;
- }
- void set_offset(ptrdiff_t offset) {
- VIXL_ASSERT(offset >= 0);
- VIXL_ASSERT(IsWordAligned(offset));
- VIXL_ASSERT(!IsPlaced());
- offset_ = offset + 1;
- }
- ptrdiff_t last_use() {
- VIXL_ASSERT(IsUsed());
- return -offset_ - 1;
- }
- void set_last_use(ptrdiff_t offset) {
- VIXL_ASSERT(offset >= 0);
- VIXL_ASSERT(IsWordAligned(offset));
- VIXL_ASSERT(!IsPlaced());
- offset_ = -offset - 1;
- }
-
- size_t size_;
- ptrdiff_t offset_;
- uint64_t raw_value_;
-
- friend class Assembler;
-};
-
-
-template <typename T>
-class Literal : public RawLiteral {
- public:
- explicit Literal(T value) {
- size_ = sizeof(value);
- memcpy(&raw_value_, &value, sizeof(value));
- }
-};
-
-
-// Control whether or not position-independent code should be emitted.
-enum PositionIndependentCodeOption {
- // All code generated will be position-independent; all branches and
- // references to labels generated with the Label class will use PC-relative
- // addressing.
- PositionIndependentCode,
-
- // Allow VIXL to generate code that refers to absolute addresses. With this
- // option, it will not be possible to copy the code buffer and run it from a
- // different address; code must be generated in its final location.
- PositionDependentCode,
-
- // Allow VIXL to assume that the bottom 12 bits of the address will be
- // constant, but that the top 48 bits may change. This allows `adrp` to
- // function in systems which copy code between pages, but otherwise maintain
- // 4KB page alignment.
- PageOffsetDependentCode
-};
-
-
-// Control how scaled- and unscaled-offset loads and stores are generated.
-enum LoadStoreScalingOption {
- // Prefer scaled-immediate-offset instructions, but emit unscaled-offset,
- // register-offset, pre-index or post-index instructions if necessary.
- PreferScaledOffset,
-
- // Prefer unscaled-immediate-offset instructions, but emit scaled-offset,
- // register-offset, pre-index or post-index instructions if necessary.
- PreferUnscaledOffset,
-
- // Require scaled-immediate-offset instructions.
- RequireScaledOffset,
-
- // Require unscaled-immediate-offset instructions.
- RequireUnscaledOffset
-};
-
-
-// Assembler.
-class Assembler {
- public:
- Assembler(size_t capacity,
- PositionIndependentCodeOption pic = PositionIndependentCode);
- Assembler(byte* buffer, size_t capacity,
- PositionIndependentCodeOption pic = PositionIndependentCode);
-
- // The destructor asserts that one of the following is true:
- // * The Assembler object has not been used.
- // * Nothing has been emitted since the last Reset() call.
- // * Nothing has been emitted since the last FinalizeCode() call.
- ~Assembler();
-
- // System functions.
-
- // Start generating code from the beginning of the buffer, discarding any code
- // and data that has already been emitted into the buffer.
- void Reset();
-
- // Finalize a code buffer of generated instructions. This function must be
- // called before executing or copying code from the buffer.
- void FinalizeCode();
-
- // Label.
- // Bind a label to the current PC.
- void bind(Label* label);
-
- // Bind a label to a specified offset from the start of the buffer.
- void BindToOffset(Label* label, ptrdiff_t offset);
-
- // Place a literal at the current PC.
- void place(RawLiteral* literal);
-
- ptrdiff_t CursorOffset() const {
- return buffer_->CursorOffset();
- }
-
- ptrdiff_t BufferEndOffset() const {
- return static_cast<ptrdiff_t>(buffer_->capacity());
- }
-
- // Return the address of an offset in the buffer.
- template <typename T>
- T GetOffsetAddress(ptrdiff_t offset) {
- VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
- return buffer_->GetOffsetAddress<T>(offset);
- }
-
- // Return the address of a bound label.
- template <typename T>
- T GetLabelAddress(const Label * label) {
- VIXL_ASSERT(label->IsBound());
- VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
- return GetOffsetAddress<T>(label->location());
- }
-
- // Return the address of the cursor.
- template <typename T>
- T GetCursorAddress() {
- VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
- return GetOffsetAddress<T>(CursorOffset());
- }
-
- // Return the address of the start of the buffer.
- template <typename T>
- T GetStartAddress() {
- VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
- return GetOffsetAddress<T>(0);
- }
-
- // Instruction set functions.
-
- // Branch / Jump instructions.
- // Branch to register.
- void br(const Register& xn);
-
- // Branch with link to register.
- void blr(const Register& xn);
-
- // Branch to register with return hint.
- void ret(const Register& xn = lr);
-
- // Unconditional branch to label.
- void b(Label* label);
-
- // Conditional branch to label.
- void b(Label* label, Condition cond);
-
- // Unconditional branch to PC offset.
- void b(int imm26);
-
- // Conditional branch to PC offset.
- void b(int imm19, Condition cond);
-
- // Branch with link to label.
- void bl(Label* label);
-
- // Branch with link to PC offset.
- void bl(int imm26);
-
- // Compare and branch to label if zero.
- void cbz(const Register& rt, Label* label);
-
- // Compare and branch to PC offset if zero.
- void cbz(const Register& rt, int imm19);
-
- // Compare and branch to label if not zero.
- void cbnz(const Register& rt, Label* label);
-
- // Compare and branch to PC offset if not zero.
- void cbnz(const Register& rt, int imm19);
-
- // Test bit and branch to label if zero.
- void tbz(const Register& rt, unsigned bit_pos, Label* label);
-
- // Test bit and branch to PC offset if zero.
- void tbz(const Register& rt, unsigned bit_pos, int imm14);
-
- // Test bit and branch to label if not zero.
- void tbnz(const Register& rt, unsigned bit_pos, Label* label);
-
- // Test bit and branch to PC offset if not zero.
- void tbnz(const Register& rt, unsigned bit_pos, int imm14);
-
- // Address calculation instructions.
- // Calculate a PC-relative address. Unlike for branches the offset in adr is
- // unscaled (i.e. the result can be unaligned).
-
- // Calculate the address of a label.
- void adr(const Register& rd, Label* label);
-
- // Calculate the address of a PC offset.
- void adr(const Register& rd, int imm21);
-
- // Calculate the page address of a label.
- void adrp(const Register& rd, Label* label);
-
- // Calculate the page address of a PC offset.
- void adrp(const Register& rd, int imm21);
-
- // Data Processing instructions.
- // Add.
- void add(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Add and update status flags.
- void adds(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Compare negative.
- void cmn(const Register& rn, const Operand& operand);
-
- // Subtract.
- void sub(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Subtract and update status flags.
- void subs(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Compare.
- void cmp(const Register& rn, const Operand& operand);
-
- // Negate.
- void neg(const Register& rd,
- const Operand& operand);
-
- // Negate and update status flags.
- void negs(const Register& rd,
- const Operand& operand);
-
- // Add with carry bit.
- void adc(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Add with carry bit and update status flags.
- void adcs(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Subtract with carry bit.
- void sbc(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Subtract with carry bit and update status flags.
- void sbcs(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Negate with carry bit.
- void ngc(const Register& rd,
- const Operand& operand);
-
- // Negate with carry bit and update status flags.
- void ngcs(const Register& rd,
- const Operand& operand);
-
- // Logical instructions.
- // Bitwise and (A & B).
- void and_(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Bitwise and (A & B) and update status flags.
- void ands(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Bit test and set flags.
- void tst(const Register& rn, const Operand& operand);
-
- // Bit clear (A & ~B).
- void bic(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Bit clear (A & ~B) and update status flags.
- void bics(const Register& rd,
- const Register& rn,
- const Operand& operand);
-
- // Bitwise or (A | B).
- void orr(const Register& rd, const Register& rn, const Operand& operand);
-
- // Bitwise nor (A | ~B).
- void orn(const Register& rd, const Register& rn, const Operand& operand);
-
- // Bitwise eor/xor (A ^ B).
- void eor(const Register& rd, const Register& rn, const Operand& operand);
-
- // Bitwise enor/xnor (A ^ ~B).
- void eon(const Register& rd, const Register& rn, const Operand& operand);
-
- // Logical shift left by variable.
- void lslv(const Register& rd, const Register& rn, const Register& rm);
-
- // Logical shift right by variable.
- void lsrv(const Register& rd, const Register& rn, const Register& rm);
-
- // Arithmetic shift right by variable.
- void asrv(const Register& rd, const Register& rn, const Register& rm);
-
- // Rotate right by variable.
- void rorv(const Register& rd, const Register& rn, const Register& rm);
-
- // Bitfield instructions.
- // Bitfield move.
- void bfm(const Register& rd,
- const Register& rn,
- unsigned immr,
- unsigned imms);
-
- // Signed bitfield move.
- void sbfm(const Register& rd,
- const Register& rn,
- unsigned immr,
- unsigned imms);
-
- // Unsigned bitfield move.
- void ubfm(const Register& rd,
- const Register& rn,
- unsigned immr,
- unsigned imms);
-
- // Bfm aliases.
- // Bitfield insert.
- void bfi(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
- }
-
- // Bitfield extract and insert low.
- void bfxil(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- bfm(rd, rn, lsb, lsb + width - 1);
- }
-
- // Sbfm aliases.
- // Arithmetic shift right.
- void asr(const Register& rd, const Register& rn, unsigned shift) {
- VIXL_ASSERT(shift < rd.size());
- sbfm(rd, rn, shift, rd.size() - 1);
- }
-
- // Signed bitfield insert with zero at right.
- void sbfiz(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
- }
-
- // Signed bitfield extract.
- void sbfx(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- sbfm(rd, rn, lsb, lsb + width - 1);
- }
-
- // Signed extend byte.
- void sxtb(const Register& rd, const Register& rn) {
- sbfm(rd, rn, 0, 7);
- }
-
- // Signed extend halfword.
- void sxth(const Register& rd, const Register& rn) {
- sbfm(rd, rn, 0, 15);
- }
-
- // Signed extend word.
- void sxtw(const Register& rd, const Register& rn) {
- sbfm(rd, rn, 0, 31);
- }
-
- // Ubfm aliases.
- // Logical shift left.
- void lsl(const Register& rd, const Register& rn, unsigned shift) {
- unsigned reg_size = rd.size();
- VIXL_ASSERT(shift < reg_size);
- ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
- }
-
- // Logical shift right.
- void lsr(const Register& rd, const Register& rn, unsigned shift) {
- VIXL_ASSERT(shift < rd.size());
- ubfm(rd, rn, shift, rd.size() - 1);
- }
-
- // Unsigned bitfield insert with zero at right.
- void ubfiz(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
- }
-
- // Unsigned bitfield extract.
- void ubfx(const Register& rd,
- const Register& rn,
- unsigned lsb,
- unsigned width) {
- VIXL_ASSERT(width >= 1);
- VIXL_ASSERT(lsb + width <= rn.size());
- ubfm(rd, rn, lsb, lsb + width - 1);
- }
-
- // Unsigned extend byte.
- void uxtb(const Register& rd, const Register& rn) {
- ubfm(rd, rn, 0, 7);
- }
-
- // Unsigned extend halfword.
- void uxth(const Register& rd, const Register& rn) {
- ubfm(rd, rn, 0, 15);
- }
-
- // Unsigned extend word.
- void uxtw(const Register& rd, const Register& rn) {
- ubfm(rd, rn, 0, 31);
- }
-
- // Extract.
- void extr(const Register& rd,
- const Register& rn,
- const Register& rm,
- unsigned lsb);
-
- // Conditional select: rd = cond ? rn : rm.
- void csel(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
-
- // Conditional select increment: rd = cond ? rn : rm + 1.
- void csinc(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
-
- // Conditional select inversion: rd = cond ? rn : ~rm.
- void csinv(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
-
- // Conditional select negation: rd = cond ? rn : -rm.
- void csneg(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond);
-
- // Conditional set: rd = cond ? 1 : 0.
- void cset(const Register& rd, Condition cond);
-
- // Conditional set mask: rd = cond ? -1 : 0.
- void csetm(const Register& rd, Condition cond);
-
- // Conditional increment: rd = cond ? rn + 1 : rn.
- void cinc(const Register& rd, const Register& rn, Condition cond);
-
- // Conditional invert: rd = cond ? ~rn : rn.
- void cinv(const Register& rd, const Register& rn, Condition cond);
-
- // Conditional negate: rd = cond ? -rn : rn.
- void cneg(const Register& rd, const Register& rn, Condition cond);
-
- // Rotate right.
- void ror(const Register& rd, const Register& rs, unsigned shift) {
- extr(rd, rs, rs, shift);
- }
-
- // Conditional comparison.
- // Conditional compare negative.
- void ccmn(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond);
-
- // Conditional compare.
- void ccmp(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond);
-
- // Multiply.
- void mul(const Register& rd, const Register& rn, const Register& rm);
-
- // Negated multiply.
- void mneg(const Register& rd, const Register& rn, const Register& rm);
-
- // Signed long multiply: 32 x 32 -> 64-bit.
- void smull(const Register& rd, const Register& rn, const Register& rm);
-
- // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
- void smulh(const Register& xd, const Register& xn, const Register& xm);
-
- // Multiply and accumulate.
- void madd(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Multiply and subtract.
- void msub(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
- void smaddl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
- void umaddl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
- void smsubl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
- void umsubl(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra);
-
- // Signed integer divide.
- void sdiv(const Register& rd, const Register& rn, const Register& rm);
-
- // Unsigned integer divide.
- void udiv(const Register& rd, const Register& rn, const Register& rm);
-
- // Bit reverse.
- void rbit(const Register& rd, const Register& rn);
-
- // Reverse bytes in 16-bit half words.
- void rev16(const Register& rd, const Register& rn);
-
- // Reverse bytes in 32-bit words.
- void rev32(const Register& rd, const Register& rn);
-
- // Reverse bytes.
- void rev(const Register& rd, const Register& rn);
-
- // Count leading zeroes.
- void clz(const Register& rd, const Register& rn);
-
- // Count leading sign bits.
- void cls(const Register& rd, const Register& rn);
-
- // Memory instructions.
- // Load integer or FP register.
- void ldr(const CPURegister& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Store integer or FP register.
- void str(const CPURegister& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load word with sign extension.
- void ldrsw(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load byte.
- void ldrb(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Store byte.
- void strb(const Register& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load byte with sign extension.
- void ldrsb(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load half-word.
- void ldrh(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Store half-word.
- void strh(const Register& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load half-word with sign extension.
- void ldrsh(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Load integer or FP register (with unscaled offset).
- void ldur(const CPURegister& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Store integer or FP register (with unscaled offset).
- void stur(const CPURegister& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load word with sign extension.
- void ldursw(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load byte (with unscaled offset).
- void ldurb(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Store byte (with unscaled offset).
- void sturb(const Register& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load byte with sign extension (and unscaled offset).
- void ldursb(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load half-word (with unscaled offset).
- void ldurh(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Store half-word (with unscaled offset).
- void sturh(const Register& rt, const MemOperand& dst,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load half-word with sign extension (and unscaled offset).
- void ldursh(const Register& rt, const MemOperand& src,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Load integer or FP register pair.
- void ldp(const CPURegister& rt, const CPURegister& rt2,
- const MemOperand& src);
-
- // Store integer or FP register pair.
- void stp(const CPURegister& rt, const CPURegister& rt2,
- const MemOperand& dst);
-
- // Load word pair with sign extension.
- void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
-
- // Load integer or FP register pair, non-temporal.
- void ldnp(const CPURegister& rt, const CPURegister& rt2,
- const MemOperand& src);
-
- // Store integer or FP register pair, non-temporal.
- void stnp(const CPURegister& rt, const CPURegister& rt2,
- const MemOperand& dst);
-
- // Load integer or FP register from literal pool.
- void ldr(const CPURegister& rt, RawLiteral* literal);
-
- // Load word with sign extension from literal pool.
- void ldrsw(const Register& rt, RawLiteral* literal);
-
- // Load integer or FP register from pc + imm19 << 2.
- void ldr(const CPURegister& rt, int imm19);
-
- // Load word with sign extension from pc + imm19 << 2.
- void ldrsw(const Register& rt, int imm19);
-
- // Store exclusive byte.
- void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Store exclusive half-word.
- void stxrh(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Store exclusive register.
- void stxr(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Load exclusive byte.
- void ldxrb(const Register& rt, const MemOperand& src);
-
- // Load exclusive half-word.
- void ldxrh(const Register& rt, const MemOperand& src);
-
- // Load exclusive register.
- void ldxr(const Register& rt, const MemOperand& src);
-
- // Store exclusive register pair.
- void stxp(const Register& rs,
- const Register& rt,
- const Register& rt2,
- const MemOperand& dst);
-
- // Load exclusive register pair.
- void ldxp(const Register& rt, const Register& rt2, const MemOperand& src);
-
- // Store-release exclusive byte.
- void stlxrb(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Store-release exclusive half-word.
- void stlxrh(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Store-release exclusive register.
- void stlxr(const Register& rs, const Register& rt, const MemOperand& dst);
-
- // Load-acquire exclusive byte.
- void ldaxrb(const Register& rt, const MemOperand& src);
-
- // Load-acquire exclusive half-word.
- void ldaxrh(const Register& rt, const MemOperand& src);
-
- // Load-acquire exclusive register.
- void ldaxr(const Register& rt, const MemOperand& src);
-
- // Store-release exclusive register pair.
- void stlxp(const Register& rs,
- const Register& rt,
- const Register& rt2,
- const MemOperand& dst);
-
- // Load-acquire exclusive register pair.
- void ldaxp(const Register& rt, const Register& rt2, const MemOperand& src);
-
- // Store-release byte.
- void stlrb(const Register& rt, const MemOperand& dst);
-
- // Store-release half-word.
- void stlrh(const Register& rt, const MemOperand& dst);
-
- // Store-release register.
- void stlr(const Register& rt, const MemOperand& dst);
-
- // Load-acquire byte.
- void ldarb(const Register& rt, const MemOperand& src);
-
- // Load-acquire half-word.
- void ldarh(const Register& rt, const MemOperand& src);
-
- // Load-acquire register.
- void ldar(const Register& rt, const MemOperand& src);
-
- // Prefetch memory.
- void prfm(PrefetchOperation op, const MemOperand& addr,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // Prefetch memory (with unscaled offset).
- void prfum(PrefetchOperation op, const MemOperand& addr,
- LoadStoreScalingOption option = PreferUnscaledOffset);
-
- // Prefetch memory in the literal pool.
- void prfm(PrefetchOperation op, RawLiteral* literal);
-
- // Prefetch from pc + imm19 << 2.
- void prfm(PrefetchOperation op, int imm19);
-
- // Move instructions. The default shift of -1 indicates that the move
- // instruction will calculate an appropriate 16-bit immediate and left shift
- // that is equal to the 64-bit immediate argument. If an explicit left shift
- // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
- //
- // For movk, an explicit shift can be used to indicate which half word should
- // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
- // half word with zero, whereas movk(x0, 0, 48) will overwrite the
- // most-significant.
-
- // Move immediate and keep.
- void movk(const Register& rd, uint64_t imm, int shift = -1) {
- MoveWide(rd, imm, shift, MOVK);
- }
-
- // Move inverted immediate.
- void movn(const Register& rd, uint64_t imm, int shift = -1) {
- MoveWide(rd, imm, shift, MOVN);
- }
-
- // Move immediate.
- void movz(const Register& rd, uint64_t imm, int shift = -1) {
- MoveWide(rd, imm, shift, MOVZ);
- }
-
- // Misc instructions.
- // Monitor debug-mode breakpoint.
- void brk(int code);
-
- // Halting debug-mode breakpoint.
- void hlt(int code);
-
- // Move register to register.
- void mov(const Register& rd, const Register& rn);
-
- // Move inverted operand to register.
- void mvn(const Register& rd, const Operand& operand);
-
- // System instructions.
- // Move to register from system register.
- void mrs(const Register& rt, SystemRegister sysreg);
-
- // Move from register to system register.
- void msr(SystemRegister sysreg, const Register& rt);
-
- // System hint.
- void hint(SystemHint code);
-
- // Clear exclusive monitor.
- void clrex(int imm4 = 0xf);
-
- // Data memory barrier.
- void dmb(BarrierDomain domain, BarrierType type);
-
- // Data synchronization barrier.
- void dsb(BarrierDomain domain, BarrierType type);
-
- // Instruction synchronization barrier.
- void isb();
-
- // Alias for system instructions.
- // No-op.
- void nop() {
- hint(NOP);
- }
-
- // FP instructions.
- // Move double precision immediate to FP register.
- void fmov(const FPRegister& fd, double imm);
-
- // Move single precision immediate to FP register.
- void fmov(const FPRegister& fd, float imm);
-
- // Move FP register to register.
- void fmov(const Register& rd, const FPRegister& fn);
-
- // Move register to FP register.
- void fmov(const FPRegister& fd, const Register& rn);
-
- // Move FP register to FP register.
- void fmov(const FPRegister& fd, const FPRegister& fn);
-
- // FP add.
- void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
-
- // FP subtract.
- void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
-
- // FP multiply.
- void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
-
- // FP fused multiply and add.
- void fmadd(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- const FPRegister& fa);
-
- // FP fused multiply and subtract.
- void fmsub(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- const FPRegister& fa);
-
- // FP fused multiply, add and negate.
- void fnmadd(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- const FPRegister& fa);
-
- // FP fused multiply, subtract and negate.
- void fnmsub(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- const FPRegister& fa);
-
- // FP divide.
- void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
-
- // FP maximum.
- void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
-
- // FP minimum.
- void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
-
- // FP maximum number.
- void fmaxnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
-
- // FP minimum number.
- void fminnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
-
- // FP absolute.
- void fabs(const FPRegister& fd, const FPRegister& fn);
-
- // FP negate.
- void fneg(const FPRegister& fd, const FPRegister& fn);
-
- // FP square root.
- void fsqrt(const FPRegister& fd, const FPRegister& fn);
-
- // FP round to integer (nearest with ties to away).
- void frinta(const FPRegister& fd, const FPRegister& fn);
-
- // FP round to integer (implicit rounding).
- void frinti(const FPRegister& fd, const FPRegister& fn);
-
- // FP round to integer (toward minus infinity).
- void frintm(const FPRegister& fd, const FPRegister& fn);
-
- // FP round to integer (nearest with ties to even).
- void frintn(const FPRegister& fd, const FPRegister& fn);
-
- // FP round to integer (toward plus infinity).
- void frintp(const FPRegister& fd, const FPRegister& fn);
-
- // FP round to integer (exact, implicit rounding).
- void frintx(const FPRegister& fd, const FPRegister& fn);
-
- // FP round to integer (towards zero).
- void frintz(const FPRegister& fd, const FPRegister& fn);
-
- // FP compare registers.
- void fcmp(const FPRegister& fn, const FPRegister& fm);
-
- // FP compare immediate.
- void fcmp(const FPRegister& fn, double value);
-
- // FP conditional compare.
- void fccmp(const FPRegister& fn,
- const FPRegister& fm,
- StatusFlags nzcv,
- Condition cond);
-
- // FP conditional select.
- void fcsel(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- Condition cond);
-
- // Common FP Convert function.
- void FPConvertToInt(const Register& rd,
- const FPRegister& fn,
- FPIntegerConvertOp op);
-
- // FP convert between single and double precision.
- void fcvt(const FPRegister& fd, const FPRegister& fn);
-
- // Convert FP to signed integer (nearest with ties to away).
- void fcvtas(const Register& rd, const FPRegister& fn);
-
- // Convert FP to unsigned integer (nearest with ties to away).
- void fcvtau(const Register& rd, const FPRegister& fn);
-
- // Convert FP to signed integer (round towards -infinity).
- void fcvtms(const Register& rd, const FPRegister& fn);
-
- // Convert FP to unsigned integer (round towards -infinity).
- void fcvtmu(const Register& rd, const FPRegister& fn);
-
- // Convert FP to signed integer (nearest with ties to even).
- void fcvtns(const Register& rd, const FPRegister& fn);
-
- // Convert FP to unsigned integer (nearest with ties to even).
- void fcvtnu(const Register& rd, const FPRegister& fn);
-
- // Convert FP to signed integer (round towards zero).
- void fcvtzs(const Register& rd, const FPRegister& fn);
-
- // Convert FP to unsigned integer (round towards zero).
- void fcvtzu(const Register& rd, const FPRegister& fn);
-
- // Convert signed integer or fixed point to FP.
- void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
-
- // Convert unsigned integer or fixed point to FP.
- void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
-
- // Emit generic instructions.
- // Emit raw instructions into the instruction stream.
- void dci(Instr raw_inst) { Emit(raw_inst); }
-
- // Emit 32 bits of data into the instruction stream.
- void dc32(uint32_t data) {
- VIXL_ASSERT(buffer_monitor_ > 0);
- buffer_->Emit32(data);
- }
-
- // Emit 64 bits of data into the instruction stream.
- void dc64(uint64_t data) {
- VIXL_ASSERT(buffer_monitor_ > 0);
- buffer_->Emit64(data);
- }
-
- // Copy a string into the instruction stream, including the terminating NULL
- // character. The instruction pointer is then aligned correctly for
- // subsequent instructions.
- void EmitString(const char * string) {
- VIXL_ASSERT(string != NULL);
- VIXL_ASSERT(buffer_monitor_ > 0);
-
- buffer_->EmitString(string);
- buffer_->Align();
- }
-
- // Code generation helpers.
-
- // Register encoding.
- static Instr Rd(CPURegister rd) {
- VIXL_ASSERT(rd.code() != kSPRegInternalCode);
- return rd.code() << Rd_offset;
- }
-
- static Instr Rn(CPURegister rn) {
- VIXL_ASSERT(rn.code() != kSPRegInternalCode);
- return rn.code() << Rn_offset;
- }
-
- static Instr Rm(CPURegister rm) {
- VIXL_ASSERT(rm.code() != kSPRegInternalCode);
- return rm.code() << Rm_offset;
- }
-
- static Instr Ra(CPURegister ra) {
- VIXL_ASSERT(ra.code() != kSPRegInternalCode);
- return ra.code() << Ra_offset;
- }
-
- static Instr Rt(CPURegister rt) {
- VIXL_ASSERT(rt.code() != kSPRegInternalCode);
- return rt.code() << Rt_offset;
- }
-
- static Instr Rt2(CPURegister rt2) {
- VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
- return rt2.code() << Rt2_offset;
- }
-
- static Instr Rs(CPURegister rs) {
- VIXL_ASSERT(rs.code() != kSPRegInternalCode);
- return rs.code() << Rs_offset;
- }
-
- // These encoding functions allow the stack pointer to be encoded, and
- // disallow the zero register.
- static Instr RdSP(Register rd) {
- VIXL_ASSERT(!rd.IsZero());
- return (rd.code() & kRegCodeMask) << Rd_offset;
- }
-
- static Instr RnSP(Register rn) {
- VIXL_ASSERT(!rn.IsZero());
- return (rn.code() & kRegCodeMask) << Rn_offset;
- }
-
- // Flags encoding.
- static Instr Flags(FlagsUpdate S) {
- if (S == SetFlags) {
- return 1 << FlagsUpdate_offset;
- } else if (S == LeaveFlags) {
- return 0 << FlagsUpdate_offset;
- }
- VIXL_UNREACHABLE();
- return 0;
- }
-
- static Instr Cond(Condition cond) {
- return cond << Condition_offset;
- }
-
- // PC-relative address encoding.
- static Instr ImmPCRelAddress(int imm21) {
- VIXL_ASSERT(is_int21(imm21));
- Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
- Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
- Instr immlo = imm << ImmPCRelLo_offset;
- return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
- }
-
- // Branch encoding.
- static Instr ImmUncondBranch(int imm26) {
- VIXL_ASSERT(is_int26(imm26));
- return truncate_to_int26(imm26) << ImmUncondBranch_offset;
- }
-
- static Instr ImmCondBranch(int imm19) {
- VIXL_ASSERT(is_int19(imm19));
- return truncate_to_int19(imm19) << ImmCondBranch_offset;
- }
-
- static Instr ImmCmpBranch(int imm19) {
- VIXL_ASSERT(is_int19(imm19));
- return truncate_to_int19(imm19) << ImmCmpBranch_offset;
- }
-
- static Instr ImmTestBranch(int imm14) {
- VIXL_ASSERT(is_int14(imm14));
- return truncate_to_int14(imm14) << ImmTestBranch_offset;
- }
-
- static Instr ImmTestBranchBit(unsigned bit_pos) {
- VIXL_ASSERT(is_uint6(bit_pos));
- // Subtract five from the shift offset, as we need bit 5 from bit_pos.
- unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
- unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
- b5 &= ImmTestBranchBit5_mask;
- b40 &= ImmTestBranchBit40_mask;
- return b5 | b40;
- }
-
- // Data Processing encoding.
- static Instr SF(Register rd) {
- return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
- }
-
- static Instr ImmAddSub(int64_t imm) {
- VIXL_ASSERT(IsImmAddSub(imm));
- if (is_uint12(imm)) { // No shift required.
- return imm << ImmAddSub_offset;
- } else {
- return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
- }
- }
-
- static Instr ImmS(unsigned imms, unsigned reg_size) {
- VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
- ((reg_size == kWRegSize) && is_uint5(imms)));
- USE(reg_size);
- return imms << ImmS_offset;
- }
-
- static Instr ImmR(unsigned immr, unsigned reg_size) {
- VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
- ((reg_size == kWRegSize) && is_uint5(immr)));
- USE(reg_size);
- VIXL_ASSERT(is_uint6(immr));
- return immr << ImmR_offset;
- }
-
- static Instr ImmSetBits(unsigned imms, unsigned reg_size) {
- VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
- VIXL_ASSERT(is_uint6(imms));
- VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
- USE(reg_size);
- return imms << ImmSetBits_offset;
- }
-
- static Instr ImmRotate(unsigned immr, unsigned reg_size) {
- VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
- VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
- ((reg_size == kWRegSize) && is_uint5(immr)));
- USE(reg_size);
- return immr << ImmRotate_offset;
- }
-
- static Instr ImmLLiteral(int imm19) {
- VIXL_ASSERT(is_int19(imm19));
- return truncate_to_int19(imm19) << ImmLLiteral_offset;
- }
-
- static Instr BitN(unsigned bitn, unsigned reg_size) {
- VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
- VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
- USE(reg_size);
- return bitn << BitN_offset;
- }
-
- static Instr ShiftDP(Shift shift) {
- VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
- return shift << ShiftDP_offset;
- }
-
- static Instr ImmDPShift(unsigned amount) {
- VIXL_ASSERT(is_uint6(amount));
- return amount << ImmDPShift_offset;
- }
-
- static Instr ExtendMode(Extend extend) {
- return extend << ExtendMode_offset;
- }
-
- static Instr ImmExtendShift(unsigned left_shift) {
- VIXL_ASSERT(left_shift <= 4);
- return left_shift << ImmExtendShift_offset;
- }
-
- static Instr ImmCondCmp(unsigned imm) {
- VIXL_ASSERT(is_uint5(imm));
- return imm << ImmCondCmp_offset;
- }
-
- static Instr Nzcv(StatusFlags nzcv) {
- return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
- }
-
- // MemOperand offset encoding.
- static Instr ImmLSUnsigned(int imm12) {
- VIXL_ASSERT(is_uint12(imm12));
- return imm12 << ImmLSUnsigned_offset;
- }
-
- static Instr ImmLS(int imm9) {
- VIXL_ASSERT(is_int9(imm9));
- return truncate_to_int9(imm9) << ImmLS_offset;
- }
-
- static Instr ImmLSPair(int imm7, LSDataSize size) {
- VIXL_ASSERT(((imm7 >> size) << size) == imm7);
- int scaled_imm7 = imm7 >> size;
- VIXL_ASSERT(is_int7(scaled_imm7));
- return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
- }
-
- static Instr ImmShiftLS(unsigned shift_amount) {
- VIXL_ASSERT(is_uint1(shift_amount));
- return shift_amount << ImmShiftLS_offset;
- }
-
- static Instr ImmPrefetchOperation(int imm5) {
- VIXL_ASSERT(is_uint5(imm5));
- return imm5 << ImmPrefetchOperation_offset;
- }
-
- static Instr ImmException(int imm16) {
- VIXL_ASSERT(is_uint16(imm16));
- return imm16 << ImmException_offset;
- }
-
- static Instr ImmSystemRegister(int imm15) {
- VIXL_ASSERT(is_uint15(imm15));
- return imm15 << ImmSystemRegister_offset;
- }
-
- static Instr ImmHint(int imm7) {
- VIXL_ASSERT(is_uint7(imm7));
- return imm7 << ImmHint_offset;
- }
-
- static Instr CRm(int imm4) {
- VIXL_ASSERT(is_uint4(imm4));
- return imm4 << CRm_offset;
- }
-
- static Instr ImmBarrierDomain(int imm2) {
- VIXL_ASSERT(is_uint2(imm2));
- return imm2 << ImmBarrierDomain_offset;
- }
-
- static Instr ImmBarrierType(int imm2) {
- VIXL_ASSERT(is_uint2(imm2));
- return imm2 << ImmBarrierType_offset;
- }
-
- static LSDataSize CalcLSDataSize(LoadStoreOp op) {
- VIXL_ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
- return static_cast<LSDataSize>(op >> SizeLS_offset);
- }
-
- // Move immediates encoding.
- static Instr ImmMoveWide(uint64_t imm) {
- VIXL_ASSERT(is_uint16(imm));
- return imm << ImmMoveWide_offset;
- }
-
- static Instr ShiftMoveWide(int64_t shift) {
- VIXL_ASSERT(is_uint2(shift));
- return shift << ShiftMoveWide_offset;
- }
-
- // FP Immediates.
- static Instr ImmFP32(float imm);
- static Instr ImmFP64(double imm);
-
- // FP register type.
- static Instr FPType(FPRegister fd) {
- return fd.Is64Bits() ? FP64 : FP32;
- }
-
- static Instr FPScale(unsigned scale) {
- VIXL_ASSERT(is_uint6(scale));
- return scale << FPScale_offset;
- }
-
- // Immediate field checking helpers.
- static bool IsImmAddSub(int64_t immediate);
- static bool IsImmConditionalCompare(int64_t immediate);
- static bool IsImmFP32(float imm);
- static bool IsImmFP64(double imm);
- static bool IsImmLogical(uint64_t value,
- unsigned width,
- unsigned* n = NULL,
- unsigned* imm_s = NULL,
- unsigned* imm_r = NULL);
- static bool IsImmLSPair(int64_t offset, LSDataSize size);
- static bool IsImmLSScaled(int64_t offset, LSDataSize size);
- static bool IsImmLSUnscaled(int64_t offset);
- static bool IsImmMovn(uint64_t imm, unsigned reg_size);
- static bool IsImmMovz(uint64_t imm, unsigned reg_size);
-
- // Size of the code generated since label to the current position.
- size_t SizeOfCodeGeneratedSince(Label* label) const {
- VIXL_ASSERT(label->IsBound());
- return buffer_->OffsetFrom(label->location());
- }
-
- size_t SizeOfCodeGenerated() const {
- return buffer_->CursorOffset();
- }
-
- size_t BufferCapacity() const { return buffer_->capacity(); }
-
- size_t RemainingBufferSpace() const { return buffer_->RemainingBytes(); }
-
- void EnsureSpaceFor(size_t amount) {
- if (buffer_->RemainingBytes() < amount) {
- size_t capacity = buffer_->capacity();
- size_t size = buffer_->CursorOffset();
- do {
- // TODO(all): refine.
- capacity *= 2;
- } while ((capacity - size) < amount);
- buffer_->Grow(capacity);
- }
- }
-
-#ifdef VIXL_DEBUG
- void AcquireBuffer() {
- VIXL_ASSERT(buffer_monitor_ >= 0);
- buffer_monitor_++;
- }
-
- void ReleaseBuffer() {
- buffer_monitor_--;
- VIXL_ASSERT(buffer_monitor_ >= 0);
- }
-#endif
-
- PositionIndependentCodeOption pic() const {
- return pic_;
- }
-
- bool AllowPageOffsetDependentCode() const {
- return (pic() == PageOffsetDependentCode) ||
- (pic() == PositionDependentCode);
- }
-
- static const Register& AppropriateZeroRegFor(const CPURegister& reg) {
- return reg.Is64Bits() ? xzr : wzr;
- }
-
-
- protected:
- void LoadStore(const CPURegister& rt,
- const MemOperand& addr,
- LoadStoreOp op,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- void LoadStorePair(const CPURegister& rt,
- const CPURegister& rt2,
- const MemOperand& addr,
- LoadStorePairOp op);
-
- void Prefetch(PrefetchOperation op,
- const MemOperand& addr,
- LoadStoreScalingOption option = PreferScaledOffset);
-
- // TODO(all): The third parameter should be passed by reference but gcc 4.8.2
- // reports a bogus uninitialised warning then.
- void Logical(const Register& rd,
- const Register& rn,
- const Operand operand,
- LogicalOp op);
- void LogicalImmediate(const Register& rd,
- const Register& rn,
- unsigned n,
- unsigned imm_s,
- unsigned imm_r,
- LogicalOp op);
-
- void ConditionalCompare(const Register& rn,
- const Operand& operand,
- StatusFlags nzcv,
- Condition cond,
- ConditionalCompareOp op);
-
- void AddSubWithCarry(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- AddSubWithCarryOp op);
-
-
- // Functions for emulating operands not directly supported by the instruction
- // set.
- void EmitShift(const Register& rd,
- const Register& rn,
- Shift shift,
- unsigned amount);
- void EmitExtendShift(const Register& rd,
- const Register& rn,
- Extend extend,
- unsigned left_shift);
-
- void AddSub(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- AddSubOp op);
-
- // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
- // registers. Only simple loads are supported; sign- and zero-extension (such
- // as in LDPSW_x or LDRB_w) are not supported.
- static LoadStoreOp LoadOpFor(const CPURegister& rt);
- static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
- const CPURegister& rt2);
- static LoadStoreOp StoreOpFor(const CPURegister& rt);
- static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
- const CPURegister& rt2);
- static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
- const CPURegister& rt, const CPURegister& rt2);
- static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
- const CPURegister& rt, const CPURegister& rt2);
- static LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);
-
-
- private:
- // Instruction helpers.
- void MoveWide(const Register& rd,
- uint64_t imm,
- int shift,
- MoveWideImmediateOp mov_op);
- void DataProcShiftedRegister(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- Instr op);
- void DataProcExtendedRegister(const Register& rd,
- const Register& rn,
- const Operand& operand,
- FlagsUpdate S,
- Instr op);
- void LoadStorePairNonTemporal(const CPURegister& rt,
- const CPURegister& rt2,
- const MemOperand& addr,
- LoadStorePairNonTemporalOp op);
- void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
- void ConditionalSelect(const Register& rd,
- const Register& rn,
- const Register& rm,
- Condition cond,
- ConditionalSelectOp op);
- void DataProcessing1Source(const Register& rd,
- const Register& rn,
- DataProcessing1SourceOp op);
- void DataProcessing3Source(const Register& rd,
- const Register& rn,
- const Register& rm,
- const Register& ra,
- DataProcessing3SourceOp op);
- void FPDataProcessing1Source(const FPRegister& fd,
- const FPRegister& fn,
- FPDataProcessing1SourceOp op);
- void FPDataProcessing2Source(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- FPDataProcessing2SourceOp op);
- void FPDataProcessing3Source(const FPRegister& fd,
- const FPRegister& fn,
- const FPRegister& fm,
- const FPRegister& fa,
- FPDataProcessing3SourceOp op);
-
- // Encode the specified MemOperand for the specified access size and scaling
- // preference.
- Instr LoadStoreMemOperand(const MemOperand& addr,
- LSDataSize size,
- LoadStoreScalingOption option);
-
- // Link the current (not-yet-emitted) instruction to the specified label, then
- // return an offset to be encoded in the instruction. If the label is not yet
- // bound, an offset of 0 is returned.
- ptrdiff_t LinkAndGetByteOffsetTo(Label * label);
- ptrdiff_t LinkAndGetInstructionOffsetTo(Label * label);
- ptrdiff_t LinkAndGetPageOffsetTo(Label * label);
-
- // A common implementation for the LinkAndGet<Type>OffsetTo helpers.
- template <int element_shift>
- ptrdiff_t LinkAndGetOffsetTo(Label* label);
-
- // Literal load offset are in words (32-bit).
- ptrdiff_t LinkAndGetWordOffsetTo(RawLiteral* literal);
-
- // Emit the instruction in buffer_.
- void Emit(Instr instruction) {
- VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
- VIXL_ASSERT(buffer_monitor_ > 0);
- buffer_->Emit32(instruction);
- }
-
- // Buffer where the code is emitted.
- CodeBuffer* buffer_;
- PositionIndependentCodeOption pic_;
-
-#ifdef VIXL_DEBUG
- int64_t buffer_monitor_;
-#endif
-};
-
-
-// All Assembler emits MUST acquire/release the underlying code buffer. The
-// helper scope below will do so and optionally ensure the buffer is big enough
-// to receive the emit. It is possible to request the scope not to perform any
-// checks (kNoCheck) if for example it is known in advance the buffer size is
-// adequate or there is some other size checking mechanism in place.
-class CodeBufferCheckScope {
- public:
- // Tell whether or not the scope needs to ensure the associated CodeBuffer
- // has enough space for the requested size.
- enum CheckPolicy {
- kNoCheck,
- kCheck
- };
-
- // Tell whether or not the scope should assert the amount of code emitted
- // within the scope is consistent with the requested amount.
- enum AssertPolicy {
- kNoAssert, // No assert required.
- kExactSize, // The code emitted must be exactly size bytes.
- kMaximumSize // The code emitted must be at most size bytes.
- };
-
- CodeBufferCheckScope(Assembler* assm,
- size_t size,
- CheckPolicy check_policy = kCheck,
- AssertPolicy assert_policy = kMaximumSize)
- : assm_(assm) {
- if (check_policy == kCheck) assm->EnsureSpaceFor(size);
-#ifdef VIXL_DEBUG
- assm->bind(&start_);
- size_ = size;
- assert_policy_ = assert_policy;
- assm->AcquireBuffer();
-#else
- USE(assert_policy);
-#endif
- }
-
- // This is a shortcut for CodeBufferCheckScope(assm, 0, kNoCheck, kNoAssert).
- explicit CodeBufferCheckScope(Assembler* assm) : assm_(assm) {
-#ifdef VIXL_DEBUG
- size_ = 0;
- assert_policy_ = kNoAssert;
- assm->AcquireBuffer();
-#endif
- }
-
- ~CodeBufferCheckScope() {
-#ifdef VIXL_DEBUG
- assm_->ReleaseBuffer();
- switch (assert_policy_) {
- case kNoAssert: break;
- case kExactSize:
- VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) == size_);
- break;
- case kMaximumSize:
- VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) <= size_);
- break;
- default:
- VIXL_UNREACHABLE();
- }
-#endif
- }
-
- protected:
- Assembler* assm_;
-#ifdef VIXL_DEBUG
- Label start_;
- size_t size_;
- AssertPolicy assert_policy_;
-#endif
-};
-
-} // namespace vixl
-
-#endif // VIXL_A64_ASSEMBLER_A64_H_
diff --git a/disas/libvixl/a64/disasm-a64.cc b/disas/libvixl/a64/disasm-a64.cc
deleted file mode 100644
index f7bc2468bb..0000000000
--- a/disas/libvixl/a64/disasm-a64.cc
+++ /dev/null
@@ -1,1954 +0,0 @@
-// Copyright 2013, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include <cstdlib>
-#include "a64/disasm-a64.h"
-
-namespace vixl {
-
-Disassembler::Disassembler() {
- buffer_size_ = 256;
- buffer_ = reinterpret_cast<char*>(malloc(buffer_size_));
- buffer_pos_ = 0;
- own_buffer_ = true;
- code_address_offset_ = 0;
-}
-
-
-Disassembler::Disassembler(char* text_buffer, int buffer_size) {
- buffer_size_ = buffer_size;
- buffer_ = text_buffer;
- buffer_pos_ = 0;
- own_buffer_ = false;
- code_address_offset_ = 0;
-}
-
-
-Disassembler::~Disassembler() {
- if (own_buffer_) {
- free(buffer_);
- }
-}
-
-
-char* Disassembler::GetOutput() {
- return buffer_;
-}
-
-
-void Disassembler::VisitAddSubImmediate(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) &&
- (instr->ImmAddSub() == 0) ? true : false;
- const char *mnemonic = "";
- const char *form = "'Rds, 'Rns, 'IAddSub";
- const char *form_cmp = "'Rns, 'IAddSub";
- const char *form_mov = "'Rds, 'Rns";
-
- switch (instr->Mask(AddSubImmediateMask)) {
- case ADD_w_imm:
- case ADD_x_imm: {
- mnemonic = "add";
- if (stack_op) {
- mnemonic = "mov";
- form = form_mov;
- }
- break;
- }
- case ADDS_w_imm:
- case ADDS_x_imm: {
- mnemonic = "adds";
- if (rd_is_zr) {
- mnemonic = "cmn";
- form = form_cmp;
- }
- break;
- }
- case SUB_w_imm:
- case SUB_x_imm: mnemonic = "sub"; break;
- case SUBS_w_imm:
- case SUBS_x_imm: {
- mnemonic = "subs";
- if (rd_is_zr) {
- mnemonic = "cmp";
- form = form_cmp;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitAddSubShifted(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- bool rn_is_zr = RnIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm'HDP";
- const char *form_cmp = "'Rn, 'Rm'HDP";
- const char *form_neg = "'Rd, 'Rm'HDP";
-
- switch (instr->Mask(AddSubShiftedMask)) {
- case ADD_w_shift:
- case ADD_x_shift: mnemonic = "add"; break;
- case ADDS_w_shift:
- case ADDS_x_shift: {
- mnemonic = "adds";
- if (rd_is_zr) {
- mnemonic = "cmn";
- form = form_cmp;
- }
- break;
- }
- case SUB_w_shift:
- case SUB_x_shift: {
- mnemonic = "sub";
- if (rn_is_zr) {
- mnemonic = "neg";
- form = form_neg;
- }
- break;
- }
- case SUBS_w_shift:
- case SUBS_x_shift: {
- mnemonic = "subs";
- if (rd_is_zr) {
- mnemonic = "cmp";
- form = form_cmp;
- } else if (rn_is_zr) {
- mnemonic = "negs";
- form = form_neg;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitAddSubExtended(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- const char *mnemonic = "";
- Extend mode = static_cast<Extend>(instr->ExtendMode());
- const char *form = ((mode == UXTX) || (mode == SXTX)) ?
- "'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext";
- const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ?
- "'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext";
-
- switch (instr->Mask(AddSubExtendedMask)) {
- case ADD_w_ext:
- case ADD_x_ext: mnemonic = "add"; break;
- case ADDS_w_ext:
- case ADDS_x_ext: {
- mnemonic = "adds";
- if (rd_is_zr) {
- mnemonic = "cmn";
- form = form_cmp;
- }
- break;
- }
- case SUB_w_ext:
- case SUB_x_ext: mnemonic = "sub"; break;
- case SUBS_w_ext:
- case SUBS_x_ext: {
- mnemonic = "subs";
- if (rd_is_zr) {
- mnemonic = "cmp";
- form = form_cmp;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitAddSubWithCarry(const Instruction* instr) {
- bool rn_is_zr = RnIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm";
- const char *form_neg = "'Rd, 'Rm";
-
- switch (instr->Mask(AddSubWithCarryMask)) {
- case ADC_w:
- case ADC_x: mnemonic = "adc"; break;
- case ADCS_w:
- case ADCS_x: mnemonic = "adcs"; break;
- case SBC_w:
- case SBC_x: {
- mnemonic = "sbc";
- if (rn_is_zr) {
- mnemonic = "ngc";
- form = form_neg;
- }
- break;
- }
- case SBCS_w:
- case SBCS_x: {
- mnemonic = "sbcs";
- if (rn_is_zr) {
- mnemonic = "ngcs";
- form = form_neg;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLogicalImmediate(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- bool rn_is_zr = RnIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Rds, 'Rn, 'ITri";
-
- if (instr->ImmLogical() == 0) {
- // The immediate encoded in the instruction is not in the expected format.
- Format(instr, "unallocated", "(LogicalImmediate)");
- return;
- }
-
- switch (instr->Mask(LogicalImmediateMask)) {
- case AND_w_imm:
- case AND_x_imm: mnemonic = "and"; break;
- case ORR_w_imm:
- case ORR_x_imm: {
- mnemonic = "orr";
- unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
- : kWRegSize;
- if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) {
- mnemonic = "mov";
- form = "'Rds, 'ITri";
- }
- break;
- }
- case EOR_w_imm:
- case EOR_x_imm: mnemonic = "eor"; break;
- case ANDS_w_imm:
- case ANDS_x_imm: {
- mnemonic = "ands";
- if (rd_is_zr) {
- mnemonic = "tst";
- form = "'Rn, 'ITri";
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
- VIXL_ASSERT((reg_size == kXRegSize) ||
- ((reg_size == kWRegSize) && (value <= 0xffffffff)));
-
- // Test for movz: 16 bits set at positions 0, 16, 32 or 48.
- if (((value & UINT64_C(0xffffffffffff0000)) == 0) ||
- ((value & UINT64_C(0xffffffff0000ffff)) == 0) ||
- ((value & UINT64_C(0xffff0000ffffffff)) == 0) ||
- ((value & UINT64_C(0x0000ffffffffffff)) == 0)) {
- return true;
- }
-
- // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
- if ((reg_size == kXRegSize) &&
- (((~value & UINT64_C(0xffffffffffff0000)) == 0) ||
- ((~value & UINT64_C(0xffffffff0000ffff)) == 0) ||
- ((~value & UINT64_C(0xffff0000ffffffff)) == 0) ||
- ((~value & UINT64_C(0x0000ffffffffffff)) == 0))) {
- return true;
- }
- if ((reg_size == kWRegSize) &&
- (((value & 0xffff0000) == 0xffff0000) ||
- ((value & 0x0000ffff) == 0x0000ffff))) {
- return true;
- }
- return false;
-}
-
-
-void Disassembler::VisitLogicalShifted(const Instruction* instr) {
- bool rd_is_zr = RdIsZROrSP(instr);
- bool rn_is_zr = RnIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm'HLo";
-
- switch (instr->Mask(LogicalShiftedMask)) {
- case AND_w:
- case AND_x: mnemonic = "and"; break;
- case BIC_w:
- case BIC_x: mnemonic = "bic"; break;
- case EOR_w:
- case EOR_x: mnemonic = "eor"; break;
- case EON_w:
- case EON_x: mnemonic = "eon"; break;
- case BICS_w:
- case BICS_x: mnemonic = "bics"; break;
- case ANDS_w:
- case ANDS_x: {
- mnemonic = "ands";
- if (rd_is_zr) {
- mnemonic = "tst";
- form = "'Rn, 'Rm'HLo";
- }
- break;
- }
- case ORR_w:
- case ORR_x: {
- mnemonic = "orr";
- if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() == LSL)) {
- mnemonic = "mov";
- form = "'Rd, 'Rm";
- }
- break;
- }
- case ORN_w:
- case ORN_x: {
- mnemonic = "orn";
- if (rn_is_zr) {
- mnemonic = "mvn";
- form = "'Rd, 'Rm'HLo";
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
-
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitConditionalCompareRegister(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rn, 'Rm, 'INzcv, 'Cond";
-
- switch (instr->Mask(ConditionalCompareRegisterMask)) {
- case CCMN_w:
- case CCMN_x: mnemonic = "ccmn"; break;
- case CCMP_w:
- case CCMP_x: mnemonic = "ccmp"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitConditionalCompareImmediate(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rn, 'IP, 'INzcv, 'Cond";
-
- switch (instr->Mask(ConditionalCompareImmediateMask)) {
- case CCMN_w_imm:
- case CCMN_x_imm: mnemonic = "ccmn"; break;
- case CCMP_w_imm:
- case CCMP_x_imm: mnemonic = "ccmp"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitConditionalSelect(const Instruction* instr) {
- bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr));
- bool rn_is_rm = (instr->Rn() == instr->Rm());
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm, 'Cond";
- const char *form_test = "'Rd, 'CInv";
- const char *form_update = "'Rd, 'Rn, 'CInv";
-
- Condition cond = static_cast<Condition>(instr->Condition());
- bool invertible_cond = (cond != al) && (cond != nv);
-
- switch (instr->Mask(ConditionalSelectMask)) {
- case CSEL_w:
- case CSEL_x: mnemonic = "csel"; break;
- case CSINC_w:
- case CSINC_x: {
- mnemonic = "csinc";
- if (rnm_is_zr && invertible_cond) {
- mnemonic = "cset";
- form = form_test;
- } else if (rn_is_rm && invertible_cond) {
- mnemonic = "cinc";
- form = form_update;
- }
- break;
- }
- case CSINV_w:
- case CSINV_x: {
- mnemonic = "csinv";
- if (rnm_is_zr && invertible_cond) {
- mnemonic = "csetm";
- form = form_test;
- } else if (rn_is_rm && invertible_cond) {
- mnemonic = "cinv";
- form = form_update;
- }
- break;
- }
- case CSNEG_w:
- case CSNEG_x: {
- mnemonic = "csneg";
- if (rn_is_rm && invertible_cond) {
- mnemonic = "cneg";
- form = form_update;
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitBitfield(const Instruction* instr) {
- unsigned s = instr->ImmS();
- unsigned r = instr->ImmR();
- unsigned rd_size_minus_1 =
- ((instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize) - 1;
- const char *mnemonic = "";
- const char *form = "";
- const char *form_shift_right = "'Rd, 'Rn, 'IBr";
- const char *form_extend = "'Rd, 'Wn";
- const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1";
- const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1";
- const char *form_lsl = "'Rd, 'Rn, 'IBZ-r";
-
- switch (instr->Mask(BitfieldMask)) {
- case SBFM_w:
- case SBFM_x: {
- mnemonic = "sbfx";
- form = form_bfx;
- if (r == 0) {
- form = form_extend;
- if (s == 7) {
- mnemonic = "sxtb";
- } else if (s == 15) {
- mnemonic = "sxth";
- } else if ((s == 31) && (instr->SixtyFourBits() == 1)) {
- mnemonic = "sxtw";
- } else {
- form = form_bfx;
- }
- } else if (s == rd_size_minus_1) {
- mnemonic = "asr";
- form = form_shift_right;
- } else if (s < r) {
- mnemonic = "sbfiz";
- form = form_bfiz;
- }
- break;
- }
- case UBFM_w:
- case UBFM_x: {
- mnemonic = "ubfx";
- form = form_bfx;
- if (r == 0) {
- form = form_extend;
- if (s == 7) {
- mnemonic = "uxtb";
- } else if (s == 15) {
- mnemonic = "uxth";
- } else {
- form = form_bfx;
- }
- }
- if (s == rd_size_minus_1) {
- mnemonic = "lsr";
- form = form_shift_right;
- } else if (r == s + 1) {
- mnemonic = "lsl";
- form = form_lsl;
- } else if (s < r) {
- mnemonic = "ubfiz";
- form = form_bfiz;
- }
- break;
- }
- case BFM_w:
- case BFM_x: {
- mnemonic = "bfxil";
- form = form_bfx;
- if (s < r) {
- mnemonic = "bfi";
- form = form_bfiz;
- }
- }
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitExtract(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn, 'Rm, 'IExtract";
-
- switch (instr->Mask(ExtractMask)) {
- case EXTR_w:
- case EXTR_x: {
- if (instr->Rn() == instr->Rm()) {
- mnemonic = "ror";
- form = "'Rd, 'Rn, 'IExtract";
- } else {
- mnemonic = "extr";
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitPCRelAddressing(const Instruction* instr) {
- switch (instr->Mask(PCRelAddressingMask)) {
- case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break;
- case ADRP: Format(instr, "adrp", "'Xd, 'AddrPCRelPage"); break;
- default: Format(instr, "unimplemented", "(PCRelAddressing)");
- }
-}
-
-
-void Disassembler::VisitConditionalBranch(const Instruction* instr) {
- switch (instr->Mask(ConditionalBranchMask)) {
- case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break;
- default: VIXL_UNREACHABLE();
- }
-}
-
-
-void Disassembler::VisitUnconditionalBranchToRegister(
- const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Xn";
-
- switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
- case BR: mnemonic = "br"; break;
- case BLR: mnemonic = "blr"; break;
- case RET: {
- mnemonic = "ret";
- if (instr->Rn() == kLinkRegCode) {
- form = NULL;
- }
- break;
- }
- default: form = "(UnconditionalBranchToRegister)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitUnconditionalBranch(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'BImmUncn";
-
- switch (instr->Mask(UnconditionalBranchMask)) {
- case B: mnemonic = "b"; break;
- case BL: mnemonic = "bl"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitDataProcessing1Source(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rd, 'Rn";
-
- switch (instr->Mask(DataProcessing1SourceMask)) {
- #define FORMAT(A, B) \
- case A##_w: \
- case A##_x: mnemonic = B; break;
- FORMAT(RBIT, "rbit");
- FORMAT(REV16, "rev16");
- FORMAT(REV, "rev");
- FORMAT(CLZ, "clz");
- FORMAT(CLS, "cls");
- #undef FORMAT
- case REV32_x: mnemonic = "rev32"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitDataProcessing2Source(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Rd, 'Rn, 'Rm";
-
- switch (instr->Mask(DataProcessing2SourceMask)) {
- #define FORMAT(A, B) \
- case A##_w: \
- case A##_x: mnemonic = B; break;
- FORMAT(UDIV, "udiv");
- FORMAT(SDIV, "sdiv");
- FORMAT(LSLV, "lsl");
- FORMAT(LSRV, "lsr");
- FORMAT(ASRV, "asr");
- FORMAT(RORV, "ror");
- #undef FORMAT
- default: form = "(DataProcessing2Source)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitDataProcessing3Source(const Instruction* instr) {
- bool ra_is_zr = RaIsZROrSP(instr);
- const char *mnemonic = "";
- const char *form = "'Xd, 'Wn, 'Wm, 'Xa";
- const char *form_rrr = "'Rd, 'Rn, 'Rm";
- const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra";
- const char *form_xww = "'Xd, 'Wn, 'Wm";
- const char *form_xxx = "'Xd, 'Xn, 'Xm";
-
- switch (instr->Mask(DataProcessing3SourceMask)) {
- case MADD_w:
- case MADD_x: {
- mnemonic = "madd";
- form = form_rrrr;
- if (ra_is_zr) {
- mnemonic = "mul";
- form = form_rrr;
- }
- break;
- }
- case MSUB_w:
- case MSUB_x: {
- mnemonic = "msub";
- form = form_rrrr;
- if (ra_is_zr) {
- mnemonic = "mneg";
- form = form_rrr;
- }
- break;
- }
- case SMADDL_x: {
- mnemonic = "smaddl";
- if (ra_is_zr) {
- mnemonic = "smull";
- form = form_xww;
- }
- break;
- }
- case SMSUBL_x: {
- mnemonic = "smsubl";
- if (ra_is_zr) {
- mnemonic = "smnegl";
- form = form_xww;
- }
- break;
- }
- case UMADDL_x: {
- mnemonic = "umaddl";
- if (ra_is_zr) {
- mnemonic = "umull";
- form = form_xww;
- }
- break;
- }
- case UMSUBL_x: {
- mnemonic = "umsubl";
- if (ra_is_zr) {
- mnemonic = "umnegl";
- form = form_xww;
- }
- break;
- }
- case SMULH_x: {
- mnemonic = "smulh";
- form = form_xxx;
- break;
- }
- case UMULH_x: {
- mnemonic = "umulh";
- form = form_xxx;
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitCompareBranch(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rt, 'BImmCmpa";
-
- switch (instr->Mask(CompareBranchMask)) {
- case CBZ_w:
- case CBZ_x: mnemonic = "cbz"; break;
- case CBNZ_w:
- case CBNZ_x: mnemonic = "cbnz"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitTestBranch(const Instruction* instr) {
- const char *mnemonic = "";
- // If the top bit of the immediate is clear, the tested register is
- // disassembled as Wt, otherwise Xt. As the top bit of the immediate is
- // encoded in bit 31 of the instruction, we can reuse the Rt form, which
- // uses bit 31 (normally "sf") to choose the register size.
- const char *form = "'Rt, 'IS, 'BImmTest";
-
- switch (instr->Mask(TestBranchMask)) {
- case TBZ: mnemonic = "tbz"; break;
- case TBNZ: mnemonic = "tbnz"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitMoveWideImmediate(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rd, 'IMoveImm";
-
- // Print the shift separately for movk, to make it clear which half word will
- // be overwritten. Movn and movz print the computed immediate, which includes
- // shift calculation.
- switch (instr->Mask(MoveWideImmediateMask)) {
- case MOVN_w:
- case MOVN_x:
- if ((instr->ImmMoveWide()) || (instr->ShiftMoveWide() == 0)) {
- if ((instr->SixtyFourBits() == 0) && (instr->ImmMoveWide() == 0xffff)) {
- mnemonic = "movn";
- } else {
- mnemonic = "mov";
- form = "'Rd, 'IMoveNeg";
- }
- } else {
- mnemonic = "movn";
- }
- break;
- case MOVZ_w:
- case MOVZ_x:
- if ((instr->ImmMoveWide()) || (instr->ShiftMoveWide() == 0))
- mnemonic = "mov";
- else
- mnemonic = "movz";
- break;
- case MOVK_w:
- case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-#define LOAD_STORE_LIST(V) \
- V(STRB_w, "strb", "'Wt") \
- V(STRH_w, "strh", "'Wt") \
- V(STR_w, "str", "'Wt") \
- V(STR_x, "str", "'Xt") \
- V(LDRB_w, "ldrb", "'Wt") \
- V(LDRH_w, "ldrh", "'Wt") \
- V(LDR_w, "ldr", "'Wt") \
- V(LDR_x, "ldr", "'Xt") \
- V(LDRSB_x, "ldrsb", "'Xt") \
- V(LDRSH_x, "ldrsh", "'Xt") \
- V(LDRSW_x, "ldrsw", "'Xt") \
- V(LDRSB_w, "ldrsb", "'Wt") \
- V(LDRSH_w, "ldrsh", "'Wt") \
- V(STR_s, "str", "'St") \
- V(STR_d, "str", "'Dt") \
- V(LDR_s, "ldr", "'St") \
- V(LDR_d, "ldr", "'Dt")
-
-void Disassembler::VisitLoadStorePreIndex(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePreIndex)";
-
- switch (instr->Mask(LoadStorePreIndexMask)) {
- #define LS_PREINDEX(A, B, C) \
- case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break;
- LOAD_STORE_LIST(LS_PREINDEX)
- #undef LS_PREINDEX
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStorePostIndex(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePostIndex)";
-
- switch (instr->Mask(LoadStorePostIndexMask)) {
- #define LS_POSTINDEX(A, B, C) \
- case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break;
- LOAD_STORE_LIST(LS_POSTINDEX)
- #undef LS_POSTINDEX
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStoreUnsignedOffset(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStoreUnsignedOffset)";
-
- switch (instr->Mask(LoadStoreUnsignedOffsetMask)) {
- #define LS_UNSIGNEDOFFSET(A, B, C) \
- case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break;
- LOAD_STORE_LIST(LS_UNSIGNEDOFFSET)
- #undef LS_UNSIGNEDOFFSET
- case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xns'ILU]";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStoreRegisterOffset(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStoreRegisterOffset)";
-
- switch (instr->Mask(LoadStoreRegisterOffsetMask)) {
- #define LS_REGISTEROFFSET(A, B, C) \
- case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break;
- LOAD_STORE_LIST(LS_REGISTEROFFSET)
- #undef LS_REGISTEROFFSET
- case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStoreUnscaledOffset(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Wt, ['Xns'ILS]";
- const char *form_x = "'Xt, ['Xns'ILS]";
- const char *form_s = "'St, ['Xns'ILS]";
- const char *form_d = "'Dt, ['Xns'ILS]";
- const char *form_prefetch = "'PrefOp, ['Xns'ILS]";
-
- switch (instr->Mask(LoadStoreUnscaledOffsetMask)) {
- case STURB_w: mnemonic = "sturb"; break;
- case STURH_w: mnemonic = "sturh"; break;
- case STUR_w: mnemonic = "stur"; break;
- case STUR_x: mnemonic = "stur"; form = form_x; break;
- case STUR_s: mnemonic = "stur"; form = form_s; break;
- case STUR_d: mnemonic = "stur"; form = form_d; break;
- case LDURB_w: mnemonic = "ldurb"; break;
- case LDURH_w: mnemonic = "ldurh"; break;
- case LDUR_w: mnemonic = "ldur"; break;
- case LDUR_x: mnemonic = "ldur"; form = form_x; break;
- case LDUR_s: mnemonic = "ldur"; form = form_s; break;
- case LDUR_d: mnemonic = "ldur"; form = form_d; break;
- case LDURSB_x: form = form_x; // Fall through.
- case LDURSB_w: mnemonic = "ldursb"; break;
- case LDURSH_x: form = form_x; // Fall through.
- case LDURSH_w: mnemonic = "ldursh"; break;
- case LDURSW_x: mnemonic = "ldursw"; form = form_x; break;
- case PRFUM: mnemonic = "prfum"; form = form_prefetch; break;
- default: form = "(LoadStoreUnscaledOffset)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadLiteral(const Instruction* instr) {
- const char *mnemonic = "ldr";
- const char *form = "(LoadLiteral)";
-
- switch (instr->Mask(LoadLiteralMask)) {
- case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break;
- case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break;
- case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break;
- case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break;
- case LDRSW_x_lit: {
- mnemonic = "ldrsw";
- form = "'Xt, 'ILLiteral 'LValue";
- break;
- }
- case PRFM_lit: {
- mnemonic = "prfm";
- form = "'PrefOp, 'ILLiteral 'LValue";
- break;
- }
- default: mnemonic = "unimplemented";
- }
- Format(instr, mnemonic, form);
-}
-
-
-#define LOAD_STORE_PAIR_LIST(V) \
- V(STP_w, "stp", "'Wt, 'Wt2", "4") \
- V(LDP_w, "ldp", "'Wt, 'Wt2", "4") \
- V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "4") \
- V(STP_x, "stp", "'Xt, 'Xt2", "8") \
- V(LDP_x, "ldp", "'Xt, 'Xt2", "8") \
- V(STP_s, "stp", "'St, 'St2", "4") \
- V(LDP_s, "ldp", "'St, 'St2", "4") \
- V(STP_d, "stp", "'Dt, 'Dt2", "8") \
- V(LDP_d, "ldp", "'Dt, 'Dt2", "8")
-
-void Disassembler::VisitLoadStorePairPostIndex(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePairPostIndex)";
-
- switch (instr->Mask(LoadStorePairPostIndexMask)) {
- #define LSP_POSTINDEX(A, B, C, D) \
- case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break;
- LOAD_STORE_PAIR_LIST(LSP_POSTINDEX)
- #undef LSP_POSTINDEX
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStorePairPreIndex(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePairPreIndex)";
-
- switch (instr->Mask(LoadStorePairPreIndexMask)) {
- #define LSP_PREINDEX(A, B, C, D) \
- case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break;
- LOAD_STORE_PAIR_LIST(LSP_PREINDEX)
- #undef LSP_PREINDEX
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStorePairOffset(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(LoadStorePairOffset)";
-
- switch (instr->Mask(LoadStorePairOffsetMask)) {
- #define LSP_OFFSET(A, B, C, D) \
- case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break;
- LOAD_STORE_PAIR_LIST(LSP_OFFSET)
- #undef LSP_OFFSET
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStorePairNonTemporal(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form;
-
- switch (instr->Mask(LoadStorePairNonTemporalMask)) {
- case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break;
- case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break;
- case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break;
- case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break;
- case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP4]"; break;
- case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP4]"; break;
- case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break;
- case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break;
- default: form = "(LoadStorePairNonTemporal)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitLoadStoreExclusive(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form;
-
- switch (instr->Mask(LoadStoreExclusiveMask)) {
- case STXRB_w: mnemonic = "stxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STXRH_w: mnemonic = "stxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STXR_w: mnemonic = "stxr"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STXR_x: mnemonic = "stxr"; form = "'Ws, 'Xt, ['Xns]"; break;
- case LDXRB_w: mnemonic = "ldxrb"; form = "'Wt, ['Xns]"; break;
- case LDXRH_w: mnemonic = "ldxrh"; form = "'Wt, ['Xns]"; break;
- case LDXR_w: mnemonic = "ldxr"; form = "'Wt, ['Xns]"; break;
- case LDXR_x: mnemonic = "ldxr"; form = "'Xt, ['Xns]"; break;
- case STXP_w: mnemonic = "stxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
- case STXP_x: mnemonic = "stxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
- case LDXP_w: mnemonic = "ldxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
- case LDXP_x: mnemonic = "ldxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
- case STLXRB_w: mnemonic = "stlxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STLXRH_w: mnemonic = "stlxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STLXR_w: mnemonic = "stlxr"; form = "'Ws, 'Wt, ['Xns]"; break;
- case STLXR_x: mnemonic = "stlxr"; form = "'Ws, 'Xt, ['Xns]"; break;
- case LDAXRB_w: mnemonic = "ldaxrb"; form = "'Wt, ['Xns]"; break;
- case LDAXRH_w: mnemonic = "ldaxrh"; form = "'Wt, ['Xns]"; break;
- case LDAXR_w: mnemonic = "ldaxr"; form = "'Wt, ['Xns]"; break;
- case LDAXR_x: mnemonic = "ldaxr"; form = "'Xt, ['Xns]"; break;
- case STLXP_w: mnemonic = "stlxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
- case STLXP_x: mnemonic = "stlxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
- case LDAXP_w: mnemonic = "ldaxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
- case LDAXP_x: mnemonic = "ldaxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
- case STLRB_w: mnemonic = "stlrb"; form = "'Wt, ['Xns]"; break;
- case STLRH_w: mnemonic = "stlrh"; form = "'Wt, ['Xns]"; break;
- case STLR_w: mnemonic = "stlr"; form = "'Wt, ['Xns]"; break;
- case STLR_x: mnemonic = "stlr"; form = "'Xt, ['Xns]"; break;
- case LDARB_w: mnemonic = "ldarb"; form = "'Wt, ['Xns]"; break;
- case LDARH_w: mnemonic = "ldarh"; form = "'Wt, ['Xns]"; break;
- case LDAR_w: mnemonic = "ldar"; form = "'Wt, ['Xns]"; break;
- case LDAR_x: mnemonic = "ldar"; form = "'Xt, ['Xns]"; break;
- default: form = "(LoadStoreExclusive)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPCompare(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Fn, 'Fm";
- const char *form_zero = "'Fn, #0.0";
-
- switch (instr->Mask(FPCompareMask)) {
- case FCMP_s_zero:
- case FCMP_d_zero: form = form_zero; // Fall through.
- case FCMP_s:
- case FCMP_d: mnemonic = "fcmp"; break;
- default: form = "(FPCompare)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPConditionalCompare(const Instruction* instr) {
- const char *mnemonic = "unmplemented";
- const char *form = "'Fn, 'Fm, 'INzcv, 'Cond";
-
- switch (instr->Mask(FPConditionalCompareMask)) {
- case FCCMP_s:
- case FCCMP_d: mnemonic = "fccmp"; break;
- case FCCMPE_s:
- case FCCMPE_d: mnemonic = "fccmpe"; break;
- default: form = "(FPConditionalCompare)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPConditionalSelect(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Fd, 'Fn, 'Fm, 'Cond";
-
- switch (instr->Mask(FPConditionalSelectMask)) {
- case FCSEL_s:
- case FCSEL_d: mnemonic = "fcsel"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPDataProcessing1Source(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'Fd, 'Fn";
-
- switch (instr->Mask(FPDataProcessing1SourceMask)) {
- #define FORMAT(A, B) \
- case A##_s: \
- case A##_d: mnemonic = B; break;
- FORMAT(FMOV, "fmov");
- FORMAT(FABS, "fabs");
- FORMAT(FNEG, "fneg");
- FORMAT(FSQRT, "fsqrt");
- FORMAT(FRINTN, "frintn");
- FORMAT(FRINTP, "frintp");
- FORMAT(FRINTM, "frintm");
- FORMAT(FRINTZ, "frintz");
- FORMAT(FRINTA, "frinta");
- FORMAT(FRINTX, "frintx");
- FORMAT(FRINTI, "frinti");
- #undef FORMAT
- case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break;
- case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break;
- default: form = "(FPDataProcessing1Source)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPDataProcessing2Source(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Fd, 'Fn, 'Fm";
-
- switch (instr->Mask(FPDataProcessing2SourceMask)) {
- #define FORMAT(A, B) \
- case A##_s: \
- case A##_d: mnemonic = B; break;
- FORMAT(FMUL, "fmul");
- FORMAT(FDIV, "fdiv");
- FORMAT(FADD, "fadd");
- FORMAT(FSUB, "fsub");
- FORMAT(FMAX, "fmax");
- FORMAT(FMIN, "fmin");
- FORMAT(FMAXNM, "fmaxnm");
- FORMAT(FMINNM, "fminnm");
- FORMAT(FNMUL, "fnmul");
- #undef FORMAT
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPDataProcessing3Source(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Fd, 'Fn, 'Fm, 'Fa";
-
- switch (instr->Mask(FPDataProcessing3SourceMask)) {
- #define FORMAT(A, B) \
- case A##_s: \
- case A##_d: mnemonic = B; break;
- FORMAT(FMADD, "fmadd");
- FORMAT(FMSUB, "fmsub");
- FORMAT(FNMADD, "fnmadd");
- FORMAT(FNMSUB, "fnmsub");
- #undef FORMAT
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPImmediate(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "(FPImmediate)";
-
- switch (instr->Mask(FPImmediateMask)) {
- case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
- case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPIntegerConvert(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "(FPIntegerConvert)";
- const char *form_rf = "'Rd, 'Fn";
- const char *form_fr = "'Fd, 'Rn";
-
- switch (instr->Mask(FPIntegerConvertMask)) {
- case FMOV_ws:
- case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
- case FMOV_sw:
- case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
- case FCVTAS_ws:
- case FCVTAS_xs:
- case FCVTAS_wd:
- case FCVTAS_xd: mnemonic = "fcvtas"; form = form_rf; break;
- case FCVTAU_ws:
- case FCVTAU_xs:
- case FCVTAU_wd:
- case FCVTAU_xd: mnemonic = "fcvtau"; form = form_rf; break;
- case FCVTMS_ws:
- case FCVTMS_xs:
- case FCVTMS_wd:
- case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break;
- case FCVTMU_ws:
- case FCVTMU_xs:
- case FCVTMU_wd:
- case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break;
- case FCVTNS_ws:
- case FCVTNS_xs:
- case FCVTNS_wd:
- case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break;
- case FCVTNU_ws:
- case FCVTNU_xs:
- case FCVTNU_wd:
- case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break;
- case FCVTZU_xd:
- case FCVTZU_ws:
- case FCVTZU_wd:
- case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break;
- case FCVTZS_xd:
- case FCVTZS_wd:
- case FCVTZS_xs:
- case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break;
- case SCVTF_sw:
- case SCVTF_sx:
- case SCVTF_dw:
- case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break;
- case UCVTF_sw:
- case UCVTF_sx:
- case UCVTF_dw:
- case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break;
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitFPFixedPointConvert(const Instruction* instr) {
- const char *mnemonic = "";
- const char *form = "'Rd, 'Fn, 'IFPFBits";
- const char *form_fr = "'Fd, 'Rn, 'IFPFBits";
-
- switch (instr->Mask(FPFixedPointConvertMask)) {
- case FCVTZS_ws_fixed:
- case FCVTZS_xs_fixed:
- case FCVTZS_wd_fixed:
- case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break;
- case FCVTZU_ws_fixed:
- case FCVTZU_xs_fixed:
- case FCVTZU_wd_fixed:
- case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break;
- case SCVTF_sw_fixed:
- case SCVTF_sx_fixed:
- case SCVTF_dw_fixed:
- case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break;
- case UCVTF_sw_fixed:
- case UCVTF_sx_fixed:
- case UCVTF_dw_fixed:
- case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
- default: VIXL_UNREACHABLE();
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitSystem(const Instruction* instr) {
- // Some system instructions hijack their Op and Cp fields to represent a
- // range of immediates instead of indicating a different instruction. This
- // makes the decoding tricky.
- const char *mnemonic = "unimplemented";
- const char *form = "(System)";
-
- if (instr->Mask(SystemExclusiveMonitorFMask) == SystemExclusiveMonitorFixed) {
- switch (instr->Mask(SystemExclusiveMonitorMask)) {
- case CLREX: {
- mnemonic = "clrex";
- form = (instr->CRm() == 0xf) ? NULL : "'IX";
- break;
- }
- }
- } else if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
- switch (instr->Mask(SystemSysRegMask)) {
- case MRS: {
- mnemonic = "mrs";
- switch (instr->ImmSystemRegister()) {
- case NZCV: form = "'Xt, nzcv"; break;
- case FPCR: form = "'Xt, fpcr"; break;
- default: form = "'Xt, (unknown)"; break;
- }
- break;
- }
- case MSR: {
- mnemonic = "msr";
- switch (instr->ImmSystemRegister()) {
- case NZCV: form = "nzcv, 'Xt"; break;
- case FPCR: form = "fpcr, 'Xt"; break;
- default: form = "(unknown), 'Xt"; break;
- }
- break;
- }
- }
- } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
- switch (instr->ImmHint()) {
- case NOP: {
- mnemonic = "nop";
- form = NULL;
- break;
- }
- }
- } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
- switch (instr->Mask(MemBarrierMask)) {
- case DMB: {
- mnemonic = "dmb";
- form = "'M";
- break;
- }
- case DSB: {
- mnemonic = "dsb";
- form = "'M";
- break;
- }
- case ISB: {
- mnemonic = "isb";
- form = NULL;
- break;
- }
- }
- }
-
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitException(const Instruction* instr) {
- const char *mnemonic = "unimplemented";
- const char *form = "'IDebug";
-
- switch (instr->Mask(ExceptionMask)) {
- case HLT: mnemonic = "hlt"; break;
- case BRK: mnemonic = "brk"; break;
- case SVC: mnemonic = "svc"; break;
- case HVC: mnemonic = "hvc"; break;
- case SMC: mnemonic = "smc"; break;
- case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break;
- case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break;
- case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break;
- default: form = "(Exception)";
- }
- Format(instr, mnemonic, form);
-}
-
-
-void Disassembler::VisitUnimplemented(const Instruction* instr) {
- Format(instr, "unimplemented", "(Unimplemented)");
-}
-
-
-void Disassembler::VisitUnallocated(const Instruction* instr) {
- Format(instr, "unallocated", "(Unallocated)");
-}
-
-
-void Disassembler::ProcessOutput(const Instruction* /*instr*/) {
- // The base disasm does nothing more than disassembling into a buffer.
-}
-
-
-void Disassembler::AppendRegisterNameToOutput(const Instruction* instr,
- const CPURegister& reg) {
- USE(instr);
- VIXL_ASSERT(reg.IsValid());
- char reg_char;
-
- if (reg.IsRegister()) {
- reg_char = reg.Is64Bits() ? 'x' : 'w';
- } else {
- VIXL_ASSERT(reg.IsFPRegister());
- reg_char = reg.Is64Bits() ? 'd' : 's';
- }
-
- if (reg.IsFPRegister() || !(reg.Aliases(sp) || reg.Aliases(xzr))) {
- // A normal register: w0 - w30, x0 - x30, s0 - s31, d0 - d31.
- AppendToOutput("%c%d", reg_char, reg.code());
- } else if (reg.Aliases(sp)) {
- // Disassemble w31/x31 as stack pointer wsp/sp.
- AppendToOutput("%s", reg.Is64Bits() ? "sp" : "wsp");
- } else {
- // Disassemble w31/x31 as zero register wzr/xzr.
- AppendToOutput("%czr", reg_char);
- }
-}
-
-
-void Disassembler::AppendPCRelativeOffsetToOutput(const Instruction* instr,
- int64_t offset) {
- USE(instr);
- char sign = (offset < 0) ? '-' : '+';
- AppendToOutput("#%c0x%" PRIx64, sign, std::abs(offset));
-}
-
-
-void Disassembler::AppendAddressToOutput(const Instruction* instr,
- const void* addr) {
- USE(instr);
- AppendToOutput("(addr 0x%" PRIxPTR ")", reinterpret_cast<uintptr_t>(addr));
-}
-
-
-void Disassembler::AppendCodeAddressToOutput(const Instruction* instr,
- const void* addr) {
- AppendAddressToOutput(instr, addr);
-}
-
-
-void Disassembler::AppendDataAddressToOutput(const Instruction* instr,
- const void* addr) {
- AppendAddressToOutput(instr, addr);
-}
-
-
-void Disassembler::AppendCodeRelativeAddressToOutput(const Instruction* instr,
- const void* addr) {
- USE(instr);
- int64_t rel_addr = CodeRelativeAddress(addr);
- if (rel_addr >= 0) {
- AppendToOutput("(addr 0x%" PRIx64 ")", rel_addr);
- } else {
- AppendToOutput("(addr -0x%" PRIx64 ")", -rel_addr);
- }
-}
-
-
-void Disassembler::AppendCodeRelativeCodeAddressToOutput(
- const Instruction* instr, const void* addr) {
- AppendCodeRelativeAddressToOutput(instr, addr);
-}
-
-
-void Disassembler::AppendCodeRelativeDataAddressToOutput(
- const Instruction* instr, const void* addr) {
- AppendCodeRelativeAddressToOutput(instr, addr);
-}
-
-
-void Disassembler::MapCodeAddress(int64_t base_address,
- const Instruction* instr_address) {
- set_code_address_offset(
- base_address - reinterpret_cast<intptr_t>(instr_address));
-}
-int64_t Disassembler::CodeRelativeAddress(const void* addr) {
- return reinterpret_cast<intptr_t>(addr) + code_address_offset();
-}
-
-
-void Disassembler::Format(const Instruction* instr, const char* mnemonic,
- const char* format) {
- VIXL_ASSERT(mnemonic != NULL);
- ResetOutput();
- Substitute(instr, mnemonic);
- if (format != NULL) {
- buffer_[buffer_pos_++] = ' ';
- Substitute(instr, format);
- }
- buffer_[buffer_pos_] = 0;
- ProcessOutput(instr);
-}
-
-
-void Disassembler::Substitute(const Instruction* instr, const char* string) {
- char chr = *string++;
- while (chr != '\0') {
- if (chr == '\'') {
- string += SubstituteField(instr, string);
- } else {
- buffer_[buffer_pos_++] = chr;
- }
- chr = *string++;
- }
-}
-
-
-int Disassembler::SubstituteField(const Instruction* instr,
- const char* format) {
- switch (format[0]) {
- case 'R': // Register. X or W, selected by sf bit.
- case 'F': // FP Register. S or D, selected by type field.
- case 'W':
- case 'X':
- case 'S':
- case 'D': return SubstituteRegisterField(instr, format);
- case 'I': return SubstituteImmediateField(instr, format);
- case 'L': return SubstituteLiteralField(instr, format);
- case 'H': return SubstituteShiftField(instr, format);
- case 'P': return SubstitutePrefetchField(instr, format);
- case 'C': return SubstituteConditionField(instr, format);
- case 'E': return SubstituteExtendField(instr, format);
- case 'A': return SubstitutePCRelAddressField(instr, format);
- case 'B': return SubstituteBranchTargetField(instr, format);
- case 'O': return SubstituteLSRegOffsetField(instr, format);
- case 'M': return SubstituteBarrierField(instr, format);
- default: {
- VIXL_UNREACHABLE();
- return 1;
- }
- }
-}
-
-
-int Disassembler::SubstituteRegisterField(const Instruction* instr,
- const char* format) {
- unsigned reg_num = 0;
- unsigned field_len = 2;
- switch (format[1]) {
- case 'd': reg_num = instr->Rd(); break;
- case 'n': reg_num = instr->Rn(); break;
- case 'm': reg_num = instr->Rm(); break;
- case 'a': reg_num = instr->Ra(); break;
- case 's': reg_num = instr->Rs(); break;
- case 't': {
- if (format[2] == '2') {
- reg_num = instr->Rt2();
- field_len = 3;
- } else {
- reg_num = instr->Rt();
- }
- break;
- }
- default: VIXL_UNREACHABLE();
- }
-
- // Increase field length for registers tagged as stack.
- if (format[2] == 's') {
- field_len = 3;
- }
-
- CPURegister::RegisterType reg_type;
- unsigned reg_size;
-
- if (format[0] == 'R') {
- // Register type is R: use sf bit to choose X and W.
- reg_type = CPURegister::kRegister;
- reg_size = instr->SixtyFourBits() ? kXRegSize : kWRegSize;
- } else if (format[0] == 'F') {
- // Floating-point register: use type field to choose S or D.
- reg_type = CPURegister::kFPRegister;
- reg_size = ((instr->FPType() & 1) == 0) ? kSRegSize : kDRegSize;
- } else {
- // The register type is specified.
- switch (format[0]) {
- case 'W':
- reg_type = CPURegister::kRegister; reg_size = kWRegSize; break;
- case 'X':
- reg_type = CPURegister::kRegister; reg_size = kXRegSize; break;
- case 'S':
- reg_type = CPURegister::kFPRegister; reg_size = kSRegSize; break;
- case 'D':
- reg_type = CPURegister::kFPRegister; reg_size = kDRegSize; break;
- default:
- VIXL_UNREACHABLE();
- reg_type = CPURegister::kRegister;
- reg_size = kXRegSize;
- }
- }
-
- if ((reg_type == CPURegister::kRegister) &&
- (reg_num == kZeroRegCode) && (format[2] == 's')) {
- reg_num = kSPRegInternalCode;
- }
-
- AppendRegisterNameToOutput(instr, CPURegister(reg_num, reg_size, reg_type));
-
- return field_len;
-}
-
-
-int Disassembler::SubstituteImmediateField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'I');
-
- switch (format[1]) {
- case 'M': { // IMoveImm, IMoveNeg or IMoveLSL.
- if (format[5] == 'L') {
- AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide());
- if (instr->ShiftMoveWide() > 0) {
- AppendToOutput(", lsl #%" PRId64, 16 * instr->ShiftMoveWide());
- }
- } else {
- VIXL_ASSERT((format[5] == 'I') || (format[5] == 'N'));
- uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide());
- if (format[5] == 'N')
- imm = ~imm;
- if (!instr->SixtyFourBits())
- imm &= UINT64_C(0xffffffff);
- AppendToOutput("#0x%" PRIx64, imm);
- }
- return 8;
- }
- case 'L': {
- switch (format[2]) {
- case 'L': { // ILLiteral - Immediate Load Literal.
- AppendToOutput("pc%+" PRId64,
- instr->ImmLLiteral() << kLiteralEntrySizeLog2);
- return 9;
- }
- case 'S': { // ILS - Immediate Load/Store.
- if (instr->ImmLS() != 0) {
- AppendToOutput(", #%" PRId64, instr->ImmLS());
- }
- return 3;
- }
- case 'P': { // ILPx - Immediate Load/Store Pair, x = access size.
- if (instr->ImmLSPair() != 0) {
- // format[3] is the scale value. Convert to a number.
- int scale = format[3] - 0x30;
- AppendToOutput(", #%" PRId64, instr->ImmLSPair() * scale);
- }
- return 4;
- }
- case 'U': { // ILU - Immediate Load/Store Unsigned.
- if (instr->ImmLSUnsigned() != 0) {
- AppendToOutput(", #%" PRIu64,
- instr->ImmLSUnsigned() << instr->SizeLS());
- }
- return 3;
- }
- }
- }
- case 'C': { // ICondB - Immediate Conditional Branch.
- int64_t offset = instr->ImmCondBranch() << 2;
- AppendPCRelativeOffsetToOutput(instr, offset);
- return 6;
- }
- case 'A': { // IAddSub.
- VIXL_ASSERT(instr->ShiftAddSub() <= 1);
- int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
- AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
- return 7;
- }
- case 'F': { // IFPSingle, IFPDouble or IFPFBits.
- if (format[3] == 'F') { // IFPFbits.
- AppendToOutput("#%" PRId64, 64 - instr->FPScale());
- return 8;
- } else {
- AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(),
- format[3] == 'S' ? instr->ImmFP32() : instr->ImmFP64());
- return 9;
- }
- }
- case 'T': { // ITri - Immediate Triangular Encoded.
- AppendToOutput("#0x%" PRIx64, instr->ImmLogical());
- return 4;
- }
- case 'N': { // INzcv.
- int nzcv = (instr->Nzcv() << Flags_offset);
- AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N',
- ((nzcv & ZFlag) == 0) ? 'z' : 'Z',
- ((nzcv & CFlag) == 0) ? 'c' : 'C',
- ((nzcv & VFlag) == 0) ? 'v' : 'V');
- return 5;
- }
- case 'P': { // IP - Conditional compare.
- AppendToOutput("#%" PRId64, instr->ImmCondCmp());
- return 2;
- }
- case 'B': { // Bitfields.
- return SubstituteBitfieldImmediateField(instr, format);
- }
- case 'E': { // IExtract.
- AppendToOutput("#%" PRId64, instr->ImmS());
- return 8;
- }
- case 'S': { // IS - Test and branch bit.
- AppendToOutput("#%" PRId64, (instr->ImmTestBranchBit5() << 5) |
- instr->ImmTestBranchBit40());
- return 2;
- }
- case 'D': { // IDebug - HLT and BRK instructions.
- AppendToOutput("#0x%" PRIx64, instr->ImmException());
- return 6;
- }
- case 'X': { // IX - CLREX instruction.
- AppendToOutput("#0x%" PRIx64, instr->CRm());
- return 2;
- }
- default: {
- VIXL_UNIMPLEMENTED();
- return 0;
- }
- }
-}
-
-
-int Disassembler::SubstituteBitfieldImmediateField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT((format[0] == 'I') && (format[1] == 'B'));
- unsigned r = instr->ImmR();
- unsigned s = instr->ImmS();
-
- switch (format[2]) {
- case 'r': { // IBr.
- AppendToOutput("#%d", r);
- return 3;
- }
- case 's': { // IBs+1 or IBs-r+1.
- if (format[3] == '+') {
- AppendToOutput("#%d", s + 1);
- return 5;
- } else {
- VIXL_ASSERT(format[3] == '-');
- AppendToOutput("#%d", s - r + 1);
- return 7;
- }
- }
- case 'Z': { // IBZ-r.
- VIXL_ASSERT((format[3] == '-') && (format[4] == 'r'));
- unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize;
- AppendToOutput("#%d", reg_size - r);
- return 5;
- }
- default: {
- VIXL_UNREACHABLE();
- return 0;
- }
- }
-}
-
-
-int Disassembler::SubstituteLiteralField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(strncmp(format, "LValue", 6) == 0);
- USE(format);
-
- const void * address = instr->LiteralAddress<const void *>();
- switch (instr->Mask(LoadLiteralMask)) {
- case LDR_w_lit:
- case LDR_x_lit:
- case LDRSW_x_lit:
- case LDR_s_lit:
- case LDR_d_lit:
- AppendCodeRelativeDataAddressToOutput(instr, address);
- break;
- case PRFM_lit: {
- // Use the prefetch hint to decide how to print the address.
- switch (instr->PrefetchHint()) {
- case 0x0: // PLD: prefetch for load.
- case 0x2: // PST: prepare for store.
- AppendCodeRelativeDataAddressToOutput(instr, address);
- break;
- case 0x1: // PLI: preload instructions.
- AppendCodeRelativeCodeAddressToOutput(instr, address);
- break;
- case 0x3: // Unallocated hint.
- AppendCodeRelativeAddressToOutput(instr, address);
- break;
- }
- break;
- }
- default:
- VIXL_UNREACHABLE();
- }
-
- return 6;
-}
-
-
-int Disassembler::SubstituteShiftField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'H');
- VIXL_ASSERT(instr->ShiftDP() <= 0x3);
-
- switch (format[1]) {
- case 'D': { // HDP.
- VIXL_ASSERT(instr->ShiftDP() != ROR);
- } // Fall through.
- case 'L': { // HLo.
- if (instr->ImmDPShift() != 0) {
- const char* shift_type[] = {"lsl", "lsr", "asr", "ror"};
- AppendToOutput(", %s #%" PRId64, shift_type[instr->ShiftDP()],
- instr->ImmDPShift());
- }
- return 3;
- }
- default:
- VIXL_UNIMPLEMENTED();
- return 0;
- }
-}
-
-
-int Disassembler::SubstituteConditionField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'C');
- const char* condition_code[] = { "eq", "ne", "hs", "lo",
- "mi", "pl", "vs", "vc",
- "hi", "ls", "ge", "lt",
- "gt", "le", "al", "nv" };
- int cond;
- switch (format[1]) {
- case 'B': cond = instr->ConditionBranch(); break;
- case 'I': {
- cond = InvertCondition(static_cast<Condition>(instr->Condition()));
- break;
- }
- default: cond = instr->Condition();
- }
- AppendToOutput("%s", condition_code[cond]);
- return 4;
-}
-
-
-int Disassembler::SubstitutePCRelAddressField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT((strcmp(format, "AddrPCRelByte") == 0) || // Used by `adr`.
- (strcmp(format, "AddrPCRelPage") == 0)); // Used by `adrp`.
-
- int64_t offset = instr->ImmPCRel();
-
- // Compute the target address based on the effective address (after applying
- // code_address_offset). This is required for correct behaviour of adrp.
- const Instruction* base = instr + code_address_offset();
- if (format[9] == 'P') {
- offset *= kPageSize;
- base = AlignDown(base, kPageSize);
- }
- // Strip code_address_offset before printing, so we can use the
- // semantically-correct AppendCodeRelativeAddressToOutput.
- const void* target =
- reinterpret_cast<const void*>(base + offset - code_address_offset());
-
- AppendPCRelativeOffsetToOutput(instr, offset);
- AppendToOutput(" ");
- AppendCodeRelativeAddressToOutput(instr, target);
- return 13;
-}
-
-
-int Disassembler::SubstituteBranchTargetField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(strncmp(format, "BImm", 4) == 0);
-
- int64_t offset = 0;
- switch (format[5]) {
- // BImmUncn - unconditional branch immediate.
- case 'n': offset = instr->ImmUncondBranch(); break;
- // BImmCond - conditional branch immediate.
- case 'o': offset = instr->ImmCondBranch(); break;
- // BImmCmpa - compare and branch immediate.
- case 'm': offset = instr->ImmCmpBranch(); break;
- // BImmTest - test and branch immediate.
- case 'e': offset = instr->ImmTestBranch(); break;
- default: VIXL_UNIMPLEMENTED();
- }
- offset <<= kInstructionSizeLog2;
- const void* target_address = reinterpret_cast<const void*>(instr + offset);
- VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
-
- AppendPCRelativeOffsetToOutput(instr, offset);
- AppendToOutput(" ");
- AppendCodeRelativeCodeAddressToOutput(instr, target_address);
-
- return 8;
-}
-
-
-int Disassembler::SubstituteExtendField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(strncmp(format, "Ext", 3) == 0);
- VIXL_ASSERT(instr->ExtendMode() <= 7);
- USE(format);
-
- const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
- "sxtb", "sxth", "sxtw", "sxtx" };
-
- // If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit
- // registers becomes lsl.
- if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) &&
- (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
- (instr->ExtendMode() == UXTX))) {
- if (instr->ImmExtendShift() > 0) {
- AppendToOutput(", lsl #%" PRId64, instr->ImmExtendShift());
- }
- } else {
- AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
- if (instr->ImmExtendShift() > 0) {
- AppendToOutput(" #%" PRId64, instr->ImmExtendShift());
- }
- }
- return 3;
-}
-
-
-int Disassembler::SubstituteLSRegOffsetField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(strncmp(format, "Offsetreg", 9) == 0);
- const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
- "undefined", "undefined", "sxtw", "sxtx" };
- USE(format);
-
- unsigned shift = instr->ImmShiftLS();
- Extend ext = static_cast<Extend>(instr->ExtendMode());
- char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x';
-
- unsigned rm = instr->Rm();
- if (rm == kZeroRegCode) {
- AppendToOutput("%czr", reg_type);
- } else {
- AppendToOutput("%c%d", reg_type, rm);
- }
-
- // Extend mode UXTX is an alias for shift mode LSL here.
- if (!((ext == UXTX) && (shift == 0))) {
- AppendToOutput(", %s", extend_mode[ext]);
- if (shift != 0) {
- AppendToOutput(" #%" PRId64, instr->SizeLS());
- }
- }
- return 9;
-}
-
-
-int Disassembler::SubstitutePrefetchField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'P');
- USE(format);
-
- static const char* hints[] = {"ld", "li", "st"};
- static const char* stream_options[] = {"keep", "strm"};
-
- unsigned hint = instr->PrefetchHint();
- unsigned target = instr->PrefetchTarget() + 1;
- unsigned stream = instr->PrefetchStream();
-
- if ((hint >= (sizeof(hints) / sizeof(hints[0]))) || (target > 3)) {
- // Unallocated prefetch operations.
- int prefetch_mode = instr->ImmPrefetchOperation();
- AppendToOutput("#0b%c%c%c%c%c",
- (prefetch_mode & (1 << 4)) ? '1' : '0',
- (prefetch_mode & (1 << 3)) ? '1' : '0',
- (prefetch_mode & (1 << 2)) ? '1' : '0',
- (prefetch_mode & (1 << 1)) ? '1' : '0',
- (prefetch_mode & (1 << 0)) ? '1' : '0');
- } else {
- VIXL_ASSERT(stream < (sizeof(stream_options) / sizeof(stream_options[0])));
- AppendToOutput("p%sl%d%s", hints[hint], target, stream_options[stream]);
- }
- return 6;
-}
-
-int Disassembler::SubstituteBarrierField(const Instruction* instr,
- const char* format) {
- VIXL_ASSERT(format[0] == 'M');
- USE(format);
-
- static const char* options[4][4] = {
- { "sy (0b0000)", "oshld", "oshst", "osh" },
- { "sy (0b0100)", "nshld", "nshst", "nsh" },
- { "sy (0b1000)", "ishld", "ishst", "ish" },
- { "sy (0b1100)", "ld", "st", "sy" }
- };
- int domain = instr->ImmBarrierDomain();
- int type = instr->ImmBarrierType();
-
- AppendToOutput("%s", options[domain][type]);
- return 1;
-}
-
-void Disassembler::ResetOutput() {
- buffer_pos_ = 0;
- buffer_[buffer_pos_] = 0;
-}
-
-
-void Disassembler::AppendToOutput(const char* format, ...) {
- va_list args;
- va_start(args, format);
- buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_, format, args);
- va_end(args);
-}
-
-
-void PrintDisassembler::ProcessOutput(const Instruction* instr) {
- fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n",
- reinterpret_cast<uint64_t>(instr),
- instr->InstructionBits(),
- GetOutput());
-}
-} // namespace vixl
diff --git a/disas/libvixl/a64/instructions-a64.cc b/disas/libvixl/a64/instructions-a64.cc
deleted file mode 100644
index b091886838..0000000000
--- a/disas/libvixl/a64/instructions-a64.cc
+++ /dev/null
@@ -1,314 +0,0 @@
-// Copyright 2013, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#include "a64/instructions-a64.h"
-#include "a64/assembler-a64.h"
-
-namespace vixl {
-
-
-// Floating-point infinity values.
-const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
-const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
-const double kFP64PositiveInfinity =
- rawbits_to_double(UINT64_C(0x7ff0000000000000));
-const double kFP64NegativeInfinity =
- rawbits_to_double(UINT64_C(0xfff0000000000000));
-
-
-// The default NaN values (for FPCR.DN=1).
-const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
-const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
-
-
-static uint64_t RotateRight(uint64_t value,
- unsigned int rotate,
- unsigned int width) {
- VIXL_ASSERT(width <= 64);
- rotate &= 63;
- return ((value & ((UINT64_C(1) << rotate) - 1)) <<
- (width - rotate)) | (value >> rotate);
-}
-
-
-static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
- uint64_t value,
- unsigned width) {
- VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
- (width == 32));
- VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
- uint64_t result = value & ((UINT64_C(1) << width) - 1);
- for (unsigned i = width; i < reg_size; i *= 2) {
- result |= (result << i);
- }
- return result;
-}
-
-
-bool Instruction::IsLoad() const {
- if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
- return false;
- }
-
- if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
- return Mask(LoadStorePairLBit) != 0;
- } else {
- LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
- switch (op) {
- case LDRB_w:
- case LDRH_w:
- case LDR_w:
- case LDR_x:
- case LDRSB_w:
- case LDRSB_x:
- case LDRSH_w:
- case LDRSH_x:
- case LDRSW_x:
- case LDR_s:
- case LDR_d: return true;
- default: return false;
- }
- }
-}
-
-
-bool Instruction::IsStore() const {
- if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
- return false;
- }
-
- if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
- return Mask(LoadStorePairLBit) == 0;
- } else {
- LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreOpMask));
- switch (op) {
- case STRB_w:
- case STRH_w:
- case STR_w:
- case STR_x:
- case STR_s:
- case STR_d: return true;
- default: return false;
- }
- }
-}
-
-
-// Logical immediates can't encode zero, so a return value of zero is used to
-// indicate a failure case. Specifically, where the constraints on imm_s are
-// not met.
-uint64_t Instruction::ImmLogical() const {
- unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
- int64_t n = BitN();
- int64_t imm_s = ImmSetBits();
- int64_t imm_r = ImmRotate();
-
- // An integer is constructed from the n, imm_s and imm_r bits according to
- // the following table:
- //
- // N imms immr size S R
- // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
- // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
- // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
- // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
- // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
- // 0 11110s xxxxxr 2 UInt(s) UInt(r)
- // (s bits must not be all set)
- //
- // A pattern is constructed of size bits, where the least significant S+1
- // bits are set. The pattern is rotated right by R, and repeated across a
- // 32 or 64-bit value, depending on destination register width.
- //
-
- if (n == 1) {
- if (imm_s == 0x3F) {
- return 0;
- }
- uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
- return RotateRight(bits, imm_r, 64);
- } else {
- if ((imm_s >> 1) == 0x1F) {
- return 0;
- }
- for (int width = 0x20; width >= 0x2; width >>= 1) {
- if ((imm_s & width) == 0) {
- int mask = width - 1;
- if ((imm_s & mask) == mask) {
- return 0;
- }
- uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
- return RepeatBitsAcrossReg(reg_size,
- RotateRight(bits, imm_r & mask, width),
- width);
- }
- }
- }
- VIXL_UNREACHABLE();
- return 0;
-}
-
-
-float Instruction::ImmFP32() const {
- // ImmFP: abcdefgh (8 bits)
- // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
- // where B is b ^ 1
- uint32_t bits = ImmFP();
- uint32_t bit7 = (bits >> 7) & 0x1;
- uint32_t bit6 = (bits >> 6) & 0x1;
- uint32_t bit5_to_0 = bits & 0x3f;
- uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
-
- return rawbits_to_float(result);
-}
-
-
-double Instruction::ImmFP64() const {
- // ImmFP: abcdefgh (8 bits)
- // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
- // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
- // where B is b ^ 1
- uint32_t bits = ImmFP();
- uint64_t bit7 = (bits >> 7) & 0x1;
- uint64_t bit6 = (bits >> 6) & 0x1;
- uint64_t bit5_to_0 = bits & 0x3f;
- uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
-
- return rawbits_to_double(result);
-}
-
-
-LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
- switch (op) {
- case STP_x:
- case LDP_x:
- case STP_d:
- case LDP_d: return LSDoubleWord;
- default: return LSWord;
- }
-}
-
-
-const Instruction* Instruction::ImmPCOffsetTarget() const {
- const Instruction * base = this;
- ptrdiff_t offset;
- if (IsPCRelAddressing()) {
- // ADR and ADRP.
- offset = ImmPCRel();
- if (Mask(PCRelAddressingMask) == ADRP) {
- base = AlignDown(base, kPageSize);
- offset *= kPageSize;
- } else {
- VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
- }
- } else {
- // All PC-relative branches.
- VIXL_ASSERT(BranchType() != UnknownBranchType);
- // Relative branch offsets are instruction-size-aligned.
- offset = ImmBranch() << kInstructionSizeLog2;
- }
- return base + offset;
-}
-
-
-inline int Instruction::ImmBranch() const {
- switch (BranchType()) {
- case CondBranchType: return ImmCondBranch();
- case UncondBranchType: return ImmUncondBranch();
- case CompareBranchType: return ImmCmpBranch();
- case TestBranchType: return ImmTestBranch();
- default: VIXL_UNREACHABLE();
- }
- return 0;
-}
-
-
-void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
- if (IsPCRelAddressing()) {
- SetPCRelImmTarget(target);
- } else {
- SetBranchImmTarget(target);
- }
-}
-
-
-void Instruction::SetPCRelImmTarget(const Instruction* target) {
- int32_t imm21;
- if ((Mask(PCRelAddressingMask) == ADR)) {
- imm21 = target - this;
- } else {
- VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
- uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
- uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
- imm21 = target_page - this_page;
- }
- Instr imm = Assembler::ImmPCRelAddress(imm21);
-
- SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
-}
-
-
-void Instruction::SetBranchImmTarget(const Instruction* target) {
- VIXL_ASSERT(((target - this) & 3) == 0);
- Instr branch_imm = 0;
- uint32_t imm_mask = 0;
- int offset = (target - this) >> kInstructionSizeLog2;
- switch (BranchType()) {
- case CondBranchType: {
- branch_imm = Assembler::ImmCondBranch(offset);
- imm_mask = ImmCondBranch_mask;
- break;
- }
- case UncondBranchType: {
- branch_imm = Assembler::ImmUncondBranch(offset);
- imm_mask = ImmUncondBranch_mask;
- break;
- }
- case CompareBranchType: {
- branch_imm = Assembler::ImmCmpBranch(offset);
- imm_mask = ImmCmpBranch_mask;
- break;
- }
- case TestBranchType: {
- branch_imm = Assembler::ImmTestBranch(offset);
- imm_mask = ImmTestBranch_mask;
- break;
- }
- default: VIXL_UNREACHABLE();
- }
- SetInstructionBits(Mask(~imm_mask) | branch_imm);
-}
-
-
-void Instruction::SetImmLLiteral(const Instruction* source) {
- VIXL_ASSERT(IsWordAligned(source));
- ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
- Instr imm = Assembler::ImmLLiteral(offset);
- Instr mask = ImmLLiteral_mask;
-
- SetInstructionBits(Mask(~mask) | imm);
-}
-} // namespace vixl
-
diff --git a/disas/libvixl/a64/instructions-a64.h b/disas/libvixl/a64/instructions-a64.h
deleted file mode 100644
index f1d883ccc7..0000000000
--- a/disas/libvixl/a64/instructions-a64.h
+++ /dev/null
@@ -1,384 +0,0 @@
-// Copyright 2013, ARM Limited
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are met:
-//
-// * Redistributions of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-// * Neither the name of ARM Limited nor the names of its contributors may be
-// used to endorse or promote products derived from this software without
-// specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
-// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
-// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
-// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
-#define VIXL_A64_INSTRUCTIONS_A64_H_
-
-#include "globals.h"
-#include "utils.h"
-#include "a64/constants-a64.h"
-
-namespace vixl {
-// ISA constants. --------------------------------------------------------------
-
-typedef uint32_t Instr;
-const unsigned kInstructionSize = 4;
-const unsigned kInstructionSizeLog2 = 2;
-const unsigned kLiteralEntrySize = 4;
-const unsigned kLiteralEntrySizeLog2 = 2;
-const unsigned kMaxLoadLiteralRange = 1 * MBytes;
-
-// This is the nominal page size (as used by the adrp instruction); the actual
-// size of the memory pages allocated by the kernel is likely to differ.
-const unsigned kPageSize = 4 * KBytes;
-const unsigned kPageSizeLog2 = 12;
-
-const unsigned kWRegSize = 32;
-const unsigned kWRegSizeLog2 = 5;
-const unsigned kWRegSizeInBytes = kWRegSize / 8;
-const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
-const unsigned kXRegSize = 64;
-const unsigned kXRegSizeLog2 = 6;
-const unsigned kXRegSizeInBytes = kXRegSize / 8;
-const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
-const unsigned kSRegSize = 32;
-const unsigned kSRegSizeLog2 = 5;
-const unsigned kSRegSizeInBytes = kSRegSize / 8;
-const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
-const unsigned kDRegSize = 64;
-const unsigned kDRegSizeLog2 = 6;
-const unsigned kDRegSizeInBytes = kDRegSize / 8;
-const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
-const uint64_t kWRegMask = UINT64_C(0xffffffff);
-const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
-const uint64_t kSRegMask = UINT64_C(0xffffffff);
-const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
-const uint64_t kSSignMask = UINT64_C(0x80000000);
-const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
-const uint64_t kWSignMask = UINT64_C(0x80000000);
-const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
-const uint64_t kByteMask = UINT64_C(0xff);
-const uint64_t kHalfWordMask = UINT64_C(0xffff);
-const uint64_t kWordMask = UINT64_C(0xffffffff);
-const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
-const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
-const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
-const int64_t kXMinInt = INT64_C(0x8000000000000000);
-const int32_t kWMaxInt = INT32_C(0x7fffffff);
-const int32_t kWMinInt = INT32_C(0x80000000);
-const unsigned kLinkRegCode = 30;
-const unsigned kZeroRegCode = 31;
-const unsigned kSPRegInternalCode = 63;
-const unsigned kRegCodeMask = 0x1f;
-
-const unsigned kAddressTagOffset = 56;
-const unsigned kAddressTagWidth = 8;
-const uint64_t kAddressTagMask =
- ((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
-VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));
-
-// AArch64 floating-point specifics. These match IEEE-754.
-const unsigned kDoubleMantissaBits = 52;
-const unsigned kDoubleExponentBits = 11;
-const unsigned kFloatMantissaBits = 23;
-const unsigned kFloatExponentBits = 8;
-
-// Floating-point infinity values.
-extern const float kFP32PositiveInfinity;
-extern const float kFP32NegativeInfinity;
-extern const double kFP64PositiveInfinity;
-extern const double kFP64NegativeInfinity;
-
-// The default NaN values (for FPCR.DN=1).
-extern const double kFP64DefaultNaN;
-extern const float kFP32DefaultNaN;
-
-
-enum LSDataSize {
- LSByte = 0,
- LSHalfword = 1,
- LSWord = 2,
- LSDoubleWord = 3
-};
-
-LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
-
-enum ImmBranchType {
- UnknownBranchType = 0,
- CondBranchType = 1,
- UncondBranchType = 2,
- CompareBranchType = 3,
- TestBranchType = 4
-};
-
-enum AddrMode {
- Offset,
- PreIndex,
- PostIndex
-};
-
-enum FPRounding {
- // The first four values are encodable directly by FPCR<RMode>.
- FPTieEven = 0x0,
- FPPositiveInfinity = 0x1,
- FPNegativeInfinity = 0x2,
- FPZero = 0x3,
-
- // The final rounding mode is only available when explicitly specified by the
- // instruction (such as with fcvta). It cannot be set in FPCR.
- FPTieAway
-};
-
-enum Reg31Mode {
- Reg31IsStackPointer,
- Reg31IsZeroRegister
-};
-
-// Instructions. ---------------------------------------------------------------
-
-class Instruction {
- public:
- Instr InstructionBits() const {
- return *(reinterpret_cast<const Instr*>(this));
- }
-
- void SetInstructionBits(Instr new_instr) {
- *(reinterpret_cast<Instr*>(this)) = new_instr;
- }
-
- int Bit(int pos) const {
- return (InstructionBits() >> pos) & 1;
- }
-
- uint32_t Bits(int msb, int lsb) const {
- return unsigned_bitextract_32(msb, lsb, InstructionBits());
- }
-
- int32_t SignedBits(int msb, int lsb) const {
- int32_t bits = *(reinterpret_cast<const int32_t*>(this));
- return signed_bitextract_32(msb, lsb, bits);
- }
-
- Instr Mask(uint32_t mask) const {
- return InstructionBits() & mask;
- }
-
- #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
- int64_t Name() const { return Func(HighBit, LowBit); }
- INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
- #undef DEFINE_GETTER
-
- // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
- // formed from ImmPCRelLo and ImmPCRelHi.
- int ImmPCRel() const {
- int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
- int const width = ImmPCRelLo_width + ImmPCRelHi_width;
- return signed_bitextract_32(width-1, 0, offset);
- }
-
- uint64_t ImmLogical() const;
- float ImmFP32() const;
- double ImmFP64() const;
-
- LSDataSize SizeLSPair() const {
- return CalcLSPairDataSize(
- static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
- }
-
- // Helpers.
- bool IsCondBranchImm() const {
- return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
- }
-
- bool IsUncondBranchImm() const {
- return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
- }
-
- bool IsCompareBranch() const {
- return Mask(CompareBranchFMask) == CompareBranchFixed;
- }
-
- bool IsTestBranch() const {
- return Mask(TestBranchFMask) == TestBranchFixed;
- }
-
- bool IsPCRelAddressing() const {
- return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
- }
-
- bool IsLogicalImmediate() const {
- return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
- }
-
- bool IsAddSubImmediate() const {
- return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
- }
-
- bool IsAddSubExtended() const {
- return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
- }
-
- bool IsLoadOrStore() const {
- return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
- }
-
- bool IsLoad() const;
- bool IsStore() const;
-
- bool IsLoadLiteral() const {
- // This includes PRFM_lit.
- return Mask(LoadLiteralFMask) == LoadLiteralFixed;
- }
-
- bool IsMovn() const {
- return (Mask(MoveWideImmediateMask) == MOVN_x) ||
- (Mask(MoveWideImmediateMask) == MOVN_w);
- }
-
- // Indicate whether Rd can be the stack pointer or the zero register. This
- // does not check that the instruction actually has an Rd field.
- Reg31Mode RdMode() const {
- // The following instructions use sp or wsp as Rd:
- // Add/sub (immediate) when not setting the flags.
- // Add/sub (extended) when not setting the flags.
- // Logical (immediate) when not setting the flags.
- // Otherwise, r31 is the zero register.
- if (IsAddSubImmediate() || IsAddSubExtended()) {
- if (Mask(AddSubSetFlagsBit)) {
- return Reg31IsZeroRegister;
- } else {
- return Reg31IsStackPointer;
- }
- }
- if (IsLogicalImmediate()) {
- // Of the logical (immediate) instructions, only ANDS (and its aliases)
- // can set the flags. The others can all write into sp.
- // Note that some logical operations are not available to
- // immediate-operand instructions, so we have to combine two masks here.
- if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
- return Reg31IsZeroRegister;
- } else {
- return Reg31IsStackPointer;
- }
- }
- return Reg31IsZeroRegister;
- }
-
- // Indicate whether Rn can be the stack pointer or the zero register. This
- // does not check that the instruction actually has an Rn field.
- Reg31Mode RnMode() const {
- // The following instructions use sp or wsp as Rn:
- // All loads and stores.
- // Add/sub (immediate).
- // Add/sub (extended).
- // Otherwise, r31 is the zero register.
- if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
- return Reg31IsStackPointer;
- }
- return Reg31IsZeroRegister;
- }
-
- ImmBranchType BranchType() const {
- if (IsCondBranchImm()) {
- return CondBranchType;
- } else if (IsUncondBranchImm()) {
- return UncondBranchType;
- } else if (IsCompareBranch()) {
- return CompareBranchType;
- } else if (IsTestBranch()) {
- return TestBranchType;
- } else {
- return UnknownBranchType;
- }
- }
-
- // Find the target of this instruction. 'this' may be a branch or a
- // PC-relative addressing instruction.
- const Instruction* ImmPCOffsetTarget() const;
-
- // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
- // a PC-relative addressing instruction.
- void SetImmPCOffsetTarget(const Instruction* target);
- // Patch a literal load instruction to load from 'source'.
- void SetImmLLiteral(const Instruction* source);
-
- // Calculate the address of a literal referred to by a load-literal
- // instruction, and return it as the specified type.
- //
- // The literal itself is safely mutable only if the backing buffer is safely
- // mutable.
- template <typename T>
- T LiteralAddress() const {
- uint64_t base_raw = reinterpret_cast<uintptr_t>(this);
- ptrdiff_t offset = ImmLLiteral() << kLiteralEntrySizeLog2;
- uint64_t address_raw = base_raw + offset;
-
- // Cast the address using a C-style cast. A reinterpret_cast would be
- // appropriate, but it can't cast one integral type to another.
- T address = (T)(address_raw);
-
- // Assert that the address can be represented by the specified type.
- VIXL_ASSERT((uint64_t)(address) == address_raw);
-
- return address;
- }
-
- uint32_t Literal32() const {
- uint32_t literal;
- memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
- return literal;
- }
-
- uint64_t Literal64() const {
- uint64_t literal;
- memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
- return literal;
- }
-
- float LiteralFP32() const {
- return rawbits_to_float(Literal32());
- }
-
- double LiteralFP64() const {
- return rawbits_to_double(Literal64());
- }
-
- const Instruction* NextInstruction() const {
- return this + kInstructionSize;
- }
-
- const Instruction* InstructionAtOffset(int64_t offset) const {
- VIXL_ASSERT(IsWordAligned(this + offset));
- return this + offset;
- }
-
- template<typename T> static Instruction* Cast(T src) {
- return reinterpret_cast<Instruction*>(src);
- }
-
- template<typename T> static const Instruction* CastConst(T src) {
- return reinterpret_cast<const Instruction*>(src);
- }
-
- private:
- int ImmBranch() const;
-
- void SetPCRelImmTarget(const Instruction* target);
- void SetBranchImmTarget(const Instruction* target);
-};
-} // namespace vixl
-
-#endif // VIXL_A64_INSTRUCTIONS_A64_H_
diff --git a/disas/libvixl/vixl/a64/assembler-a64.h b/disas/libvixl/vixl/a64/assembler-a64.h
new file mode 100644
index 0000000000..fda5ccc6c7
--- /dev/null
+++ b/disas/libvixl/vixl/a64/assembler-a64.h
@@ -0,0 +1,4624 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_ASSEMBLER_A64_H_
+#define VIXL_A64_ASSEMBLER_A64_H_
+
+
+#include "vixl/globals.h"
+#include "vixl/invalset.h"
+#include "vixl/utils.h"
+#include "vixl/code-buffer.h"
+#include "vixl/a64/instructions-a64.h"
+
+namespace vixl {
+
+typedef uint64_t RegList;
+static const int kRegListSizeInBits = sizeof(RegList) * 8;
+
+
+// Registers.
+
+// Some CPURegister methods can return Register or VRegister types, so we need
+// to declare them in advance.
+class Register;
+class VRegister;
+
+class CPURegister {
+ public:
+ enum RegisterType {
+ // The kInvalid value is used to detect uninitialized static instances,
+ // which are always zero-initialized before any constructors are called.
+ kInvalid = 0,
+ kRegister,
+ kVRegister,
+ kFPRegister = kVRegister,
+ kNoRegister
+ };
+
+ CPURegister() : code_(0), size_(0), type_(kNoRegister) {
+ VIXL_ASSERT(!IsValid());
+ VIXL_ASSERT(IsNone());
+ }
+
+ CPURegister(unsigned code, unsigned size, RegisterType type)
+ : code_(code), size_(size), type_(type) {
+ VIXL_ASSERT(IsValidOrNone());
+ }
+
+ unsigned code() const {
+ VIXL_ASSERT(IsValid());
+ return code_;
+ }
+
+ RegisterType type() const {
+ VIXL_ASSERT(IsValidOrNone());
+ return type_;
+ }
+
+ RegList Bit() const {
+ VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
+ return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
+ }
+
+ unsigned size() const {
+ VIXL_ASSERT(IsValid());
+ return size_;
+ }
+
+ int SizeInBytes() const {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(size() % 8 == 0);
+ return size_ / 8;
+ }
+
+ int SizeInBits() const {
+ VIXL_ASSERT(IsValid());
+ return size_;
+ }
+
+ bool Is8Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 8;
+ }
+
+ bool Is16Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 16;
+ }
+
+ bool Is32Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 32;
+ }
+
+ bool Is64Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 64;
+ }
+
+ bool Is128Bits() const {
+ VIXL_ASSERT(IsValid());
+ return size_ == 128;
+ }
+
+ bool IsValid() const {
+ if (IsValidRegister() || IsValidVRegister()) {
+ VIXL_ASSERT(!IsNone());
+ return true;
+ } else {
+ // This assert is hit when the register has not been properly initialized.
+ // One cause for this can be an initialisation order fiasco. See
+ // https://isocpp.org/wiki/faq/ctors#static-init-order for some details.
+ VIXL_ASSERT(IsNone());
+ return false;
+ }
+ }
+
+ bool IsValidRegister() const {
+ return IsRegister() &&
+ ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
+ ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
+ }
+
+ bool IsValidVRegister() const {
+ return IsVRegister() &&
+ ((size_ == kBRegSize) || (size_ == kHRegSize) ||
+ (size_ == kSRegSize) || (size_ == kDRegSize) ||
+ (size_ == kQRegSize)) &&
+ (code_ < kNumberOfVRegisters);
+ }
+
+ bool IsValidFPRegister() const {
+ return IsFPRegister() && (code_ < kNumberOfVRegisters);
+ }
+
+ bool IsNone() const {
+ // kNoRegister types should always have size 0 and code 0.
+ VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
+ VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
+
+ return type_ == kNoRegister;
+ }
+
+ bool Aliases(const CPURegister& other) const {
+ VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
+ return (code_ == other.code_) && (type_ == other.type_);
+ }
+
+ bool Is(const CPURegister& other) const {
+ VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
+ return Aliases(other) && (size_ == other.size_);
+ }
+
+ bool IsZero() const {
+ VIXL_ASSERT(IsValid());
+ return IsRegister() && (code_ == kZeroRegCode);
+ }
+
+ bool IsSP() const {
+ VIXL_ASSERT(IsValid());
+ return IsRegister() && (code_ == kSPRegInternalCode);
+ }
+
+ bool IsRegister() const {
+ return type_ == kRegister;
+ }
+
+ bool IsVRegister() const {
+ return type_ == kVRegister;
+ }
+
+ bool IsFPRegister() const {
+ return IsS() || IsD();
+ }
+
+ bool IsW() const { return IsValidRegister() && Is32Bits(); }
+ bool IsX() const { return IsValidRegister() && Is64Bits(); }
+
+ // These assertions ensure that the size and type of the register are as
+ // described. They do not consider the number of lanes that make up a vector.
+ // So, for example, Is8B() implies IsD(), and Is1D() implies IsD, but IsD()
+ // does not imply Is1D() or Is8B().
+ // Check the number of lanes, ie. the format of the vector, using methods such
+ // as Is8B(), Is1D(), etc. in the VRegister class.
+ bool IsV() const { return IsVRegister(); }
+ bool IsB() const { return IsV() && Is8Bits(); }
+ bool IsH() const { return IsV() && Is16Bits(); }
+ bool IsS() const { return IsV() && Is32Bits(); }
+ bool IsD() const { return IsV() && Is64Bits(); }
+ bool IsQ() const { return IsV() && Is128Bits(); }
+
+ const Register& W() const;
+ const Register& X() const;
+ const VRegister& V() const;
+ const VRegister& B() const;
+ const VRegister& H() const;
+ const VRegister& S() const;
+ const VRegister& D() const;
+ const VRegister& Q() const;
+
+ bool IsSameSizeAndType(const CPURegister& other) const {
+ return (size_ == other.size_) && (type_ == other.type_);
+ }
+
+ protected:
+ unsigned code_;
+ unsigned size_;
+ RegisterType type_;
+
+ private:
+ bool IsValidOrNone() const {
+ return IsValid() || IsNone();
+ }
+};
+
+
+class Register : public CPURegister {
+ public:
+ Register() : CPURegister() {}
+ explicit Register(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()) {
+ VIXL_ASSERT(IsValidRegister());
+ }
+ Register(unsigned code, unsigned size)
+ : CPURegister(code, size, kRegister) {}
+
+ bool IsValid() const {
+ VIXL_ASSERT(IsRegister() || IsNone());
+ return IsValidRegister();
+ }
+
+ static const Register& WRegFromCode(unsigned code);
+ static const Register& XRegFromCode(unsigned code);
+
+ private:
+ static const Register wregisters[];
+ static const Register xregisters[];
+};
+
+
+class VRegister : public CPURegister {
+ public:
+ VRegister() : CPURegister(), lanes_(1) {}
+ explicit VRegister(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()), lanes_(1) {
+ VIXL_ASSERT(IsValidVRegister());
+ VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
+ }
+ VRegister(unsigned code, unsigned size, unsigned lanes = 1)
+ : CPURegister(code, size, kVRegister), lanes_(lanes) {
+ VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
+ }
+ VRegister(unsigned code, VectorFormat format)
+ : CPURegister(code, RegisterSizeInBitsFromFormat(format), kVRegister),
+ lanes_(IsVectorFormat(format) ? LaneCountFromFormat(format) : 1) {
+ VIXL_ASSERT(IsPowerOf2(lanes_) && (lanes_ <= 16));
+ }
+
+ bool IsValid() const {
+ VIXL_ASSERT(IsVRegister() || IsNone());
+ return IsValidVRegister();
+ }
+
+ static const VRegister& BRegFromCode(unsigned code);
+ static const VRegister& HRegFromCode(unsigned code);
+ static const VRegister& SRegFromCode(unsigned code);
+ static const VRegister& DRegFromCode(unsigned code);
+ static const VRegister& QRegFromCode(unsigned code);
+ static const VRegister& VRegFromCode(unsigned code);
+
+ VRegister V8B() const { return VRegister(code_, kDRegSize, 8); }
+ VRegister V16B() const { return VRegister(code_, kQRegSize, 16); }
+ VRegister V4H() const { return VRegister(code_, kDRegSize, 4); }
+ VRegister V8H() const { return VRegister(code_, kQRegSize, 8); }
+ VRegister V2S() const { return VRegister(code_, kDRegSize, 2); }
+ VRegister V4S() const { return VRegister(code_, kQRegSize, 4); }
+ VRegister V2D() const { return VRegister(code_, kQRegSize, 2); }
+ VRegister V1D() const { return VRegister(code_, kDRegSize, 1); }
+
+ bool Is8B() const { return (Is64Bits() && (lanes_ == 8)); }
+ bool Is16B() const { return (Is128Bits() && (lanes_ == 16)); }
+ bool Is4H() const { return (Is64Bits() && (lanes_ == 4)); }
+ bool Is8H() const { return (Is128Bits() && (lanes_ == 8)); }
+ bool Is2S() const { return (Is64Bits() && (lanes_ == 2)); }
+ bool Is4S() const { return (Is128Bits() && (lanes_ == 4)); }
+ bool Is1D() const { return (Is64Bits() && (lanes_ == 1)); }
+ bool Is2D() const { return (Is128Bits() && (lanes_ == 2)); }
+
+ // For consistency, we assert the number of lanes of these scalar registers,
+ // even though there are no vectors of equivalent total size with which they
+ // could alias.
+ bool Is1B() const {
+ VIXL_ASSERT(!(Is8Bits() && IsVector()));
+ return Is8Bits();
+ }
+ bool Is1H() const {
+ VIXL_ASSERT(!(Is16Bits() && IsVector()));
+ return Is16Bits();
+ }
+ bool Is1S() const {
+ VIXL_ASSERT(!(Is32Bits() && IsVector()));
+ return Is32Bits();
+ }
+
+ bool IsLaneSizeB() const { return LaneSizeInBits() == kBRegSize; }
+ bool IsLaneSizeH() const { return LaneSizeInBits() == kHRegSize; }
+ bool IsLaneSizeS() const { return LaneSizeInBits() == kSRegSize; }
+ bool IsLaneSizeD() const { return LaneSizeInBits() == kDRegSize; }
+
+ int lanes() const {
+ return lanes_;
+ }
+
+ bool IsScalar() const {
+ return lanes_ == 1;
+ }
+
+ bool IsVector() const {
+ return lanes_ > 1;
+ }
+
+ bool IsSameFormat(const VRegister& other) const {
+ return (size_ == other.size_) && (lanes_ == other.lanes_);
+ }
+
+ unsigned LaneSizeInBytes() const {
+ return SizeInBytes() / lanes_;
+ }
+
+ unsigned LaneSizeInBits() const {
+ return LaneSizeInBytes() * 8;
+ }
+
+ private:
+ static const VRegister bregisters[];
+ static const VRegister hregisters[];
+ static const VRegister sregisters[];
+ static const VRegister dregisters[];
+ static const VRegister qregisters[];
+ static const VRegister vregisters[];
+ int lanes_;
+};
+
+
+// Backward compatibility for FPRegisters.
+typedef VRegister FPRegister;
+
+// No*Reg is used to indicate an unused argument, or an error case. Note that
+// these all compare equal (using the Is() method). The Register and VRegister
+// variants are provided for convenience.
+const Register NoReg;
+const VRegister NoVReg;
+const FPRegister NoFPReg; // For backward compatibility.
+const CPURegister NoCPUReg;
+
+
+#define DEFINE_REGISTERS(N) \
+const Register w##N(N, kWRegSize); \
+const Register x##N(N, kXRegSize);
+REGISTER_CODE_LIST(DEFINE_REGISTERS)
+#undef DEFINE_REGISTERS
+const Register wsp(kSPRegInternalCode, kWRegSize);
+const Register sp(kSPRegInternalCode, kXRegSize);
+
+
+#define DEFINE_VREGISTERS(N) \
+const VRegister b##N(N, kBRegSize); \
+const VRegister h##N(N, kHRegSize); \
+const VRegister s##N(N, kSRegSize); \
+const VRegister d##N(N, kDRegSize); \
+const VRegister q##N(N, kQRegSize); \
+const VRegister v##N(N, kQRegSize);
+REGISTER_CODE_LIST(DEFINE_VREGISTERS)
+#undef DEFINE_VREGISTERS
+
+
+// Registers aliases.
+const Register ip0 = x16;
+const Register ip1 = x17;
+const Register lr = x30;
+const Register xzr = x31;
+const Register wzr = w31;
+
+
+// AreAliased returns true if any of the named registers overlap. Arguments
+// set to NoReg are ignored. The system stack pointer may be specified.
+bool AreAliased(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoReg,
+ const CPURegister& reg4 = NoReg,
+ const CPURegister& reg5 = NoReg,
+ const CPURegister& reg6 = NoReg,
+ const CPURegister& reg7 = NoReg,
+ const CPURegister& reg8 = NoReg);
+
+
+// AreSameSizeAndType returns true if all of the specified registers have the
+// same size, and are of the same type. The system stack pointer may be
+// specified. Arguments set to NoReg are ignored, as are any subsequent
+// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
+bool AreSameSizeAndType(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoCPUReg,
+ const CPURegister& reg4 = NoCPUReg,
+ const CPURegister& reg5 = NoCPUReg,
+ const CPURegister& reg6 = NoCPUReg,
+ const CPURegister& reg7 = NoCPUReg,
+ const CPURegister& reg8 = NoCPUReg);
+
+
+// AreSameFormat returns true if all of the specified VRegisters have the same
+// vector format. Arguments set to NoReg are ignored, as are any subsequent
+// arguments. At least one argument (reg1) must be valid (not NoVReg).
+bool AreSameFormat(const VRegister& reg1,
+ const VRegister& reg2,
+ const VRegister& reg3 = NoVReg,
+ const VRegister& reg4 = NoVReg);
+
+
+// AreConsecutive returns true if all of the specified VRegisters are
+// consecutive in the register file. Arguments set to NoReg are ignored, as are
+// any subsequent arguments. At least one argument (reg1) must be valid
+// (not NoVReg).
+bool AreConsecutive(const VRegister& reg1,
+ const VRegister& reg2,
+ const VRegister& reg3 = NoVReg,
+ const VRegister& reg4 = NoVReg);
+
+
+// Lists of registers.
+class CPURegList {
+ public:
+ explicit CPURegList(CPURegister reg1,
+ CPURegister reg2 = NoCPUReg,
+ CPURegister reg3 = NoCPUReg,
+ CPURegister reg4 = NoCPUReg)
+ : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
+ size_(reg1.size()), type_(reg1.type()) {
+ VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
+ VIXL_ASSERT(IsValid());
+ }
+
+ CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
+ : list_(list), size_(size), type_(type) {
+ VIXL_ASSERT(IsValid());
+ }
+
+ CPURegList(CPURegister::RegisterType type, unsigned size,
+ unsigned first_reg, unsigned last_reg)
+ : size_(size), type_(type) {
+ VIXL_ASSERT(((type == CPURegister::kRegister) &&
+ (last_reg < kNumberOfRegisters)) ||
+ ((type == CPURegister::kVRegister) &&
+ (last_reg < kNumberOfVRegisters)));
+ VIXL_ASSERT(last_reg >= first_reg);
+ list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
+ list_ &= ~((UINT64_C(1) << first_reg) - 1);
+ VIXL_ASSERT(IsValid());
+ }
+
+ CPURegister::RegisterType type() const {
+ VIXL_ASSERT(IsValid());
+ return type_;
+ }
+
+ // Combine another CPURegList into this one. Registers that already exist in
+ // this list are left unchanged. The type and size of the registers in the
+ // 'other' list must match those in this list.
+ void Combine(const CPURegList& other) {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(other.type() == type_);
+ VIXL_ASSERT(other.RegisterSizeInBits() == size_);
+ list_ |= other.list();
+ }
+
+ // Remove every register in the other CPURegList from this one. Registers that
+ // do not exist in this list are ignored. The type and size of the registers
+ // in the 'other' list must match those in this list.
+ void Remove(const CPURegList& other) {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(other.type() == type_);
+ VIXL_ASSERT(other.RegisterSizeInBits() == size_);
+ list_ &= ~other.list();
+ }
+
+ // Variants of Combine and Remove which take a single register.
+ void Combine(const CPURegister& other) {
+ VIXL_ASSERT(other.type() == type_);
+ VIXL_ASSERT(other.size() == size_);
+ Combine(other.code());
+ }
+
+ void Remove(const CPURegister& other) {
+ VIXL_ASSERT(other.type() == type_);
+ VIXL_ASSERT(other.size() == size_);
+ Remove(other.code());
+ }
+
+ // Variants of Combine and Remove which take a single register by its code;
+ // the type and size of the register is inferred from this list.
+ void Combine(int code) {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ |= (UINT64_C(1) << code);
+ }
+
+ void Remove(int code) {
+ VIXL_ASSERT(IsValid());
+ VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ &= ~(UINT64_C(1) << code);
+ }
+
+ static CPURegList Union(const CPURegList& list_1, const CPURegList& list_2) {
+ VIXL_ASSERT(list_1.type_ == list_2.type_);
+ VIXL_ASSERT(list_1.size_ == list_2.size_);
+ return CPURegList(list_1.type_, list_1.size_, list_1.list_ | list_2.list_);
+ }
+ static CPURegList Union(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3);
+ static CPURegList Union(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3,
+ const CPURegList& list_4);
+
+ static CPURegList Intersection(const CPURegList& list_1,
+ const CPURegList& list_2) {
+ VIXL_ASSERT(list_1.type_ == list_2.type_);
+ VIXL_ASSERT(list_1.size_ == list_2.size_);
+ return CPURegList(list_1.type_, list_1.size_, list_1.list_ & list_2.list_);
+ }
+ static CPURegList Intersection(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3);
+ static CPURegList Intersection(const CPURegList& list_1,
+ const CPURegList& list_2,
+ const CPURegList& list_3,
+ const CPURegList& list_4);
+
+ bool Overlaps(const CPURegList& other) const {
+ return (type_ == other.type_) && ((list_ & other.list_) != 0);
+ }
+
+ RegList list() const {
+ VIXL_ASSERT(IsValid());
+ return list_;
+ }
+
+ void set_list(RegList new_list) {
+ VIXL_ASSERT(IsValid());
+ list_ = new_list;
+ }
+
+ // Remove all callee-saved registers from the list. This can be useful when
+ // preparing registers for an AAPCS64 function call, for example.
+ void RemoveCalleeSaved();
+
+ CPURegister PopLowestIndex();
+ CPURegister PopHighestIndex();
+
+ // AAPCS64 callee-saved registers.
+ static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
+ static CPURegList GetCalleeSavedV(unsigned size = kDRegSize);
+
+ // AAPCS64 caller-saved registers. Note that this includes lr.
+ // TODO(all): Determine how we handle d8-d15 being callee-saved, but the top
+ // 64-bits being caller-saved.
+ static CPURegList GetCallerSaved(unsigned size = kXRegSize);
+ static CPURegList GetCallerSavedV(unsigned size = kDRegSize);
+
+ bool IsEmpty() const {
+ VIXL_ASSERT(IsValid());
+ return list_ == 0;
+ }
+
+ bool IncludesAliasOf(const CPURegister& other) const {
+ VIXL_ASSERT(IsValid());
+ return (type_ == other.type()) && ((other.Bit() & list_) != 0);
+ }
+
+ bool IncludesAliasOf(int code) const {
+ VIXL_ASSERT(IsValid());
+ return ((code & list_) != 0);
+ }
+
+ int Count() const {
+ VIXL_ASSERT(IsValid());
+ return CountSetBits(list_);
+ }
+
+ unsigned RegisterSizeInBits() const {
+ VIXL_ASSERT(IsValid());
+ return size_;
+ }
+
+ unsigned RegisterSizeInBytes() const {
+ int size_in_bits = RegisterSizeInBits();
+ VIXL_ASSERT((size_in_bits % 8) == 0);
+ return size_in_bits / 8;
+ }
+
+ unsigned TotalSizeInBytes() const {
+ VIXL_ASSERT(IsValid());
+ return RegisterSizeInBytes() * Count();
+ }
+
+ private:
+ RegList list_;
+ unsigned size_;
+ CPURegister::RegisterType type_;
+
+ bool IsValid() const;
+};
+
+
+// AAPCS64 callee-saved registers.
+extern const CPURegList kCalleeSaved;
+extern const CPURegList kCalleeSavedV;
+
+
+// AAPCS64 caller-saved registers. Note that this includes lr.
+extern const CPURegList kCallerSaved;
+extern const CPURegList kCallerSavedV;
+
+
+// Operand.
+class Operand {
+ public:
+ // #<immediate>
+ // where <immediate> is int64_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(int64_t immediate = 0); // NOLINT(runtime/explicit)
+
+ // rm, {<shift> #<shift_amount>}
+ // where <shift> is one of {LSL, LSR, ASR, ROR}.
+ // <shift_amount> is uint6_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(Register reg,
+ Shift shift = LSL,
+ unsigned shift_amount = 0); // NOLINT(runtime/explicit)
+
+ // rm, {<extend> {#<shift_amount>}}
+ // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
+ // <shift_amount> is uint2_t.
+ explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
+
+ bool IsImmediate() const;
+ bool IsShiftedRegister() const;
+ bool IsExtendedRegister() const;
+ bool IsZero() const;
+
+ // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
+ // which helps in the encoding of instructions that use the stack pointer.
+ Operand ToExtendedRegister() const;
+
+ int64_t immediate() const {
+ VIXL_ASSERT(IsImmediate());
+ return immediate_;
+ }
+
+ Register reg() const {
+ VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return reg_;
+ }
+
+ Shift shift() const {
+ VIXL_ASSERT(IsShiftedRegister());
+ return shift_;
+ }
+
+ Extend extend() const {
+ VIXL_ASSERT(IsExtendedRegister());
+ return extend_;
+ }
+
+ unsigned shift_amount() const {
+ VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return shift_amount_;
+ }
+
+ private:
+ int64_t immediate_;
+ Register reg_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+// MemOperand represents the addressing mode of a load or store instruction.
+class MemOperand {
+ public:
+ explicit MemOperand(Register base,
+ int64_t offset = 0,
+ AddrMode addrmode = Offset);
+ MemOperand(Register base,
+ Register regoffset,
+ Shift shift = LSL,
+ unsigned shift_amount = 0);
+ MemOperand(Register base,
+ Register regoffset,
+ Extend extend,
+ unsigned shift_amount = 0);
+ MemOperand(Register base,
+ const Operand& offset,
+ AddrMode addrmode = Offset);
+
+ const Register& base() const { return base_; }
+ const Register& regoffset() const { return regoffset_; }
+ int64_t offset() const { return offset_; }
+ AddrMode addrmode() const { return addrmode_; }
+ Shift shift() const { return shift_; }
+ Extend extend() const { return extend_; }
+ unsigned shift_amount() const { return shift_amount_; }
+ bool IsImmediateOffset() const;
+ bool IsRegisterOffset() const;
+ bool IsPreIndex() const;
+ bool IsPostIndex() const;
+
+ void AddOffset(int64_t offset);
+
+ private:
+ Register base_;
+ Register regoffset_;
+ int64_t offset_;
+ AddrMode addrmode_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+class LabelTestHelper; // Forward declaration.
+
+
+class Label {
+ public:
+ Label() : location_(kLocationUnbound) {}
+ ~Label() {
+ // If the label has been linked to, it needs to be bound to a target.
+ VIXL_ASSERT(!IsLinked() || IsBound());
+ }
+
+ bool IsBound() const { return location_ >= 0; }
+ bool IsLinked() const { return !links_.empty(); }
+
+ ptrdiff_t location() const { return location_; }
+
+ static const int kNPreallocatedLinks = 4;
+ static const ptrdiff_t kInvalidLinkKey = PTRDIFF_MAX;
+ static const size_t kReclaimFrom = 512;
+ static const size_t kReclaimFactor = 2;
+
+ typedef InvalSet<ptrdiff_t,
+ kNPreallocatedLinks,
+ ptrdiff_t,
+ kInvalidLinkKey,
+ kReclaimFrom,
+ kReclaimFactor> LinksSetBase;
+ typedef InvalSetIterator<LinksSetBase> LabelLinksIteratorBase;
+
+ private:
+ class LinksSet : public LinksSetBase {
+ public:
+ LinksSet() : LinksSetBase() {}
+ };
+
+ // Allows iterating over the links of a label. The behaviour is undefined if
+ // the list of links is modified in any way while iterating.
+ class LabelLinksIterator : public LabelLinksIteratorBase {
+ public:
+ explicit LabelLinksIterator(Label* label)
+ : LabelLinksIteratorBase(&label->links_) {}
+ };
+
+ void Bind(ptrdiff_t location) {
+ // Labels can only be bound once.
+ VIXL_ASSERT(!IsBound());
+ location_ = location;
+ }
+
+ void AddLink(ptrdiff_t instruction) {
+ // If a label is bound, the assembler already has the information it needs
+ // to write the instruction, so there is no need to add it to links_.
+ VIXL_ASSERT(!IsBound());
+ links_.insert(instruction);
+ }
+
+ void DeleteLink(ptrdiff_t instruction) {
+ links_.erase(instruction);
+ }
+
+ void ClearAllLinks() {
+ links_.clear();
+ }
+
+ // TODO: The comment below considers average case complexity for our
+ // usual use-cases. The elements of interest are:
+ // - Branches to a label are emitted in order: branch instructions to a label
+ // are generated at an offset in the code generation buffer greater than any
+ // other branch to that same label already generated. As an example, this can
+ // be broken when an instruction is patched to become a branch. Note that the
+ // code will still work, but the complexity considerations below may locally
+ // not apply any more.
+ // - Veneers are generated in order: for multiple branches of the same type
+ // branching to the same unbound label going out of range, veneers are
+ // generated in growing order of the branch instruction offset from the start
+ // of the buffer.
+ //
+ // When creating a veneer for a branch going out of range, the link for this
+ // branch needs to be removed from this `links_`. Since all branches are
+ // tracked in one underlying InvalSet, the complexity for this deletion is the
+ // same as for finding the element, ie. O(n), where n is the number of links
+ // in the set.
+ // This could be reduced to O(1) by using the same trick as used when tracking
+ // branch information for veneers: split the container to use one set per type
+ // of branch. With that setup, when a veneer is created and the link needs to
+ // be deleted, if the two points above hold, it must be the minimum element of
+ // the set for its type of branch, and that minimum element will be accessible
+ // in O(1).
+
+ // The offsets of the instructions that have linked to this label.
+ LinksSet links_;
+ // The label location.
+ ptrdiff_t location_;
+
+ static const ptrdiff_t kLocationUnbound = -1;
+
+ // It is not safe to copy labels, so disable the copy constructor and operator
+ // by declaring them private (without an implementation).
+ Label(const Label&);
+ void operator=(const Label&);
+
+ // The Assembler class is responsible for binding and linking labels, since
+ // the stored offsets need to be consistent with the Assembler's buffer.
+ friend class Assembler;
+ // The MacroAssembler and VeneerPool handle resolution of branches to distant
+ // targets.
+ friend class MacroAssembler;
+ friend class VeneerPool;
+};
+
+
+// Required InvalSet template specialisations.
+#define INVAL_SET_TEMPLATE_PARAMETERS \
+ ptrdiff_t, \
+ Label::kNPreallocatedLinks, \
+ ptrdiff_t, \
+ Label::kInvalidLinkKey, \
+ Label::kReclaimFrom, \
+ Label::kReclaimFactor
+template<>
+inline ptrdiff_t InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::Key(
+ const ptrdiff_t& element) {
+ return element;
+}
+template<>
+inline void InvalSet<INVAL_SET_TEMPLATE_PARAMETERS>::SetKey(
+ ptrdiff_t* element, ptrdiff_t key) {
+ *element = key;
+}
+#undef INVAL_SET_TEMPLATE_PARAMETERS
+
+
+class Assembler;
+class LiteralPool;
+
+// A literal is a 32-bit or 64-bit piece of data stored in the instruction
+// stream and loaded through a pc relative load. The same literal can be
+// referred to by multiple instructions but a literal can only reside at one
+// place in memory. A literal can be used by a load before or after being
+// placed in memory.
+//
+// Internally an offset of 0 is associated with a literal which has been
+// neither used nor placed. Then two possibilities arise:
+// 1) the label is placed, the offset (stored as offset + 1) is used to
+// resolve any subsequent load using the label.
+// 2) the label is not placed and offset is the offset of the last load using
+// the literal (stored as -offset -1). If multiple loads refer to this
+// literal then the last load holds the offset of the preceding load and
+// all loads form a chain. Once the offset is placed all the loads in the
+// chain are resolved and future loads fall back to possibility 1.
+class RawLiteral {
+ public:
+ enum DeletionPolicy {
+ kDeletedOnPlacementByPool,
+ kDeletedOnPoolDestruction,
+ kManuallyDeleted
+ };
+
+ RawLiteral(size_t size,
+ LiteralPool* literal_pool,
+ DeletionPolicy deletion_policy = kManuallyDeleted);
+
+ // The literal pool only sees and deletes `RawLiteral*` pointers, but they are
+ // actually pointing to `Literal<T>` objects.
+ virtual ~RawLiteral() {}
+
+ size_t size() {
+ VIXL_STATIC_ASSERT(kDRegSizeInBytes == kXRegSizeInBytes);
+ VIXL_STATIC_ASSERT(kSRegSizeInBytes == kWRegSizeInBytes);
+ VIXL_ASSERT((size_ == kXRegSizeInBytes) ||
+ (size_ == kWRegSizeInBytes) ||
+ (size_ == kQRegSizeInBytes));
+ return size_;
+ }
+ uint64_t raw_value128_low64() {
+ VIXL_ASSERT(size_ == kQRegSizeInBytes);
+ return low64_;
+ }
+ uint64_t raw_value128_high64() {
+ VIXL_ASSERT(size_ == kQRegSizeInBytes);
+ return high64_;
+ }
+ uint64_t raw_value64() {
+ VIXL_ASSERT(size_ == kXRegSizeInBytes);
+ VIXL_ASSERT(high64_ == 0);
+ return low64_;
+ }
+ uint32_t raw_value32() {
+ VIXL_ASSERT(size_ == kWRegSizeInBytes);
+ VIXL_ASSERT(high64_ == 0);
+ VIXL_ASSERT(is_uint32(low64_) || is_int32(low64_));
+ return static_cast<uint32_t>(low64_);
+ }
+ bool IsUsed() { return offset_ < 0; }
+ bool IsPlaced() { return offset_ > 0; }
+
+ LiteralPool* GetLiteralPool() const {
+ return literal_pool_;
+ }
+
+ ptrdiff_t offset() {
+ VIXL_ASSERT(IsPlaced());
+ return offset_ - 1;
+ }
+
+ protected:
+ void set_offset(ptrdiff_t offset) {
+ VIXL_ASSERT(offset >= 0);
+ VIXL_ASSERT(IsWordAligned(offset));
+ VIXL_ASSERT(!IsPlaced());
+ offset_ = offset + 1;
+ }
+ ptrdiff_t last_use() {
+ VIXL_ASSERT(IsUsed());
+ return -offset_ - 1;
+ }
+ void set_last_use(ptrdiff_t offset) {
+ VIXL_ASSERT(offset >= 0);
+ VIXL_ASSERT(IsWordAligned(offset));
+ VIXL_ASSERT(!IsPlaced());
+ offset_ = -offset - 1;
+ }
+
+ size_t size_;
+ ptrdiff_t offset_;
+ uint64_t low64_;
+ uint64_t high64_;
+
+ private:
+ LiteralPool* literal_pool_;
+ DeletionPolicy deletion_policy_;
+
+ friend class Assembler;
+ friend class LiteralPool;
+};
+
+
+template <typename T>
+class Literal : public RawLiteral {
+ public:
+ explicit Literal(T value,
+ LiteralPool* literal_pool = NULL,
+ RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
+ : RawLiteral(sizeof(value), literal_pool, ownership) {
+ VIXL_STATIC_ASSERT(sizeof(value) <= kXRegSizeInBytes);
+ UpdateValue(value);
+ }
+
+ Literal(T high64, T low64,
+ LiteralPool* literal_pool = NULL,
+ RawLiteral::DeletionPolicy ownership = kManuallyDeleted)
+ : RawLiteral(kQRegSizeInBytes, literal_pool, ownership) {
+ VIXL_STATIC_ASSERT(sizeof(low64) == (kQRegSizeInBytes / 2));
+ UpdateValue(high64, low64);
+ }
+
+ virtual ~Literal() {}
+
+ // Update the value of this literal, if necessary by rewriting the value in
+ // the pool.
+ // If the literal has already been placed in a literal pool, the address of
+ // the start of the code buffer must be provided, as the literal only knows it
+ // offset from there. This also allows patching the value after the code has
+ // been moved in memory.
+ void UpdateValue(T new_value, uint8_t* code_buffer = NULL) {
+ VIXL_ASSERT(sizeof(new_value) == size_);
+ memcpy(&low64_, &new_value, sizeof(new_value));
+ if (IsPlaced()) {
+ VIXL_ASSERT(code_buffer != NULL);
+ RewriteValueInCode(code_buffer);
+ }
+ }
+
+ void UpdateValue(T high64, T low64, uint8_t* code_buffer = NULL) {
+ VIXL_ASSERT(sizeof(low64) == size_ / 2);
+ memcpy(&low64_, &low64, sizeof(low64));
+ memcpy(&high64_, &high64, sizeof(high64));
+ if (IsPlaced()) {
+ VIXL_ASSERT(code_buffer != NULL);
+ RewriteValueInCode(code_buffer);
+ }
+ }
+
+ void UpdateValue(T new_value, const Assembler* assembler);
+ void UpdateValue(T high64, T low64, const Assembler* assembler);
+
+ private:
+ void RewriteValueInCode(uint8_t* code_buffer) {
+ VIXL_ASSERT(IsPlaced());
+ VIXL_STATIC_ASSERT(sizeof(T) <= kXRegSizeInBytes);
+ switch (size()) {
+ case kSRegSizeInBytes:
+ *reinterpret_cast<uint32_t*>(code_buffer + offset()) = raw_value32();
+ break;
+ case kDRegSizeInBytes:
+ *reinterpret_cast<uint64_t*>(code_buffer + offset()) = raw_value64();
+ break;
+ default:
+ VIXL_ASSERT(size() == kQRegSizeInBytes);
+ uint64_t* base_address =
+ reinterpret_cast<uint64_t*>(code_buffer + offset());
+ *base_address = raw_value128_low64();
+ *(base_address + 1) = raw_value128_high64();
+ }
+ }
+};
+
+
+// Control whether or not position-independent code should be emitted.
+enum PositionIndependentCodeOption {
+ // All code generated will be position-independent; all branches and
+ // references to labels generated with the Label class will use PC-relative
+ // addressing.
+ PositionIndependentCode,
+
+ // Allow VIXL to generate code that refers to absolute addresses. With this
+ // option, it will not be possible to copy the code buffer and run it from a
+ // different address; code must be generated in its final location.
+ PositionDependentCode,
+
+ // Allow VIXL to assume that the bottom 12 bits of the address will be
+ // constant, but that the top 48 bits may change. This allows `adrp` to
+ // function in systems which copy code between pages, but otherwise maintain
+ // 4KB page alignment.
+ PageOffsetDependentCode
+};
+
+
+// Control how scaled- and unscaled-offset loads and stores are generated.
+enum LoadStoreScalingOption {
+ // Prefer scaled-immediate-offset instructions, but emit unscaled-offset,
+ // register-offset, pre-index or post-index instructions if necessary.
+ PreferScaledOffset,
+
+ // Prefer unscaled-immediate-offset instructions, but emit scaled-offset,
+ // register-offset, pre-index or post-index instructions if necessary.
+ PreferUnscaledOffset,
+
+ // Require scaled-immediate-offset instructions.
+ RequireScaledOffset,
+
+ // Require unscaled-immediate-offset instructions.
+ RequireUnscaledOffset
+};
+
+
+// Assembler.
+class Assembler {
+ public:
+ Assembler(size_t capacity,
+ PositionIndependentCodeOption pic = PositionIndependentCode);
+ Assembler(byte* buffer, size_t capacity,
+ PositionIndependentCodeOption pic = PositionIndependentCode);
+
+ // The destructor asserts that one of the following is true:
+ // * The Assembler object has not been used.
+ // * Nothing has been emitted since the last Reset() call.
+ // * Nothing has been emitted since the last FinalizeCode() call.
+ ~Assembler();
+
+ // System functions.
+
+ // Start generating code from the beginning of the buffer, discarding any code
+ // and data that has already been emitted into the buffer.
+ void Reset();
+
+ // Finalize a code buffer of generated instructions. This function must be
+ // called before executing or copying code from the buffer.
+ void FinalizeCode();
+
+ // Label.
+ // Bind a label to the current PC.
+ void bind(Label* label);
+
+ // Bind a label to a specified offset from the start of the buffer.
+ void BindToOffset(Label* label, ptrdiff_t offset);
+
+ // Place a literal at the current PC.
+ void place(RawLiteral* literal);
+
+ ptrdiff_t CursorOffset() const {
+ return buffer_->CursorOffset();
+ }
+
+ ptrdiff_t BufferEndOffset() const {
+ return static_cast<ptrdiff_t>(buffer_->capacity());
+ }
+
+ // Return the address of an offset in the buffer.
+ template <typename T>
+ T GetOffsetAddress(ptrdiff_t offset) const {
+ VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
+ return buffer_->GetOffsetAddress<T>(offset);
+ }
+
+ // Return the address of a bound label.
+ template <typename T>
+ T GetLabelAddress(const Label * label) const {
+ VIXL_ASSERT(label->IsBound());
+ VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
+ return GetOffsetAddress<T>(label->location());
+ }
+
+ // Return the address of the cursor.
+ template <typename T>
+ T GetCursorAddress() const {
+ VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
+ return GetOffsetAddress<T>(CursorOffset());
+ }
+
+ // Return the address of the start of the buffer.
+ template <typename T>
+ T GetStartAddress() const {
+ VIXL_STATIC_ASSERT(sizeof(T) >= sizeof(uintptr_t));
+ return GetOffsetAddress<T>(0);
+ }
+
+ Instruction* InstructionAt(ptrdiff_t instruction_offset) {
+ return GetOffsetAddress<Instruction*>(instruction_offset);
+ }
+
+ ptrdiff_t InstructionOffset(Instruction* instruction) {
+ VIXL_STATIC_ASSERT(sizeof(*instruction) == 1);
+ ptrdiff_t offset = instruction - GetStartAddress<Instruction*>();
+ VIXL_ASSERT((0 <= offset) &&
+ (offset < static_cast<ptrdiff_t>(BufferCapacity())));
+ return offset;
+ }
+
+ // Instruction set functions.
+
+ // Branch / Jump instructions.
+ // Branch to register.
+ void br(const Register& xn);
+
+ // Branch with link to register.
+ void blr(const Register& xn);
+
+ // Branch to register with return hint.
+ void ret(const Register& xn = lr);
+
+ // Unconditional branch to label.
+ void b(Label* label);
+
+ // Conditional branch to label.
+ void b(Label* label, Condition cond);
+
+ // Unconditional branch to PC offset.
+ void b(int imm26);
+
+ // Conditional branch to PC offset.
+ void b(int imm19, Condition cond);
+
+ // Branch with link to label.
+ void bl(Label* label);
+
+ // Branch with link to PC offset.
+ void bl(int imm26);
+
+ // Compare and branch to label if zero.
+ void cbz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if zero.
+ void cbz(const Register& rt, int imm19);
+
+ // Compare and branch to label if not zero.
+ void cbnz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if not zero.
+ void cbnz(const Register& rt, int imm19);
+
+ // Table lookup from one register.
+ void tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Table lookup from two registers.
+ void tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vm);
+
+ // Table lookup from three registers.
+ void tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vm);
+
+ // Table lookup from four registers.
+ void tbl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vn4,
+ const VRegister& vm);
+
+ // Table lookup extension from one register.
+ void tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Table lookup extension from two registers.
+ void tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vm);
+
+ // Table lookup extension from three registers.
+ void tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vm);
+
+ // Table lookup extension from four registers.
+ void tbx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vn2,
+ const VRegister& vn3,
+ const VRegister& vn4,
+ const VRegister& vm);
+
+ // Test bit and branch to label if zero.
+ void tbz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if zero.
+ void tbz(const Register& rt, unsigned bit_pos, int imm14);
+
+ // Test bit and branch to label if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, int imm14);
+
+ // Address calculation instructions.
+ // Calculate a PC-relative address. Unlike for branches the offset in adr is
+ // unscaled (i.e. the result can be unaligned).
+
+ // Calculate the address of a label.
+ void adr(const Register& rd, Label* label);
+
+ // Calculate the address of a PC offset.
+ void adr(const Register& rd, int imm21);
+
+ // Calculate the page address of a label.
+ void adrp(const Register& rd, Label* label);
+
+ // Calculate the page address of a PC offset.
+ void adrp(const Register& rd, int imm21);
+
+ // Data Processing instructions.
+ // Add.
+ void add(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Add and update status flags.
+ void adds(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Compare negative.
+ void cmn(const Register& rn, const Operand& operand);
+
+ // Subtract.
+ void sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Subtract and update status flags.
+ void subs(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Compare.
+ void cmp(const Register& rn, const Operand& operand);
+
+ // Negate.
+ void neg(const Register& rd,
+ const Operand& operand);
+
+ // Negate and update status flags.
+ void negs(const Register& rd,
+ const Operand& operand);
+
+ // Add with carry bit.
+ void adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Add with carry bit and update status flags.
+ void adcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Subtract with carry bit.
+ void sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Subtract with carry bit and update status flags.
+ void sbcs(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Negate with carry bit.
+ void ngc(const Register& rd,
+ const Operand& operand);
+
+ // Negate with carry bit and update status flags.
+ void ngcs(const Register& rd,
+ const Operand& operand);
+
+ // Logical instructions.
+ // Bitwise and (A & B).
+ void and_(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Bitwise and (A & B) and update status flags.
+ void ands(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Bit test and set flags.
+ void tst(const Register& rn, const Operand& operand);
+
+ // Bit clear (A & ~B).
+ void bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Bit clear (A & ~B) and update status flags.
+ void bics(const Register& rd,
+ const Register& rn,
+ const Operand& operand);
+
+ // Bitwise or (A | B).
+ void orr(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise nor (A | ~B).
+ void orn(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise eor/xor (A ^ B).
+ void eor(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise enor/xnor (A ^ ~B).
+ void eon(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Logical shift left by variable.
+ void lslv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Logical shift right by variable.
+ void lsrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Arithmetic shift right by variable.
+ void asrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Rotate right by variable.
+ void rorv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bitfield instructions.
+ // Bitfield move.
+ void bfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Signed bitfield move.
+ void sbfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Unsigned bitfield move.
+ void ubfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Bfm aliases.
+ // Bitfield insert.
+ void bfi(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Bitfield extract and insert low.
+ void bfxil(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Sbfm aliases.
+ // Arithmetic shift right.
+ void asr(const Register& rd, const Register& rn, unsigned shift) {
+ VIXL_ASSERT(shift < rd.size());
+ sbfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Signed bitfield insert with zero at right.
+ void sbfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Signed bitfield extract.
+ void sbfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Signed extend byte.
+ void sxtb(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 7);
+ }
+
+ // Signed extend halfword.
+ void sxth(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 15);
+ }
+
+ // Signed extend word.
+ void sxtw(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 31);
+ }
+
+ // Ubfm aliases.
+ // Logical shift left.
+ void lsl(const Register& rd, const Register& rn, unsigned shift) {
+ unsigned reg_size = rd.size();
+ VIXL_ASSERT(shift < reg_size);
+ ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
+ }
+
+ // Logical shift right.
+ void lsr(const Register& rd, const Register& rn, unsigned shift) {
+ VIXL_ASSERT(shift < rd.size());
+ ubfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Unsigned bitfield insert with zero at right.
+ void ubfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Unsigned bitfield extract.
+ void ubfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ VIXL_ASSERT(width >= 1);
+ VIXL_ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Unsigned extend byte.
+ void uxtb(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 7);
+ }
+
+ // Unsigned extend halfword.
+ void uxth(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 15);
+ }
+
+ // Unsigned extend word.
+ void uxtw(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 31);
+ }
+
+ // Extract.
+ void extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb);
+
+ // Conditional select: rd = cond ? rn : rm.
+ void csel(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select increment: rd = cond ? rn : rm + 1.
+ void csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select inversion: rd = cond ? rn : ~rm.
+ void csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select negation: rd = cond ? rn : -rm.
+ void csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional set: rd = cond ? 1 : 0.
+ void cset(const Register& rd, Condition cond);
+
+ // Conditional set mask: rd = cond ? -1 : 0.
+ void csetm(const Register& rd, Condition cond);
+
+ // Conditional increment: rd = cond ? rn + 1 : rn.
+ void cinc(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional invert: rd = cond ? ~rn : rn.
+ void cinv(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional negate: rd = cond ? -rn : rn.
+ void cneg(const Register& rd, const Register& rn, Condition cond);
+
+ // Rotate right.
+ void ror(const Register& rd, const Register& rs, unsigned shift) {
+ extr(rd, rs, rs, shift);
+ }
+
+ // Conditional comparison.
+ // Conditional compare negative.
+ void ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // Conditional compare.
+ void ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // CRC-32 checksum from byte.
+ void crc32b(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 checksum from half-word.
+ void crc32h(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 checksum from word.
+ void crc32w(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 checksum from double word.
+ void crc32x(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 C checksum from byte.
+ void crc32cb(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 C checksum from half-word.
+ void crc32ch(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32 C checksum from word.
+ void crc32cw(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // CRC-32C checksum from double word.
+ void crc32cx(const Register& rd,
+ const Register& rn,
+ const Register& rm);
+
+ // Multiply.
+ void mul(const Register& rd, const Register& rn, const Register& rm);
+
+ // Negated multiply.
+ void mneg(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed long multiply: 32 x 32 -> 64-bit.
+ void smull(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
+ void smulh(const Register& xd, const Register& xn, const Register& xm);
+
+ // Multiply and accumulate.
+ void madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Multiply and subtract.
+ void msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply: 32 x 32 -> 64-bit.
+ void umull(const Register& rd,
+ const Register& rn,
+ const Register& rm) {
+ umaddl(rd, rn, rm, xzr);
+ }
+
+ // Unsigned multiply high: 64 x 64 -> 64-bit <127:64>.
+ void umulh(const Register& xd,
+ const Register& xn,
+ const Register& xm);
+
+ // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed integer divide.
+ void sdiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Unsigned integer divide.
+ void udiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bit reverse.
+ void rbit(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 16-bit half words.
+ void rev16(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 32-bit words.
+ void rev32(const Register& rd, const Register& rn);
+
+ // Reverse bytes.
+ void rev(const Register& rd, const Register& rn);
+
+ // Count leading zeroes.
+ void clz(const Register& rd, const Register& rn);
+
+ // Count leading sign bits.
+ void cls(const Register& rd, const Register& rn);
+
+ // Memory instructions.
+ // Load integer or FP register.
+ void ldr(const CPURegister& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Store integer or FP register.
+ void str(const CPURegister& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load word with sign extension.
+ void ldrsw(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load byte.
+ void ldrb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Store byte.
+ void strb(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load byte with sign extension.
+ void ldrsb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load half-word.
+ void ldrh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Store half-word.
+ void strh(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load half-word with sign extension.
+ void ldrsh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Load integer or FP register (with unscaled offset).
+ void ldur(const CPURegister& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Store integer or FP register (with unscaled offset).
+ void stur(const CPURegister& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load word with sign extension.
+ void ldursw(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load byte (with unscaled offset).
+ void ldurb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Store byte (with unscaled offset).
+ void sturb(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load byte with sign extension (and unscaled offset).
+ void ldursb(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load half-word (with unscaled offset).
+ void ldurh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Store half-word (with unscaled offset).
+ void sturh(const Register& rt, const MemOperand& dst,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load half-word with sign extension (and unscaled offset).
+ void ldursh(const Register& rt, const MemOperand& src,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Load integer or FP register pair.
+ void ldp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair.
+ void stp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load word pair with sign extension.
+ void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
+
+ // Load integer or FP register pair, non-temporal.
+ void ldnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair, non-temporal.
+ void stnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load integer or FP register from literal pool.
+ void ldr(const CPURegister& rt, RawLiteral* literal);
+
+ // Load word with sign extension from literal pool.
+ void ldrsw(const Register& rt, RawLiteral* literal);
+
+ // Load integer or FP register from pc + imm19 << 2.
+ void ldr(const CPURegister& rt, int imm19);
+
+ // Load word with sign extension from pc + imm19 << 2.
+ void ldrsw(const Register& rt, int imm19);
+
+ // Store exclusive byte.
+ void stxrb(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Store exclusive half-word.
+ void stxrh(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Store exclusive register.
+ void stxr(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Load exclusive byte.
+ void ldxrb(const Register& rt, const MemOperand& src);
+
+ // Load exclusive half-word.
+ void ldxrh(const Register& rt, const MemOperand& src);
+
+ // Load exclusive register.
+ void ldxr(const Register& rt, const MemOperand& src);
+
+ // Store exclusive register pair.
+ void stxp(const Register& rs,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& dst);
+
+ // Load exclusive register pair.
+ void ldxp(const Register& rt, const Register& rt2, const MemOperand& src);
+
+ // Store-release exclusive byte.
+ void stlxrb(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Store-release exclusive half-word.
+ void stlxrh(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Store-release exclusive register.
+ void stlxr(const Register& rs, const Register& rt, const MemOperand& dst);
+
+ // Load-acquire exclusive byte.
+ void ldaxrb(const Register& rt, const MemOperand& src);
+
+ // Load-acquire exclusive half-word.
+ void ldaxrh(const Register& rt, const MemOperand& src);
+
+ // Load-acquire exclusive register.
+ void ldaxr(const Register& rt, const MemOperand& src);
+
+ // Store-release exclusive register pair.
+ void stlxp(const Register& rs,
+ const Register& rt,
+ const Register& rt2,
+ const MemOperand& dst);
+
+ // Load-acquire exclusive register pair.
+ void ldaxp(const Register& rt, const Register& rt2, const MemOperand& src);
+
+ // Store-release byte.
+ void stlrb(const Register& rt, const MemOperand& dst);
+
+ // Store-release half-word.
+ void stlrh(const Register& rt, const MemOperand& dst);
+
+ // Store-release register.
+ void stlr(const Register& rt, const MemOperand& dst);
+
+ // Load-acquire byte.
+ void ldarb(const Register& rt, const MemOperand& src);
+
+ // Load-acquire half-word.
+ void ldarh(const Register& rt, const MemOperand& src);
+
+ // Load-acquire register.
+ void ldar(const Register& rt, const MemOperand& src);
+
+ // Prefetch memory.
+ void prfm(PrefetchOperation op, const MemOperand& addr,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // Prefetch memory (with unscaled offset).
+ void prfum(PrefetchOperation op, const MemOperand& addr,
+ LoadStoreScalingOption option = PreferUnscaledOffset);
+
+ // Prefetch memory in the literal pool.
+ void prfm(PrefetchOperation op, RawLiteral* literal);
+
+ // Prefetch from pc + imm19 << 2.
+ void prfm(PrefetchOperation op, int imm19);
+
+ // Move instructions. The default shift of -1 indicates that the move
+ // instruction will calculate an appropriate 16-bit immediate and left shift
+ // that is equal to the 64-bit immediate argument. If an explicit left shift
+ // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
+ //
+ // For movk, an explicit shift can be used to indicate which half word should
+ // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
+ // half word with zero, whereas movk(x0, 0, 48) will overwrite the
+ // most-significant.
+
+ // Move immediate and keep.
+ void movk(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVK);
+ }
+
+ // Move inverted immediate.
+ void movn(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVN);
+ }
+
+ // Move immediate.
+ void movz(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVZ);
+ }
+
+ // Misc instructions.
+ // Monitor debug-mode breakpoint.
+ void brk(int code);
+
+ // Halting debug-mode breakpoint.
+ void hlt(int code);
+
+ // Generate exception targeting EL1.
+ void svc(int code);
+
+ // Move register to register.
+ void mov(const Register& rd, const Register& rn);
+
+ // Move inverted operand to register.
+ void mvn(const Register& rd, const Operand& operand);
+
+ // System instructions.
+ // Move to register from system register.
+ void mrs(const Register& rt, SystemRegister sysreg);
+
+ // Move from register to system register.
+ void msr(SystemRegister sysreg, const Register& rt);
+
+ // System instruction.
+ void sys(int op1, int crn, int crm, int op2, const Register& rt = xzr);
+
+ // System instruction with pre-encoded op (op1:crn:crm:op2).
+ void sys(int op, const Register& rt = xzr);
+
+ // System data cache operation.
+ void dc(DataCacheOp op, const Register& rt);
+
+ // System instruction cache operation.
+ void ic(InstructionCacheOp op, const Register& rt);
+
+ // System hint.
+ void hint(SystemHint code);
+
+ // Clear exclusive monitor.
+ void clrex(int imm4 = 0xf);
+
+ // Data memory barrier.
+ void dmb(BarrierDomain domain, BarrierType type);
+
+ // Data synchronization barrier.
+ void dsb(BarrierDomain domain, BarrierType type);
+
+ // Instruction synchronization barrier.
+ void isb();
+
+ // Alias for system instructions.
+ // No-op.
+ void nop() {
+ hint(NOP);
+ }
+
+ // FP and NEON instructions.
+ // Move double precision immediate to FP register.
+ void fmov(const VRegister& vd, double imm);
+
+ // Move single precision immediate to FP register.
+ void fmov(const VRegister& vd, float imm);
+
+ // Move FP register to register.
+ void fmov(const Register& rd, const VRegister& fn);
+
+ // Move register to FP register.
+ void fmov(const VRegister& vd, const Register& rn);
+
+ // Move FP register to FP register.
+ void fmov(const VRegister& vd, const VRegister& fn);
+
+ // Move 64-bit register to top half of 128-bit FP register.
+ void fmov(const VRegister& vd, int index, const Register& rn);
+
+ // Move top half of 128-bit FP register to 64-bit register.
+ void fmov(const Register& rd, const VRegister& vn, int index);
+
+ // FP add.
+ void fadd(const VRegister& vd, const VRegister& vn, const VRegister& vm);
+
+ // FP subtract.
+ void fsub(const VRegister& vd, const VRegister& vn, const VRegister& vm);
+
+ // FP multiply.
+ void fmul(const VRegister& vd, const VRegister& vn, const VRegister& vm);
+
+ // FP fused multiply-add.
+ void fmadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va);
+
+ // FP fused multiply-subtract.
+ void fmsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va);
+
+ // FP fused multiply-add and negate.
+ void fnmadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va);
+
+ // FP fused multiply-subtract and negate.
+ void fnmsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ const VRegister& va);
+
+ // FP multiply-negate scalar.
+ void fnmul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP reciprocal exponent scalar.
+ void frecpx(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP divide.
+ void fdiv(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP maximum.
+ void fmax(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP minimum.
+ void fmin(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP maximum number.
+ void fmaxnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP minimum number.
+ void fminnm(const VRegister& vd, const VRegister& fn, const VRegister& vm);
+
+ // FP absolute.
+ void fabs(const VRegister& vd, const VRegister& vn);
+
+ // FP negate.
+ void fneg(const VRegister& vd, const VRegister& vn);
+
+ // FP square root.
+ void fsqrt(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, nearest with ties to away.
+ void frinta(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, implicit rounding.
+ void frinti(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, toward minus infinity.
+ void frintm(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, nearest with ties to even.
+ void frintn(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, toward plus infinity.
+ void frintp(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, exact, implicit rounding.
+ void frintx(const VRegister& vd, const VRegister& vn);
+
+ // FP round to integer, towards zero.
+ void frintz(const VRegister& vd, const VRegister& vn);
+
+ void FPCompareMacro(const VRegister& vn,
+ double value,
+ FPTrapFlags trap);
+
+ void FPCompareMacro(const VRegister& vn,
+ const VRegister& vm,
+ FPTrapFlags trap);
+
+ // FP compare registers.
+ void fcmp(const VRegister& vn, const VRegister& vm);
+
+ // FP compare immediate.
+ void fcmp(const VRegister& vn, double value);
+
+ void FPCCompareMacro(const VRegister& vn,
+ const VRegister& vm,
+ StatusFlags nzcv,
+ Condition cond,
+ FPTrapFlags trap);
+
+ // FP conditional compare.
+ void fccmp(const VRegister& vn,
+ const VRegister& vm,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // FP signaling compare registers.
+ void fcmpe(const VRegister& vn, const VRegister& vm);
+
+ // FP signaling compare immediate.
+ void fcmpe(const VRegister& vn, double value);
+
+ // FP conditional signaling compare.
+ void fccmpe(const VRegister& vn,
+ const VRegister& vm,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // FP conditional select.
+ void fcsel(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ Condition cond);
+
+ // Common FP Convert functions.
+ void NEONFPConvertToInt(const Register& rd,
+ const VRegister& vn,
+ Instr op);
+ void NEONFPConvertToInt(const VRegister& vd,
+ const VRegister& vn,
+ Instr op);
+
+ // FP convert between precisions.
+ void fcvt(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to higher precision.
+ void fcvtl(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to higher precision (second part).
+ void fcvtl2(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to lower precision.
+ void fcvtn(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to lower prevision (second part).
+ void fcvtn2(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to lower precision, rounding to odd.
+ void fcvtxn(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to lower precision, rounding to odd (second part).
+ void fcvtxn2(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to signed integer, nearest with ties to away.
+ void fcvtas(const Register& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, nearest with ties to away.
+ void fcvtau(const Register& rd, const VRegister& vn);
+
+ // FP convert to signed integer, nearest with ties to away.
+ void fcvtas(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to unsigned integer, nearest with ties to away.
+ void fcvtau(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to signed integer, round towards -infinity.
+ void fcvtms(const Register& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, round towards -infinity.
+ void fcvtmu(const Register& rd, const VRegister& vn);
+
+ // FP convert to signed integer, round towards -infinity.
+ void fcvtms(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to unsigned integer, round towards -infinity.
+ void fcvtmu(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to signed integer, nearest with ties to even.
+ void fcvtns(const Register& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, nearest with ties to even.
+ void fcvtnu(const Register& rd, const VRegister& vn);
+
+ // FP convert to signed integer, nearest with ties to even.
+ void fcvtns(const VRegister& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, nearest with ties to even.
+ void fcvtnu(const VRegister& rd, const VRegister& vn);
+
+ // FP convert to signed integer or fixed-point, round towards zero.
+ void fcvtzs(const Register& rd, const VRegister& vn, int fbits = 0);
+
+ // FP convert to unsigned integer or fixed-point, round towards zero.
+ void fcvtzu(const Register& rd, const VRegister& vn, int fbits = 0);
+
+ // FP convert to signed integer or fixed-point, round towards zero.
+ void fcvtzs(const VRegister& vd, const VRegister& vn, int fbits = 0);
+
+ // FP convert to unsigned integer or fixed-point, round towards zero.
+ void fcvtzu(const VRegister& vd, const VRegister& vn, int fbits = 0);
+
+ // FP convert to signed integer, round towards +infinity.
+ void fcvtps(const Register& rd, const VRegister& vn);
+
+ // FP convert to unsigned integer, round towards +infinity.
+ void fcvtpu(const Register& rd, const VRegister& vn);
+
+ // FP convert to signed integer, round towards +infinity.
+ void fcvtps(const VRegister& vd, const VRegister& vn);
+
+ // FP convert to unsigned integer, round towards +infinity.
+ void fcvtpu(const VRegister& vd, const VRegister& vn);
+
+ // Convert signed integer or fixed point to FP.
+ void scvtf(const VRegister& fd, const Register& rn, int fbits = 0);
+
+ // Convert unsigned integer or fixed point to FP.
+ void ucvtf(const VRegister& fd, const Register& rn, int fbits = 0);
+
+ // Convert signed integer or fixed-point to FP.
+ void scvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
+
+ // Convert unsigned integer or fixed-point to FP.
+ void ucvtf(const VRegister& fd, const VRegister& vn, int fbits = 0);
+
+ // Unsigned absolute difference.
+ void uabd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference.
+ void sabd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference and accumulate.
+ void uaba(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference and accumulate.
+ void saba(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add.
+ void add(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Subtract.
+ void sub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned halving add.
+ void uhadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed halving add.
+ void shadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned rounding halving add.
+ void urhadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed rounding halving add.
+ void srhadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned halving sub.
+ void uhsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed halving sub.
+ void shsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned saturating add.
+ void uqadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating add.
+ void sqadd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned saturating subtract.
+ void uqsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating subtract.
+ void sqsub(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add pairwise.
+ void addp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add pair of elements scalar.
+ void addp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Multiply-add to accumulator.
+ void mla(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Multiply-subtract to accumulator.
+ void mls(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Multiply.
+ void mul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Multiply by scalar element.
+ void mul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Multiply-add by scalar element.
+ void mla(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Multiply-subtract by scalar element.
+ void mls(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply-add by scalar element.
+ void smlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply-add by scalar element (second part).
+ void smlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply-add by scalar element.
+ void umlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply-add by scalar element (second part).
+ void umlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply-sub by scalar element.
+ void smlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply-sub by scalar element (second part).
+ void smlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply-sub by scalar element.
+ void umlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply-sub by scalar element (second part).
+ void umlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply by scalar element.
+ void smull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed long multiply by scalar element (second part).
+ void smull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply by scalar element.
+ void umull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply by scalar element (second part).
+ void umull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating double long multiply by element.
+ void sqdmull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating double long multiply by element (second part).
+ void sqdmull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating doubling long multiply-add by element.
+ void sqdmlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating doubling long multiply-add by element (second part).
+ void sqdmlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating doubling long multiply-sub by element.
+ void sqdmlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating doubling long multiply-sub by element (second part).
+ void sqdmlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Compare equal.
+ void cmeq(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare signed greater than or equal.
+ void cmge(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare signed greater than.
+ void cmgt(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare unsigned higher.
+ void cmhi(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare unsigned higher or same.
+ void cmhs(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare bitwise test bits nonzero.
+ void cmtst(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Compare bitwise to zero.
+ void cmeq(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Compare signed greater than or equal to zero.
+ void cmge(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Compare signed greater than zero.
+ void cmgt(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Compare signed less than or equal to zero.
+ void cmle(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Compare signed less than zero.
+ void cmlt(const VRegister& vd,
+ const VRegister& vn,
+ int value);
+
+ // Signed shift left by register.
+ void sshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned shift left by register.
+ void ushl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating shift left by register.
+ void sqshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned saturating shift left by register.
+ void uqshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed rounding shift left by register.
+ void srshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned rounding shift left by register.
+ void urshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating rounding shift left by register.
+ void sqrshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned saturating rounding shift left by register.
+ void uqrshl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise and.
+ void and_(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise or.
+ void orr(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise or immediate.
+ void orr(const VRegister& vd,
+ const int imm8,
+ const int left_shift = 0);
+
+ // Move register to register.
+ void mov(const VRegister& vd,
+ const VRegister& vn);
+
+ // Bitwise orn.
+ void orn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise eor.
+ void eor(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bit clear immediate.
+ void bic(const VRegister& vd,
+ const int imm8,
+ const int left_shift = 0);
+
+ // Bit clear.
+ void bic(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise insert if false.
+ void bif(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise insert if true.
+ void bit(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Bitwise select.
+ void bsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Polynomial multiply.
+ void pmul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Vector move immediate.
+ void movi(const VRegister& vd,
+ const uint64_t imm,
+ Shift shift = LSL,
+ const int shift_amount = 0);
+
+ // Bitwise not.
+ void mvn(const VRegister& vd,
+ const VRegister& vn);
+
+ // Vector move inverted immediate.
+ void mvni(const VRegister& vd,
+ const int imm8,
+ Shift shift = LSL,
+ const int shift_amount = 0);
+
+ // Signed saturating accumulate of unsigned value.
+ void suqadd(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned saturating accumulate of signed value.
+ void usqadd(const VRegister& vd,
+ const VRegister& vn);
+
+ // Absolute value.
+ void abs(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating absolute value.
+ void sqabs(const VRegister& vd,
+ const VRegister& vn);
+
+ // Negate.
+ void neg(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating negate.
+ void sqneg(const VRegister& vd,
+ const VRegister& vn);
+
+ // Bitwise not.
+ void not_(const VRegister& vd,
+ const VRegister& vn);
+
+ // Extract narrow.
+ void xtn(const VRegister& vd,
+ const VRegister& vn);
+
+ // Extract narrow (second part).
+ void xtn2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating extract narrow.
+ void sqxtn(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating extract narrow (second part).
+ void sqxtn2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned saturating extract narrow.
+ void uqxtn(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned saturating extract narrow (second part).
+ void uqxtn2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating extract unsigned narrow.
+ void sqxtun(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed saturating extract unsigned narrow (second part).
+ void sqxtun2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Extract vector from pair of vectors.
+ void ext(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int index);
+
+ // Duplicate vector element to vector or scalar.
+ void dup(const VRegister& vd,
+ const VRegister& vn,
+ int vn_index);
+
+ // Move vector element to scalar.
+ void mov(const VRegister& vd,
+ const VRegister& vn,
+ int vn_index);
+
+ // Duplicate general-purpose register to vector.
+ void dup(const VRegister& vd,
+ const Register& rn);
+
+ // Insert vector element from another vector element.
+ void ins(const VRegister& vd,
+ int vd_index,
+ const VRegister& vn,
+ int vn_index);
+
+ // Move vector element to another vector element.
+ void mov(const VRegister& vd,
+ int vd_index,
+ const VRegister& vn,
+ int vn_index);
+
+ // Insert vector element from general-purpose register.
+ void ins(const VRegister& vd,
+ int vd_index,
+ const Register& rn);
+
+ // Move general-purpose register to a vector element.
+ void mov(const VRegister& vd,
+ int vd_index,
+ const Register& rn);
+
+ // Unsigned move vector element to general-purpose register.
+ void umov(const Register& rd,
+ const VRegister& vn,
+ int vn_index);
+
+ // Move vector element to general-purpose register.
+ void mov(const Register& rd,
+ const VRegister& vn,
+ int vn_index);
+
+ // Signed move vector element to general-purpose register.
+ void smov(const Register& rd,
+ const VRegister& vn,
+ int vn_index);
+
+ // One-element structure load to one register.
+ void ld1(const VRegister& vt,
+ const MemOperand& src);
+
+ // One-element structure load to two registers.
+ void ld1(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // One-element structure load to three registers.
+ void ld1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // One-element structure load to four registers.
+ void ld1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // One-element single structure load to one lane.
+ void ld1(const VRegister& vt,
+ int lane,
+ const MemOperand& src);
+
+ // One-element single structure load to all lanes.
+ void ld1r(const VRegister& vt,
+ const MemOperand& src);
+
+ // Two-element structure load.
+ void ld2(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // Two-element single structure load to one lane.
+ void ld2(const VRegister& vt,
+ const VRegister& vt2,
+ int lane,
+ const MemOperand& src);
+
+ // Two-element single structure load to all lanes.
+ void ld2r(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // Three-element structure load.
+ void ld3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // Three-element single structure load to one lane.
+ void ld3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ int lane,
+ const MemOperand& src);
+
+ // Three-element single structure load to all lanes.
+ void ld3r(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // Four-element structure load.
+ void ld4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // Four-element single structure load to one lane.
+ void ld4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ int lane,
+ const MemOperand& src);
+
+ // Four-element single structure load to all lanes.
+ void ld4r(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // Count leading sign bits.
+ void cls(const VRegister& vd,
+ const VRegister& vn);
+
+ // Count leading zero bits (vector).
+ void clz(const VRegister& vd,
+ const VRegister& vn);
+
+ // Population count per byte.
+ void cnt(const VRegister& vd,
+ const VRegister& vn);
+
+ // Reverse bit order.
+ void rbit(const VRegister& vd,
+ const VRegister& vn);
+
+ // Reverse elements in 16-bit halfwords.
+ void rev16(const VRegister& vd,
+ const VRegister& vn);
+
+ // Reverse elements in 32-bit words.
+ void rev32(const VRegister& vd,
+ const VRegister& vn);
+
+ // Reverse elements in 64-bit doublewords.
+ void rev64(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned reciprocal square root estimate.
+ void ursqrte(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned reciprocal estimate.
+ void urecpe(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed pairwise long add.
+ void saddlp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned pairwise long add.
+ void uaddlp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed pairwise long add and accumulate.
+ void sadalp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned pairwise long add and accumulate.
+ void uadalp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Shift left by immediate.
+ void shl(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift left by immediate.
+ void sqshl(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift left unsigned by immediate.
+ void sqshlu(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating shift left by immediate.
+ void uqshl(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed shift left long by immediate.
+ void sshll(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed shift left long by immediate (second part).
+ void sshll2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed extend long.
+ void sxtl(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed extend long (second part).
+ void sxtl2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned shift left long by immediate.
+ void ushll(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned shift left long by immediate (second part).
+ void ushll2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift left long by element size.
+ void shll(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift left long by element size (second part).
+ void shll2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned extend long.
+ void uxtl(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned extend long (second part).
+ void uxtl2(const VRegister& vd,
+ const VRegister& vn);
+
+ // Shift left by immediate and insert.
+ void sli(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift right by immediate and insert.
+ void sri(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed maximum.
+ void smax(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed pairwise maximum.
+ void smaxp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add across vector.
+ void addv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed add long across vector.
+ void saddlv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned add long across vector.
+ void uaddlv(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP maximum number across vector.
+ void fmaxnmv(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP maximum across vector.
+ void fmaxv(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP minimum number across vector.
+ void fminnmv(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP minimum across vector.
+ void fminv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed maximum across vector.
+ void smaxv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Signed minimum.
+ void smin(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed minimum pairwise.
+ void sminp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed minimum across vector.
+ void sminv(const VRegister& vd,
+ const VRegister& vn);
+
+ // One-element structure store from one register.
+ void st1(const VRegister& vt,
+ const MemOperand& src);
+
+ // One-element structure store from two registers.
+ void st1(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // One-element structure store from three registers.
+ void st1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // One-element structure store from four registers.
+ void st1(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // One-element single structure store from one lane.
+ void st1(const VRegister& vt,
+ int lane,
+ const MemOperand& src);
+
+ // Two-element structure store from two registers.
+ void st2(const VRegister& vt,
+ const VRegister& vt2,
+ const MemOperand& src);
+
+ // Two-element single structure store from two lanes.
+ void st2(const VRegister& vt,
+ const VRegister& vt2,
+ int lane,
+ const MemOperand& src);
+
+ // Three-element structure store from three registers.
+ void st3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const MemOperand& src);
+
+ // Three-element single structure store from three lanes.
+ void st3(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ int lane,
+ const MemOperand& src);
+
+ // Four-element structure store from four registers.
+ void st4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ const MemOperand& src);
+
+ // Four-element single structure store from four lanes.
+ void st4(const VRegister& vt,
+ const VRegister& vt2,
+ const VRegister& vt3,
+ const VRegister& vt4,
+ int lane,
+ const MemOperand& src);
+
+ // Unsigned add long.
+ void uaddl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned add long (second part).
+ void uaddl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned add wide.
+ void uaddw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned add wide (second part).
+ void uaddw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed add long.
+ void saddl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed add long (second part).
+ void saddl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed add wide.
+ void saddw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed add wide (second part).
+ void saddw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned subtract long.
+ void usubl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned subtract long (second part).
+ void usubl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned subtract wide.
+ void usubw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned subtract wide (second part).
+ void usubw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed subtract long.
+ void ssubl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed subtract long (second part).
+ void ssubl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed integer subtract wide.
+ void ssubw(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed integer subtract wide (second part).
+ void ssubw2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned maximum.
+ void umax(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned pairwise maximum.
+ void umaxp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned maximum across vector.
+ void umaxv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Unsigned minimum.
+ void umin(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned pairwise minimum.
+ void uminp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned minimum across vector.
+ void uminv(const VRegister& vd,
+ const VRegister& vn);
+
+ // Transpose vectors (primary).
+ void trn1(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Transpose vectors (secondary).
+ void trn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unzip vectors (primary).
+ void uzp1(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unzip vectors (secondary).
+ void uzp2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Zip vectors (primary).
+ void zip1(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Zip vectors (secondary).
+ void zip2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed shift right by immediate.
+ void sshr(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned shift right by immediate.
+ void ushr(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed rounding shift right by immediate.
+ void srshr(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned rounding shift right by immediate.
+ void urshr(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed shift right by immediate and accumulate.
+ void ssra(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned shift right by immediate and accumulate.
+ void usra(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed rounding shift right by immediate and accumulate.
+ void srsra(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned rounding shift right by immediate and accumulate.
+ void ursra(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift right narrow by immediate.
+ void shrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Shift right narrow by immediate (second part).
+ void shrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Rounding shift right narrow by immediate.
+ void rshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Rounding shift right narrow by immediate (second part).
+ void rshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating shift right narrow by immediate.
+ void uqshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating shift right narrow by immediate (second part).
+ void uqshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating rounding shift right narrow by immediate.
+ void uqrshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Unsigned saturating rounding shift right narrow by immediate (second part).
+ void uqrshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift right narrow by immediate.
+ void sqshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift right narrow by immediate (second part).
+ void sqshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating rounded shift right narrow by immediate.
+ void sqrshrn(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating rounded shift right narrow by immediate (second part).
+ void sqrshrn2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift right unsigned narrow by immediate.
+ void sqshrun(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed saturating shift right unsigned narrow by immediate (second part).
+ void sqshrun2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed sat rounded shift right unsigned narrow by immediate.
+ void sqrshrun(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // Signed sat rounded shift right unsigned narrow by immediate (second part).
+ void sqrshrun2(const VRegister& vd,
+ const VRegister& vn,
+ int shift);
+
+ // FP reciprocal step.
+ void frecps(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP reciprocal estimate.
+ void frecpe(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP reciprocal square root estimate.
+ void frsqrte(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP reciprocal square root step.
+ void frsqrts(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference and accumulate long.
+ void sabal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference and accumulate long (second part).
+ void sabal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference and accumulate long.
+ void uabal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference and accumulate long (second part).
+ void uabal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference long.
+ void sabdl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed absolute difference long (second part).
+ void sabdl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference long.
+ void uabdl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned absolute difference long (second part).
+ void uabdl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Polynomial multiply long.
+ void pmull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Polynomial multiply long (second part).
+ void pmull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply-add.
+ void smlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply-add (second part).
+ void smlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply-add.
+ void umlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply-add (second part).
+ void umlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply-sub.
+ void smlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply-sub (second part).
+ void smlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply-sub.
+ void umlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply-sub (second part).
+ void umlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply.
+ void smull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed long multiply (second part).
+ void smull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply-add.
+ void sqdmlal(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply-add (second part).
+ void sqdmlal2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply-subtract.
+ void sqdmlsl(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply-subtract (second part).
+ void sqdmlsl2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply.
+ void sqdmull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling long multiply (second part).
+ void sqdmull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling multiply returning high half.
+ void sqdmulh(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating rounding doubling multiply returning high half.
+ void sqrdmulh(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Signed saturating doubling multiply element returning high half.
+ void sqdmulh(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Signed saturating rounding doubling multiply element returning high half.
+ void sqrdmulh(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // Unsigned long multiply long.
+ void umull(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Unsigned long multiply (second part).
+ void umull2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add narrow returning high half.
+ void addhn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Add narrow returning high half (second part).
+ void addhn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Rounding add narrow returning high half.
+ void raddhn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Rounding add narrow returning high half (second part).
+ void raddhn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Subtract narrow returning high half.
+ void subhn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Subtract narrow returning high half (second part).
+ void subhn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Rounding subtract narrow returning high half.
+ void rsubhn(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // Rounding subtract narrow returning high half (second part).
+ void rsubhn2(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP vector multiply accumulate.
+ void fmla(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP vector multiply subtract.
+ void fmls(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP vector multiply extended.
+ void fmulx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP absolute greater than or equal.
+ void facge(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP absolute greater than.
+ void facgt(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP multiply by element.
+ void fmul(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // FP fused multiply-add to accumulator by element.
+ void fmla(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // FP fused multiply-sub from accumulator by element.
+ void fmls(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // FP multiply extended by element.
+ void fmulx(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index);
+
+ // FP compare equal.
+ void fcmeq(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP greater than.
+ void fcmgt(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP greater than or equal.
+ void fcmge(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP compare equal to zero.
+ void fcmeq(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP greater than zero.
+ void fcmgt(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP greater than or equal to zero.
+ void fcmge(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP less than or equal to zero.
+ void fcmle(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP less than to zero.
+ void fcmlt(const VRegister& vd,
+ const VRegister& vn,
+ double imm);
+
+ // FP absolute difference.
+ void fabd(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise add vector.
+ void faddp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise add scalar.
+ void faddp(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP pairwise maximum vector.
+ void fmaxp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise maximum scalar.
+ void fmaxp(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP pairwise minimum vector.
+ void fminp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise minimum scalar.
+ void fminp(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP pairwise maximum number vector.
+ void fmaxnmp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise maximum number scalar.
+ void fmaxnmp(const VRegister& vd,
+ const VRegister& vn);
+
+ // FP pairwise minimum number vector.
+ void fminnmp(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm);
+
+ // FP pairwise minimum number scalar.
+ void fminnmp(const VRegister& vd,
+ const VRegister& vn);
+
+ // Emit generic instructions.
+ // Emit raw instructions into the instruction stream.
+ void dci(Instr raw_inst) { Emit(raw_inst); }
+
+ // Emit 32 bits of data into the instruction stream.
+ void dc32(uint32_t data) {
+ VIXL_ASSERT(buffer_monitor_ > 0);
+ buffer_->Emit32(data);
+ }
+
+ // Emit 64 bits of data into the instruction stream.
+ void dc64(uint64_t data) {
+ VIXL_ASSERT(buffer_monitor_ > 0);
+ buffer_->Emit64(data);
+ }
+
+ // Copy a string into the instruction stream, including the terminating NULL
+ // character. The instruction pointer is then aligned correctly for
+ // subsequent instructions.
+ void EmitString(const char * string) {
+ VIXL_ASSERT(string != NULL);
+ VIXL_ASSERT(buffer_monitor_ > 0);
+
+ buffer_->EmitString(string);
+ buffer_->Align();
+ }
+
+ // Code generation helpers.
+
+ // Register encoding.
+ static Instr Rd(CPURegister rd) {
+ VIXL_ASSERT(rd.code() != kSPRegInternalCode);
+ return rd.code() << Rd_offset;
+ }
+
+ static Instr Rn(CPURegister rn) {
+ VIXL_ASSERT(rn.code() != kSPRegInternalCode);
+ return rn.code() << Rn_offset;
+ }
+
+ static Instr Rm(CPURegister rm) {
+ VIXL_ASSERT(rm.code() != kSPRegInternalCode);
+ return rm.code() << Rm_offset;
+ }
+
+ static Instr RmNot31(CPURegister rm) {
+ VIXL_ASSERT(rm.code() != kSPRegInternalCode);
+ VIXL_ASSERT(!rm.IsZero());
+ return Rm(rm);
+ }
+
+ static Instr Ra(CPURegister ra) {
+ VIXL_ASSERT(ra.code() != kSPRegInternalCode);
+ return ra.code() << Ra_offset;
+ }
+
+ static Instr Rt(CPURegister rt) {
+ VIXL_ASSERT(rt.code() != kSPRegInternalCode);
+ return rt.code() << Rt_offset;
+ }
+
+ static Instr Rt2(CPURegister rt2) {
+ VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
+ return rt2.code() << Rt2_offset;
+ }
+
+ static Instr Rs(CPURegister rs) {
+ VIXL_ASSERT(rs.code() != kSPRegInternalCode);
+ return rs.code() << Rs_offset;
+ }
+
+ // These encoding functions allow the stack pointer to be encoded, and
+ // disallow the zero register.
+ static Instr RdSP(Register rd) {
+ VIXL_ASSERT(!rd.IsZero());
+ return (rd.code() & kRegCodeMask) << Rd_offset;
+ }
+
+ static Instr RnSP(Register rn) {
+ VIXL_ASSERT(!rn.IsZero());
+ return (rn.code() & kRegCodeMask) << Rn_offset;
+ }
+
+ // Flags encoding.
+ static Instr Flags(FlagsUpdate S) {
+ if (S == SetFlags) {
+ return 1 << FlagsUpdate_offset;
+ } else if (S == LeaveFlags) {
+ return 0 << FlagsUpdate_offset;
+ }
+ VIXL_UNREACHABLE();
+ return 0;
+ }
+
+ static Instr Cond(Condition cond) {
+ return cond << Condition_offset;
+ }
+
+ // PC-relative address encoding.
+ static Instr ImmPCRelAddress(int imm21) {
+ VIXL_ASSERT(is_int21(imm21));
+ Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
+ Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
+ Instr immlo = imm << ImmPCRelLo_offset;
+ return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
+ }
+
+ // Branch encoding.
+ static Instr ImmUncondBranch(int imm26) {
+ VIXL_ASSERT(is_int26(imm26));
+ return truncate_to_int26(imm26) << ImmUncondBranch_offset;
+ }
+
+ static Instr ImmCondBranch(int imm19) {
+ VIXL_ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCondBranch_offset;
+ }
+
+ static Instr ImmCmpBranch(int imm19) {
+ VIXL_ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCmpBranch_offset;
+ }
+
+ static Instr ImmTestBranch(int imm14) {
+ VIXL_ASSERT(is_int14(imm14));
+ return truncate_to_int14(imm14) << ImmTestBranch_offset;
+ }
+
+ static Instr ImmTestBranchBit(unsigned bit_pos) {
+ VIXL_ASSERT(is_uint6(bit_pos));
+ // Subtract five from the shift offset, as we need bit 5 from bit_pos.
+ unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
+ unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
+ b5 &= ImmTestBranchBit5_mask;
+ b40 &= ImmTestBranchBit40_mask;
+ return b5 | b40;
+ }
+
+ // Data Processing encoding.
+ static Instr SF(Register rd) {
+ return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
+ }
+
+ static Instr ImmAddSub(int imm) {
+ VIXL_ASSERT(IsImmAddSub(imm));
+ if (is_uint12(imm)) { // No shift required.
+ imm <<= ImmAddSub_offset;
+ } else {
+ imm = ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
+ }
+ return imm;
+ }
+
+ static Instr ImmS(unsigned imms, unsigned reg_size) {
+ VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
+ ((reg_size == kWRegSize) && is_uint5(imms)));
+ USE(reg_size);
+ return imms << ImmS_offset;
+ }
+
+ static Instr ImmR(unsigned immr, unsigned reg_size) {
+ VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ VIXL_ASSERT(is_uint6(immr));
+ return immr << ImmR_offset;
+ }
+
+ static Instr ImmSetBits(unsigned imms, unsigned reg_size) {
+ VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ VIXL_ASSERT(is_uint6(imms));
+ VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
+ USE(reg_size);
+ return imms << ImmSetBits_offset;
+ }
+
+ static Instr ImmRotate(unsigned immr, unsigned reg_size) {
+ VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ return immr << ImmRotate_offset;
+ }
+
+ static Instr ImmLLiteral(int imm19) {
+ VIXL_ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmLLiteral_offset;
+ }
+
+ static Instr BitN(unsigned bitn, unsigned reg_size) {
+ VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
+ USE(reg_size);
+ return bitn << BitN_offset;
+ }
+
+ static Instr ShiftDP(Shift shift) {
+ VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+ return shift << ShiftDP_offset;
+ }
+
+ static Instr ImmDPShift(unsigned amount) {
+ VIXL_ASSERT(is_uint6(amount));
+ return amount << ImmDPShift_offset;
+ }
+
+ static Instr ExtendMode(Extend extend) {
+ return extend << ExtendMode_offset;
+ }
+
+ static Instr ImmExtendShift(unsigned left_shift) {
+ VIXL_ASSERT(left_shift <= 4);
+ return left_shift << ImmExtendShift_offset;
+ }
+
+ static Instr ImmCondCmp(unsigned imm) {
+ VIXL_ASSERT(is_uint5(imm));
+ return imm << ImmCondCmp_offset;
+ }
+
+ static Instr Nzcv(StatusFlags nzcv) {
+ return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
+ }
+
+ // MemOperand offset encoding.
+ static Instr ImmLSUnsigned(int imm12) {
+ VIXL_ASSERT(is_uint12(imm12));
+ return imm12 << ImmLSUnsigned_offset;
+ }
+
+ static Instr ImmLS(int imm9) {
+ VIXL_ASSERT(is_int9(imm9));
+ return truncate_to_int9(imm9) << ImmLS_offset;
+ }
+
+ static Instr ImmLSPair(int imm7, unsigned access_size) {
+ VIXL_ASSERT(((imm7 >> access_size) << access_size) == imm7);
+ int scaled_imm7 = imm7 >> access_size;
+ VIXL_ASSERT(is_int7(scaled_imm7));
+ return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
+ }
+
+ static Instr ImmShiftLS(unsigned shift_amount) {
+ VIXL_ASSERT(is_uint1(shift_amount));
+ return shift_amount << ImmShiftLS_offset;
+ }
+
+ static Instr ImmPrefetchOperation(int imm5) {
+ VIXL_ASSERT(is_uint5(imm5));
+ return imm5 << ImmPrefetchOperation_offset;
+ }
+
+ static Instr ImmException(int imm16) {
+ VIXL_ASSERT(is_uint16(imm16));
+ return imm16 << ImmException_offset;
+ }
+
+ static Instr ImmSystemRegister(int imm15) {
+ VIXL_ASSERT(is_uint15(imm15));
+ return imm15 << ImmSystemRegister_offset;
+ }
+
+ static Instr ImmHint(int imm7) {
+ VIXL_ASSERT(is_uint7(imm7));
+ return imm7 << ImmHint_offset;
+ }
+
+ static Instr CRm(int imm4) {
+ VIXL_ASSERT(is_uint4(imm4));
+ return imm4 << CRm_offset;
+ }
+
+ static Instr CRn(int imm4) {
+ VIXL_ASSERT(is_uint4(imm4));
+ return imm4 << CRn_offset;
+ }
+
+ static Instr SysOp(int imm14) {
+ VIXL_ASSERT(is_uint14(imm14));
+ return imm14 << SysOp_offset;
+ }
+
+ static Instr ImmSysOp1(int imm3) {
+ VIXL_ASSERT(is_uint3(imm3));
+ return imm3 << SysOp1_offset;
+ }
+
+ static Instr ImmSysOp2(int imm3) {
+ VIXL_ASSERT(is_uint3(imm3));
+ return imm3 << SysOp2_offset;
+ }
+
+ static Instr ImmBarrierDomain(int imm2) {
+ VIXL_ASSERT(is_uint2(imm2));
+ return imm2 << ImmBarrierDomain_offset;
+ }
+
+ static Instr ImmBarrierType(int imm2) {
+ VIXL_ASSERT(is_uint2(imm2));
+ return imm2 << ImmBarrierType_offset;
+ }
+
+ // Move immediates encoding.
+ static Instr ImmMoveWide(uint64_t imm) {
+ VIXL_ASSERT(is_uint16(imm));
+ return static_cast<Instr>(imm << ImmMoveWide_offset);
+ }
+
+ static Instr ShiftMoveWide(int64_t shift) {
+ VIXL_ASSERT(is_uint2(shift));
+ return static_cast<Instr>(shift << ShiftMoveWide_offset);
+ }
+
+ // FP Immediates.
+ static Instr ImmFP32(float imm);
+ static Instr ImmFP64(double imm);
+
+ // FP register type.
+ static Instr FPType(FPRegister fd) {
+ return fd.Is64Bits() ? FP64 : FP32;
+ }
+
+ static Instr FPScale(unsigned scale) {
+ VIXL_ASSERT(is_uint6(scale));
+ return scale << FPScale_offset;
+ }
+
+ // Immediate field checking helpers.
+ static bool IsImmAddSub(int64_t immediate);
+ static bool IsImmConditionalCompare(int64_t immediate);
+ static bool IsImmFP32(float imm);
+ static bool IsImmFP64(double imm);
+ static bool IsImmLogical(uint64_t value,
+ unsigned width,
+ unsigned* n = NULL,
+ unsigned* imm_s = NULL,
+ unsigned* imm_r = NULL);
+ static bool IsImmLSPair(int64_t offset, unsigned access_size);
+ static bool IsImmLSScaled(int64_t offset, unsigned access_size);
+ static bool IsImmLSUnscaled(int64_t offset);
+ static bool IsImmMovn(uint64_t imm, unsigned reg_size);
+ static bool IsImmMovz(uint64_t imm, unsigned reg_size);
+
+ // Instruction bits for vector format in data processing operations.
+ static Instr VFormat(VRegister vd) {
+ if (vd.Is64Bits()) {
+ switch (vd.lanes()) {
+ case 2: return NEON_2S;
+ case 4: return NEON_4H;
+ case 8: return NEON_8B;
+ default: return 0xffffffff;
+ }
+ } else {
+ VIXL_ASSERT(vd.Is128Bits());
+ switch (vd.lanes()) {
+ case 2: return NEON_2D;
+ case 4: return NEON_4S;
+ case 8: return NEON_8H;
+ case 16: return NEON_16B;
+ default: return 0xffffffff;
+ }
+ }
+ }
+
+ // Instruction bits for vector format in floating point data processing
+ // operations.
+ static Instr FPFormat(VRegister vd) {
+ if (vd.lanes() == 1) {
+ // Floating point scalar formats.
+ VIXL_ASSERT(vd.Is32Bits() || vd.Is64Bits());
+ return vd.Is64Bits() ? FP64 : FP32;
+ }
+
+ // Two lane floating point vector formats.
+ if (vd.lanes() == 2) {
+ VIXL_ASSERT(vd.Is64Bits() || vd.Is128Bits());
+ return vd.Is128Bits() ? NEON_FP_2D : NEON_FP_2S;
+ }
+
+ // Four lane floating point vector format.
+ VIXL_ASSERT((vd.lanes() == 4) && vd.Is128Bits());
+ return NEON_FP_4S;
+ }
+
+ // Instruction bits for vector format in load and store operations.
+ static Instr LSVFormat(VRegister vd) {
+ if (vd.Is64Bits()) {
+ switch (vd.lanes()) {
+ case 1: return LS_NEON_1D;
+ case 2: return LS_NEON_2S;
+ case 4: return LS_NEON_4H;
+ case 8: return LS_NEON_8B;
+ default: return 0xffffffff;
+ }
+ } else {
+ VIXL_ASSERT(vd.Is128Bits());
+ switch (vd.lanes()) {
+ case 2: return LS_NEON_2D;
+ case 4: return LS_NEON_4S;
+ case 8: return LS_NEON_8H;
+ case 16: return LS_NEON_16B;
+ default: return 0xffffffff;
+ }
+ }
+ }
+
+ // Instruction bits for scalar format in data processing operations.
+ static Instr SFormat(VRegister vd) {
+ VIXL_ASSERT(vd.lanes() == 1);
+ switch (vd.SizeInBytes()) {
+ case 1: return NEON_B;
+ case 2: return NEON_H;
+ case 4: return NEON_S;
+ case 8: return NEON_D;
+ default: return 0xffffffff;
+ }
+ }
+
+ static Instr ImmNEONHLM(int index, int num_bits) {
+ int h, l, m;
+ if (num_bits == 3) {
+ VIXL_ASSERT(is_uint3(index));
+ h = (index >> 2) & 1;
+ l = (index >> 1) & 1;
+ m = (index >> 0) & 1;
+ } else if (num_bits == 2) {
+ VIXL_ASSERT(is_uint2(index));
+ h = (index >> 1) & 1;
+ l = (index >> 0) & 1;
+ m = 0;
+ } else {
+ VIXL_ASSERT(is_uint1(index) && (num_bits == 1));
+ h = (index >> 0) & 1;
+ l = 0;
+ m = 0;
+ }
+ return (h << NEONH_offset) | (l << NEONL_offset) | (m << NEONM_offset);
+ }
+
+ static Instr ImmNEONExt(int imm4) {
+ VIXL_ASSERT(is_uint4(imm4));
+ return imm4 << ImmNEONExt_offset;
+ }
+
+ static Instr ImmNEON5(Instr format, int index) {
+ VIXL_ASSERT(is_uint4(index));
+ int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
+ int imm5 = (index << (s + 1)) | (1 << s);
+ return imm5 << ImmNEON5_offset;
+ }
+
+ static Instr ImmNEON4(Instr format, int index) {
+ VIXL_ASSERT(is_uint4(index));
+ int s = LaneSizeInBytesLog2FromFormat(static_cast<VectorFormat>(format));
+ int imm4 = index << s;
+ return imm4 << ImmNEON4_offset;
+ }
+
+ static Instr ImmNEONabcdefgh(int imm8) {
+ VIXL_ASSERT(is_uint8(imm8));
+ Instr instr;
+ instr = ((imm8 >> 5) & 7) << ImmNEONabc_offset;
+ instr |= (imm8 & 0x1f) << ImmNEONdefgh_offset;
+ return instr;
+ }
+
+ static Instr NEONCmode(int cmode) {
+ VIXL_ASSERT(is_uint4(cmode));
+ return cmode << NEONCmode_offset;
+ }
+
+ static Instr NEONModImmOp(int op) {
+ VIXL_ASSERT(is_uint1(op));
+ return op << NEONModImmOp_offset;
+ }
+
+ // Size of the code generated since label to the current position.
+ size_t SizeOfCodeGeneratedSince(Label* label) const {
+ VIXL_ASSERT(label->IsBound());
+ return buffer_->OffsetFrom(label->location());
+ }
+
+ size_t SizeOfCodeGenerated() const {
+ return buffer_->CursorOffset();
+ }
+
+ size_t BufferCapacity() const { return buffer_->capacity(); }
+
+ size_t RemainingBufferSpace() const { return buffer_->RemainingBytes(); }
+
+ void EnsureSpaceFor(size_t amount) {
+ if (buffer_->RemainingBytes() < amount) {
+ size_t capacity = buffer_->capacity();
+ size_t size = buffer_->CursorOffset();
+ do {
+ // TODO(all): refine.
+ capacity *= 2;
+ } while ((capacity - size) < amount);
+ buffer_->Grow(capacity);
+ }
+ }
+
+#ifdef VIXL_DEBUG
+ void AcquireBuffer() {
+ VIXL_ASSERT(buffer_monitor_ >= 0);
+ buffer_monitor_++;
+ }
+
+ void ReleaseBuffer() {
+ buffer_monitor_--;
+ VIXL_ASSERT(buffer_monitor_ >= 0);
+ }
+#endif
+
+ PositionIndependentCodeOption pic() const {
+ return pic_;
+ }
+
+ bool AllowPageOffsetDependentCode() const {
+ return (pic() == PageOffsetDependentCode) ||
+ (pic() == PositionDependentCode);
+ }
+
+ static const Register& AppropriateZeroRegFor(const CPURegister& reg) {
+ return reg.Is64Bits() ? xzr : wzr;
+ }
+
+
+ protected:
+ void LoadStore(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ void LoadStorePair(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairOp op);
+ void LoadStoreStruct(const VRegister& vt,
+ const MemOperand& addr,
+ NEONLoadStoreMultiStructOp op);
+ void LoadStoreStruct1(const VRegister& vt,
+ int reg_count,
+ const MemOperand& addr);
+ void LoadStoreStructSingle(const VRegister& vt,
+ uint32_t lane,
+ const MemOperand& addr,
+ NEONLoadStoreSingleStructOp op);
+ void LoadStoreStructSingleAllLanes(const VRegister& vt,
+ const MemOperand& addr,
+ NEONLoadStoreSingleStructOp op);
+ void LoadStoreStructVerify(const VRegister& vt,
+ const MemOperand& addr,
+ Instr op);
+
+ void Prefetch(PrefetchOperation op,
+ const MemOperand& addr,
+ LoadStoreScalingOption option = PreferScaledOffset);
+
+ // TODO(all): The third parameter should be passed by reference but gcc 4.8.2
+ // reports a bogus uninitialised warning then.
+ void Logical(const Register& rd,
+ const Register& rn,
+ const Operand operand,
+ LogicalOp op);
+ void LogicalImmediate(const Register& rd,
+ const Register& rn,
+ unsigned n,
+ unsigned imm_s,
+ unsigned imm_r,
+ LogicalOp op);
+
+ void ConditionalCompare(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op);
+
+ void AddSubWithCarry(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op);
+
+
+ // Functions for emulating operands not directly supported by the instruction
+ // set.
+ void EmitShift(const Register& rd,
+ const Register& rn,
+ Shift shift,
+ unsigned amount);
+ void EmitExtendShift(const Register& rd,
+ const Register& rn,
+ Extend extend,
+ unsigned left_shift);
+
+ void AddSub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op);
+
+ void NEONTable(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEONTableOp op);
+
+ // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
+ // registers. Only simple loads are supported; sign- and zero-extension (such
+ // as in LDPSW_x or LDRB_w) are not supported.
+ static LoadStoreOp LoadOpFor(const CPURegister& rt);
+ static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStoreOp StoreOpFor(const CPURegister& rt);
+ static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+ static LoadLiteralOp LoadLiteralOpFor(const CPURegister& rt);
+
+
+ private:
+ static uint32_t FP32ToImm8(float imm);
+ static uint32_t FP64ToImm8(double imm);
+
+ // Instruction helpers.
+ void MoveWide(const Register& rd,
+ uint64_t imm,
+ int shift,
+ MoveWideImmediateOp mov_op);
+ void DataProcShiftedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void DataProcExtendedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void LoadStorePairNonTemporal(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairNonTemporalOp op);
+ void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
+ void ConditionalSelect(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond,
+ ConditionalSelectOp op);
+ void DataProcessing1Source(const Register& rd,
+ const Register& rn,
+ DataProcessing1SourceOp op);
+ void DataProcessing3Source(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra,
+ DataProcessing3SourceOp op);
+ void FPDataProcessing1Source(const VRegister& fd,
+ const VRegister& fn,
+ FPDataProcessing1SourceOp op);
+ void FPDataProcessing3Source(const VRegister& fd,
+ const VRegister& fn,
+ const VRegister& fm,
+ const VRegister& fa,
+ FPDataProcessing3SourceOp op);
+ void NEONAcrossLanesL(const VRegister& vd,
+ const VRegister& vn,
+ NEONAcrossLanesOp op);
+ void NEONAcrossLanes(const VRegister& vd,
+ const VRegister& vn,
+ NEONAcrossLanesOp op);
+ void NEONModifiedImmShiftLsl(const VRegister& vd,
+ const int imm8,
+ const int left_shift,
+ NEONModifiedImmediateOp op);
+ void NEONModifiedImmShiftMsl(const VRegister& vd,
+ const int imm8,
+ const int shift_amount,
+ NEONModifiedImmediateOp op);
+ void NEONFP2Same(const VRegister& vd,
+ const VRegister& vn,
+ Instr vop);
+ void NEON3Same(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3SameOp vop);
+ void NEONFP3Same(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ Instr op);
+ void NEON3DifferentL(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3DifferentOp vop);
+ void NEON3DifferentW(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3DifferentOp vop);
+ void NEON3DifferentHN(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEON3DifferentOp vop);
+ void NEONFP2RegMisc(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp vop,
+ double value = 0.0);
+ void NEON2RegMisc(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp vop,
+ int value = 0);
+ void NEONFP2RegMisc(const VRegister& vd,
+ const VRegister& vn,
+ Instr op);
+ void NEONAddlp(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp op);
+ void NEONPerm(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ NEONPermOp op);
+ void NEONFPByElement(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index,
+ NEONByIndexedElementOp op);
+ void NEONByElement(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index,
+ NEONByIndexedElementOp op);
+ void NEONByElementL(const VRegister& vd,
+ const VRegister& vn,
+ const VRegister& vm,
+ int vm_index,
+ NEONByIndexedElementOp op);
+ void NEONShiftImmediate(const VRegister& vd,
+ const VRegister& vn,
+ NEONShiftImmediateOp op,
+ int immh_immb);
+ void NEONShiftLeftImmediate(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op);
+ void NEONShiftRightImmediate(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op);
+ void NEONShiftImmediateL(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op);
+ void NEONShiftImmediateN(const VRegister& vd,
+ const VRegister& vn,
+ int shift,
+ NEONShiftImmediateOp op);
+ void NEONXtn(const VRegister& vd,
+ const VRegister& vn,
+ NEON2RegMiscOp vop);
+
+ Instr LoadStoreStructAddrModeField(const MemOperand& addr);
+
+ // Encode the specified MemOperand for the specified access size and scaling
+ // preference.
+ Instr LoadStoreMemOperand(const MemOperand& addr,
+ unsigned access_size,
+ LoadStoreScalingOption option);
+
+ // Link the current (not-yet-emitted) instruction to the specified label, then
+ // return an offset to be encoded in the instruction. If the label is not yet
+ // bound, an offset of 0 is returned.
+ ptrdiff_t LinkAndGetByteOffsetTo(Label * label);
+ ptrdiff_t LinkAndGetInstructionOffsetTo(Label * label);
+ ptrdiff_t LinkAndGetPageOffsetTo(Label * label);
+
+ // A common implementation for the LinkAndGet<Type>OffsetTo helpers.
+ template <int element_shift>
+ ptrdiff_t LinkAndGetOffsetTo(Label* label);
+
+ // Literal load offset are in words (32-bit).
+ ptrdiff_t LinkAndGetWordOffsetTo(RawLiteral* literal);
+
+ // Emit the instruction in buffer_.
+ void Emit(Instr instruction) {
+ VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
+ VIXL_ASSERT(buffer_monitor_ > 0);
+ buffer_->Emit32(instruction);
+ }
+
+ // Buffer where the code is emitted.
+ CodeBuffer* buffer_;
+ PositionIndependentCodeOption pic_;
+
+#ifdef VIXL_DEBUG
+ int64_t buffer_monitor_;
+#endif
+};
+
+
+// All Assembler emits MUST acquire/release the underlying code buffer. The
+// helper scope below will do so and optionally ensure the buffer is big enough
+// to receive the emit. It is possible to request the scope not to perform any
+// checks (kNoCheck) if for example it is known in advance the buffer size is
+// adequate or there is some other size checking mechanism in place.
+class CodeBufferCheckScope {
+ public:
+ // Tell whether or not the scope needs to ensure the associated CodeBuffer
+ // has enough space for the requested size.
+ enum CheckPolicy {
+ kNoCheck,
+ kCheck
+ };
+
+ // Tell whether or not the scope should assert the amount of code emitted
+ // within the scope is consistent with the requested amount.
+ enum AssertPolicy {
+ kNoAssert, // No assert required.
+ kExactSize, // The code emitted must be exactly size bytes.
+ kMaximumSize // The code emitted must be at most size bytes.
+ };
+
+ CodeBufferCheckScope(Assembler* assm,
+ size_t size,
+ CheckPolicy check_policy = kCheck,
+ AssertPolicy assert_policy = kMaximumSize)
+ : assm_(assm) {
+ if (check_policy == kCheck) assm->EnsureSpaceFor(size);
+#ifdef VIXL_DEBUG
+ assm->bind(&start_);
+ size_ = size;
+ assert_policy_ = assert_policy;
+ assm->AcquireBuffer();
+#else
+ USE(assert_policy);
+#endif
+ }
+
+ // This is a shortcut for CodeBufferCheckScope(assm, 0, kNoCheck, kNoAssert).
+ explicit CodeBufferCheckScope(Assembler* assm) : assm_(assm) {
+#ifdef VIXL_DEBUG
+ size_ = 0;
+ assert_policy_ = kNoAssert;
+ assm->AcquireBuffer();
+#endif
+ }
+
+ ~CodeBufferCheckScope() {
+#ifdef VIXL_DEBUG
+ assm_->ReleaseBuffer();
+ switch (assert_policy_) {
+ case kNoAssert: break;
+ case kExactSize:
+ VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) == size_);
+ break;
+ case kMaximumSize:
+ VIXL_ASSERT(assm_->SizeOfCodeGeneratedSince(&start_) <= size_);
+ break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+#endif
+ }
+
+ protected:
+ Assembler* assm_;
+#ifdef VIXL_DEBUG
+ Label start_;
+ size_t size_;
+ AssertPolicy assert_policy_;
+#endif
+};
+
+
+template <typename T>
+void Literal<T>::UpdateValue(T new_value, const Assembler* assembler) {
+ return UpdateValue(new_value, assembler->GetStartAddress<uint8_t*>());
+}
+
+
+template <typename T>
+void Literal<T>::UpdateValue(T high64, T low64, const Assembler* assembler) {
+ return UpdateValue(high64, low64, assembler->GetStartAddress<uint8_t*>());
+}
+
+
+} // namespace vixl
+
+#endif // VIXL_A64_ASSEMBLER_A64_H_
diff --git a/disas/libvixl/a64/constants-a64.h b/disas/libvixl/vixl/a64/constants-a64.h
index bc1a2c4b9b..2caa73af87 100644
--- a/disas/libvixl/a64/constants-a64.h
+++ b/disas/libvixl/vixl/a64/constants-a64.h
@@ -1,4 +1,4 @@
-// Copyright 2013, ARM Limited
+// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@@ -30,7 +30,14 @@
namespace vixl {
const unsigned kNumberOfRegisters = 32;
-const unsigned kNumberOfFPRegisters = 32;
+const unsigned kNumberOfVRegisters = 32;
+const unsigned kNumberOfFPRegisters = kNumberOfVRegisters;
+// Callee saved registers are x21-x30(lr).
+const int kNumberOfCalleeSavedRegisters = 10;
+const int kFirstCalleeSavedRegisterIndex = 21;
+// Callee saved FP registers are d8-d15.
+const int kNumberOfCalleeSavedFPRegisters = 8;
+const int kFirstCalleeSavedFPRegisterIndex = 8;
#define REGISTER_CODE_LIST(R) \
R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
@@ -100,8 +107,10 @@ V_(FPScale, 15, 10, Bits) \
V_(ImmLS, 20, 12, SignedBits) \
V_(ImmLSUnsigned, 21, 10, Bits) \
V_(ImmLSPair, 21, 15, SignedBits) \
-V_(SizeLS, 31, 30, Bits) \
V_(ImmShiftLS, 12, 12, Bits) \
+V_(LSOpc, 23, 22, Bits) \
+V_(LSVector, 26, 26, Bits) \
+V_(LSSize, 31, 30, Bits) \
V_(ImmPrefetchOperation, 4, 0, Bits) \
V_(PrefetchHint, 4, 3, Bits) \
V_(PrefetchTarget, 2, 1, Bits) \
@@ -116,9 +125,10 @@ V_(ImmHint, 11, 5, Bits) \
V_(ImmBarrierDomain, 11, 10, Bits) \
V_(ImmBarrierType, 9, 8, Bits) \
\
-/* System (MRS, MSR) */ \
+/* System (MRS, MSR, SYS) */ \
V_(ImmSystemRegister, 19, 5, Bits) \
V_(SysO0, 19, 19, Bits) \
+V_(SysOp, 18, 5, Bits) \
V_(SysOp1, 18, 16, Bits) \
V_(SysOp2, 7, 5, Bits) \
V_(CRn, 15, 12, Bits) \
@@ -130,7 +140,29 @@ V_(LdStXNotExclusive, 23, 23, Bits) \
V_(LdStXAcquireRelease, 15, 15, Bits) \
V_(LdStXSizeLog2, 31, 30, Bits) \
V_(LdStXPair, 21, 21, Bits) \
-
+ \
+/* NEON generic fields */ \
+V_(NEONQ, 30, 30, Bits) \
+V_(NEONSize, 23, 22, Bits) \
+V_(NEONLSSize, 11, 10, Bits) \
+V_(NEONS, 12, 12, Bits) \
+V_(NEONL, 21, 21, Bits) \
+V_(NEONM, 20, 20, Bits) \
+V_(NEONH, 11, 11, Bits) \
+V_(ImmNEONExt, 14, 11, Bits) \
+V_(ImmNEON5, 20, 16, Bits) \
+V_(ImmNEON4, 14, 11, Bits) \
+ \
+/* NEON Modified Immediate fields */ \
+V_(ImmNEONabc, 18, 16, Bits) \
+V_(ImmNEONdefgh, 9, 5, Bits) \
+V_(NEONModImmOp, 29, 29, Bits) \
+V_(NEONCmode, 15, 12, Bits) \
+ \
+/* NEON Shift Immediate fields */ \
+V_(ImmNEONImmhImmb, 22, 16, Bits) \
+V_(ImmNEONImmh, 22, 19, Bits) \
+V_(ImmNEONImmb, 18, 16, Bits)
#define SYSTEM_REGISTER_FIELDS_LIST(V_, M_) \
/* NZCV */ \
@@ -140,7 +172,6 @@ V_(Z, 30, 30, Bits) \
V_(C, 29, 29, Bits) \
V_(V, 28, 28, Bits) \
M_(NZCV, Flags_mask) \
- \
/* FPCR */ \
V_(AHP, 26, 26, Bits) \
V_(DN, 25, 25, Bits) \
@@ -148,7 +179,6 @@ V_(FZ, 24, 24, Bits) \
V_(RMode, 23, 22, Bits) \
M_(FPCR, AHP_mask | DN_mask | FZ_mask | RMode_mask)
-
// Fields offsets.
#define DECLARE_FIELDS_OFFSETS(Name, HighBit, LowBit, X) \
const int Name##_offset = LowBit; \
@@ -166,22 +196,26 @@ const int ImmPCRel_mask = ImmPCRelLo_mask | ImmPCRelHi_mask;
// Condition codes.
enum Condition {
- eq = 0,
- ne = 1,
- hs = 2,
- lo = 3,
- mi = 4,
- pl = 5,
- vs = 6,
- vc = 7,
- hi = 8,
- ls = 9,
- ge = 10,
- lt = 11,
- gt = 12,
- le = 13,
- al = 14,
- nv = 15 // Behaves as always/al.
+ eq = 0, // Z set Equal.
+ ne = 1, // Z clear Not equal.
+ cs = 2, // C set Carry set.
+ cc = 3, // C clear Carry clear.
+ mi = 4, // N set Negative.
+ pl = 5, // N clear Positive or zero.
+ vs = 6, // V set Overflow.
+ vc = 7, // V clear No overflow.
+ hi = 8, // C set, Z clear Unsigned higher.
+ ls = 9, // C clear or Z set Unsigned lower or same.
+ ge = 10, // N == V Greater or equal.
+ lt = 11, // N != V Less than.
+ gt = 12, // Z clear, N == V Greater than.
+ le = 13, // Z set or N != V Less then or equal
+ al = 14, // Always.
+ nv = 15, // Behaves as always/al.
+
+ // Aliases.
+ hs = cs, // C set Unsigned higher or same.
+ lo = cc // C clear Unsigned lower.
};
inline Condition InvertCondition(Condition cond) {
@@ -191,6 +225,11 @@ inline Condition InvertCondition(Condition cond) {
return static_cast<Condition>(cond ^ 1);
}
+enum FPTrapFlags {
+ EnableTrap = 1,
+ DisableTrap = 0
+};
+
enum FlagsUpdate {
SetFlags = 1,
LeaveFlags = 0
@@ -228,7 +267,8 @@ enum Shift {
LSL = 0x0,
LSR = 0x1,
ASR = 0x2,
- ROR = 0x3
+ ROR = 0x3,
+ MSL = 0x4
};
enum Extend {
@@ -305,6 +345,32 @@ enum SystemRegister {
(0x0 << SysOp2_offset)) >> ImmSystemRegister_offset
};
+enum InstructionCacheOp {
+ IVAU = ((0x3 << SysOp1_offset) |
+ (0x7 << CRn_offset) |
+ (0x5 << CRm_offset) |
+ (0x1 << SysOp2_offset)) >> SysOp_offset
+};
+
+enum DataCacheOp {
+ CVAC = ((0x3 << SysOp1_offset) |
+ (0x7 << CRn_offset) |
+ (0xa << CRm_offset) |
+ (0x1 << SysOp2_offset)) >> SysOp_offset,
+ CVAU = ((0x3 << SysOp1_offset) |
+ (0x7 << CRn_offset) |
+ (0xb << CRm_offset) |
+ (0x1 << SysOp2_offset)) >> SysOp_offset,
+ CIVAC = ((0x3 << SysOp1_offset) |
+ (0x7 << CRn_offset) |
+ (0xe << CRm_offset) |
+ (0x1 << SysOp2_offset)) >> SysOp_offset,
+ ZVA = ((0x3 << SysOp1_offset) |
+ (0x7 << CRn_offset) |
+ (0x4 << CRm_offset) |
+ (0x1 << SysOp2_offset)) >> SysOp_offset
+};
+
// Instruction enumerations.
//
// These are the masks that define a class of instructions, and the list of
@@ -333,6 +399,47 @@ enum GenericInstrField {
FP64 = 0x00400000
};
+enum NEONFormatField {
+ NEONFormatFieldMask = 0x40C00000,
+ NEON_Q = 0x40000000,
+ NEON_8B = 0x00000000,
+ NEON_16B = NEON_8B | NEON_Q,
+ NEON_4H = 0x00400000,
+ NEON_8H = NEON_4H | NEON_Q,
+ NEON_2S = 0x00800000,
+ NEON_4S = NEON_2S | NEON_Q,
+ NEON_1D = 0x00C00000,
+ NEON_2D = 0x00C00000 | NEON_Q
+};
+
+enum NEONFPFormatField {
+ NEONFPFormatFieldMask = 0x40400000,
+ NEON_FP_2S = FP32,
+ NEON_FP_4S = FP32 | NEON_Q,
+ NEON_FP_2D = FP64 | NEON_Q
+};
+
+enum NEONLSFormatField {
+ NEONLSFormatFieldMask = 0x40000C00,
+ LS_NEON_8B = 0x00000000,
+ LS_NEON_16B = LS_NEON_8B | NEON_Q,
+ LS_NEON_4H = 0x00000400,
+ LS_NEON_8H = LS_NEON_4H | NEON_Q,
+ LS_NEON_2S = 0x00000800,
+ LS_NEON_4S = LS_NEON_2S | NEON_Q,
+ LS_NEON_1D = 0x00000C00,
+ LS_NEON_2D = LS_NEON_1D | NEON_Q
+};
+
+enum NEONScalarFormatField {
+ NEONScalarFormatFieldMask = 0x00C00000,
+ NEONScalar = 0x10000000,
+ NEON_B = 0x00000000,
+ NEON_H = 0x00400000,
+ NEON_S = 0x00800000,
+ NEON_D = 0x00C00000
+};
+
// PC relative addressing.
enum PCRelAddressingOp {
PCRelAddressingFixed = 0x10000000,
@@ -588,6 +695,13 @@ enum SystemHintOp {
HINT = SystemHintFixed | 0x00000000
};
+enum SystemSysOp {
+ SystemSysFixed = 0xD5080000,
+ SystemSysFMask = 0xFFF80000,
+ SystemSysMask = 0xFFF80000,
+ SYS = SystemSysFixed | 0x00000000
+};
+
// Exception.
enum ExceptionOp {
ExceptionFixed = 0xD4000000,
@@ -640,7 +754,9 @@ enum LoadStorePairAnyOp {
V(STP, s, 0x04000000), \
V(LDP, s, 0x04400000), \
V(STP, d, 0x44000000), \
- V(LDP, d, 0x44400000)
+ V(LDP, d, 0x44400000), \
+ V(STP, q, 0x84000000), \
+ V(LDP, q, 0x84400000)
// Load/store pair (post, pre and offset.)
enum LoadStorePairOp {
@@ -686,6 +802,7 @@ enum LoadStorePairNonTemporalOp {
LoadStorePairNonTemporalFixed = 0x28000000,
LoadStorePairNonTemporalFMask = 0x3B800000,
LoadStorePairNonTemporalMask = 0xFFC00000,
+ LoadStorePairNonTemporalLBit = 1 << 22,
STNP_w = LoadStorePairNonTemporalFixed | STP_w,
LDNP_w = LoadStorePairNonTemporalFixed | LDP_w,
STNP_x = LoadStorePairNonTemporalFixed | STP_x,
@@ -693,7 +810,9 @@ enum LoadStorePairNonTemporalOp {
STNP_s = LoadStorePairNonTemporalFixed | STP_s,
LDNP_s = LoadStorePairNonTemporalFixed | LDP_s,
STNP_d = LoadStorePairNonTemporalFixed | STP_d,
- LDNP_d = LoadStorePairNonTemporalFixed | LDP_d
+ LDNP_d = LoadStorePairNonTemporalFixed | LDP_d,
+ STNP_q = LoadStorePairNonTemporalFixed | STP_q,
+ LDNP_q = LoadStorePairNonTemporalFixed | LDP_q
};
// Load literal.
@@ -706,7 +825,8 @@ enum LoadLiteralOp {
LDRSW_x_lit = LoadLiteralFixed | 0x80000000,
PRFM_lit = LoadLiteralFixed | 0xC0000000,
LDR_s_lit = LoadLiteralFixed | 0x04000000,
- LDR_d_lit = LoadLiteralFixed | 0x44000000
+ LDR_d_lit = LoadLiteralFixed | 0x44000000,
+ LDR_q_lit = LoadLiteralFixed | 0x84000000
};
#define LOAD_STORE_OP_LIST(V) \
@@ -723,15 +843,21 @@ enum LoadLiteralOp {
V(LD, RSW, x, 0x80800000), \
V(LD, RSB, w, 0x00C00000), \
V(LD, RSH, w, 0x40C00000), \
+ V(ST, R, b, 0x04000000), \
+ V(ST, R, h, 0x44000000), \
V(ST, R, s, 0x84000000), \
V(ST, R, d, 0xC4000000), \
+ V(ST, R, q, 0x04800000), \
+ V(LD, R, b, 0x04400000), \
+ V(LD, R, h, 0x44400000), \
V(LD, R, s, 0x84400000), \
- V(LD, R, d, 0xC4400000)
-
+ V(LD, R, d, 0xC4400000), \
+ V(LD, R, q, 0x04C00000)
// Load/store (post, pre, offset and unsigned.)
enum LoadStoreOp {
- LoadStoreOpMask = 0xC4C00000,
+ LoadStoreMask = 0xC4C00000,
+ LoadStoreVMask = 0x04000000,
#define LOAD_STORE(A, B, C, D) \
A##B##_##C = D
LOAD_STORE_OP_LIST(LOAD_STORE),
@@ -971,8 +1097,10 @@ enum FPCompareOp {
FCMP_zero = FCMP_s_zero,
FCMPE_s = FPCompareFixed | 0x00000010,
FCMPE_d = FPCompareFixed | FP64 | 0x00000010,
+ FCMPE = FCMPE_s,
FCMPE_s_zero = FPCompareFixed | 0x00000018,
- FCMPE_d_zero = FPCompareFixed | FP64 | 0x00000018
+ FCMPE_d_zero = FPCompareFixed | FP64 | 0x00000018,
+ FCMPE_zero = FCMPE_s_zero
};
// Floating point conditional compare.
@@ -1026,6 +1154,10 @@ enum FPDataProcessing1SourceOp {
FSQRT = FSQRT_s,
FCVT_ds = FPDataProcessing1SourceFixed | 0x00028000,
FCVT_sd = FPDataProcessing1SourceFixed | FP64 | 0x00020000,
+ FCVT_hs = FPDataProcessing1SourceFixed | 0x00038000,
+ FCVT_hd = FPDataProcessing1SourceFixed | FP64 | 0x00038000,
+ FCVT_sh = FPDataProcessing1SourceFixed | 0x00C20000,
+ FCVT_dh = FPDataProcessing1SourceFixed | 0x00C28000,
FRINTN_s = FPDataProcessing1SourceFixed | 0x00040000,
FRINTN_d = FPDataProcessing1SourceFixed | FP64 | 0x00040000,
FRINTN = FRINTN_s,
@@ -1166,7 +1298,9 @@ enum FPIntegerConvertOp {
FMOV_ws = FPIntegerConvertFixed | 0x00060000,
FMOV_sw = FPIntegerConvertFixed | 0x00070000,
FMOV_xd = FMOV_ws | SixtyFourBits | FP64,
- FMOV_dx = FMOV_sw | SixtyFourBits | FP64
+ FMOV_dx = FMOV_sw | SixtyFourBits | FP64,
+ FMOV_d1_x = FPIntegerConvertFixed | SixtyFourBits | 0x008F0000,
+ FMOV_x_d1 = FPIntegerConvertFixed | SixtyFourBits | 0x008E0000
};
// Conversion between fixed point and floating point.
@@ -1196,6 +1330,775 @@ enum FPFixedPointConvertOp {
UCVTF_dx_fixed = UCVTF_fixed | SixtyFourBits | FP64
};
+// Crypto - two register SHA.
+enum Crypto2RegSHAOp {
+ Crypto2RegSHAFixed = 0x5E280800,
+ Crypto2RegSHAFMask = 0xFF3E0C00
+};
+
+// Crypto - three register SHA.
+enum Crypto3RegSHAOp {
+ Crypto3RegSHAFixed = 0x5E000000,
+ Crypto3RegSHAFMask = 0xFF208C00
+};
+
+// Crypto - AES.
+enum CryptoAESOp {
+ CryptoAESFixed = 0x4E280800,
+ CryptoAESFMask = 0xFF3E0C00
+};
+
+// NEON instructions with two register operands.
+enum NEON2RegMiscOp {
+ NEON2RegMiscFixed = 0x0E200800,
+ NEON2RegMiscFMask = 0x9F3E0C00,
+ NEON2RegMiscMask = 0xBF3FFC00,
+ NEON2RegMiscUBit = 0x20000000,
+ NEON_REV64 = NEON2RegMiscFixed | 0x00000000,
+ NEON_REV32 = NEON2RegMiscFixed | 0x20000000,
+ NEON_REV16 = NEON2RegMiscFixed | 0x00001000,
+ NEON_SADDLP = NEON2RegMiscFixed | 0x00002000,
+ NEON_UADDLP = NEON_SADDLP | NEON2RegMiscUBit,
+ NEON_SUQADD = NEON2RegMiscFixed | 0x00003000,
+ NEON_USQADD = NEON_SUQADD | NEON2RegMiscUBit,
+ NEON_CLS = NEON2RegMiscFixed | 0x00004000,
+ NEON_CLZ = NEON2RegMiscFixed | 0x20004000,
+ NEON_CNT = NEON2RegMiscFixed | 0x00005000,
+ NEON_RBIT_NOT = NEON2RegMiscFixed | 0x20005000,
+ NEON_SADALP = NEON2RegMiscFixed | 0x00006000,
+ NEON_UADALP = NEON_SADALP | NEON2RegMiscUBit,
+ NEON_SQABS = NEON2RegMiscFixed | 0x00007000,
+ NEON_SQNEG = NEON2RegMiscFixed | 0x20007000,
+ NEON_CMGT_zero = NEON2RegMiscFixed | 0x00008000,
+ NEON_CMGE_zero = NEON2RegMiscFixed | 0x20008000,
+ NEON_CMEQ_zero = NEON2RegMiscFixed | 0x00009000,
+ NEON_CMLE_zero = NEON2RegMiscFixed | 0x20009000,
+ NEON_CMLT_zero = NEON2RegMiscFixed | 0x0000A000,
+ NEON_ABS = NEON2RegMiscFixed | 0x0000B000,
+ NEON_NEG = NEON2RegMiscFixed | 0x2000B000,
+ NEON_XTN = NEON2RegMiscFixed | 0x00012000,
+ NEON_SQXTUN = NEON2RegMiscFixed | 0x20012000,
+ NEON_SHLL = NEON2RegMiscFixed | 0x20013000,
+ NEON_SQXTN = NEON2RegMiscFixed | 0x00014000,
+ NEON_UQXTN = NEON_SQXTN | NEON2RegMiscUBit,
+
+ NEON2RegMiscOpcode = 0x0001F000,
+ NEON_RBIT_NOT_opcode = NEON_RBIT_NOT & NEON2RegMiscOpcode,
+ NEON_NEG_opcode = NEON_NEG & NEON2RegMiscOpcode,
+ NEON_XTN_opcode = NEON_XTN & NEON2RegMiscOpcode,
+ NEON_UQXTN_opcode = NEON_UQXTN & NEON2RegMiscOpcode,
+
+ // These instructions use only one bit of the size field. The other bit is
+ // used to distinguish between instructions.
+ NEON2RegMiscFPMask = NEON2RegMiscMask | 0x00800000,
+ NEON_FABS = NEON2RegMiscFixed | 0x0080F000,
+ NEON_FNEG = NEON2RegMiscFixed | 0x2080F000,
+ NEON_FCVTN = NEON2RegMiscFixed | 0x00016000,
+ NEON_FCVTXN = NEON2RegMiscFixed | 0x20016000,
+ NEON_FCVTL = NEON2RegMiscFixed | 0x00017000,
+ NEON_FRINTN = NEON2RegMiscFixed | 0x00018000,
+ NEON_FRINTA = NEON2RegMiscFixed | 0x20018000,
+ NEON_FRINTP = NEON2RegMiscFixed | 0x00818000,
+ NEON_FRINTM = NEON2RegMiscFixed | 0x00019000,
+ NEON_FRINTX = NEON2RegMiscFixed | 0x20019000,
+ NEON_FRINTZ = NEON2RegMiscFixed | 0x00819000,
+ NEON_FRINTI = NEON2RegMiscFixed | 0x20819000,
+ NEON_FCVTNS = NEON2RegMiscFixed | 0x0001A000,
+ NEON_FCVTNU = NEON_FCVTNS | NEON2RegMiscUBit,
+ NEON_FCVTPS = NEON2RegMiscFixed | 0x0081A000,
+ NEON_FCVTPU = NEON_FCVTPS | NEON2RegMiscUBit,
+ NEON_FCVTMS = NEON2RegMiscFixed | 0x0001B000,
+ NEON_FCVTMU = NEON_FCVTMS | NEON2RegMiscUBit,
+ NEON_FCVTZS = NEON2RegMiscFixed | 0x0081B000,
+ NEON_FCVTZU = NEON_FCVTZS | NEON2RegMiscUBit,
+ NEON_FCVTAS = NEON2RegMiscFixed | 0x0001C000,
+ NEON_FCVTAU = NEON_FCVTAS | NEON2RegMiscUBit,
+ NEON_FSQRT = NEON2RegMiscFixed | 0x2081F000,
+ NEON_SCVTF = NEON2RegMiscFixed | 0x0001D000,
+ NEON_UCVTF = NEON_SCVTF | NEON2RegMiscUBit,
+ NEON_URSQRTE = NEON2RegMiscFixed | 0x2081C000,
+ NEON_URECPE = NEON2RegMiscFixed | 0x0081C000,
+ NEON_FRSQRTE = NEON2RegMiscFixed | 0x2081D000,
+ NEON_FRECPE = NEON2RegMiscFixed | 0x0081D000,
+ NEON_FCMGT_zero = NEON2RegMiscFixed | 0x0080C000,
+ NEON_FCMGE_zero = NEON2RegMiscFixed | 0x2080C000,
+ NEON_FCMEQ_zero = NEON2RegMiscFixed | 0x0080D000,
+ NEON_FCMLE_zero = NEON2RegMiscFixed | 0x2080D000,
+ NEON_FCMLT_zero = NEON2RegMiscFixed | 0x0080E000,
+
+ NEON_FCVTL_opcode = NEON_FCVTL & NEON2RegMiscOpcode,
+ NEON_FCVTN_opcode = NEON_FCVTN & NEON2RegMiscOpcode
+};
+
+// NEON instructions with three same-type operands.
+enum NEON3SameOp {
+ NEON3SameFixed = 0x0E200400,
+ NEON3SameFMask = 0x9F200400,
+ NEON3SameMask = 0xBF20FC00,
+ NEON3SameUBit = 0x20000000,
+ NEON_ADD = NEON3SameFixed | 0x00008000,
+ NEON_ADDP = NEON3SameFixed | 0x0000B800,
+ NEON_SHADD = NEON3SameFixed | 0x00000000,
+ NEON_SHSUB = NEON3SameFixed | 0x00002000,
+ NEON_SRHADD = NEON3SameFixed | 0x00001000,
+ NEON_CMEQ = NEON3SameFixed | NEON3SameUBit | 0x00008800,
+ NEON_CMGE = NEON3SameFixed | 0x00003800,
+ NEON_CMGT = NEON3SameFixed | 0x00003000,
+ NEON_CMHI = NEON3SameFixed | NEON3SameUBit | NEON_CMGT,
+ NEON_CMHS = NEON3SameFixed | NEON3SameUBit | NEON_CMGE,
+ NEON_CMTST = NEON3SameFixed | 0x00008800,
+ NEON_MLA = NEON3SameFixed | 0x00009000,
+ NEON_MLS = NEON3SameFixed | 0x20009000,
+ NEON_MUL = NEON3SameFixed | 0x00009800,
+ NEON_PMUL = NEON3SameFixed | 0x20009800,
+ NEON_SRSHL = NEON3SameFixed | 0x00005000,
+ NEON_SQSHL = NEON3SameFixed | 0x00004800,
+ NEON_SQRSHL = NEON3SameFixed | 0x00005800,
+ NEON_SSHL = NEON3SameFixed | 0x00004000,
+ NEON_SMAX = NEON3SameFixed | 0x00006000,
+ NEON_SMAXP = NEON3SameFixed | 0x0000A000,
+ NEON_SMIN = NEON3SameFixed | 0x00006800,
+ NEON_SMINP = NEON3SameFixed | 0x0000A800,
+ NEON_SABD = NEON3SameFixed | 0x00007000,
+ NEON_SABA = NEON3SameFixed | 0x00007800,
+ NEON_UABD = NEON3SameFixed | NEON3SameUBit | NEON_SABD,
+ NEON_UABA = NEON3SameFixed | NEON3SameUBit | NEON_SABA,
+ NEON_SQADD = NEON3SameFixed | 0x00000800,
+ NEON_SQSUB = NEON3SameFixed | 0x00002800,
+ NEON_SUB = NEON3SameFixed | NEON3SameUBit | 0x00008000,
+ NEON_UHADD = NEON3SameFixed | NEON3SameUBit | NEON_SHADD,
+ NEON_UHSUB = NEON3SameFixed | NEON3SameUBit | NEON_SHSUB,
+ NEON_URHADD = NEON3SameFixed | NEON3SameUBit | NEON_SRHADD,
+ NEON_UMAX = NEON3SameFixed | NEON3SameUBit | NEON_SMAX,
+ NEON_UMAXP = NEON3SameFixed | NEON3SameUBit | NEON_SMAXP,
+ NEON_UMIN = NEON3SameFixed | NEON3SameUBit | NEON_SMIN,
+ NEON_UMINP = NEON3SameFixed | NEON3SameUBit | NEON_SMINP,
+ NEON_URSHL = NEON3SameFixed | NEON3SameUBit | NEON_SRSHL,
+ NEON_UQADD = NEON3SameFixed | NEON3SameUBit | NEON_SQADD,
+ NEON_UQRSHL = NEON3SameFixed | NEON3SameUBit | NEON_SQRSHL,
+ NEON_UQSHL = NEON3SameFixed | NEON3SameUBit | NEON_SQSHL,
+ NEON_UQSUB = NEON3SameFixed | NEON3SameUBit | NEON_SQSUB,
+ NEON_USHL = NEON3SameFixed | NEON3SameUBit | NEON_SSHL,
+ NEON_SQDMULH = NEON3SameFixed | 0x0000B000,
+ NEON_SQRDMULH = NEON3SameFixed | 0x2000B000,
+
+ // NEON floating point instructions with three same-type operands.
+ NEON3SameFPFixed = NEON3SameFixed | 0x0000C000,
+ NEON3SameFPFMask = NEON3SameFMask | 0x0000C000,
+ NEON3SameFPMask = NEON3SameMask | 0x00800000,
+ NEON_FADD = NEON3SameFixed | 0x0000D000,
+ NEON_FSUB = NEON3SameFixed | 0x0080D000,
+ NEON_FMUL = NEON3SameFixed | 0x2000D800,
+ NEON_FDIV = NEON3SameFixed | 0x2000F800,
+ NEON_FMAX = NEON3SameFixed | 0x0000F000,
+ NEON_FMAXNM = NEON3SameFixed | 0x0000C000,
+ NEON_FMAXP = NEON3SameFixed | 0x2000F000,
+ NEON_FMAXNMP = NEON3SameFixed | 0x2000C000,
+ NEON_FMIN = NEON3SameFixed | 0x0080F000,
+ NEON_FMINNM = NEON3SameFixed | 0x0080C000,
+ NEON_FMINP = NEON3SameFixed | 0x2080F000,
+ NEON_FMINNMP = NEON3SameFixed | 0x2080C000,
+ NEON_FMLA = NEON3SameFixed | 0x0000C800,
+ NEON_FMLS = NEON3SameFixed | 0x0080C800,
+ NEON_FMULX = NEON3SameFixed | 0x0000D800,
+ NEON_FRECPS = NEON3SameFixed | 0x0000F800,
+ NEON_FRSQRTS = NEON3SameFixed | 0x0080F800,
+ NEON_FABD = NEON3SameFixed | 0x2080D000,
+ NEON_FADDP = NEON3SameFixed | 0x2000D000,
+ NEON_FCMEQ = NEON3SameFixed | 0x0000E000,
+ NEON_FCMGE = NEON3SameFixed | 0x2000E000,
+ NEON_FCMGT = NEON3SameFixed | 0x2080E000,
+ NEON_FACGE = NEON3SameFixed | 0x2000E800,
+ NEON_FACGT = NEON3SameFixed | 0x2080E800,
+
+ // NEON logical instructions with three same-type operands.
+ NEON3SameLogicalFixed = NEON3SameFixed | 0x00001800,
+ NEON3SameLogicalFMask = NEON3SameFMask | 0x0000F800,
+ NEON3SameLogicalMask = 0xBFE0FC00,
+ NEON3SameLogicalFormatMask = NEON_Q,
+ NEON_AND = NEON3SameLogicalFixed | 0x00000000,
+ NEON_ORR = NEON3SameLogicalFixed | 0x00A00000,
+ NEON_ORN = NEON3SameLogicalFixed | 0x00C00000,
+ NEON_EOR = NEON3SameLogicalFixed | 0x20000000,
+ NEON_BIC = NEON3SameLogicalFixed | 0x00400000,
+ NEON_BIF = NEON3SameLogicalFixed | 0x20C00000,
+ NEON_BIT = NEON3SameLogicalFixed | 0x20800000,
+ NEON_BSL = NEON3SameLogicalFixed | 0x20400000
+};
+
+// NEON instructions with three different-type operands.
+enum NEON3DifferentOp {
+ NEON3DifferentFixed = 0x0E200000,
+ NEON3DifferentFMask = 0x9F200C00,
+ NEON3DifferentMask = 0xFF20FC00,
+ NEON_ADDHN = NEON3DifferentFixed | 0x00004000,
+ NEON_ADDHN2 = NEON_ADDHN | NEON_Q,
+ NEON_PMULL = NEON3DifferentFixed | 0x0000E000,
+ NEON_PMULL2 = NEON_PMULL | NEON_Q,
+ NEON_RADDHN = NEON3DifferentFixed | 0x20004000,
+ NEON_RADDHN2 = NEON_RADDHN | NEON_Q,
+ NEON_RSUBHN = NEON3DifferentFixed | 0x20006000,
+ NEON_RSUBHN2 = NEON_RSUBHN | NEON_Q,
+ NEON_SABAL = NEON3DifferentFixed | 0x00005000,
+ NEON_SABAL2 = NEON_SABAL | NEON_Q,
+ NEON_SABDL = NEON3DifferentFixed | 0x00007000,
+ NEON_SABDL2 = NEON_SABDL | NEON_Q,
+ NEON_SADDL = NEON3DifferentFixed | 0x00000000,
+ NEON_SADDL2 = NEON_SADDL | NEON_Q,
+ NEON_SADDW = NEON3DifferentFixed | 0x00001000,
+ NEON_SADDW2 = NEON_SADDW | NEON_Q,
+ NEON_SMLAL = NEON3DifferentFixed | 0x00008000,
+ NEON_SMLAL2 = NEON_SMLAL | NEON_Q,
+ NEON_SMLSL = NEON3DifferentFixed | 0x0000A000,
+ NEON_SMLSL2 = NEON_SMLSL | NEON_Q,
+ NEON_SMULL = NEON3DifferentFixed | 0x0000C000,
+ NEON_SMULL2 = NEON_SMULL | NEON_Q,
+ NEON_SSUBL = NEON3DifferentFixed | 0x00002000,
+ NEON_SSUBL2 = NEON_SSUBL | NEON_Q,
+ NEON_SSUBW = NEON3DifferentFixed | 0x00003000,
+ NEON_SSUBW2 = NEON_SSUBW | NEON_Q,
+ NEON_SQDMLAL = NEON3DifferentFixed | 0x00009000,
+ NEON_SQDMLAL2 = NEON_SQDMLAL | NEON_Q,
+ NEON_SQDMLSL = NEON3DifferentFixed | 0x0000B000,
+ NEON_SQDMLSL2 = NEON_SQDMLSL | NEON_Q,
+ NEON_SQDMULL = NEON3DifferentFixed | 0x0000D000,
+ NEON_SQDMULL2 = NEON_SQDMULL | NEON_Q,
+ NEON_SUBHN = NEON3DifferentFixed | 0x00006000,
+ NEON_SUBHN2 = NEON_SUBHN | NEON_Q,
+ NEON_UABAL = NEON_SABAL | NEON3SameUBit,
+ NEON_UABAL2 = NEON_UABAL | NEON_Q,
+ NEON_UABDL = NEON_SABDL | NEON3SameUBit,
+ NEON_UABDL2 = NEON_UABDL | NEON_Q,
+ NEON_UADDL = NEON_SADDL | NEON3SameUBit,
+ NEON_UADDL2 = NEON_UADDL | NEON_Q,
+ NEON_UADDW = NEON_SADDW | NEON3SameUBit,
+ NEON_UADDW2 = NEON_UADDW | NEON_Q,
+ NEON_UMLAL = NEON_SMLAL | NEON3SameUBit,
+ NEON_UMLAL2 = NEON_UMLAL | NEON_Q,
+ NEON_UMLSL = NEON_SMLSL | NEON3SameUBit,
+ NEON_UMLSL2 = NEON_UMLSL | NEON_Q,
+ NEON_UMULL = NEON_SMULL | NEON3SameUBit,
+ NEON_UMULL2 = NEON_UMULL | NEON_Q,
+ NEON_USUBL = NEON_SSUBL | NEON3SameUBit,
+ NEON_USUBL2 = NEON_USUBL | NEON_Q,
+ NEON_USUBW = NEON_SSUBW | NEON3SameUBit,
+ NEON_USUBW2 = NEON_USUBW | NEON_Q
+};
+
+// NEON instructions operating across vectors.
+enum NEONAcrossLanesOp {
+ NEONAcrossLanesFixed = 0x0E300800,
+ NEONAcrossLanesFMask = 0x9F3E0C00,
+ NEONAcrossLanesMask = 0xBF3FFC00,
+ NEON_ADDV = NEONAcrossLanesFixed | 0x0001B000,
+ NEON_SADDLV = NEONAcrossLanesFixed | 0x00003000,
+ NEON_UADDLV = NEONAcrossLanesFixed | 0x20003000,
+ NEON_SMAXV = NEONAcrossLanesFixed | 0x0000A000,
+ NEON_SMINV = NEONAcrossLanesFixed | 0x0001A000,
+ NEON_UMAXV = NEONAcrossLanesFixed | 0x2000A000,
+ NEON_UMINV = NEONAcrossLanesFixed | 0x2001A000,
+
+ // NEON floating point across instructions.
+ NEONAcrossLanesFPFixed = NEONAcrossLanesFixed | 0x0000C000,
+ NEONAcrossLanesFPFMask = NEONAcrossLanesFMask | 0x0000C000,
+ NEONAcrossLanesFPMask = NEONAcrossLanesMask | 0x00800000,
+
+ NEON_FMAXV = NEONAcrossLanesFPFixed | 0x2000F000,
+ NEON_FMINV = NEONAcrossLanesFPFixed | 0x2080F000,
+ NEON_FMAXNMV = NEONAcrossLanesFPFixed | 0x2000C000,
+ NEON_FMINNMV = NEONAcrossLanesFPFixed | 0x2080C000
+};
+
+// NEON instructions with indexed element operand.
+enum NEONByIndexedElementOp {
+ NEONByIndexedElementFixed = 0x0F000000,
+ NEONByIndexedElementFMask = 0x9F000400,
+ NEONByIndexedElementMask = 0xBF00F400,
+ NEON_MUL_byelement = NEONByIndexedElementFixed | 0x00008000,
+ NEON_MLA_byelement = NEONByIndexedElementFixed | 0x20000000,
+ NEON_MLS_byelement = NEONByIndexedElementFixed | 0x20004000,
+ NEON_SMULL_byelement = NEONByIndexedElementFixed | 0x0000A000,
+ NEON_SMLAL_byelement = NEONByIndexedElementFixed | 0x00002000,
+ NEON_SMLSL_byelement = NEONByIndexedElementFixed | 0x00006000,
+ NEON_UMULL_byelement = NEONByIndexedElementFixed | 0x2000A000,
+ NEON_UMLAL_byelement = NEONByIndexedElementFixed | 0x20002000,
+ NEON_UMLSL_byelement = NEONByIndexedElementFixed | 0x20006000,
+ NEON_SQDMULL_byelement = NEONByIndexedElementFixed | 0x0000B000,
+ NEON_SQDMLAL_byelement = NEONByIndexedElementFixed | 0x00003000,
+ NEON_SQDMLSL_byelement = NEONByIndexedElementFixed | 0x00007000,
+ NEON_SQDMULH_byelement = NEONByIndexedElementFixed | 0x0000C000,
+ NEON_SQRDMULH_byelement = NEONByIndexedElementFixed | 0x0000D000,
+
+ // Floating point instructions.
+ NEONByIndexedElementFPFixed = NEONByIndexedElementFixed | 0x00800000,
+ NEONByIndexedElementFPMask = NEONByIndexedElementMask | 0x00800000,
+ NEON_FMLA_byelement = NEONByIndexedElementFPFixed | 0x00001000,
+ NEON_FMLS_byelement = NEONByIndexedElementFPFixed | 0x00005000,
+ NEON_FMUL_byelement = NEONByIndexedElementFPFixed | 0x00009000,
+ NEON_FMULX_byelement = NEONByIndexedElementFPFixed | 0x20009000
+};
+
+// NEON register copy.
+enum NEONCopyOp {
+ NEONCopyFixed = 0x0E000400,
+ NEONCopyFMask = 0x9FE08400,
+ NEONCopyMask = 0x3FE08400,
+ NEONCopyInsElementMask = NEONCopyMask | 0x40000000,
+ NEONCopyInsGeneralMask = NEONCopyMask | 0x40007800,
+ NEONCopyDupElementMask = NEONCopyMask | 0x20007800,
+ NEONCopyDupGeneralMask = NEONCopyDupElementMask,
+ NEONCopyUmovMask = NEONCopyMask | 0x20007800,
+ NEONCopySmovMask = NEONCopyMask | 0x20007800,
+ NEON_INS_ELEMENT = NEONCopyFixed | 0x60000000,
+ NEON_INS_GENERAL = NEONCopyFixed | 0x40001800,
+ NEON_DUP_ELEMENT = NEONCopyFixed | 0x00000000,
+ NEON_DUP_GENERAL = NEONCopyFixed | 0x00000800,
+ NEON_SMOV = NEONCopyFixed | 0x00002800,
+ NEON_UMOV = NEONCopyFixed | 0x00003800
+};
+
+// NEON extract.
+enum NEONExtractOp {
+ NEONExtractFixed = 0x2E000000,
+ NEONExtractFMask = 0xBF208400,
+ NEONExtractMask = 0xBFE08400,
+ NEON_EXT = NEONExtractFixed | 0x00000000
+};
+
+enum NEONLoadStoreMultiOp {
+ NEONLoadStoreMultiL = 0x00400000,
+ NEONLoadStoreMulti1_1v = 0x00007000,
+ NEONLoadStoreMulti1_2v = 0x0000A000,
+ NEONLoadStoreMulti1_3v = 0x00006000,
+ NEONLoadStoreMulti1_4v = 0x00002000,
+ NEONLoadStoreMulti2 = 0x00008000,
+ NEONLoadStoreMulti3 = 0x00004000,
+ NEONLoadStoreMulti4 = 0x00000000
+};
+
+// NEON load/store multiple structures.
+enum NEONLoadStoreMultiStructOp {
+ NEONLoadStoreMultiStructFixed = 0x0C000000,
+ NEONLoadStoreMultiStructFMask = 0xBFBF0000,
+ NEONLoadStoreMultiStructMask = 0xBFFFF000,
+ NEONLoadStoreMultiStructStore = NEONLoadStoreMultiStructFixed,
+ NEONLoadStoreMultiStructLoad = NEONLoadStoreMultiStructFixed |
+ NEONLoadStoreMultiL,
+ NEON_LD1_1v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_1v,
+ NEON_LD1_2v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_2v,
+ NEON_LD1_3v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_3v,
+ NEON_LD1_4v = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti1_4v,
+ NEON_LD2 = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti2,
+ NEON_LD3 = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti3,
+ NEON_LD4 = NEONLoadStoreMultiStructLoad | NEONLoadStoreMulti4,
+ NEON_ST1_1v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_1v,
+ NEON_ST1_2v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_2v,
+ NEON_ST1_3v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_3v,
+ NEON_ST1_4v = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti1_4v,
+ NEON_ST2 = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti2,
+ NEON_ST3 = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti3,
+ NEON_ST4 = NEONLoadStoreMultiStructStore | NEONLoadStoreMulti4
+};
+
+// NEON load/store multiple structures with post-index addressing.
+enum NEONLoadStoreMultiStructPostIndexOp {
+ NEONLoadStoreMultiStructPostIndexFixed = 0x0C800000,
+ NEONLoadStoreMultiStructPostIndexFMask = 0xBFA00000,
+ NEONLoadStoreMultiStructPostIndexMask = 0xBFE0F000,
+ NEONLoadStoreMultiStructPostIndex = 0x00800000,
+ NEON_LD1_1v_post = NEON_LD1_1v | NEONLoadStoreMultiStructPostIndex,
+ NEON_LD1_2v_post = NEON_LD1_2v | NEONLoadStoreMultiStructPostIndex,
+ NEON_LD1_3v_post = NEON_LD1_3v | NEONLoadStoreMultiStructPostIndex,
+ NEON_LD1_4v_post = NEON_LD1_4v | NEONLoadStoreMultiStructPostIndex,
+ NEON_LD2_post = NEON_LD2 | NEONLoadStoreMultiStructPostIndex,
+ NEON_LD3_post = NEON_LD3 | NEONLoadStoreMultiStructPostIndex,
+ NEON_LD4_post = NEON_LD4 | NEONLoadStoreMultiStructPostIndex,
+ NEON_ST1_1v_post = NEON_ST1_1v | NEONLoadStoreMultiStructPostIndex,
+ NEON_ST1_2v_post = NEON_ST1_2v | NEONLoadStoreMultiStructPostIndex,
+ NEON_ST1_3v_post = NEON_ST1_3v | NEONLoadStoreMultiStructPostIndex,
+ NEON_ST1_4v_post = NEON_ST1_4v | NEONLoadStoreMultiStructPostIndex,
+ NEON_ST2_post = NEON_ST2 | NEONLoadStoreMultiStructPostIndex,
+ NEON_ST3_post = NEON_ST3 | NEONLoadStoreMultiStructPostIndex,
+ NEON_ST4_post = NEON_ST4 | NEONLoadStoreMultiStructPostIndex
+};
+
+enum NEONLoadStoreSingleOp {
+ NEONLoadStoreSingle1 = 0x00000000,
+ NEONLoadStoreSingle2 = 0x00200000,
+ NEONLoadStoreSingle3 = 0x00002000,
+ NEONLoadStoreSingle4 = 0x00202000,
+ NEONLoadStoreSingleL = 0x00400000,
+ NEONLoadStoreSingle_b = 0x00000000,
+ NEONLoadStoreSingle_h = 0x00004000,
+ NEONLoadStoreSingle_s = 0x00008000,
+ NEONLoadStoreSingle_d = 0x00008400,
+ NEONLoadStoreSingleAllLanes = 0x0000C000,
+ NEONLoadStoreSingleLenMask = 0x00202000
+};
+
+// NEON load/store single structure.
+enum NEONLoadStoreSingleStructOp {
+ NEONLoadStoreSingleStructFixed = 0x0D000000,
+ NEONLoadStoreSingleStructFMask = 0xBF9F0000,
+ NEONLoadStoreSingleStructMask = 0xBFFFE000,
+ NEONLoadStoreSingleStructStore = NEONLoadStoreSingleStructFixed,
+ NEONLoadStoreSingleStructLoad = NEONLoadStoreSingleStructFixed |
+ NEONLoadStoreSingleL,
+ NEONLoadStoreSingleStructLoad1 = NEONLoadStoreSingle1 |
+ NEONLoadStoreSingleStructLoad,
+ NEONLoadStoreSingleStructLoad2 = NEONLoadStoreSingle2 |
+ NEONLoadStoreSingleStructLoad,
+ NEONLoadStoreSingleStructLoad3 = NEONLoadStoreSingle3 |
+ NEONLoadStoreSingleStructLoad,
+ NEONLoadStoreSingleStructLoad4 = NEONLoadStoreSingle4 |
+ NEONLoadStoreSingleStructLoad,
+ NEONLoadStoreSingleStructStore1 = NEONLoadStoreSingle1 |
+ NEONLoadStoreSingleStructFixed,
+ NEONLoadStoreSingleStructStore2 = NEONLoadStoreSingle2 |
+ NEONLoadStoreSingleStructFixed,
+ NEONLoadStoreSingleStructStore3 = NEONLoadStoreSingle3 |
+ NEONLoadStoreSingleStructFixed,
+ NEONLoadStoreSingleStructStore4 = NEONLoadStoreSingle4 |
+ NEONLoadStoreSingleStructFixed,
+ NEON_LD1_b = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_b,
+ NEON_LD1_h = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_h,
+ NEON_LD1_s = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_s,
+ NEON_LD1_d = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingle_d,
+ NEON_LD1R = NEONLoadStoreSingleStructLoad1 | NEONLoadStoreSingleAllLanes,
+ NEON_ST1_b = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_b,
+ NEON_ST1_h = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_h,
+ NEON_ST1_s = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_s,
+ NEON_ST1_d = NEONLoadStoreSingleStructStore1 | NEONLoadStoreSingle_d,
+
+ NEON_LD2_b = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_b,
+ NEON_LD2_h = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_h,
+ NEON_LD2_s = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_s,
+ NEON_LD2_d = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingle_d,
+ NEON_LD2R = NEONLoadStoreSingleStructLoad2 | NEONLoadStoreSingleAllLanes,
+ NEON_ST2_b = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_b,
+ NEON_ST2_h = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_h,
+ NEON_ST2_s = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_s,
+ NEON_ST2_d = NEONLoadStoreSingleStructStore2 | NEONLoadStoreSingle_d,
+
+ NEON_LD3_b = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_b,
+ NEON_LD3_h = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_h,
+ NEON_LD3_s = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_s,
+ NEON_LD3_d = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingle_d,
+ NEON_LD3R = NEONLoadStoreSingleStructLoad3 | NEONLoadStoreSingleAllLanes,
+ NEON_ST3_b = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_b,
+ NEON_ST3_h = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_h,
+ NEON_ST3_s = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_s,
+ NEON_ST3_d = NEONLoadStoreSingleStructStore3 | NEONLoadStoreSingle_d,
+
+ NEON_LD4_b = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_b,
+ NEON_LD4_h = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_h,
+ NEON_LD4_s = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_s,
+ NEON_LD4_d = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingle_d,
+ NEON_LD4R = NEONLoadStoreSingleStructLoad4 | NEONLoadStoreSingleAllLanes,
+ NEON_ST4_b = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_b,
+ NEON_ST4_h = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_h,
+ NEON_ST4_s = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_s,
+ NEON_ST4_d = NEONLoadStoreSingleStructStore4 | NEONLoadStoreSingle_d
+};
+
+// NEON load/store single structure with post-index addressing.
+enum NEONLoadStoreSingleStructPostIndexOp {
+ NEONLoadStoreSingleStructPostIndexFixed = 0x0D800000,
+ NEONLoadStoreSingleStructPostIndexFMask = 0xBF800000,
+ NEONLoadStoreSingleStructPostIndexMask = 0xBFE0E000,
+ NEONLoadStoreSingleStructPostIndex = 0x00800000,
+ NEON_LD1_b_post = NEON_LD1_b | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD1_h_post = NEON_LD1_h | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD1_s_post = NEON_LD1_s | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD1_d_post = NEON_LD1_d | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD1R_post = NEON_LD1R | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST1_b_post = NEON_ST1_b | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST1_h_post = NEON_ST1_h | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST1_s_post = NEON_ST1_s | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST1_d_post = NEON_ST1_d | NEONLoadStoreSingleStructPostIndex,
+
+ NEON_LD2_b_post = NEON_LD2_b | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD2_h_post = NEON_LD2_h | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD2_s_post = NEON_LD2_s | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD2_d_post = NEON_LD2_d | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD2R_post = NEON_LD2R | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST2_b_post = NEON_ST2_b | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST2_h_post = NEON_ST2_h | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST2_s_post = NEON_ST2_s | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST2_d_post = NEON_ST2_d | NEONLoadStoreSingleStructPostIndex,
+
+ NEON_LD3_b_post = NEON_LD3_b | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD3_h_post = NEON_LD3_h | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD3_s_post = NEON_LD3_s | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD3_d_post = NEON_LD3_d | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD3R_post = NEON_LD3R | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST3_b_post = NEON_ST3_b | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST3_h_post = NEON_ST3_h | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST3_s_post = NEON_ST3_s | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST3_d_post = NEON_ST3_d | NEONLoadStoreSingleStructPostIndex,
+
+ NEON_LD4_b_post = NEON_LD4_b | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD4_h_post = NEON_LD4_h | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD4_s_post = NEON_LD4_s | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD4_d_post = NEON_LD4_d | NEONLoadStoreSingleStructPostIndex,
+ NEON_LD4R_post = NEON_LD4R | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST4_b_post = NEON_ST4_b | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST4_h_post = NEON_ST4_h | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST4_s_post = NEON_ST4_s | NEONLoadStoreSingleStructPostIndex,
+ NEON_ST4_d_post = NEON_ST4_d | NEONLoadStoreSingleStructPostIndex
+};
+
+// NEON modified immediate.
+enum NEONModifiedImmediateOp {
+ NEONModifiedImmediateFixed = 0x0F000400,
+ NEONModifiedImmediateFMask = 0x9FF80400,
+ NEONModifiedImmediateOpBit = 0x20000000,
+ NEONModifiedImmediate_MOVI = NEONModifiedImmediateFixed | 0x00000000,
+ NEONModifiedImmediate_MVNI = NEONModifiedImmediateFixed | 0x20000000,
+ NEONModifiedImmediate_ORR = NEONModifiedImmediateFixed | 0x00001000,
+ NEONModifiedImmediate_BIC = NEONModifiedImmediateFixed | 0x20001000
+};
+
+// NEON shift immediate.
+enum NEONShiftImmediateOp {
+ NEONShiftImmediateFixed = 0x0F000400,
+ NEONShiftImmediateFMask = 0x9F800400,
+ NEONShiftImmediateMask = 0xBF80FC00,
+ NEONShiftImmediateUBit = 0x20000000,
+ NEON_SHL = NEONShiftImmediateFixed | 0x00005000,
+ NEON_SSHLL = NEONShiftImmediateFixed | 0x0000A000,
+ NEON_USHLL = NEONShiftImmediateFixed | 0x2000A000,
+ NEON_SLI = NEONShiftImmediateFixed | 0x20005000,
+ NEON_SRI = NEONShiftImmediateFixed | 0x20004000,
+ NEON_SHRN = NEONShiftImmediateFixed | 0x00008000,
+ NEON_RSHRN = NEONShiftImmediateFixed | 0x00008800,
+ NEON_UQSHRN = NEONShiftImmediateFixed | 0x20009000,
+ NEON_UQRSHRN = NEONShiftImmediateFixed | 0x20009800,
+ NEON_SQSHRN = NEONShiftImmediateFixed | 0x00009000,
+ NEON_SQRSHRN = NEONShiftImmediateFixed | 0x00009800,
+ NEON_SQSHRUN = NEONShiftImmediateFixed | 0x20008000,
+ NEON_SQRSHRUN = NEONShiftImmediateFixed | 0x20008800,
+ NEON_SSHR = NEONShiftImmediateFixed | 0x00000000,
+ NEON_SRSHR = NEONShiftImmediateFixed | 0x00002000,
+ NEON_USHR = NEONShiftImmediateFixed | 0x20000000,
+ NEON_URSHR = NEONShiftImmediateFixed | 0x20002000,
+ NEON_SSRA = NEONShiftImmediateFixed | 0x00001000,
+ NEON_SRSRA = NEONShiftImmediateFixed | 0x00003000,
+ NEON_USRA = NEONShiftImmediateFixed | 0x20001000,
+ NEON_URSRA = NEONShiftImmediateFixed | 0x20003000,
+ NEON_SQSHLU = NEONShiftImmediateFixed | 0x20006000,
+ NEON_SCVTF_imm = NEONShiftImmediateFixed | 0x0000E000,
+ NEON_UCVTF_imm = NEONShiftImmediateFixed | 0x2000E000,
+ NEON_FCVTZS_imm = NEONShiftImmediateFixed | 0x0000F800,
+ NEON_FCVTZU_imm = NEONShiftImmediateFixed | 0x2000F800,
+ NEON_SQSHL_imm = NEONShiftImmediateFixed | 0x00007000,
+ NEON_UQSHL_imm = NEONShiftImmediateFixed | 0x20007000
+};
+
+// NEON table.
+enum NEONTableOp {
+ NEONTableFixed = 0x0E000000,
+ NEONTableFMask = 0xBF208C00,
+ NEONTableExt = 0x00001000,
+ NEONTableMask = 0xBF20FC00,
+ NEON_TBL_1v = NEONTableFixed | 0x00000000,
+ NEON_TBL_2v = NEONTableFixed | 0x00002000,
+ NEON_TBL_3v = NEONTableFixed | 0x00004000,
+ NEON_TBL_4v = NEONTableFixed | 0x00006000,
+ NEON_TBX_1v = NEON_TBL_1v | NEONTableExt,
+ NEON_TBX_2v = NEON_TBL_2v | NEONTableExt,
+ NEON_TBX_3v = NEON_TBL_3v | NEONTableExt,
+ NEON_TBX_4v = NEON_TBL_4v | NEONTableExt
+};
+
+// NEON perm.
+enum NEONPermOp {
+ NEONPermFixed = 0x0E000800,
+ NEONPermFMask = 0xBF208C00,
+ NEONPermMask = 0x3F20FC00,
+ NEON_UZP1 = NEONPermFixed | 0x00001000,
+ NEON_TRN1 = NEONPermFixed | 0x00002000,
+ NEON_ZIP1 = NEONPermFixed | 0x00003000,
+ NEON_UZP2 = NEONPermFixed | 0x00005000,
+ NEON_TRN2 = NEONPermFixed | 0x00006000,
+ NEON_ZIP2 = NEONPermFixed | 0x00007000
+};
+
+// NEON scalar instructions with two register operands.
+enum NEONScalar2RegMiscOp {
+ NEONScalar2RegMiscFixed = 0x5E200800,
+ NEONScalar2RegMiscFMask = 0xDF3E0C00,
+ NEONScalar2RegMiscMask = NEON_Q | NEONScalar | NEON2RegMiscMask,
+ NEON_CMGT_zero_scalar = NEON_Q | NEONScalar | NEON_CMGT_zero,
+ NEON_CMEQ_zero_scalar = NEON_Q | NEONScalar | NEON_CMEQ_zero,
+ NEON_CMLT_zero_scalar = NEON_Q | NEONScalar | NEON_CMLT_zero,
+ NEON_CMGE_zero_scalar = NEON_Q | NEONScalar | NEON_CMGE_zero,
+ NEON_CMLE_zero_scalar = NEON_Q | NEONScalar | NEON_CMLE_zero,
+ NEON_ABS_scalar = NEON_Q | NEONScalar | NEON_ABS,
+ NEON_SQABS_scalar = NEON_Q | NEONScalar | NEON_SQABS,
+ NEON_NEG_scalar = NEON_Q | NEONScalar | NEON_NEG,
+ NEON_SQNEG_scalar = NEON_Q | NEONScalar | NEON_SQNEG,
+ NEON_SQXTN_scalar = NEON_Q | NEONScalar | NEON_SQXTN,
+ NEON_UQXTN_scalar = NEON_Q | NEONScalar | NEON_UQXTN,
+ NEON_SQXTUN_scalar = NEON_Q | NEONScalar | NEON_SQXTUN,
+ NEON_SUQADD_scalar = NEON_Q | NEONScalar | NEON_SUQADD,
+ NEON_USQADD_scalar = NEON_Q | NEONScalar | NEON_USQADD,
+
+ NEONScalar2RegMiscOpcode = NEON2RegMiscOpcode,
+ NEON_NEG_scalar_opcode = NEON_NEG_scalar & NEONScalar2RegMiscOpcode,
+
+ NEONScalar2RegMiscFPMask = NEONScalar2RegMiscMask | 0x00800000,
+ NEON_FRSQRTE_scalar = NEON_Q | NEONScalar | NEON_FRSQRTE,
+ NEON_FRECPE_scalar = NEON_Q | NEONScalar | NEON_FRECPE,
+ NEON_SCVTF_scalar = NEON_Q | NEONScalar | NEON_SCVTF,
+ NEON_UCVTF_scalar = NEON_Q | NEONScalar | NEON_UCVTF,
+ NEON_FCMGT_zero_scalar = NEON_Q | NEONScalar | NEON_FCMGT_zero,
+ NEON_FCMEQ_zero_scalar = NEON_Q | NEONScalar | NEON_FCMEQ_zero,
+ NEON_FCMLT_zero_scalar = NEON_Q | NEONScalar | NEON_FCMLT_zero,
+ NEON_FCMGE_zero_scalar = NEON_Q | NEONScalar | NEON_FCMGE_zero,
+ NEON_FCMLE_zero_scalar = NEON_Q | NEONScalar | NEON_FCMLE_zero,
+ NEON_FRECPX_scalar = NEONScalar2RegMiscFixed | 0x0081F000,
+ NEON_FCVTNS_scalar = NEON_Q | NEONScalar | NEON_FCVTNS,
+ NEON_FCVTNU_scalar = NEON_Q | NEONScalar | NEON_FCVTNU,
+ NEON_FCVTPS_scalar = NEON_Q | NEONScalar | NEON_FCVTPS,
+ NEON_FCVTPU_scalar = NEON_Q | NEONScalar | NEON_FCVTPU,
+ NEON_FCVTMS_scalar = NEON_Q | NEONScalar | NEON_FCVTMS,
+ NEON_FCVTMU_scalar = NEON_Q | NEONScalar | NEON_FCVTMU,
+ NEON_FCVTZS_scalar = NEON_Q | NEONScalar | NEON_FCVTZS,
+ NEON_FCVTZU_scalar = NEON_Q | NEONScalar | NEON_FCVTZU,
+ NEON_FCVTAS_scalar = NEON_Q | NEONScalar | NEON_FCVTAS,
+ NEON_FCVTAU_scalar = NEON_Q | NEONScalar | NEON_FCVTAU,
+ NEON_FCVTXN_scalar = NEON_Q | NEONScalar | NEON_FCVTXN
+};
+
+// NEON scalar instructions with three same-type operands.
+enum NEONScalar3SameOp {
+ NEONScalar3SameFixed = 0x5E200400,
+ NEONScalar3SameFMask = 0xDF200400,
+ NEONScalar3SameMask = 0xFF20FC00,
+ NEON_ADD_scalar = NEON_Q | NEONScalar | NEON_ADD,
+ NEON_CMEQ_scalar = NEON_Q | NEONScalar | NEON_CMEQ,
+ NEON_CMGE_scalar = NEON_Q | NEONScalar | NEON_CMGE,
+ NEON_CMGT_scalar = NEON_Q | NEONScalar | NEON_CMGT,
+ NEON_CMHI_scalar = NEON_Q | NEONScalar | NEON_CMHI,
+ NEON_CMHS_scalar = NEON_Q | NEONScalar | NEON_CMHS,
+ NEON_CMTST_scalar = NEON_Q | NEONScalar | NEON_CMTST,
+ NEON_SUB_scalar = NEON_Q | NEONScalar | NEON_SUB,
+ NEON_UQADD_scalar = NEON_Q | NEONScalar | NEON_UQADD,
+ NEON_SQADD_scalar = NEON_Q | NEONScalar | NEON_SQADD,
+ NEON_UQSUB_scalar = NEON_Q | NEONScalar | NEON_UQSUB,
+ NEON_SQSUB_scalar = NEON_Q | NEONScalar | NEON_SQSUB,
+ NEON_USHL_scalar = NEON_Q | NEONScalar | NEON_USHL,
+ NEON_SSHL_scalar = NEON_Q | NEONScalar | NEON_SSHL,
+ NEON_UQSHL_scalar = NEON_Q | NEONScalar | NEON_UQSHL,
+ NEON_SQSHL_scalar = NEON_Q | NEONScalar | NEON_SQSHL,
+ NEON_URSHL_scalar = NEON_Q | NEONScalar | NEON_URSHL,
+ NEON_SRSHL_scalar = NEON_Q | NEONScalar | NEON_SRSHL,
+ NEON_UQRSHL_scalar = NEON_Q | NEONScalar | NEON_UQRSHL,
+ NEON_SQRSHL_scalar = NEON_Q | NEONScalar | NEON_SQRSHL,
+ NEON_SQDMULH_scalar = NEON_Q | NEONScalar | NEON_SQDMULH,
+ NEON_SQRDMULH_scalar = NEON_Q | NEONScalar | NEON_SQRDMULH,
+
+ // NEON floating point scalar instructions with three same-type operands.
+ NEONScalar3SameFPFixed = NEONScalar3SameFixed | 0x0000C000,
+ NEONScalar3SameFPFMask = NEONScalar3SameFMask | 0x0000C000,
+ NEONScalar3SameFPMask = NEONScalar3SameMask | 0x00800000,
+ NEON_FACGE_scalar = NEON_Q | NEONScalar | NEON_FACGE,
+ NEON_FACGT_scalar = NEON_Q | NEONScalar | NEON_FACGT,
+ NEON_FCMEQ_scalar = NEON_Q | NEONScalar | NEON_FCMEQ,
+ NEON_FCMGE_scalar = NEON_Q | NEONScalar | NEON_FCMGE,
+ NEON_FCMGT_scalar = NEON_Q | NEONScalar | NEON_FCMGT,
+ NEON_FMULX_scalar = NEON_Q | NEONScalar | NEON_FMULX,
+ NEON_FRECPS_scalar = NEON_Q | NEONScalar | NEON_FRECPS,
+ NEON_FRSQRTS_scalar = NEON_Q | NEONScalar | NEON_FRSQRTS,
+ NEON_FABD_scalar = NEON_Q | NEONScalar | NEON_FABD
+};
+
+// NEON scalar instructions with three different-type operands.
+enum NEONScalar3DiffOp {
+ NEONScalar3DiffFixed = 0x5E200000,
+ NEONScalar3DiffFMask = 0xDF200C00,
+ NEONScalar3DiffMask = NEON_Q | NEONScalar | NEON3DifferentMask,
+ NEON_SQDMLAL_scalar = NEON_Q | NEONScalar | NEON_SQDMLAL,
+ NEON_SQDMLSL_scalar = NEON_Q | NEONScalar | NEON_SQDMLSL,
+ NEON_SQDMULL_scalar = NEON_Q | NEONScalar | NEON_SQDMULL
+};
+
+// NEON scalar instructions with indexed element operand.
+enum NEONScalarByIndexedElementOp {
+ NEONScalarByIndexedElementFixed = 0x5F000000,
+ NEONScalarByIndexedElementFMask = 0xDF000400,
+ NEONScalarByIndexedElementMask = 0xFF00F400,
+ NEON_SQDMLAL_byelement_scalar = NEON_Q | NEONScalar | NEON_SQDMLAL_byelement,
+ NEON_SQDMLSL_byelement_scalar = NEON_Q | NEONScalar | NEON_SQDMLSL_byelement,
+ NEON_SQDMULL_byelement_scalar = NEON_Q | NEONScalar | NEON_SQDMULL_byelement,
+ NEON_SQDMULH_byelement_scalar = NEON_Q | NEONScalar | NEON_SQDMULH_byelement,
+ NEON_SQRDMULH_byelement_scalar
+ = NEON_Q | NEONScalar | NEON_SQRDMULH_byelement,
+
+ // Floating point instructions.
+ NEONScalarByIndexedElementFPFixed
+ = NEONScalarByIndexedElementFixed | 0x00800000,
+ NEONScalarByIndexedElementFPMask
+ = NEONScalarByIndexedElementMask | 0x00800000,
+ NEON_FMLA_byelement_scalar = NEON_Q | NEONScalar | NEON_FMLA_byelement,
+ NEON_FMLS_byelement_scalar = NEON_Q | NEONScalar | NEON_FMLS_byelement,
+ NEON_FMUL_byelement_scalar = NEON_Q | NEONScalar | NEON_FMUL_byelement,
+ NEON_FMULX_byelement_scalar = NEON_Q | NEONScalar | NEON_FMULX_byelement
+};
+
+// NEON scalar register copy.
+enum NEONScalarCopyOp {
+ NEONScalarCopyFixed = 0x5E000400,
+ NEONScalarCopyFMask = 0xDFE08400,
+ NEONScalarCopyMask = 0xFFE0FC00,
+ NEON_DUP_ELEMENT_scalar = NEON_Q | NEONScalar | NEON_DUP_ELEMENT
+};
+
+// NEON scalar pairwise instructions.
+enum NEONScalarPairwiseOp {
+ NEONScalarPairwiseFixed = 0x5E300800,
+ NEONScalarPairwiseFMask = 0xDF3E0C00,
+ NEONScalarPairwiseMask = 0xFFB1F800,
+ NEON_ADDP_scalar = NEONScalarPairwiseFixed | 0x0081B000,
+ NEON_FMAXNMP_scalar = NEONScalarPairwiseFixed | 0x2000C000,
+ NEON_FMINNMP_scalar = NEONScalarPairwiseFixed | 0x2080C000,
+ NEON_FADDP_scalar = NEONScalarPairwiseFixed | 0x2000D000,
+ NEON_FMAXP_scalar = NEONScalarPairwiseFixed | 0x2000F000,
+ NEON_FMINP_scalar = NEONScalarPairwiseFixed | 0x2080F000
+};
+
+// NEON scalar shift immediate.
+enum NEONScalarShiftImmediateOp {
+ NEONScalarShiftImmediateFixed = 0x5F000400,
+ NEONScalarShiftImmediateFMask = 0xDF800400,
+ NEONScalarShiftImmediateMask = 0xFF80FC00,
+ NEON_SHL_scalar = NEON_Q | NEONScalar | NEON_SHL,
+ NEON_SLI_scalar = NEON_Q | NEONScalar | NEON_SLI,
+ NEON_SRI_scalar = NEON_Q | NEONScalar | NEON_SRI,
+ NEON_SSHR_scalar = NEON_Q | NEONScalar | NEON_SSHR,
+ NEON_USHR_scalar = NEON_Q | NEONScalar | NEON_USHR,
+ NEON_SRSHR_scalar = NEON_Q | NEONScalar | NEON_SRSHR,
+ NEON_URSHR_scalar = NEON_Q | NEONScalar | NEON_URSHR,
+ NEON_SSRA_scalar = NEON_Q | NEONScalar | NEON_SSRA,
+ NEON_USRA_scalar = NEON_Q | NEONScalar | NEON_USRA,
+ NEON_SRSRA_scalar = NEON_Q | NEONScalar | NEON_SRSRA,
+ NEON_URSRA_scalar = NEON_Q | NEONScalar | NEON_URSRA,
+ NEON_UQSHRN_scalar = NEON_Q | NEONScalar | NEON_UQSHRN,
+ NEON_UQRSHRN_scalar = NEON_Q | NEONScalar | NEON_UQRSHRN,
+ NEON_SQSHRN_scalar = NEON_Q | NEONScalar | NEON_SQSHRN,
+ NEON_SQRSHRN_scalar = NEON_Q | NEONScalar | NEON_SQRSHRN,
+ NEON_SQSHRUN_scalar = NEON_Q | NEONScalar | NEON_SQSHRUN,
+ NEON_SQRSHRUN_scalar = NEON_Q | NEONScalar | NEON_SQRSHRUN,
+ NEON_SQSHLU_scalar = NEON_Q | NEONScalar | NEON_SQSHLU,
+ NEON_SQSHL_imm_scalar = NEON_Q | NEONScalar | NEON_SQSHL_imm,
+ NEON_UQSHL_imm_scalar = NEON_Q | NEONScalar | NEON_UQSHL_imm,
+ NEON_SCVTF_imm_scalar = NEON_Q | NEONScalar | NEON_SCVTF_imm,
+ NEON_UCVTF_imm_scalar = NEON_Q | NEONScalar | NEON_UCVTF_imm,
+ NEON_FCVTZS_imm_scalar = NEON_Q | NEONScalar | NEON_FCVTZS_imm,
+ NEON_FCVTZU_imm_scalar = NEON_Q | NEONScalar | NEON_FCVTZU_imm
+};
+
// Unimplemented and unallocated instructions. These are defined to make fixed
// bit assertion easier.
enum UnimplementedOp {
diff --git a/disas/libvixl/a64/cpu-a64.h b/disas/libvixl/vixl/a64/cpu-a64.h
index 59b7974a19..cdf09a6af1 100644
--- a/disas/libvixl/a64/cpu-a64.h
+++ b/disas/libvixl/vixl/a64/cpu-a64.h
@@ -1,4 +1,4 @@
-// Copyright 2013, ARM Limited
+// Copyright 2014, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@@ -27,8 +27,8 @@
#ifndef VIXL_CPU_A64_H
#define VIXL_CPU_A64_H
-#include "globals.h"
-#include "instructions-a64.h"
+#include "vixl/globals.h"
+#include "vixl/a64/instructions-a64.h"
namespace vixl {
diff --git a/disas/libvixl/a64/decoder-a64.cc b/disas/libvixl/vixl/a64/decoder-a64.cc
index 82591ca309..5ba2d3ce04 100644
--- a/disas/libvixl/a64/decoder-a64.cc
+++ b/disas/libvixl/vixl/a64/decoder-a64.cc
@@ -1,4 +1,4 @@
-// Copyright 2013, ARM Limited
+// Copyright 2014, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@@ -24,9 +24,9 @@
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include "globals.h"
-#include "utils.h"
-#include "a64/decoder-a64.h"
+#include "vixl/globals.h"
+#include "vixl/utils.h"
+#include "vixl/a64/decoder-a64.h"
namespace vixl {
@@ -271,6 +271,11 @@ void Decoder::DecodeLoadStore(const Instruction* instr) {
(instr->Bits(27, 24) == 0x9) ||
(instr->Bits(27, 24) == 0xC) ||
(instr->Bits(27, 24) == 0xD) );
+ // TODO(all): rearrange the tree to integrate this branch.
+ if ((instr->Bit(28) == 0) && (instr->Bit(29) == 0) && (instr->Bit(26) == 1)) {
+ DecodeNEONLoadStore(instr);
+ return;
+ }
if (instr->Bit(24) == 0) {
if (instr->Bit(28) == 0) {
@@ -278,7 +283,7 @@ void Decoder::DecodeLoadStore(const Instruction* instr) {
if (instr->Bit(26) == 0) {
VisitLoadStoreExclusive(instr);
} else {
- DecodeAdvSIMDLoadStore(instr);
+ VIXL_UNREACHABLE();
}
} else {
if ((instr->Bits(31, 30) == 0x3) ||
@@ -483,6 +488,7 @@ void Decoder::DecodeDataProcessing(const Instruction* instr) {
case 6: {
if (instr->Bit(29) == 0x1) {
VisitUnallocated(instr);
+ VIXL_FALLTHROUGH();
} else {
if (instr->Bit(30) == 0) {
if ((instr->Bit(15) == 0x1) ||
@@ -556,18 +562,15 @@ void Decoder::DecodeDataProcessing(const Instruction* instr) {
void Decoder::DecodeFP(const Instruction* instr) {
VIXL_ASSERT((instr->Bits(27, 24) == 0xE) ||
(instr->Bits(27, 24) == 0xF));
-
if (instr->Bit(28) == 0) {
- DecodeAdvSIMDDataProcessing(instr);
+ DecodeNEONVectorDataProcessing(instr);
} else {
- if (instr->Bit(29) == 1) {
+ if (instr->Bits(31, 30) == 0x3) {
VisitUnallocated(instr);
+ } else if (instr->Bits(31, 30) == 0x1) {
+ DecodeNEONScalarDataProcessing(instr);
} else {
- if (instr->Bits(31, 30) == 0x3) {
- VisitUnallocated(instr);
- } else if (instr->Bits(31, 30) == 0x1) {
- DecodeAdvSIMDDataProcessing(instr);
- } else {
+ if (instr->Bit(29) == 0) {
if (instr->Bit(24) == 0) {
if (instr->Bit(21) == 0) {
if ((instr->Bit(23) == 1) ||
@@ -674,23 +677,190 @@ void Decoder::DecodeFP(const Instruction* instr) {
VisitFPDataProcessing3Source(instr);
}
}
+ } else {
+ VisitUnallocated(instr);
}
}
}
}
-void Decoder::DecodeAdvSIMDLoadStore(const Instruction* instr) {
- // TODO: Implement Advanced SIMD load/store instruction decode.
+void Decoder::DecodeNEONLoadStore(const Instruction* instr) {
VIXL_ASSERT(instr->Bits(29, 25) == 0x6);
- VisitUnimplemented(instr);
+ if (instr->Bit(31) == 0) {
+ if ((instr->Bit(24) == 0) && (instr->Bit(21) == 1)) {
+ VisitUnallocated(instr);
+ return;
+ }
+
+ if (instr->Bit(23) == 0) {
+ if (instr->Bits(20, 16) == 0) {
+ if (instr->Bit(24) == 0) {
+ VisitNEONLoadStoreMultiStruct(instr);
+ } else {
+ VisitNEONLoadStoreSingleStruct(instr);
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ } else {
+ if (instr->Bit(24) == 0) {
+ VisitNEONLoadStoreMultiStructPostIndex(instr);
+ } else {
+ VisitNEONLoadStoreSingleStructPostIndex(instr);
+ }
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+}
+
+
+void Decoder::DecodeNEONVectorDataProcessing(const Instruction* instr) {
+ VIXL_ASSERT(instr->Bits(28, 25) == 0x7);
+ if (instr->Bit(31) == 0) {
+ if (instr->Bit(24) == 0) {
+ if (instr->Bit(21) == 0) {
+ if (instr->Bit(15) == 0) {
+ if (instr->Bit(10) == 0) {
+ if (instr->Bit(29) == 0) {
+ if (instr->Bit(11) == 0) {
+ VisitNEONTable(instr);
+ } else {
+ VisitNEONPerm(instr);
+ }
+ } else {
+ VisitNEONExtract(instr);
+ }
+ } else {
+ if (instr->Bits(23, 22) == 0) {
+ VisitNEONCopy(instr);
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ } else {
+ if (instr->Bit(10) == 0) {
+ if (instr->Bit(11) == 0) {
+ VisitNEON3Different(instr);
+ } else {
+ if (instr->Bits(18, 17) == 0) {
+ if (instr->Bit(20) == 0) {
+ if (instr->Bit(19) == 0) {
+ VisitNEON2RegMisc(instr);
+ } else {
+ if (instr->Bits(30, 29) == 0x2) {
+ VisitCryptoAES(instr);
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ if (instr->Bit(19) == 0) {
+ VisitNEONAcrossLanes(instr);
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ VisitNEON3Same(instr);
+ }
+ }
+ } else {
+ if (instr->Bit(10) == 0) {
+ VisitNEONByIndexedElement(instr);
+ } else {
+ if (instr->Bit(23) == 0) {
+ if (instr->Bits(22, 19) == 0) {
+ VisitNEONModifiedImmediate(instr);
+ } else {
+ VisitNEONShiftImmediate(instr);
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
}
-void Decoder::DecodeAdvSIMDDataProcessing(const Instruction* instr) {
- // TODO: Implement Advanced SIMD data processing instruction decode.
- VIXL_ASSERT(instr->Bits(27, 25) == 0x7);
- VisitUnimplemented(instr);
+void Decoder::DecodeNEONScalarDataProcessing(const Instruction* instr) {
+ VIXL_ASSERT(instr->Bits(28, 25) == 0xF);
+ if (instr->Bit(24) == 0) {
+ if (instr->Bit(21) == 0) {
+ if (instr->Bit(15) == 0) {
+ if (instr->Bit(10) == 0) {
+ if (instr->Bit(29) == 0) {
+ if (instr->Bit(11) == 0) {
+ VisitCrypto3RegSHA(instr);
+ } else {
+ VisitUnallocated(instr);
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ } else {
+ if (instr->Bits(23, 22) == 0) {
+ VisitNEONScalarCopy(instr);
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ } else {
+ if (instr->Bit(10) == 0) {
+ if (instr->Bit(11) == 0) {
+ VisitNEONScalar3Diff(instr);
+ } else {
+ if (instr->Bits(18, 17) == 0) {
+ if (instr->Bit(20) == 0) {
+ if (instr->Bit(19) == 0) {
+ VisitNEONScalar2RegMisc(instr);
+ } else {
+ if (instr->Bit(29) == 0) {
+ VisitCrypto2RegSHA(instr);
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ if (instr->Bit(19) == 0) {
+ VisitNEONScalarPairwise(instr);
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ VisitNEONScalar3Same(instr);
+ }
+ }
+ } else {
+ if (instr->Bit(10) == 0) {
+ VisitNEONScalarByIndexedElement(instr);
+ } else {
+ if (instr->Bit(23) == 0) {
+ VisitNEONScalarShiftImmediate(instr);
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ }
}
diff --git a/disas/libvixl/a64/decoder-a64.h b/disas/libvixl/vixl/a64/decoder-a64.h
index fd08d6c1f4..b3f04f68fc 100644
--- a/disas/libvixl/a64/decoder-a64.h
+++ b/disas/libvixl/vixl/a64/decoder-a64.h
@@ -1,4 +1,4 @@
-// Copyright 2013, ARM Limited
+// Copyright 2014, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@@ -29,13 +29,13 @@
#include <list>
-#include "globals.h"
-#include "a64/instructions-a64.h"
+#include "vixl/globals.h"
+#include "vixl/a64/instructions-a64.h"
// List macro containing all visitors needed by the decoder class.
-#define VISITOR_LIST(V) \
+#define VISITOR_LIST_THAT_RETURN(V) \
V(PCRelAddressing) \
V(AddSubImmediate) \
V(LogicalImmediate) \
@@ -79,8 +79,39 @@
V(FPDataProcessing3Source) \
V(FPIntegerConvert) \
V(FPFixedPointConvert) \
- V(Unallocated) \
- V(Unimplemented)
+ V(Crypto2RegSHA) \
+ V(Crypto3RegSHA) \
+ V(CryptoAES) \
+ V(NEON2RegMisc) \
+ V(NEON3Different) \
+ V(NEON3Same) \
+ V(NEONAcrossLanes) \
+ V(NEONByIndexedElement) \
+ V(NEONCopy) \
+ V(NEONExtract) \
+ V(NEONLoadStoreMultiStruct) \
+ V(NEONLoadStoreMultiStructPostIndex) \
+ V(NEONLoadStoreSingleStruct) \
+ V(NEONLoadStoreSingleStructPostIndex) \
+ V(NEONModifiedImmediate) \
+ V(NEONScalar2RegMisc) \
+ V(NEONScalar3Diff) \
+ V(NEONScalar3Same) \
+ V(NEONScalarByIndexedElement) \
+ V(NEONScalarCopy) \
+ V(NEONScalarPairwise) \
+ V(NEONScalarShiftImmediate) \
+ V(NEONShiftImmediate) \
+ V(NEONTable) \
+ V(NEONPerm) \
+
+#define VISITOR_LIST_THAT_DONT_RETURN(V) \
+ V(Unallocated) \
+ V(Unimplemented) \
+
+#define VISITOR_LIST(V) \
+ VISITOR_LIST_THAT_RETURN(V) \
+ VISITOR_LIST_THAT_DONT_RETURN(V) \
namespace vixl {
@@ -222,12 +253,17 @@ class Decoder {
// Decode the Advanced SIMD (NEON) load/store part of the instruction tree,
// and call the corresponding visitors.
// On entry, instruction bits 29:25 = 0x6.
- void DecodeAdvSIMDLoadStore(const Instruction* instr);
+ void DecodeNEONLoadStore(const Instruction* instr);
- // Decode the Advanced SIMD (NEON) data processing part of the instruction
- // tree, and call the corresponding visitors.
- // On entry, instruction bits 27:25 = 0x7.
- void DecodeAdvSIMDDataProcessing(const Instruction* instr);
+ // Decode the Advanced SIMD (NEON) vector data processing part of the
+ // instruction tree, and call the corresponding visitors.
+ // On entry, instruction bits 28:25 = 0x7.
+ void DecodeNEONVectorDataProcessing(const Instruction* instr);
+
+ // Decode the Advanced SIMD (NEON) scalar data processing part of the
+ // instruction tree, and call the corresponding visitors.
+ // On entry, instruction bits 28:25 = 0xF.
+ void DecodeNEONScalarDataProcessing(const Instruction* instr);
private:
// Visitors are registered in a list.
diff --git a/disas/libvixl/vixl/a64/disasm-a64.cc b/disas/libvixl/vixl/a64/disasm-a64.cc
new file mode 100644
index 0000000000..20caba4317
--- /dev/null
+++ b/disas/libvixl/vixl/a64/disasm-a64.cc
@@ -0,0 +1,3487 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <cstdlib>
+#include "vixl/a64/disasm-a64.h"
+
+namespace vixl {
+
+Disassembler::Disassembler() {
+ buffer_size_ = 256;
+ buffer_ = reinterpret_cast<char*>(malloc(buffer_size_));
+ buffer_pos_ = 0;
+ own_buffer_ = true;
+ code_address_offset_ = 0;
+}
+
+
+Disassembler::Disassembler(char* text_buffer, int buffer_size) {
+ buffer_size_ = buffer_size;
+ buffer_ = text_buffer;
+ buffer_pos_ = 0;
+ own_buffer_ = false;
+ code_address_offset_ = 0;
+}
+
+
+Disassembler::~Disassembler() {
+ if (own_buffer_) {
+ free(buffer_);
+ }
+}
+
+
+char* Disassembler::GetOutput() {
+ return buffer_;
+}
+
+
+void Disassembler::VisitAddSubImmediate(const Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) &&
+ (instr->ImmAddSub() == 0) ? true : false;
+ const char *mnemonic = "";
+ const char *form = "'Rds, 'Rns, 'IAddSub";
+ const char *form_cmp = "'Rns, 'IAddSub";
+ const char *form_mov = "'Rds, 'Rns";
+
+ switch (instr->Mask(AddSubImmediateMask)) {
+ case ADD_w_imm:
+ case ADD_x_imm: {
+ mnemonic = "add";
+ if (stack_op) {
+ mnemonic = "mov";
+ form = form_mov;
+ }
+ break;
+ }
+ case ADDS_w_imm:
+ case ADDS_x_imm: {
+ mnemonic = "adds";
+ if (rd_is_zr) {
+ mnemonic = "cmn";
+ form = form_cmp;
+ }
+ break;
+ }
+ case SUB_w_imm:
+ case SUB_x_imm: mnemonic = "sub"; break;
+ case SUBS_w_imm:
+ case SUBS_x_imm: {
+ mnemonic = "subs";
+ if (rd_is_zr) {
+ mnemonic = "cmp";
+ form = form_cmp;
+ }
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitAddSubShifted(const Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm'NDP";
+ const char *form_cmp = "'Rn, 'Rm'NDP";
+ const char *form_neg = "'Rd, 'Rm'NDP";
+
+ switch (instr->Mask(AddSubShiftedMask)) {
+ case ADD_w_shift:
+ case ADD_x_shift: mnemonic = "add"; break;
+ case ADDS_w_shift:
+ case ADDS_x_shift: {
+ mnemonic = "adds";
+ if (rd_is_zr) {
+ mnemonic = "cmn";
+ form = form_cmp;
+ }
+ break;
+ }
+ case SUB_w_shift:
+ case SUB_x_shift: {
+ mnemonic = "sub";
+ if (rn_is_zr) {
+ mnemonic = "neg";
+ form = form_neg;
+ }
+ break;
+ }
+ case SUBS_w_shift:
+ case SUBS_x_shift: {
+ mnemonic = "subs";
+ if (rd_is_zr) {
+ mnemonic = "cmp";
+ form = form_cmp;
+ } else if (rn_is_zr) {
+ mnemonic = "negs";
+ form = form_neg;
+ }
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitAddSubExtended(const Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ const char *mnemonic = "";
+ Extend mode = static_cast<Extend>(instr->ExtendMode());
+ const char *form = ((mode == UXTX) || (mode == SXTX)) ?
+ "'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext";
+ const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ?
+ "'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext";
+
+ switch (instr->Mask(AddSubExtendedMask)) {
+ case ADD_w_ext:
+ case ADD_x_ext: mnemonic = "add"; break;
+ case ADDS_w_ext:
+ case ADDS_x_ext: {
+ mnemonic = "adds";
+ if (rd_is_zr) {
+ mnemonic = "cmn";
+ form = form_cmp;
+ }
+ break;
+ }
+ case SUB_w_ext:
+ case SUB_x_ext: mnemonic = "sub"; break;
+ case SUBS_w_ext:
+ case SUBS_x_ext: {
+ mnemonic = "subs";
+ if (rd_is_zr) {
+ mnemonic = "cmp";
+ form = form_cmp;
+ }
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitAddSubWithCarry(const Instruction* instr) {
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm";
+ const char *form_neg = "'Rd, 'Rm";
+
+ switch (instr->Mask(AddSubWithCarryMask)) {
+ case ADC_w:
+ case ADC_x: mnemonic = "adc"; break;
+ case ADCS_w:
+ case ADCS_x: mnemonic = "adcs"; break;
+ case SBC_w:
+ case SBC_x: {
+ mnemonic = "sbc";
+ if (rn_is_zr) {
+ mnemonic = "ngc";
+ form = form_neg;
+ }
+ break;
+ }
+ case SBCS_w:
+ case SBCS_x: {
+ mnemonic = "sbcs";
+ if (rn_is_zr) {
+ mnemonic = "ngcs";
+ form = form_neg;
+ }
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLogicalImmediate(const Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rds, 'Rn, 'ITri";
+
+ if (instr->ImmLogical() == 0) {
+ // The immediate encoded in the instruction is not in the expected format.
+ Format(instr, "unallocated", "(LogicalImmediate)");
+ return;
+ }
+
+ switch (instr->Mask(LogicalImmediateMask)) {
+ case AND_w_imm:
+ case AND_x_imm: mnemonic = "and"; break;
+ case ORR_w_imm:
+ case ORR_x_imm: {
+ mnemonic = "orr";
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
+ : kWRegSize;
+ if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) {
+ mnemonic = "mov";
+ form = "'Rds, 'ITri";
+ }
+ break;
+ }
+ case EOR_w_imm:
+ case EOR_x_imm: mnemonic = "eor"; break;
+ case ANDS_w_imm:
+ case ANDS_x_imm: {
+ mnemonic = "ands";
+ if (rd_is_zr) {
+ mnemonic = "tst";
+ form = "'Rn, 'ITri";
+ }
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
+ VIXL_ASSERT((reg_size == kXRegSize) ||
+ ((reg_size == kWRegSize) && (value <= 0xffffffff)));
+
+ // Test for movz: 16 bits set at positions 0, 16, 32 or 48.
+ if (((value & UINT64_C(0xffffffffffff0000)) == 0) ||
+ ((value & UINT64_C(0xffffffff0000ffff)) == 0) ||
+ ((value & UINT64_C(0xffff0000ffffffff)) == 0) ||
+ ((value & UINT64_C(0x0000ffffffffffff)) == 0)) {
+ return true;
+ }
+
+ // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
+ if ((reg_size == kXRegSize) &&
+ (((~value & UINT64_C(0xffffffffffff0000)) == 0) ||
+ ((~value & UINT64_C(0xffffffff0000ffff)) == 0) ||
+ ((~value & UINT64_C(0xffff0000ffffffff)) == 0) ||
+ ((~value & UINT64_C(0x0000ffffffffffff)) == 0))) {
+ return true;
+ }
+ if ((reg_size == kWRegSize) &&
+ (((value & 0xffff0000) == 0xffff0000) ||
+ ((value & 0x0000ffff) == 0x0000ffff))) {
+ return true;
+ }
+ return false;
+}
+
+
+void Disassembler::VisitLogicalShifted(const Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm'NLo";
+
+ switch (instr->Mask(LogicalShiftedMask)) {
+ case AND_w:
+ case AND_x: mnemonic = "and"; break;
+ case BIC_w:
+ case BIC_x: mnemonic = "bic"; break;
+ case EOR_w:
+ case EOR_x: mnemonic = "eor"; break;
+ case EON_w:
+ case EON_x: mnemonic = "eon"; break;
+ case BICS_w:
+ case BICS_x: mnemonic = "bics"; break;
+ case ANDS_w:
+ case ANDS_x: {
+ mnemonic = "ands";
+ if (rd_is_zr) {
+ mnemonic = "tst";
+ form = "'Rn, 'Rm'NLo";
+ }
+ break;
+ }
+ case ORR_w:
+ case ORR_x: {
+ mnemonic = "orr";
+ if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() == LSL)) {
+ mnemonic = "mov";
+ form = "'Rd, 'Rm";
+ }
+ break;
+ }
+ case ORN_w:
+ case ORN_x: {
+ mnemonic = "orn";
+ if (rn_is_zr) {
+ mnemonic = "mvn";
+ form = "'Rd, 'Rm'NLo";
+ }
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitConditionalCompareRegister(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rn, 'Rm, 'INzcv, 'Cond";
+
+ switch (instr->Mask(ConditionalCompareRegisterMask)) {
+ case CCMN_w:
+ case CCMN_x: mnemonic = "ccmn"; break;
+ case CCMP_w:
+ case CCMP_x: mnemonic = "ccmp"; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitConditionalCompareImmediate(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rn, 'IP, 'INzcv, 'Cond";
+
+ switch (instr->Mask(ConditionalCompareImmediateMask)) {
+ case CCMN_w_imm:
+ case CCMN_x_imm: mnemonic = "ccmn"; break;
+ case CCMP_w_imm:
+ case CCMP_x_imm: mnemonic = "ccmp"; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitConditionalSelect(const Instruction* instr) {
+ bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr));
+ bool rn_is_rm = (instr->Rn() == instr->Rm());
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm, 'Cond";
+ const char *form_test = "'Rd, 'CInv";
+ const char *form_update = "'Rd, 'Rn, 'CInv";
+
+ Condition cond = static_cast<Condition>(instr->Condition());
+ bool invertible_cond = (cond != al) && (cond != nv);
+
+ switch (instr->Mask(ConditionalSelectMask)) {
+ case CSEL_w:
+ case CSEL_x: mnemonic = "csel"; break;
+ case CSINC_w:
+ case CSINC_x: {
+ mnemonic = "csinc";
+ if (rnm_is_zr && invertible_cond) {
+ mnemonic = "cset";
+ form = form_test;
+ } else if (rn_is_rm && invertible_cond) {
+ mnemonic = "cinc";
+ form = form_update;
+ }
+ break;
+ }
+ case CSINV_w:
+ case CSINV_x: {
+ mnemonic = "csinv";
+ if (rnm_is_zr && invertible_cond) {
+ mnemonic = "csetm";
+ form = form_test;
+ } else if (rn_is_rm && invertible_cond) {
+ mnemonic = "cinv";
+ form = form_update;
+ }
+ break;
+ }
+ case CSNEG_w:
+ case CSNEG_x: {
+ mnemonic = "csneg";
+ if (rn_is_rm && invertible_cond) {
+ mnemonic = "cneg";
+ form = form_update;
+ }
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitBitfield(const Instruction* instr) {
+ unsigned s = instr->ImmS();
+ unsigned r = instr->ImmR();
+ unsigned rd_size_minus_1 =
+ ((instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize) - 1;
+ const char *mnemonic = "";
+ const char *form = "";
+ const char *form_shift_right = "'Rd, 'Rn, 'IBr";
+ const char *form_extend = "'Rd, 'Wn";
+ const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1";
+ const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1";
+ const char *form_lsl = "'Rd, 'Rn, 'IBZ-r";
+
+ switch (instr->Mask(BitfieldMask)) {
+ case SBFM_w:
+ case SBFM_x: {
+ mnemonic = "sbfx";
+ form = form_bfx;
+ if (r == 0) {
+ form = form_extend;
+ if (s == 7) {
+ mnemonic = "sxtb";
+ } else if (s == 15) {
+ mnemonic = "sxth";
+ } else if ((s == 31) && (instr->SixtyFourBits() == 1)) {
+ mnemonic = "sxtw";
+ } else {
+ form = form_bfx;
+ }
+ } else if (s == rd_size_minus_1) {
+ mnemonic = "asr";
+ form = form_shift_right;
+ } else if (s < r) {
+ mnemonic = "sbfiz";
+ form = form_bfiz;
+ }
+ break;
+ }
+ case UBFM_w:
+ case UBFM_x: {
+ mnemonic = "ubfx";
+ form = form_bfx;
+ if (r == 0) {
+ form = form_extend;
+ if (s == 7) {
+ mnemonic = "uxtb";
+ } else if (s == 15) {
+ mnemonic = "uxth";
+ } else {
+ form = form_bfx;
+ }
+ }
+ if (s == rd_size_minus_1) {
+ mnemonic = "lsr";
+ form = form_shift_right;
+ } else if (r == s + 1) {
+ mnemonic = "lsl";
+ form = form_lsl;
+ } else if (s < r) {
+ mnemonic = "ubfiz";
+ form = form_bfiz;
+ }
+ break;
+ }
+ case BFM_w:
+ case BFM_x: {
+ mnemonic = "bfxil";
+ form = form_bfx;
+ if (s < r) {
+ mnemonic = "bfi";
+ form = form_bfiz;
+ }
+ }
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitExtract(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm, 'IExtract";
+
+ switch (instr->Mask(ExtractMask)) {
+ case EXTR_w:
+ case EXTR_x: {
+ if (instr->Rn() == instr->Rm()) {
+ mnemonic = "ror";
+ form = "'Rd, 'Rn, 'IExtract";
+ } else {
+ mnemonic = "extr";
+ }
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitPCRelAddressing(const Instruction* instr) {
+ switch (instr->Mask(PCRelAddressingMask)) {
+ case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break;
+ case ADRP: Format(instr, "adrp", "'Xd, 'AddrPCRelPage"); break;
+ default: Format(instr, "unimplemented", "(PCRelAddressing)");
+ }
+}
+
+
+void Disassembler::VisitConditionalBranch(const Instruction* instr) {
+ switch (instr->Mask(ConditionalBranchMask)) {
+ case B_cond: Format(instr, "b.'CBrn", "'TImmCond"); break;
+ default: VIXL_UNREACHABLE();
+ }
+}
+
+
+void Disassembler::VisitUnconditionalBranchToRegister(
+ const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Xn";
+
+ switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
+ case BR: mnemonic = "br"; break;
+ case BLR: mnemonic = "blr"; break;
+ case RET: {
+ mnemonic = "ret";
+ if (instr->Rn() == kLinkRegCode) {
+ form = NULL;
+ }
+ break;
+ }
+ default: form = "(UnconditionalBranchToRegister)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitUnconditionalBranch(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'TImmUncn";
+
+ switch (instr->Mask(UnconditionalBranchMask)) {
+ case B: mnemonic = "b"; break;
+ case BL: mnemonic = "bl"; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitDataProcessing1Source(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn";
+
+ switch (instr->Mask(DataProcessing1SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_w: \
+ case A##_x: mnemonic = B; break;
+ FORMAT(RBIT, "rbit");
+ FORMAT(REV16, "rev16");
+ FORMAT(REV, "rev");
+ FORMAT(CLZ, "clz");
+ FORMAT(CLS, "cls");
+ #undef FORMAT
+ case REV32_x: mnemonic = "rev32"; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitDataProcessing2Source(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Rd, 'Rn, 'Rm";
+ const char *form_wwx = "'Wd, 'Wn, 'Xm";
+
+ switch (instr->Mask(DataProcessing2SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_w: \
+ case A##_x: mnemonic = B; break;
+ FORMAT(UDIV, "udiv");
+ FORMAT(SDIV, "sdiv");
+ FORMAT(LSLV, "lsl");
+ FORMAT(LSRV, "lsr");
+ FORMAT(ASRV, "asr");
+ FORMAT(RORV, "ror");
+ #undef FORMAT
+ case CRC32B: mnemonic = "crc32b"; break;
+ case CRC32H: mnemonic = "crc32h"; break;
+ case CRC32W: mnemonic = "crc32w"; break;
+ case CRC32X: mnemonic = "crc32x"; form = form_wwx; break;
+ case CRC32CB: mnemonic = "crc32cb"; break;
+ case CRC32CH: mnemonic = "crc32ch"; break;
+ case CRC32CW: mnemonic = "crc32cw"; break;
+ case CRC32CX: mnemonic = "crc32cx"; form = form_wwx; break;
+ default: form = "(DataProcessing2Source)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitDataProcessing3Source(const Instruction* instr) {
+ bool ra_is_zr = RaIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Xd, 'Wn, 'Wm, 'Xa";
+ const char *form_rrr = "'Rd, 'Rn, 'Rm";
+ const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra";
+ const char *form_xww = "'Xd, 'Wn, 'Wm";
+ const char *form_xxx = "'Xd, 'Xn, 'Xm";
+
+ switch (instr->Mask(DataProcessing3SourceMask)) {
+ case MADD_w:
+ case MADD_x: {
+ mnemonic = "madd";
+ form = form_rrrr;
+ if (ra_is_zr) {
+ mnemonic = "mul";
+ form = form_rrr;
+ }
+ break;
+ }
+ case MSUB_w:
+ case MSUB_x: {
+ mnemonic = "msub";
+ form = form_rrrr;
+ if (ra_is_zr) {
+ mnemonic = "mneg";
+ form = form_rrr;
+ }
+ break;
+ }
+ case SMADDL_x: {
+ mnemonic = "smaddl";
+ if (ra_is_zr) {
+ mnemonic = "smull";
+ form = form_xww;
+ }
+ break;
+ }
+ case SMSUBL_x: {
+ mnemonic = "smsubl";
+ if (ra_is_zr) {
+ mnemonic = "smnegl";
+ form = form_xww;
+ }
+ break;
+ }
+ case UMADDL_x: {
+ mnemonic = "umaddl";
+ if (ra_is_zr) {
+ mnemonic = "umull";
+ form = form_xww;
+ }
+ break;
+ }
+ case UMSUBL_x: {
+ mnemonic = "umsubl";
+ if (ra_is_zr) {
+ mnemonic = "umnegl";
+ form = form_xww;
+ }
+ break;
+ }
+ case SMULH_x: {
+ mnemonic = "smulh";
+ form = form_xxx;
+ break;
+ }
+ case UMULH_x: {
+ mnemonic = "umulh";
+ form = form_xxx;
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitCompareBranch(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rt, 'TImmCmpa";
+
+ switch (instr->Mask(CompareBranchMask)) {
+ case CBZ_w:
+ case CBZ_x: mnemonic = "cbz"; break;
+ case CBNZ_w:
+ case CBNZ_x: mnemonic = "cbnz"; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitTestBranch(const Instruction* instr) {
+ const char *mnemonic = "";
+ // If the top bit of the immediate is clear, the tested register is
+ // disassembled as Wt, otherwise Xt. As the top bit of the immediate is
+ // encoded in bit 31 of the instruction, we can reuse the Rt form, which
+ // uses bit 31 (normally "sf") to choose the register size.
+ const char *form = "'Rt, 'IS, 'TImmTest";
+
+ switch (instr->Mask(TestBranchMask)) {
+ case TBZ: mnemonic = "tbz"; break;
+ case TBNZ: mnemonic = "tbnz"; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitMoveWideImmediate(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'IMoveImm";
+
+ // Print the shift separately for movk, to make it clear which half word will
+ // be overwritten. Movn and movz print the computed immediate, which includes
+ // shift calculation.
+ switch (instr->Mask(MoveWideImmediateMask)) {
+ case MOVN_w:
+ case MOVN_x:
+ if ((instr->ImmMoveWide()) || (instr->ShiftMoveWide() == 0)) {
+ if ((instr->SixtyFourBits() == 0) && (instr->ImmMoveWide() == 0xffff)) {
+ mnemonic = "movn";
+ } else {
+ mnemonic = "mov";
+ form = "'Rd, 'IMoveNeg";
+ }
+ } else {
+ mnemonic = "movn";
+ }
+ break;
+ case MOVZ_w:
+ case MOVZ_x:
+ if ((instr->ImmMoveWide()) || (instr->ShiftMoveWide() == 0))
+ mnemonic = "mov";
+ else
+ mnemonic = "movz";
+ break;
+ case MOVK_w:
+ case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+#define LOAD_STORE_LIST(V) \
+ V(STRB_w, "strb", "'Wt") \
+ V(STRH_w, "strh", "'Wt") \
+ V(STR_w, "str", "'Wt") \
+ V(STR_x, "str", "'Xt") \
+ V(LDRB_w, "ldrb", "'Wt") \
+ V(LDRH_w, "ldrh", "'Wt") \
+ V(LDR_w, "ldr", "'Wt") \
+ V(LDR_x, "ldr", "'Xt") \
+ V(LDRSB_x, "ldrsb", "'Xt") \
+ V(LDRSH_x, "ldrsh", "'Xt") \
+ V(LDRSW_x, "ldrsw", "'Xt") \
+ V(LDRSB_w, "ldrsb", "'Wt") \
+ V(LDRSH_w, "ldrsh", "'Wt") \
+ V(STR_b, "str", "'Bt") \
+ V(STR_h, "str", "'Ht") \
+ V(STR_s, "str", "'St") \
+ V(STR_d, "str", "'Dt") \
+ V(LDR_b, "ldr", "'Bt") \
+ V(LDR_h, "ldr", "'Ht") \
+ V(LDR_s, "ldr", "'St") \
+ V(LDR_d, "ldr", "'Dt") \
+ V(STR_q, "str", "'Qt") \
+ V(LDR_q, "ldr", "'Qt")
+
+void Disassembler::VisitLoadStorePreIndex(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePreIndex)";
+
+ switch (instr->Mask(LoadStorePreIndexMask)) {
+ #define LS_PREINDEX(A, B, C) \
+ case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break;
+ LOAD_STORE_LIST(LS_PREINDEX)
+ #undef LS_PREINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePostIndex(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePostIndex)";
+
+ switch (instr->Mask(LoadStorePostIndexMask)) {
+ #define LS_POSTINDEX(A, B, C) \
+ case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break;
+ LOAD_STORE_LIST(LS_POSTINDEX)
+ #undef LS_POSTINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreUnsignedOffset(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStoreUnsignedOffset)";
+
+ switch (instr->Mask(LoadStoreUnsignedOffsetMask)) {
+ #define LS_UNSIGNEDOFFSET(A, B, C) \
+ case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break;
+ LOAD_STORE_LIST(LS_UNSIGNEDOFFSET)
+ #undef LS_UNSIGNEDOFFSET
+ case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xns'ILU]";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreRegisterOffset(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStoreRegisterOffset)";
+
+ switch (instr->Mask(LoadStoreRegisterOffsetMask)) {
+ #define LS_REGISTEROFFSET(A, B, C) \
+ case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break;
+ LOAD_STORE_LIST(LS_REGISTEROFFSET)
+ #undef LS_REGISTEROFFSET
+ case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreUnscaledOffset(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Wt, ['Xns'ILS]";
+ const char *form_x = "'Xt, ['Xns'ILS]";
+ const char *form_b = "'Bt, ['Xns'ILS]";
+ const char *form_h = "'Ht, ['Xns'ILS]";
+ const char *form_s = "'St, ['Xns'ILS]";
+ const char *form_d = "'Dt, ['Xns'ILS]";
+ const char *form_q = "'Qt, ['Xns'ILS]";
+ const char *form_prefetch = "'PrefOp, ['Xns'ILS]";
+
+ switch (instr->Mask(LoadStoreUnscaledOffsetMask)) {
+ case STURB_w: mnemonic = "sturb"; break;
+ case STURH_w: mnemonic = "sturh"; break;
+ case STUR_w: mnemonic = "stur"; break;
+ case STUR_x: mnemonic = "stur"; form = form_x; break;
+ case STUR_b: mnemonic = "stur"; form = form_b; break;
+ case STUR_h: mnemonic = "stur"; form = form_h; break;
+ case STUR_s: mnemonic = "stur"; form = form_s; break;
+ case STUR_d: mnemonic = "stur"; form = form_d; break;
+ case STUR_q: mnemonic = "stur"; form = form_q; break;
+ case LDURB_w: mnemonic = "ldurb"; break;
+ case LDURH_w: mnemonic = "ldurh"; break;
+ case LDUR_w: mnemonic = "ldur"; break;
+ case LDUR_x: mnemonic = "ldur"; form = form_x; break;
+ case LDUR_b: mnemonic = "ldur"; form = form_b; break;
+ case LDUR_h: mnemonic = "ldur"; form = form_h; break;
+ case LDUR_s: mnemonic = "ldur"; form = form_s; break;
+ case LDUR_d: mnemonic = "ldur"; form = form_d; break;
+ case LDUR_q: mnemonic = "ldur"; form = form_q; break;
+ case LDURSB_x: form = form_x; VIXL_FALLTHROUGH();
+ case LDURSB_w: mnemonic = "ldursb"; break;
+ case LDURSH_x: form = form_x; VIXL_FALLTHROUGH();
+ case LDURSH_w: mnemonic = "ldursh"; break;
+ case LDURSW_x: mnemonic = "ldursw"; form = form_x; break;
+ case PRFUM: mnemonic = "prfum"; form = form_prefetch; break;
+ default: form = "(LoadStoreUnscaledOffset)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadLiteral(const Instruction* instr) {
+ const char *mnemonic = "ldr";
+ const char *form = "(LoadLiteral)";
+
+ switch (instr->Mask(LoadLiteralMask)) {
+ case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break;
+ case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break;
+ case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break;
+ case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break;
+ case LDR_q_lit: form = "'Qt, 'ILLiteral 'LValue"; break;
+ case LDRSW_x_lit: {
+ mnemonic = "ldrsw";
+ form = "'Xt, 'ILLiteral 'LValue";
+ break;
+ }
+ case PRFM_lit: {
+ mnemonic = "prfm";
+ form = "'PrefOp, 'ILLiteral 'LValue";
+ break;
+ }
+ default: mnemonic = "unimplemented";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+#define LOAD_STORE_PAIR_LIST(V) \
+ V(STP_w, "stp", "'Wt, 'Wt2", "2") \
+ V(LDP_w, "ldp", "'Wt, 'Wt2", "2") \
+ V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "2") \
+ V(STP_x, "stp", "'Xt, 'Xt2", "3") \
+ V(LDP_x, "ldp", "'Xt, 'Xt2", "3") \
+ V(STP_s, "stp", "'St, 'St2", "2") \
+ V(LDP_s, "ldp", "'St, 'St2", "2") \
+ V(STP_d, "stp", "'Dt, 'Dt2", "3") \
+ V(LDP_d, "ldp", "'Dt, 'Dt2", "3") \
+ V(LDP_q, "ldp", "'Qt, 'Qt2", "4") \
+ V(STP_q, "stp", "'Qt, 'Qt2", "4")
+
+void Disassembler::VisitLoadStorePairPostIndex(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePairPostIndex)";
+
+ switch (instr->Mask(LoadStorePairPostIndexMask)) {
+ #define LSP_POSTINDEX(A, B, C, D) \
+ case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break;
+ LOAD_STORE_PAIR_LIST(LSP_POSTINDEX)
+ #undef LSP_POSTINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePairPreIndex(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePairPreIndex)";
+
+ switch (instr->Mask(LoadStorePairPreIndexMask)) {
+ #define LSP_PREINDEX(A, B, C, D) \
+ case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break;
+ LOAD_STORE_PAIR_LIST(LSP_PREINDEX)
+ #undef LSP_PREINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePairOffset(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePairOffset)";
+
+ switch (instr->Mask(LoadStorePairOffsetMask)) {
+ #define LSP_OFFSET(A, B, C, D) \
+ case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break;
+ LOAD_STORE_PAIR_LIST(LSP_OFFSET)
+ #undef LSP_OFFSET
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePairNonTemporal(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form;
+
+ switch (instr->Mask(LoadStorePairNonTemporalMask)) {
+ case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP2]"; break;
+ case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP2]"; break;
+ case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP3]"; break;
+ case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP3]"; break;
+ case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP2]"; break;
+ case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP2]"; break;
+ case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP3]"; break;
+ case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP3]"; break;
+ case STNP_q: mnemonic = "stnp"; form = "'Qt, 'Qt2, ['Xns'ILP4]"; break;
+ case LDNP_q: mnemonic = "ldnp"; form = "'Qt, 'Qt2, ['Xns'ILP4]"; break;
+ default: form = "(LoadStorePairNonTemporal)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreExclusive(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form;
+
+ switch (instr->Mask(LoadStoreExclusiveMask)) {
+ case STXRB_w: mnemonic = "stxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
+ case STXRH_w: mnemonic = "stxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
+ case STXR_w: mnemonic = "stxr"; form = "'Ws, 'Wt, ['Xns]"; break;
+ case STXR_x: mnemonic = "stxr"; form = "'Ws, 'Xt, ['Xns]"; break;
+ case LDXRB_w: mnemonic = "ldxrb"; form = "'Wt, ['Xns]"; break;
+ case LDXRH_w: mnemonic = "ldxrh"; form = "'Wt, ['Xns]"; break;
+ case LDXR_w: mnemonic = "ldxr"; form = "'Wt, ['Xns]"; break;
+ case LDXR_x: mnemonic = "ldxr"; form = "'Xt, ['Xns]"; break;
+ case STXP_w: mnemonic = "stxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
+ case STXP_x: mnemonic = "stxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
+ case LDXP_w: mnemonic = "ldxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
+ case LDXP_x: mnemonic = "ldxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
+ case STLXRB_w: mnemonic = "stlxrb"; form = "'Ws, 'Wt, ['Xns]"; break;
+ case STLXRH_w: mnemonic = "stlxrh"; form = "'Ws, 'Wt, ['Xns]"; break;
+ case STLXR_w: mnemonic = "stlxr"; form = "'Ws, 'Wt, ['Xns]"; break;
+ case STLXR_x: mnemonic = "stlxr"; form = "'Ws, 'Xt, ['Xns]"; break;
+ case LDAXRB_w: mnemonic = "ldaxrb"; form = "'Wt, ['Xns]"; break;
+ case LDAXRH_w: mnemonic = "ldaxrh"; form = "'Wt, ['Xns]"; break;
+ case LDAXR_w: mnemonic = "ldaxr"; form = "'Wt, ['Xns]"; break;
+ case LDAXR_x: mnemonic = "ldaxr"; form = "'Xt, ['Xns]"; break;
+ case STLXP_w: mnemonic = "stlxp"; form = "'Ws, 'Wt, 'Wt2, ['Xns]"; break;
+ case STLXP_x: mnemonic = "stlxp"; form = "'Ws, 'Xt, 'Xt2, ['Xns]"; break;
+ case LDAXP_w: mnemonic = "ldaxp"; form = "'Wt, 'Wt2, ['Xns]"; break;
+ case LDAXP_x: mnemonic = "ldaxp"; form = "'Xt, 'Xt2, ['Xns]"; break;
+ case STLRB_w: mnemonic = "stlrb"; form = "'Wt, ['Xns]"; break;
+ case STLRH_w: mnemonic = "stlrh"; form = "'Wt, ['Xns]"; break;
+ case STLR_w: mnemonic = "stlr"; form = "'Wt, ['Xns]"; break;
+ case STLR_x: mnemonic = "stlr"; form = "'Xt, ['Xns]"; break;
+ case LDARB_w: mnemonic = "ldarb"; form = "'Wt, ['Xns]"; break;
+ case LDARH_w: mnemonic = "ldarh"; form = "'Wt, ['Xns]"; break;
+ case LDAR_w: mnemonic = "ldar"; form = "'Wt, ['Xns]"; break;
+ case LDAR_x: mnemonic = "ldar"; form = "'Xt, ['Xns]"; break;
+ default: form = "(LoadStoreExclusive)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPCompare(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Fn, 'Fm";
+ const char *form_zero = "'Fn, #0.0";
+
+ switch (instr->Mask(FPCompareMask)) {
+ case FCMP_s_zero:
+ case FCMP_d_zero: form = form_zero; VIXL_FALLTHROUGH();
+ case FCMP_s:
+ case FCMP_d: mnemonic = "fcmp"; break;
+ case FCMPE_s_zero:
+ case FCMPE_d_zero: form = form_zero; VIXL_FALLTHROUGH();
+ case FCMPE_s:
+ case FCMPE_d: mnemonic = "fcmpe"; break;
+ default: form = "(FPCompare)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPConditionalCompare(const Instruction* instr) {
+ const char *mnemonic = "unmplemented";
+ const char *form = "'Fn, 'Fm, 'INzcv, 'Cond";
+
+ switch (instr->Mask(FPConditionalCompareMask)) {
+ case FCCMP_s:
+ case FCCMP_d: mnemonic = "fccmp"; break;
+ case FCCMPE_s:
+ case FCCMPE_d: mnemonic = "fccmpe"; break;
+ default: form = "(FPConditionalCompare)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPConditionalSelect(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Fd, 'Fn, 'Fm, 'Cond";
+
+ switch (instr->Mask(FPConditionalSelectMask)) {
+ case FCSEL_s:
+ case FCSEL_d: mnemonic = "fcsel"; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPDataProcessing1Source(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Fd, 'Fn";
+
+ switch (instr->Mask(FPDataProcessing1SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_s: \
+ case A##_d: mnemonic = B; break;
+ FORMAT(FMOV, "fmov");
+ FORMAT(FABS, "fabs");
+ FORMAT(FNEG, "fneg");
+ FORMAT(FSQRT, "fsqrt");
+ FORMAT(FRINTN, "frintn");
+ FORMAT(FRINTP, "frintp");
+ FORMAT(FRINTM, "frintm");
+ FORMAT(FRINTZ, "frintz");
+ FORMAT(FRINTA, "frinta");
+ FORMAT(FRINTX, "frintx");
+ FORMAT(FRINTI, "frinti");
+ #undef FORMAT
+ case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break;
+ case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break;
+ case FCVT_hs: mnemonic = "fcvt"; form = "'Hd, 'Sn"; break;
+ case FCVT_sh: mnemonic = "fcvt"; form = "'Sd, 'Hn"; break;
+ case FCVT_dh: mnemonic = "fcvt"; form = "'Dd, 'Hn"; break;
+ case FCVT_hd: mnemonic = "fcvt"; form = "'Hd, 'Dn"; break;
+ default: form = "(FPDataProcessing1Source)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPDataProcessing2Source(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Fd, 'Fn, 'Fm";
+
+ switch (instr->Mask(FPDataProcessing2SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_s: \
+ case A##_d: mnemonic = B; break;
+ FORMAT(FMUL, "fmul");
+ FORMAT(FDIV, "fdiv");
+ FORMAT(FADD, "fadd");
+ FORMAT(FSUB, "fsub");
+ FORMAT(FMAX, "fmax");
+ FORMAT(FMIN, "fmin");
+ FORMAT(FMAXNM, "fmaxnm");
+ FORMAT(FMINNM, "fminnm");
+ FORMAT(FNMUL, "fnmul");
+ #undef FORMAT
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPDataProcessing3Source(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Fd, 'Fn, 'Fm, 'Fa";
+
+ switch (instr->Mask(FPDataProcessing3SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_s: \
+ case A##_d: mnemonic = B; break;
+ FORMAT(FMADD, "fmadd");
+ FORMAT(FMSUB, "fmsub");
+ FORMAT(FNMADD, "fnmadd");
+ FORMAT(FNMSUB, "fnmsub");
+ #undef FORMAT
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPImmediate(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "(FPImmediate)";
+
+ switch (instr->Mask(FPImmediateMask)) {
+ case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
+ case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPIntegerConvert(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(FPIntegerConvert)";
+ const char *form_rf = "'Rd, 'Fn";
+ const char *form_fr = "'Fd, 'Rn";
+
+ switch (instr->Mask(FPIntegerConvertMask)) {
+ case FMOV_ws:
+ case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
+ case FMOV_sw:
+ case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
+ case FMOV_d1_x: mnemonic = "fmov"; form = "'Vd.D[1], 'Rn"; break;
+ case FMOV_x_d1: mnemonic = "fmov"; form = "'Rd, 'Vn.D[1]"; break;
+ case FCVTAS_ws:
+ case FCVTAS_xs:
+ case FCVTAS_wd:
+ case FCVTAS_xd: mnemonic = "fcvtas"; form = form_rf; break;
+ case FCVTAU_ws:
+ case FCVTAU_xs:
+ case FCVTAU_wd:
+ case FCVTAU_xd: mnemonic = "fcvtau"; form = form_rf; break;
+ case FCVTMS_ws:
+ case FCVTMS_xs:
+ case FCVTMS_wd:
+ case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break;
+ case FCVTMU_ws:
+ case FCVTMU_xs:
+ case FCVTMU_wd:
+ case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break;
+ case FCVTNS_ws:
+ case FCVTNS_xs:
+ case FCVTNS_wd:
+ case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break;
+ case FCVTNU_ws:
+ case FCVTNU_xs:
+ case FCVTNU_wd:
+ case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break;
+ case FCVTZU_xd:
+ case FCVTZU_ws:
+ case FCVTZU_wd:
+ case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break;
+ case FCVTZS_xd:
+ case FCVTZS_wd:
+ case FCVTZS_xs:
+ case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break;
+ case FCVTPU_xd:
+ case FCVTPU_ws:
+ case FCVTPU_wd:
+ case FCVTPU_xs: mnemonic = "fcvtpu"; form = form_rf; break;
+ case FCVTPS_xd:
+ case FCVTPS_wd:
+ case FCVTPS_xs:
+ case FCVTPS_ws: mnemonic = "fcvtps"; form = form_rf; break;
+ case SCVTF_sw:
+ case SCVTF_sx:
+ case SCVTF_dw:
+ case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break;
+ case UCVTF_sw:
+ case UCVTF_sx:
+ case UCVTF_dw:
+ case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break;
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPFixedPointConvert(const Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Fn, 'IFPFBits";
+ const char *form_fr = "'Fd, 'Rn, 'IFPFBits";
+
+ switch (instr->Mask(FPFixedPointConvertMask)) {
+ case FCVTZS_ws_fixed:
+ case FCVTZS_xs_fixed:
+ case FCVTZS_wd_fixed:
+ case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break;
+ case FCVTZU_ws_fixed:
+ case FCVTZU_xs_fixed:
+ case FCVTZU_wd_fixed:
+ case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break;
+ case SCVTF_sw_fixed:
+ case SCVTF_sx_fixed:
+ case SCVTF_dw_fixed:
+ case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break;
+ case UCVTF_sw_fixed:
+ case UCVTF_sx_fixed:
+ case UCVTF_dw_fixed:
+ case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
+ default: VIXL_UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitSystem(const Instruction* instr) {
+ // Some system instructions hijack their Op and Cp fields to represent a
+ // range of immediates instead of indicating a different instruction. This
+ // makes the decoding tricky.
+ const char *mnemonic = "unimplemented";
+ const char *form = "(System)";
+
+ if (instr->Mask(SystemExclusiveMonitorFMask) == SystemExclusiveMonitorFixed) {
+ switch (instr->Mask(SystemExclusiveMonitorMask)) {
+ case CLREX: {
+ mnemonic = "clrex";
+ form = (instr->CRm() == 0xf) ? NULL : "'IX";
+ break;
+ }
+ }
+ } else if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
+ switch (instr->Mask(SystemSysRegMask)) {
+ case MRS: {
+ mnemonic = "mrs";
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: form = "'Xt, nzcv"; break;
+ case FPCR: form = "'Xt, fpcr"; break;
+ default: form = "'Xt, (unknown)"; break;
+ }
+ break;
+ }
+ case MSR: {
+ mnemonic = "msr";
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: form = "nzcv, 'Xt"; break;
+ case FPCR: form = "fpcr, 'Xt"; break;
+ default: form = "(unknown), 'Xt"; break;
+ }
+ break;
+ }
+ }
+ } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
+ switch (instr->ImmHint()) {
+ case NOP: {
+ mnemonic = "nop";
+ form = NULL;
+ break;
+ }
+ }
+ } else if (instr->Mask(MemBarrierFMask) == MemBarrierFixed) {
+ switch (instr->Mask(MemBarrierMask)) {
+ case DMB: {
+ mnemonic = "dmb";
+ form = "'M";
+ break;
+ }
+ case DSB: {
+ mnemonic = "dsb";
+ form = "'M";
+ break;
+ }
+ case ISB: {
+ mnemonic = "isb";
+ form = NULL;
+ break;
+ }
+ }
+ } else if (instr->Mask(SystemSysFMask) == SystemSysFixed) {
+ switch (instr->SysOp()) {
+ case IVAU:
+ mnemonic = "ic";
+ form = "ivau, 'Xt";
+ break;
+ case CVAC:
+ mnemonic = "dc";
+ form = "cvac, 'Xt";
+ break;
+ case CVAU:
+ mnemonic = "dc";
+ form = "cvau, 'Xt";
+ break;
+ case CIVAC:
+ mnemonic = "dc";
+ form = "civac, 'Xt";
+ break;
+ case ZVA:
+ mnemonic = "dc";
+ form = "zva, 'Xt";
+ break;
+ default:
+ mnemonic = "sys";
+ if (instr->Rt() == 31) {
+ form = "'G1, 'Kn, 'Km, 'G2";
+ } else {
+ form = "'G1, 'Kn, 'Km, 'G2, 'Xt";
+ }
+ break;
+ }
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitException(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'IDebug";
+
+ switch (instr->Mask(ExceptionMask)) {
+ case HLT: mnemonic = "hlt"; break;
+ case BRK: mnemonic = "brk"; break;
+ case SVC: mnemonic = "svc"; break;
+ case HVC: mnemonic = "hvc"; break;
+ case SMC: mnemonic = "smc"; break;
+ case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break;
+ case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break;
+ case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break;
+ default: form = "(Exception)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitCrypto2RegSHA(const Instruction* instr) {
+ VisitUnimplemented(instr);
+}
+
+
+void Disassembler::VisitCrypto3RegSHA(const Instruction* instr) {
+ VisitUnimplemented(instr);
+}
+
+
+void Disassembler::VisitCryptoAES(const Instruction* instr) {
+ VisitUnimplemented(instr);
+}
+
+
+void Disassembler::VisitNEON2RegMisc(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Vd.%s, 'Vn.%s";
+ const char *form_cmp_zero = "'Vd.%s, 'Vn.%s, #0";
+ const char *form_fcmp_zero = "'Vd.%s, 'Vn.%s, #0.0";
+ NEONFormatDecoder nfd(instr);
+
+ static const NEONFormatMap map_lp_ta = {
+ {23, 22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}
+ };
+
+ static const NEONFormatMap map_cvt_ta = {
+ {22}, {NF_4S, NF_2D}
+ };
+
+ static const NEONFormatMap map_cvt_tb = {
+ {22, 30}, {NF_4H, NF_8H, NF_2S, NF_4S}
+ };
+
+ if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_opcode) {
+ // These instructions all use a two bit size field, except NOT and RBIT,
+ // which use the field to encode the operation.
+ switch (instr->Mask(NEON2RegMiscMask)) {
+ case NEON_REV64: mnemonic = "rev64"; break;
+ case NEON_REV32: mnemonic = "rev32"; break;
+ case NEON_REV16: mnemonic = "rev16"; break;
+ case NEON_SADDLP:
+ mnemonic = "saddlp";
+ nfd.SetFormatMap(0, &map_lp_ta);
+ break;
+ case NEON_UADDLP:
+ mnemonic = "uaddlp";
+ nfd.SetFormatMap(0, &map_lp_ta);
+ break;
+ case NEON_SUQADD: mnemonic = "suqadd"; break;
+ case NEON_USQADD: mnemonic = "usqadd"; break;
+ case NEON_CLS: mnemonic = "cls"; break;
+ case NEON_CLZ: mnemonic = "clz"; break;
+ case NEON_CNT: mnemonic = "cnt"; break;
+ case NEON_SADALP:
+ mnemonic = "sadalp";
+ nfd.SetFormatMap(0, &map_lp_ta);
+ break;
+ case NEON_UADALP:
+ mnemonic = "uadalp";
+ nfd.SetFormatMap(0, &map_lp_ta);
+ break;
+ case NEON_SQABS: mnemonic = "sqabs"; break;
+ case NEON_SQNEG: mnemonic = "sqneg"; break;
+ case NEON_CMGT_zero: mnemonic = "cmgt"; form = form_cmp_zero; break;
+ case NEON_CMGE_zero: mnemonic = "cmge"; form = form_cmp_zero; break;
+ case NEON_CMEQ_zero: mnemonic = "cmeq"; form = form_cmp_zero; break;
+ case NEON_CMLE_zero: mnemonic = "cmle"; form = form_cmp_zero; break;
+ case NEON_CMLT_zero: mnemonic = "cmlt"; form = form_cmp_zero; break;
+ case NEON_ABS: mnemonic = "abs"; break;
+ case NEON_NEG: mnemonic = "neg"; break;
+ case NEON_RBIT_NOT:
+ switch (instr->FPType()) {
+ case 0: mnemonic = "mvn"; break;
+ case 1: mnemonic = "rbit"; break;
+ default: form = "(NEON2RegMisc)";
+ }
+ nfd.SetFormatMaps(nfd.LogicalFormatMap());
+ break;
+ }
+ } else {
+ // These instructions all use a one bit size field, except XTN, SQXTUN,
+ // SHLL, SQXTN and UQXTN, which use a two bit size field.
+ nfd.SetFormatMaps(nfd.FPFormatMap());
+ switch (instr->Mask(NEON2RegMiscFPMask)) {
+ case NEON_FABS: mnemonic = "fabs"; break;
+ case NEON_FNEG: mnemonic = "fneg"; break;
+ case NEON_FCVTN:
+ mnemonic = instr->Mask(NEON_Q) ? "fcvtn2" : "fcvtn";
+ nfd.SetFormatMap(0, &map_cvt_tb);
+ nfd.SetFormatMap(1, &map_cvt_ta);
+ break;
+ case NEON_FCVTXN:
+ mnemonic = instr->Mask(NEON_Q) ? "fcvtxn2" : "fcvtxn";
+ nfd.SetFormatMap(0, &map_cvt_tb);
+ nfd.SetFormatMap(1, &map_cvt_ta);
+ break;
+ case NEON_FCVTL:
+ mnemonic = instr->Mask(NEON_Q) ? "fcvtl2" : "fcvtl";
+ nfd.SetFormatMap(0, &map_cvt_ta);
+ nfd.SetFormatMap(1, &map_cvt_tb);
+ break;
+ case NEON_FRINTN: mnemonic = "frintn"; break;
+ case NEON_FRINTA: mnemonic = "frinta"; break;
+ case NEON_FRINTP: mnemonic = "frintp"; break;
+ case NEON_FRINTM: mnemonic = "frintm"; break;
+ case NEON_FRINTX: mnemonic = "frintx"; break;
+ case NEON_FRINTZ: mnemonic = "frintz"; break;
+ case NEON_FRINTI: mnemonic = "frinti"; break;
+ case NEON_FCVTNS: mnemonic = "fcvtns"; break;
+ case NEON_FCVTNU: mnemonic = "fcvtnu"; break;
+ case NEON_FCVTPS: mnemonic = "fcvtps"; break;
+ case NEON_FCVTPU: mnemonic = "fcvtpu"; break;
+ case NEON_FCVTMS: mnemonic = "fcvtms"; break;
+ case NEON_FCVTMU: mnemonic = "fcvtmu"; break;
+ case NEON_FCVTZS: mnemonic = "fcvtzs"; break;
+ case NEON_FCVTZU: mnemonic = "fcvtzu"; break;
+ case NEON_FCVTAS: mnemonic = "fcvtas"; break;
+ case NEON_FCVTAU: mnemonic = "fcvtau"; break;
+ case NEON_FSQRT: mnemonic = "fsqrt"; break;
+ case NEON_SCVTF: mnemonic = "scvtf"; break;
+ case NEON_UCVTF: mnemonic = "ucvtf"; break;
+ case NEON_URSQRTE: mnemonic = "ursqrte"; break;
+ case NEON_URECPE: mnemonic = "urecpe"; break;
+ case NEON_FRSQRTE: mnemonic = "frsqrte"; break;
+ case NEON_FRECPE: mnemonic = "frecpe"; break;
+ case NEON_FCMGT_zero: mnemonic = "fcmgt"; form = form_fcmp_zero; break;
+ case NEON_FCMGE_zero: mnemonic = "fcmge"; form = form_fcmp_zero; break;
+ case NEON_FCMEQ_zero: mnemonic = "fcmeq"; form = form_fcmp_zero; break;
+ case NEON_FCMLE_zero: mnemonic = "fcmle"; form = form_fcmp_zero; break;
+ case NEON_FCMLT_zero: mnemonic = "fcmlt"; form = form_fcmp_zero; break;
+ default:
+ if ((NEON_XTN_opcode <= instr->Mask(NEON2RegMiscOpcode)) &&
+ (instr->Mask(NEON2RegMiscOpcode) <= NEON_UQXTN_opcode)) {
+ nfd.SetFormatMap(0, nfd.IntegerFormatMap());
+ nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
+
+ switch (instr->Mask(NEON2RegMiscMask)) {
+ case NEON_XTN: mnemonic = "xtn"; break;
+ case NEON_SQXTN: mnemonic = "sqxtn"; break;
+ case NEON_UQXTN: mnemonic = "uqxtn"; break;
+ case NEON_SQXTUN: mnemonic = "sqxtun"; break;
+ case NEON_SHLL:
+ mnemonic = "shll";
+ nfd.SetFormatMap(0, nfd.LongIntegerFormatMap());
+ nfd.SetFormatMap(1, nfd.IntegerFormatMap());
+ switch (instr->NEONSize()) {
+ case 0: form = "'Vd.%s, 'Vn.%s, #8"; break;
+ case 1: form = "'Vd.%s, 'Vn.%s, #16"; break;
+ case 2: form = "'Vd.%s, 'Vn.%s, #32"; break;
+ default: form = "(NEON2RegMisc)";
+ }
+ }
+ Format(instr, nfd.Mnemonic(mnemonic), nfd.Substitute(form));
+ return;
+ } else {
+ form = "(NEON2RegMisc)";
+ }
+ }
+ }
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEON3Same(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Vd.%s, 'Vn.%s, 'Vm.%s";
+ NEONFormatDecoder nfd(instr);
+
+ if (instr->Mask(NEON3SameLogicalFMask) == NEON3SameLogicalFixed) {
+ switch (instr->Mask(NEON3SameLogicalMask)) {
+ case NEON_AND: mnemonic = "and"; break;
+ case NEON_ORR:
+ mnemonic = "orr";
+ if (instr->Rm() == instr->Rn()) {
+ mnemonic = "mov";
+ form = "'Vd.%s, 'Vn.%s";
+ }
+ break;
+ case NEON_ORN: mnemonic = "orn"; break;
+ case NEON_EOR: mnemonic = "eor"; break;
+ case NEON_BIC: mnemonic = "bic"; break;
+ case NEON_BIF: mnemonic = "bif"; break;
+ case NEON_BIT: mnemonic = "bit"; break;
+ case NEON_BSL: mnemonic = "bsl"; break;
+ default: form = "(NEON3Same)";
+ }
+ nfd.SetFormatMaps(nfd.LogicalFormatMap());
+ } else {
+ static const char *mnemonics[] = {
+ "shadd", "uhadd", "shadd", "uhadd",
+ "sqadd", "uqadd", "sqadd", "uqadd",
+ "srhadd", "urhadd", "srhadd", "urhadd",
+ NULL, NULL, NULL, NULL, // Handled by logical cases above.
+ "shsub", "uhsub", "shsub", "uhsub",
+ "sqsub", "uqsub", "sqsub", "uqsub",
+ "cmgt", "cmhi", "cmgt", "cmhi",
+ "cmge", "cmhs", "cmge", "cmhs",
+ "sshl", "ushl", "sshl", "ushl",
+ "sqshl", "uqshl", "sqshl", "uqshl",
+ "srshl", "urshl", "srshl", "urshl",
+ "sqrshl", "uqrshl", "sqrshl", "uqrshl",
+ "smax", "umax", "smax", "umax",
+ "smin", "umin", "smin", "umin",
+ "sabd", "uabd", "sabd", "uabd",
+ "saba", "uaba", "saba", "uaba",
+ "add", "sub", "add", "sub",
+ "cmtst", "cmeq", "cmtst", "cmeq",
+ "mla", "mls", "mla", "mls",
+ "mul", "pmul", "mul", "pmul",
+ "smaxp", "umaxp", "smaxp", "umaxp",
+ "sminp", "uminp", "sminp", "uminp",
+ "sqdmulh", "sqrdmulh", "sqdmulh", "sqrdmulh",
+ "addp", "unallocated", "addp", "unallocated",
+ "fmaxnm", "fmaxnmp", "fminnm", "fminnmp",
+ "fmla", "unallocated", "fmls", "unallocated",
+ "fadd", "faddp", "fsub", "fabd",
+ "fmulx", "fmul", "unallocated", "unallocated",
+ "fcmeq", "fcmge", "unallocated", "fcmgt",
+ "unallocated", "facge", "unallocated", "facgt",
+ "fmax", "fmaxp", "fmin", "fminp",
+ "frecps", "fdiv", "frsqrts", "unallocated"};
+
+ // Operation is determined by the opcode bits (15-11), the top bit of
+ // size (23) and the U bit (29).
+ unsigned index = (instr->Bits(15, 11) << 2) | (instr->Bit(23) << 1) |
+ instr->Bit(29);
+ VIXL_ASSERT(index < (sizeof(mnemonics) / sizeof(mnemonics[0])));
+ mnemonic = mnemonics[index];
+ // Assert that index is not one of the previously handled logical
+ // instructions.
+ VIXL_ASSERT(mnemonic != NULL);
+
+ if (instr->Mask(NEON3SameFPFMask) == NEON3SameFPFixed) {
+ nfd.SetFormatMaps(nfd.FPFormatMap());
+ }
+ }
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEON3Different(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Vd.%s, 'Vn.%s, 'Vm.%s";
+
+ NEONFormatDecoder nfd(instr);
+ nfd.SetFormatMap(0, nfd.LongIntegerFormatMap());
+
+ // Ignore the Q bit. Appending a "2" suffix is handled later.
+ switch (instr->Mask(NEON3DifferentMask) & ~NEON_Q) {
+ case NEON_PMULL: mnemonic = "pmull"; break;
+ case NEON_SABAL: mnemonic = "sabal"; break;
+ case NEON_SABDL: mnemonic = "sabdl"; break;
+ case NEON_SADDL: mnemonic = "saddl"; break;
+ case NEON_SMLAL: mnemonic = "smlal"; break;
+ case NEON_SMLSL: mnemonic = "smlsl"; break;
+ case NEON_SMULL: mnemonic = "smull"; break;
+ case NEON_SSUBL: mnemonic = "ssubl"; break;
+ case NEON_SQDMLAL: mnemonic = "sqdmlal"; break;
+ case NEON_SQDMLSL: mnemonic = "sqdmlsl"; break;
+ case NEON_SQDMULL: mnemonic = "sqdmull"; break;
+ case NEON_UABAL: mnemonic = "uabal"; break;
+ case NEON_UABDL: mnemonic = "uabdl"; break;
+ case NEON_UADDL: mnemonic = "uaddl"; break;
+ case NEON_UMLAL: mnemonic = "umlal"; break;
+ case NEON_UMLSL: mnemonic = "umlsl"; break;
+ case NEON_UMULL: mnemonic = "umull"; break;
+ case NEON_USUBL: mnemonic = "usubl"; break;
+ case NEON_SADDW:
+ mnemonic = "saddw";
+ nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
+ break;
+ case NEON_SSUBW:
+ mnemonic = "ssubw";
+ nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
+ break;
+ case NEON_UADDW:
+ mnemonic = "uaddw";
+ nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
+ break;
+ case NEON_USUBW:
+ mnemonic = "usubw";
+ nfd.SetFormatMap(1, nfd.LongIntegerFormatMap());
+ break;
+ case NEON_ADDHN:
+ mnemonic = "addhn";
+ nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
+ nfd.SetFormatMap(0, nfd.IntegerFormatMap());
+ break;
+ case NEON_RADDHN:
+ mnemonic = "raddhn";
+ nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
+ nfd.SetFormatMap(0, nfd.IntegerFormatMap());
+ break;
+ case NEON_RSUBHN:
+ mnemonic = "rsubhn";
+ nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
+ nfd.SetFormatMap(0, nfd.IntegerFormatMap());
+ break;
+ case NEON_SUBHN:
+ mnemonic = "subhn";
+ nfd.SetFormatMaps(nfd.LongIntegerFormatMap());
+ nfd.SetFormatMap(0, nfd.IntegerFormatMap());
+ break;
+ default: form = "(NEON3Different)";
+ }
+ Format(instr, nfd.Mnemonic(mnemonic), nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEONAcrossLanes(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "%sd, 'Vn.%s";
+
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap(),
+ NEONFormatDecoder::IntegerFormatMap());
+
+ if (instr->Mask(NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
+ nfd.SetFormatMap(0, nfd.FPScalarFormatMap());
+ nfd.SetFormatMap(1, nfd.FPFormatMap());
+ switch (instr->Mask(NEONAcrossLanesFPMask)) {
+ case NEON_FMAXV: mnemonic = "fmaxv"; break;
+ case NEON_FMINV: mnemonic = "fminv"; break;
+ case NEON_FMAXNMV: mnemonic = "fmaxnmv"; break;
+ case NEON_FMINNMV: mnemonic = "fminnmv"; break;
+ default: form = "(NEONAcrossLanes)"; break;
+ }
+ } else if (instr->Mask(NEONAcrossLanesFMask) == NEONAcrossLanesFixed) {
+ switch (instr->Mask(NEONAcrossLanesMask)) {
+ case NEON_ADDV: mnemonic = "addv"; break;
+ case NEON_SMAXV: mnemonic = "smaxv"; break;
+ case NEON_SMINV: mnemonic = "sminv"; break;
+ case NEON_UMAXV: mnemonic = "umaxv"; break;
+ case NEON_UMINV: mnemonic = "uminv"; break;
+ case NEON_SADDLV:
+ mnemonic = "saddlv";
+ nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
+ break;
+ case NEON_UADDLV:
+ mnemonic = "uaddlv";
+ nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
+ break;
+ default: form = "(NEONAcrossLanes)"; break;
+ }
+ }
+ Format(instr, mnemonic, nfd.Substitute(form,
+ NEONFormatDecoder::kPlaceholder, NEONFormatDecoder::kFormat));
+}
+
+
+void Disassembler::VisitNEONByIndexedElement(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ bool l_instr = false;
+ bool fp_instr = false;
+
+ const char *form = "'Vd.%s, 'Vn.%s, 'Ve.%s['IVByElemIndex]";
+
+ static const NEONFormatMap map_ta = {
+ {23, 22}, {NF_UNDEF, NF_4S, NF_2D}
+ };
+ NEONFormatDecoder nfd(instr, &map_ta,
+ NEONFormatDecoder::IntegerFormatMap(),
+ NEONFormatDecoder::ScalarFormatMap());
+
+ switch (instr->Mask(NEONByIndexedElementMask)) {
+ case NEON_SMULL_byelement: mnemonic = "smull"; l_instr = true; break;
+ case NEON_UMULL_byelement: mnemonic = "umull"; l_instr = true; break;
+ case NEON_SMLAL_byelement: mnemonic = "smlal"; l_instr = true; break;
+ case NEON_UMLAL_byelement: mnemonic = "umlal"; l_instr = true; break;
+ case NEON_SMLSL_byelement: mnemonic = "smlsl"; l_instr = true; break;
+ case NEON_UMLSL_byelement: mnemonic = "umlsl"; l_instr = true; break;
+ case NEON_SQDMULL_byelement: mnemonic = "sqdmull"; l_instr = true; break;
+ case NEON_SQDMLAL_byelement: mnemonic = "sqdmlal"; l_instr = true; break;
+ case NEON_SQDMLSL_byelement: mnemonic = "sqdmlsl"; l_instr = true; break;
+ case NEON_MUL_byelement: mnemonic = "mul"; break;
+ case NEON_MLA_byelement: mnemonic = "mla"; break;
+ case NEON_MLS_byelement: mnemonic = "mls"; break;
+ case NEON_SQDMULH_byelement: mnemonic = "sqdmulh"; break;
+ case NEON_SQRDMULH_byelement: mnemonic = "sqrdmulh"; break;
+ default:
+ switch (instr->Mask(NEONByIndexedElementFPMask)) {
+ case NEON_FMUL_byelement: mnemonic = "fmul"; fp_instr = true; break;
+ case NEON_FMLA_byelement: mnemonic = "fmla"; fp_instr = true; break;
+ case NEON_FMLS_byelement: mnemonic = "fmls"; fp_instr = true; break;
+ case NEON_FMULX_byelement: mnemonic = "fmulx"; fp_instr = true; break;
+ }
+ }
+
+ if (l_instr) {
+ Format(instr, nfd.Mnemonic(mnemonic), nfd.Substitute(form));
+ } else if (fp_instr) {
+ nfd.SetFormatMap(0, nfd.FPFormatMap());
+ Format(instr, mnemonic, nfd.Substitute(form));
+ } else {
+ nfd.SetFormatMap(0, nfd.IntegerFormatMap());
+ Format(instr, mnemonic, nfd.Substitute(form));
+ }
+}
+
+
+void Disassembler::VisitNEONCopy(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(NEONCopy)";
+
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularFormatMap(),
+ NEONFormatDecoder::TriangularScalarFormatMap());
+
+ if (instr->Mask(NEONCopyInsElementMask) == NEON_INS_ELEMENT) {
+ mnemonic = "mov";
+ nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
+ form = "'Vd.%s['IVInsIndex1], 'Vn.%s['IVInsIndex2]";
+ } else if (instr->Mask(NEONCopyInsGeneralMask) == NEON_INS_GENERAL) {
+ mnemonic = "mov";
+ nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
+ if (nfd.GetVectorFormat() == kFormatD) {
+ form = "'Vd.%s['IVInsIndex1], 'Xn";
+ } else {
+ form = "'Vd.%s['IVInsIndex1], 'Wn";
+ }
+ } else if (instr->Mask(NEONCopyUmovMask) == NEON_UMOV) {
+ if (instr->Mask(NEON_Q) || ((instr->ImmNEON5() & 7) == 4)) {
+ mnemonic = "mov";
+ } else {
+ mnemonic = "umov";
+ }
+ nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
+ if (nfd.GetVectorFormat() == kFormatD) {
+ form = "'Xd, 'Vn.%s['IVInsIndex1]";
+ } else {
+ form = "'Wd, 'Vn.%s['IVInsIndex1]";
+ }
+ } else if (instr->Mask(NEONCopySmovMask) == NEON_SMOV) {
+ mnemonic = "smov";
+ nfd.SetFormatMap(0, nfd.TriangularScalarFormatMap());
+ form = "'Rdq, 'Vn.%s['IVInsIndex1]";
+ } else if (instr->Mask(NEONCopyDupElementMask) == NEON_DUP_ELEMENT) {
+ mnemonic = "dup";
+ form = "'Vd.%s, 'Vn.%s['IVInsIndex1]";
+ } else if (instr->Mask(NEONCopyDupGeneralMask) == NEON_DUP_GENERAL) {
+ mnemonic = "dup";
+ if (nfd.GetVectorFormat() == kFormat2D) {
+ form = "'Vd.%s, 'Xn";
+ } else {
+ form = "'Vd.%s, 'Wn";
+ }
+ }
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEONExtract(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(NEONExtract)";
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::LogicalFormatMap());
+ if (instr->Mask(NEONExtractMask) == NEON_EXT) {
+ mnemonic = "ext";
+ form = "'Vd.%s, 'Vn.%s, 'Vm.%s, 'IVExtract";
+ }
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEONLoadStoreMultiStruct(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(NEONLoadStoreMultiStruct)";
+ const char *form_1v = "{'Vt.%1$s}, ['Xns]";
+ const char *form_2v = "{'Vt.%1$s, 'Vt2.%1$s}, ['Xns]";
+ const char *form_3v = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s}, ['Xns]";
+ const char *form_4v = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns]";
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
+
+ switch (instr->Mask(NEONLoadStoreMultiStructMask)) {
+ case NEON_LD1_1v: mnemonic = "ld1"; form = form_1v; break;
+ case NEON_LD1_2v: mnemonic = "ld1"; form = form_2v; break;
+ case NEON_LD1_3v: mnemonic = "ld1"; form = form_3v; break;
+ case NEON_LD1_4v: mnemonic = "ld1"; form = form_4v; break;
+ case NEON_LD2: mnemonic = "ld2"; form = form_2v; break;
+ case NEON_LD3: mnemonic = "ld3"; form = form_3v; break;
+ case NEON_LD4: mnemonic = "ld4"; form = form_4v; break;
+ case NEON_ST1_1v: mnemonic = "st1"; form = form_1v; break;
+ case NEON_ST1_2v: mnemonic = "st1"; form = form_2v; break;
+ case NEON_ST1_3v: mnemonic = "st1"; form = form_3v; break;
+ case NEON_ST1_4v: mnemonic = "st1"; form = form_4v; break;
+ case NEON_ST2: mnemonic = "st2"; form = form_2v; break;
+ case NEON_ST3: mnemonic = "st3"; form = form_3v; break;
+ case NEON_ST4: mnemonic = "st4"; form = form_4v; break;
+ default: break;
+ }
+
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEONLoadStoreMultiStructPostIndex(
+ const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(NEONLoadStoreMultiStructPostIndex)";
+ const char *form_1v = "{'Vt.%1$s}, ['Xns], 'Xmr1";
+ const char *form_2v = "{'Vt.%1$s, 'Vt2.%1$s}, ['Xns], 'Xmr2";
+ const char *form_3v = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s}, ['Xns], 'Xmr3";
+ const char *form_4v =
+ "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns], 'Xmr4";
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
+
+ switch (instr->Mask(NEONLoadStoreMultiStructPostIndexMask)) {
+ case NEON_LD1_1v_post: mnemonic = "ld1"; form = form_1v; break;
+ case NEON_LD1_2v_post: mnemonic = "ld1"; form = form_2v; break;
+ case NEON_LD1_3v_post: mnemonic = "ld1"; form = form_3v; break;
+ case NEON_LD1_4v_post: mnemonic = "ld1"; form = form_4v; break;
+ case NEON_LD2_post: mnemonic = "ld2"; form = form_2v; break;
+ case NEON_LD3_post: mnemonic = "ld3"; form = form_3v; break;
+ case NEON_LD4_post: mnemonic = "ld4"; form = form_4v; break;
+ case NEON_ST1_1v_post: mnemonic = "st1"; form = form_1v; break;
+ case NEON_ST1_2v_post: mnemonic = "st1"; form = form_2v; break;
+ case NEON_ST1_3v_post: mnemonic = "st1"; form = form_3v; break;
+ case NEON_ST1_4v_post: mnemonic = "st1"; form = form_4v; break;
+ case NEON_ST2_post: mnemonic = "st2"; form = form_2v; break;
+ case NEON_ST3_post: mnemonic = "st3"; form = form_3v; break;
+ case NEON_ST4_post: mnemonic = "st4"; form = form_4v; break;
+ default: break;
+ }
+
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEONLoadStoreSingleStruct(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(NEONLoadStoreSingleStruct)";
+
+ const char *form_1b = "{'Vt.b}['IVLSLane0], ['Xns]";
+ const char *form_1h = "{'Vt.h}['IVLSLane1], ['Xns]";
+ const char *form_1s = "{'Vt.s}['IVLSLane2], ['Xns]";
+ const char *form_1d = "{'Vt.d}['IVLSLane3], ['Xns]";
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
+
+ switch (instr->Mask(NEONLoadStoreSingleStructMask)) {
+ case NEON_LD1_b: mnemonic = "ld1"; form = form_1b; break;
+ case NEON_LD1_h: mnemonic = "ld1"; form = form_1h; break;
+ case NEON_LD1_s:
+ mnemonic = "ld1";
+ VIXL_STATIC_ASSERT((NEON_LD1_s | (1 << NEONLSSize_offset)) == NEON_LD1_d);
+ form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
+ break;
+ case NEON_ST1_b: mnemonic = "st1"; form = form_1b; break;
+ case NEON_ST1_h: mnemonic = "st1"; form = form_1h; break;
+ case NEON_ST1_s:
+ mnemonic = "st1";
+ VIXL_STATIC_ASSERT((NEON_ST1_s | (1 << NEONLSSize_offset)) == NEON_ST1_d);
+ form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
+ break;
+ case NEON_LD1R:
+ mnemonic = "ld1r";
+ form = "{'Vt.%s}, ['Xns]";
+ break;
+ case NEON_LD2_b:
+ case NEON_ST2_b:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
+ form = "{'Vt.b, 'Vt2.b}['IVLSLane0], ['Xns]";
+ break;
+ case NEON_LD2_h:
+ case NEON_ST2_h:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
+ form = "{'Vt.h, 'Vt2.h}['IVLSLane1], ['Xns]";
+ break;
+ case NEON_LD2_s:
+ case NEON_ST2_s:
+ VIXL_STATIC_ASSERT((NEON_ST2_s | (1 << NEONLSSize_offset)) == NEON_ST2_d);
+ VIXL_STATIC_ASSERT((NEON_LD2_s | (1 << NEONLSSize_offset)) == NEON_LD2_d);
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
+ if ((instr->NEONLSSize() & 1) == 0)
+ form = "{'Vt.s, 'Vt2.s}['IVLSLane2], ['Xns]";
+ else
+ form = "{'Vt.d, 'Vt2.d}['IVLSLane3], ['Xns]";
+ break;
+ case NEON_LD2R:
+ mnemonic = "ld2r";
+ form = "{'Vt.%s, 'Vt2.%s}, ['Xns]";
+ break;
+ case NEON_LD3_b:
+ case NEON_ST3_b:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
+ form = "{'Vt.b, 'Vt2.b, 'Vt3.b}['IVLSLane0], ['Xns]";
+ break;
+ case NEON_LD3_h:
+ case NEON_ST3_h:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
+ form = "{'Vt.h, 'Vt2.h, 'Vt3.h}['IVLSLane1], ['Xns]";
+ break;
+ case NEON_LD3_s:
+ case NEON_ST3_s:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
+ if ((instr->NEONLSSize() & 1) == 0)
+ form = "{'Vt.s, 'Vt2.s, 'Vt3.s}['IVLSLane2], ['Xns]";
+ else
+ form = "{'Vt.d, 'Vt2.d, 'Vt3.d}['IVLSLane3], ['Xns]";
+ break;
+ case NEON_LD3R:
+ mnemonic = "ld3r";
+ form = "{'Vt.%s, 'Vt2.%s, 'Vt3.%s}, ['Xns]";
+ break;
+ case NEON_LD4_b:
+ case NEON_ST4_b:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
+ form = "{'Vt.b, 'Vt2.b, 'Vt3.b, 'Vt4.b}['IVLSLane0], ['Xns]";
+ break;
+ case NEON_LD4_h:
+ case NEON_ST4_h:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
+ form = "{'Vt.h, 'Vt2.h, 'Vt3.h, 'Vt4.h}['IVLSLane1], ['Xns]";
+ break;
+ case NEON_LD4_s:
+ case NEON_ST4_s:
+ VIXL_STATIC_ASSERT((NEON_LD4_s | (1 << NEONLSSize_offset)) == NEON_LD4_d);
+ VIXL_STATIC_ASSERT((NEON_ST4_s | (1 << NEONLSSize_offset)) == NEON_ST4_d);
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
+ if ((instr->NEONLSSize() & 1) == 0)
+ form = "{'Vt.s, 'Vt2.s, 'Vt3.s, 'Vt4.s}['IVLSLane2], ['Xns]";
+ else
+ form = "{'Vt.d, 'Vt2.d, 'Vt3.d, 'Vt4.d}['IVLSLane3], ['Xns]";
+ break;
+ case NEON_LD4R:
+ mnemonic = "ld4r";
+ form = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns]";
+ break;
+ default: break;
+ }
+
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEONLoadStoreSingleStructPostIndex(
+ const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(NEONLoadStoreSingleStructPostIndex)";
+
+ const char *form_1b = "{'Vt.b}['IVLSLane0], ['Xns], 'Xmb1";
+ const char *form_1h = "{'Vt.h}['IVLSLane1], ['Xns], 'Xmb2";
+ const char *form_1s = "{'Vt.s}['IVLSLane2], ['Xns], 'Xmb4";
+ const char *form_1d = "{'Vt.d}['IVLSLane3], ['Xns], 'Xmb8";
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::LoadStoreFormatMap());
+
+ switch (instr->Mask(NEONLoadStoreSingleStructPostIndexMask)) {
+ case NEON_LD1_b_post: mnemonic = "ld1"; form = form_1b; break;
+ case NEON_LD1_h_post: mnemonic = "ld1"; form = form_1h; break;
+ case NEON_LD1_s_post:
+ mnemonic = "ld1";
+ VIXL_STATIC_ASSERT((NEON_LD1_s | (1 << NEONLSSize_offset)) == NEON_LD1_d);
+ form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
+ break;
+ case NEON_ST1_b_post: mnemonic = "st1"; form = form_1b; break;
+ case NEON_ST1_h_post: mnemonic = "st1"; form = form_1h; break;
+ case NEON_ST1_s_post:
+ mnemonic = "st1";
+ VIXL_STATIC_ASSERT((NEON_ST1_s | (1 << NEONLSSize_offset)) == NEON_ST1_d);
+ form = ((instr->NEONLSSize() & 1) == 0) ? form_1s : form_1d;
+ break;
+ case NEON_LD1R_post:
+ mnemonic = "ld1r";
+ form = "{'Vt.%s}, ['Xns], 'Xmz1";
+ break;
+ case NEON_LD2_b_post:
+ case NEON_ST2_b_post:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
+ form = "{'Vt.b, 'Vt2.b}['IVLSLane0], ['Xns], 'Xmb2";
+ break;
+ case NEON_ST2_h_post:
+ case NEON_LD2_h_post:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
+ form = "{'Vt.h, 'Vt2.h}['IVLSLane1], ['Xns], 'Xmb4";
+ break;
+ case NEON_LD2_s_post:
+ case NEON_ST2_s_post:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld2" : "st2";
+ if ((instr->NEONLSSize() & 1) == 0)
+ form = "{'Vt.s, 'Vt2.s}['IVLSLane2], ['Xns], 'Xmb8";
+ else
+ form = "{'Vt.d, 'Vt2.d}['IVLSLane3], ['Xns], 'Xmb16";
+ break;
+ case NEON_LD2R_post:
+ mnemonic = "ld2r";
+ form = "{'Vt.%s, 'Vt2.%s}, ['Xns], 'Xmz2";
+ break;
+ case NEON_LD3_b_post:
+ case NEON_ST3_b_post:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
+ form = "{'Vt.b, 'Vt2.b, 'Vt3.b}['IVLSLane0], ['Xns], 'Xmb3";
+ break;
+ case NEON_LD3_h_post:
+ case NEON_ST3_h_post:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
+ form = "{'Vt.h, 'Vt2.h, 'Vt3.h}['IVLSLane1], ['Xns], 'Xmb6";
+ break;
+ case NEON_LD3_s_post:
+ case NEON_ST3_s_post:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld3" : "st3";
+ if ((instr->NEONLSSize() & 1) == 0)
+ form = "{'Vt.s, 'Vt2.s, 'Vt3.s}['IVLSLane2], ['Xns], 'Xmb12";
+ else
+ form = "{'Vt.d, 'Vt2.d, 'Vt3.d}['IVLSLane3], ['Xns], 'Xmr3";
+ break;
+ case NEON_LD3R_post:
+ mnemonic = "ld3r";
+ form = "{'Vt.%s, 'Vt2.%s, 'Vt3.%s}, ['Xns], 'Xmz3";
+ break;
+ case NEON_LD4_b_post:
+ case NEON_ST4_b_post:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
+ form = "{'Vt.b, 'Vt2.b, 'Vt3.b, 'Vt4.b}['IVLSLane0], ['Xns], 'Xmb4";
+ break;
+ case NEON_LD4_h_post:
+ case NEON_ST4_h_post:
+ mnemonic = (instr->LdStXLoad()) == 1 ? "ld4" : "st4";
+ form = "{'Vt.h, 'Vt2.h, 'Vt3.h, 'Vt4.h}['IVLSLane1], ['Xns], 'Xmb8";
+ break;
+ case NEON_LD4_s_post:
+ case NEON_ST4_s_post:
+ mnemonic = (instr->LdStXLoad() == 1) ? "ld4" : "st4";
+ if ((instr->NEONLSSize() & 1) == 0)
+ form = "{'Vt.s, 'Vt2.s, 'Vt3.s, 'Vt4.s}['IVLSLane2], ['Xns], 'Xmb16";
+ else
+ form = "{'Vt.d, 'Vt2.d, 'Vt3.d, 'Vt4.d}['IVLSLane3], ['Xns], 'Xmb32";
+ break;
+ case NEON_LD4R_post:
+ mnemonic = "ld4r";
+ form = "{'Vt.%1$s, 'Vt2.%1$s, 'Vt3.%1$s, 'Vt4.%1$s}, ['Xns], 'Xmz4";
+ break;
+ default: break;
+ }
+
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEONModifiedImmediate(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Vt.%s, 'IVMIImm8, lsl 'IVMIShiftAmt1";
+
+ int cmode = instr->NEONCmode();
+ int cmode_3 = (cmode >> 3) & 1;
+ int cmode_2 = (cmode >> 2) & 1;
+ int cmode_1 = (cmode >> 1) & 1;
+ int cmode_0 = cmode & 1;
+ int q = instr->NEONQ();
+ int op = instr->NEONModImmOp();
+
+ static const NEONFormatMap map_b = { {30}, {NF_8B, NF_16B} };
+ static const NEONFormatMap map_h = { {30}, {NF_4H, NF_8H} };
+ static const NEONFormatMap map_s = { {30}, {NF_2S, NF_4S} };
+ NEONFormatDecoder nfd(instr, &map_b);
+
+ if (cmode_3 == 0) {
+ if (cmode_0 == 0) {
+ mnemonic = (op == 1) ? "mvni" : "movi";
+ } else { // cmode<0> == '1'.
+ mnemonic = (op == 1) ? "bic" : "orr";
+ }
+ nfd.SetFormatMap(0, &map_s);
+ } else { // cmode<3> == '1'.
+ if (cmode_2 == 0) {
+ if (cmode_0 == 0) {
+ mnemonic = (op == 1) ? "mvni" : "movi";
+ } else { // cmode<0> == '1'.
+ mnemonic = (op == 1) ? "bic" : "orr";
+ }
+ nfd.SetFormatMap(0, &map_h);
+ } else { // cmode<2> == '1'.
+ if (cmode_1 == 0) {
+ mnemonic = (op == 1) ? "mvni" : "movi";
+ form = "'Vt.%s, 'IVMIImm8, msl 'IVMIShiftAmt2";
+ nfd.SetFormatMap(0, &map_s);
+ } else { // cmode<1> == '1'.
+ if (cmode_0 == 0) {
+ mnemonic = "movi";
+ if (op == 0) {
+ form = "'Vt.%s, 'IVMIImm8";
+ } else {
+ form = (q == 0) ? "'Dd, 'IVMIImm" : "'Vt.2d, 'IVMIImm";
+ }
+ } else { // cmode<0> == '1'
+ mnemonic = "fmov";
+ if (op == 0) {
+ form = "'Vt.%s, 'IVMIImmFPSingle";
+ nfd.SetFormatMap(0, &map_s);
+ } else {
+ if (q == 1) {
+ form = "'Vt.2d, 'IVMIImmFPDouble";
+ }
+ }
+ }
+ }
+ }
+ }
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEONScalar2RegMisc(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "%sd, %sn";
+ const char *form_0 = "%sd, %sn, #0";
+ const char *form_fp0 = "%sd, %sn, #0.0";
+
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
+
+ if (instr->Mask(NEON2RegMiscOpcode) <= NEON_NEG_scalar_opcode) {
+ // These instructions all use a two bit size field, except NOT and RBIT,
+ // which use the field to encode the operation.
+ switch (instr->Mask(NEONScalar2RegMiscMask)) {
+ case NEON_CMGT_zero_scalar: mnemonic = "cmgt"; form = form_0; break;
+ case NEON_CMGE_zero_scalar: mnemonic = "cmge"; form = form_0; break;
+ case NEON_CMLE_zero_scalar: mnemonic = "cmle"; form = form_0; break;
+ case NEON_CMLT_zero_scalar: mnemonic = "cmlt"; form = form_0; break;
+ case NEON_CMEQ_zero_scalar: mnemonic = "cmeq"; form = form_0; break;
+ case NEON_NEG_scalar: mnemonic = "neg"; break;
+ case NEON_SQNEG_scalar: mnemonic = "sqneg"; break;
+ case NEON_ABS_scalar: mnemonic = "abs"; break;
+ case NEON_SQABS_scalar: mnemonic = "sqabs"; break;
+ case NEON_SUQADD_scalar: mnemonic = "suqadd"; break;
+ case NEON_USQADD_scalar: mnemonic = "usqadd"; break;
+ default: form = "(NEONScalar2RegMisc)";
+ }
+ } else {
+ // These instructions all use a one bit size field, except SQXTUN, SQXTN
+ // and UQXTN, which use a two bit size field.
+ nfd.SetFormatMaps(nfd.FPScalarFormatMap());
+ switch (instr->Mask(NEONScalar2RegMiscFPMask)) {
+ case NEON_FRSQRTE_scalar: mnemonic = "frsqrte"; break;
+ case NEON_FRECPE_scalar: mnemonic = "frecpe"; break;
+ case NEON_SCVTF_scalar: mnemonic = "scvtf"; break;
+ case NEON_UCVTF_scalar: mnemonic = "ucvtf"; break;
+ case NEON_FCMGT_zero_scalar: mnemonic = "fcmgt"; form = form_fp0; break;
+ case NEON_FCMGE_zero_scalar: mnemonic = "fcmge"; form = form_fp0; break;
+ case NEON_FCMLE_zero_scalar: mnemonic = "fcmle"; form = form_fp0; break;
+ case NEON_FCMLT_zero_scalar: mnemonic = "fcmlt"; form = form_fp0; break;
+ case NEON_FCMEQ_zero_scalar: mnemonic = "fcmeq"; form = form_fp0; break;
+ case NEON_FRECPX_scalar: mnemonic = "frecpx"; break;
+ case NEON_FCVTNS_scalar: mnemonic = "fcvtns"; break;
+ case NEON_FCVTNU_scalar: mnemonic = "fcvtnu"; break;
+ case NEON_FCVTPS_scalar: mnemonic = "fcvtps"; break;
+ case NEON_FCVTPU_scalar: mnemonic = "fcvtpu"; break;
+ case NEON_FCVTMS_scalar: mnemonic = "fcvtms"; break;
+ case NEON_FCVTMU_scalar: mnemonic = "fcvtmu"; break;
+ case NEON_FCVTZS_scalar: mnemonic = "fcvtzs"; break;
+ case NEON_FCVTZU_scalar: mnemonic = "fcvtzu"; break;
+ case NEON_FCVTAS_scalar: mnemonic = "fcvtas"; break;
+ case NEON_FCVTAU_scalar: mnemonic = "fcvtau"; break;
+ case NEON_FCVTXN_scalar:
+ nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
+ mnemonic = "fcvtxn";
+ break;
+ default:
+ nfd.SetFormatMap(0, nfd.ScalarFormatMap());
+ nfd.SetFormatMap(1, nfd.LongScalarFormatMap());
+ switch (instr->Mask(NEONScalar2RegMiscMask)) {
+ case NEON_SQXTN_scalar: mnemonic = "sqxtn"; break;
+ case NEON_UQXTN_scalar: mnemonic = "uqxtn"; break;
+ case NEON_SQXTUN_scalar: mnemonic = "sqxtun"; break;
+ default: form = "(NEONScalar2RegMisc)";
+ }
+ }
+ }
+ Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
+}
+
+
+void Disassembler::VisitNEONScalar3Diff(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "%sd, %sn, %sm";
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::LongScalarFormatMap(),
+ NEONFormatDecoder::ScalarFormatMap());
+
+ switch (instr->Mask(NEONScalar3DiffMask)) {
+ case NEON_SQDMLAL_scalar : mnemonic = "sqdmlal"; break;
+ case NEON_SQDMLSL_scalar : mnemonic = "sqdmlsl"; break;
+ case NEON_SQDMULL_scalar : mnemonic = "sqdmull"; break;
+ default: form = "(NEONScalar3Diff)";
+ }
+ Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
+}
+
+
+void Disassembler::VisitNEONScalar3Same(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "%sd, %sn, %sm";
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
+
+ if (instr->Mask(NEONScalar3SameFPFMask) == NEONScalar3SameFPFixed) {
+ nfd.SetFormatMaps(nfd.FPScalarFormatMap());
+ switch (instr->Mask(NEONScalar3SameFPMask)) {
+ case NEON_FACGE_scalar: mnemonic = "facge"; break;
+ case NEON_FACGT_scalar: mnemonic = "facgt"; break;
+ case NEON_FCMEQ_scalar: mnemonic = "fcmeq"; break;
+ case NEON_FCMGE_scalar: mnemonic = "fcmge"; break;
+ case NEON_FCMGT_scalar: mnemonic = "fcmgt"; break;
+ case NEON_FMULX_scalar: mnemonic = "fmulx"; break;
+ case NEON_FRECPS_scalar: mnemonic = "frecps"; break;
+ case NEON_FRSQRTS_scalar: mnemonic = "frsqrts"; break;
+ case NEON_FABD_scalar: mnemonic = "fabd"; break;
+ default: form = "(NEONScalar3Same)";
+ }
+ } else {
+ switch (instr->Mask(NEONScalar3SameMask)) {
+ case NEON_ADD_scalar: mnemonic = "add"; break;
+ case NEON_SUB_scalar: mnemonic = "sub"; break;
+ case NEON_CMEQ_scalar: mnemonic = "cmeq"; break;
+ case NEON_CMGE_scalar: mnemonic = "cmge"; break;
+ case NEON_CMGT_scalar: mnemonic = "cmgt"; break;
+ case NEON_CMHI_scalar: mnemonic = "cmhi"; break;
+ case NEON_CMHS_scalar: mnemonic = "cmhs"; break;
+ case NEON_CMTST_scalar: mnemonic = "cmtst"; break;
+ case NEON_UQADD_scalar: mnemonic = "uqadd"; break;
+ case NEON_SQADD_scalar: mnemonic = "sqadd"; break;
+ case NEON_UQSUB_scalar: mnemonic = "uqsub"; break;
+ case NEON_SQSUB_scalar: mnemonic = "sqsub"; break;
+ case NEON_USHL_scalar: mnemonic = "ushl"; break;
+ case NEON_SSHL_scalar: mnemonic = "sshl"; break;
+ case NEON_UQSHL_scalar: mnemonic = "uqshl"; break;
+ case NEON_SQSHL_scalar: mnemonic = "sqshl"; break;
+ case NEON_URSHL_scalar: mnemonic = "urshl"; break;
+ case NEON_SRSHL_scalar: mnemonic = "srshl"; break;
+ case NEON_UQRSHL_scalar: mnemonic = "uqrshl"; break;
+ case NEON_SQRSHL_scalar: mnemonic = "sqrshl"; break;
+ case NEON_SQDMULH_scalar: mnemonic = "sqdmulh"; break;
+ case NEON_SQRDMULH_scalar: mnemonic = "sqrdmulh"; break;
+ default: form = "(NEONScalar3Same)";
+ }
+ }
+ Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
+}
+
+
+void Disassembler::VisitNEONScalarByIndexedElement(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "%sd, %sn, 'Ve.%s['IVByElemIndex]";
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::ScalarFormatMap());
+ bool long_instr = false;
+
+ switch (instr->Mask(NEONScalarByIndexedElementMask)) {
+ case NEON_SQDMULL_byelement_scalar:
+ mnemonic = "sqdmull";
+ long_instr = true;
+ break;
+ case NEON_SQDMLAL_byelement_scalar:
+ mnemonic = "sqdmlal";
+ long_instr = true;
+ break;
+ case NEON_SQDMLSL_byelement_scalar:
+ mnemonic = "sqdmlsl";
+ long_instr = true;
+ break;
+ case NEON_SQDMULH_byelement_scalar:
+ mnemonic = "sqdmulh";
+ break;
+ case NEON_SQRDMULH_byelement_scalar:
+ mnemonic = "sqrdmulh";
+ break;
+ default:
+ nfd.SetFormatMap(0, nfd.FPScalarFormatMap());
+ switch (instr->Mask(NEONScalarByIndexedElementFPMask)) {
+ case NEON_FMUL_byelement_scalar: mnemonic = "fmul"; break;
+ case NEON_FMLA_byelement_scalar: mnemonic = "fmla"; break;
+ case NEON_FMLS_byelement_scalar: mnemonic = "fmls"; break;
+ case NEON_FMULX_byelement_scalar: mnemonic = "fmulx"; break;
+ default: form = "(NEONScalarByIndexedElement)";
+ }
+ }
+
+ if (long_instr) {
+ nfd.SetFormatMap(0, nfd.LongScalarFormatMap());
+ }
+
+ Format(instr, mnemonic, nfd.Substitute(
+ form, nfd.kPlaceholder, nfd.kPlaceholder, nfd.kFormat));
+}
+
+
+void Disassembler::VisitNEONScalarCopy(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(NEONScalarCopy)";
+
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::TriangularScalarFormatMap());
+
+ if (instr->Mask(NEONScalarCopyMask) == NEON_DUP_ELEMENT_scalar) {
+ mnemonic = "mov";
+ form = "%sd, 'Vn.%s['IVInsIndex1]";
+ }
+
+ Format(instr, mnemonic, nfd.Substitute(form, nfd.kPlaceholder, nfd.kFormat));
+}
+
+
+void Disassembler::VisitNEONScalarPairwise(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "%sd, 'Vn.%s";
+ NEONFormatMap map = { {22}, {NF_2S, NF_2D} };
+ NEONFormatDecoder nfd(instr, NEONFormatDecoder::FPScalarFormatMap(), &map);
+
+ switch (instr->Mask(NEONScalarPairwiseMask)) {
+ case NEON_ADDP_scalar: mnemonic = "addp"; break;
+ case NEON_FADDP_scalar: mnemonic = "faddp"; break;
+ case NEON_FMAXP_scalar: mnemonic = "fmaxp"; break;
+ case NEON_FMAXNMP_scalar: mnemonic = "fmaxnmp"; break;
+ case NEON_FMINP_scalar: mnemonic = "fminp"; break;
+ case NEON_FMINNMP_scalar: mnemonic = "fminnmp"; break;
+ default: form = "(NEONScalarPairwise)";
+ }
+ Format(instr, mnemonic, nfd.Substitute(form,
+ NEONFormatDecoder::kPlaceholder, NEONFormatDecoder::kFormat));
+}
+
+
+void Disassembler::VisitNEONScalarShiftImmediate(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "%sd, %sn, 'Is1";
+ const char *form_2 = "%sd, %sn, 'Is2";
+
+ static const NEONFormatMap map_shift = {
+ {22, 21, 20, 19},
+ {NF_UNDEF, NF_B, NF_H, NF_H, NF_S, NF_S, NF_S, NF_S,
+ NF_D, NF_D, NF_D, NF_D, NF_D, NF_D, NF_D, NF_D}
+ };
+ static const NEONFormatMap map_shift_narrow = {
+ {21, 20, 19},
+ {NF_UNDEF, NF_H, NF_S, NF_S, NF_D, NF_D, NF_D, NF_D}
+ };
+ NEONFormatDecoder nfd(instr, &map_shift);
+
+ if (instr->ImmNEONImmh()) { // immh has to be non-zero.
+ switch (instr->Mask(NEONScalarShiftImmediateMask)) {
+ case NEON_FCVTZU_imm_scalar: mnemonic = "fcvtzu"; break;
+ case NEON_FCVTZS_imm_scalar: mnemonic = "fcvtzs"; break;
+ case NEON_SCVTF_imm_scalar: mnemonic = "scvtf"; break;
+ case NEON_UCVTF_imm_scalar: mnemonic = "ucvtf"; break;
+ case NEON_SRI_scalar: mnemonic = "sri"; break;
+ case NEON_SSHR_scalar: mnemonic = "sshr"; break;
+ case NEON_USHR_scalar: mnemonic = "ushr"; break;
+ case NEON_SRSHR_scalar: mnemonic = "srshr"; break;
+ case NEON_URSHR_scalar: mnemonic = "urshr"; break;
+ case NEON_SSRA_scalar: mnemonic = "ssra"; break;
+ case NEON_USRA_scalar: mnemonic = "usra"; break;
+ case NEON_SRSRA_scalar: mnemonic = "srsra"; break;
+ case NEON_URSRA_scalar: mnemonic = "ursra"; break;
+ case NEON_SHL_scalar: mnemonic = "shl"; form = form_2; break;
+ case NEON_SLI_scalar: mnemonic = "sli"; form = form_2; break;
+ case NEON_SQSHLU_scalar: mnemonic = "sqshlu"; form = form_2; break;
+ case NEON_SQSHL_imm_scalar: mnemonic = "sqshl"; form = form_2; break;
+ case NEON_UQSHL_imm_scalar: mnemonic = "uqshl"; form = form_2; break;
+ case NEON_UQSHRN_scalar:
+ mnemonic = "uqshrn";
+ nfd.SetFormatMap(1, &map_shift_narrow);
+ break;
+ case NEON_UQRSHRN_scalar:
+ mnemonic = "uqrshrn";
+ nfd.SetFormatMap(1, &map_shift_narrow);
+ break;
+ case NEON_SQSHRN_scalar:
+ mnemonic = "sqshrn";
+ nfd.SetFormatMap(1, &map_shift_narrow);
+ break;
+ case NEON_SQRSHRN_scalar:
+ mnemonic = "sqrshrn";
+ nfd.SetFormatMap(1, &map_shift_narrow);
+ break;
+ case NEON_SQSHRUN_scalar:
+ mnemonic = "sqshrun";
+ nfd.SetFormatMap(1, &map_shift_narrow);
+ break;
+ case NEON_SQRSHRUN_scalar:
+ mnemonic = "sqrshrun";
+ nfd.SetFormatMap(1, &map_shift_narrow);
+ break;
+ default:
+ form = "(NEONScalarShiftImmediate)";
+ }
+ } else {
+ form = "(NEONScalarShiftImmediate)";
+ }
+ Format(instr, mnemonic, nfd.SubstitutePlaceholders(form));
+}
+
+
+void Disassembler::VisitNEONShiftImmediate(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Vd.%s, 'Vn.%s, 'Is1";
+ const char *form_shift_2 = "'Vd.%s, 'Vn.%s, 'Is2";
+ const char *form_xtl = "'Vd.%s, 'Vn.%s";
+
+ // 0001->8H, 001x->4S, 01xx->2D, all others undefined.
+ static const NEONFormatMap map_shift_ta = {
+ {22, 21, 20, 19},
+ {NF_UNDEF, NF_8H, NF_4S, NF_4S, NF_2D, NF_2D, NF_2D, NF_2D}
+ };
+
+ // 00010->8B, 00011->16B, 001x0->4H, 001x1->8H,
+ // 01xx0->2S, 01xx1->4S, 1xxx1->2D, all others undefined.
+ static const NEONFormatMap map_shift_tb = {
+ {22, 21, 20, 19, 30},
+ {NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_4H, NF_8H,
+ NF_2S, NF_4S, NF_2S, NF_4S, NF_2S, NF_4S, NF_2S, NF_4S,
+ NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D,
+ NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D, NF_UNDEF, NF_2D}
+ };
+
+ NEONFormatDecoder nfd(instr, &map_shift_tb);
+
+ if (instr->ImmNEONImmh()) { // immh has to be non-zero.
+ switch (instr->Mask(NEONShiftImmediateMask)) {
+ case NEON_SQSHLU: mnemonic = "sqshlu"; form = form_shift_2; break;
+ case NEON_SQSHL_imm: mnemonic = "sqshl"; form = form_shift_2; break;
+ case NEON_UQSHL_imm: mnemonic = "uqshl"; form = form_shift_2; break;
+ case NEON_SHL: mnemonic = "shl"; form = form_shift_2; break;
+ case NEON_SLI: mnemonic = "sli"; form = form_shift_2; break;
+ case NEON_SCVTF_imm: mnemonic = "scvtf"; break;
+ case NEON_UCVTF_imm: mnemonic = "ucvtf"; break;
+ case NEON_FCVTZU_imm: mnemonic = "fcvtzu"; break;
+ case NEON_FCVTZS_imm: mnemonic = "fcvtzs"; break;
+ case NEON_SRI: mnemonic = "sri"; break;
+ case NEON_SSHR: mnemonic = "sshr"; break;
+ case NEON_USHR: mnemonic = "ushr"; break;
+ case NEON_SRSHR: mnemonic = "srshr"; break;
+ case NEON_URSHR: mnemonic = "urshr"; break;
+ case NEON_SSRA: mnemonic = "ssra"; break;
+ case NEON_USRA: mnemonic = "usra"; break;
+ case NEON_SRSRA: mnemonic = "srsra"; break;
+ case NEON_URSRA: mnemonic = "ursra"; break;
+ case NEON_SHRN:
+ mnemonic = instr->Mask(NEON_Q) ? "shrn2" : "shrn";
+ nfd.SetFormatMap(1, &map_shift_ta);
+ break;
+ case NEON_RSHRN:
+ mnemonic = instr->Mask(NEON_Q) ? "rshrn2" : "rshrn";
+ nfd.SetFormatMap(1, &map_shift_ta);
+ break;
+ case NEON_UQSHRN:
+ mnemonic = instr->Mask(NEON_Q) ? "uqshrn2" : "uqshrn";
+ nfd.SetFormatMap(1, &map_shift_ta);
+ break;
+ case NEON_UQRSHRN:
+ mnemonic = instr->Mask(NEON_Q) ? "uqrshrn2" : "uqrshrn";
+ nfd.SetFormatMap(1, &map_shift_ta);
+ break;
+ case NEON_SQSHRN:
+ mnemonic = instr->Mask(NEON_Q) ? "sqshrn2" : "sqshrn";
+ nfd.SetFormatMap(1, &map_shift_ta);
+ break;
+ case NEON_SQRSHRN:
+ mnemonic = instr->Mask(NEON_Q) ? "sqrshrn2" : "sqrshrn";
+ nfd.SetFormatMap(1, &map_shift_ta);
+ break;
+ case NEON_SQSHRUN:
+ mnemonic = instr->Mask(NEON_Q) ? "sqshrun2" : "sqshrun";
+ nfd.SetFormatMap(1, &map_shift_ta);
+ break;
+ case NEON_SQRSHRUN:
+ mnemonic = instr->Mask(NEON_Q) ? "sqrshrun2" : "sqrshrun";
+ nfd.SetFormatMap(1, &map_shift_ta);
+ break;
+ case NEON_SSHLL:
+ nfd.SetFormatMap(0, &map_shift_ta);
+ if (instr->ImmNEONImmb() == 0 &&
+ CountSetBits(instr->ImmNEONImmh(), 32) == 1) { // sxtl variant.
+ form = form_xtl;
+ mnemonic = instr->Mask(NEON_Q) ? "sxtl2" : "sxtl";
+ } else { // sshll variant.
+ form = form_shift_2;
+ mnemonic = instr->Mask(NEON_Q) ? "sshll2" : "sshll";
+ }
+ break;
+ case NEON_USHLL:
+ nfd.SetFormatMap(0, &map_shift_ta);
+ if (instr->ImmNEONImmb() == 0 &&
+ CountSetBits(instr->ImmNEONImmh(), 32) == 1) { // uxtl variant.
+ form = form_xtl;
+ mnemonic = instr->Mask(NEON_Q) ? "uxtl2" : "uxtl";
+ } else { // ushll variant.
+ form = form_shift_2;
+ mnemonic = instr->Mask(NEON_Q) ? "ushll2" : "ushll";
+ }
+ break;
+ default: form = "(NEONShiftImmediate)";
+ }
+ } else {
+ form = "(NEONShiftImmediate)";
+ }
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitNEONTable(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(NEONTable)";
+ const char form_1v[] = "'Vd.%%s, {'Vn.16b}, 'Vm.%%s";
+ const char form_2v[] = "'Vd.%%s, {'Vn.16b, v%d.16b}, 'Vm.%%s";
+ const char form_3v[] = "'Vd.%%s, {'Vn.16b, v%d.16b, v%d.16b}, 'Vm.%%s";
+ const char form_4v[] =
+ "'Vd.%%s, {'Vn.16b, v%d.16b, v%d.16b, v%d.16b}, 'Vm.%%s";
+ static const NEONFormatMap map_b = { {30}, {NF_8B, NF_16B} };
+ NEONFormatDecoder nfd(instr, &map_b);
+
+ switch (instr->Mask(NEONTableMask)) {
+ case NEON_TBL_1v: mnemonic = "tbl"; form = form_1v; break;
+ case NEON_TBL_2v: mnemonic = "tbl"; form = form_2v; break;
+ case NEON_TBL_3v: mnemonic = "tbl"; form = form_3v; break;
+ case NEON_TBL_4v: mnemonic = "tbl"; form = form_4v; break;
+ case NEON_TBX_1v: mnemonic = "tbx"; form = form_1v; break;
+ case NEON_TBX_2v: mnemonic = "tbx"; form = form_2v; break;
+ case NEON_TBX_3v: mnemonic = "tbx"; form = form_3v; break;
+ case NEON_TBX_4v: mnemonic = "tbx"; form = form_4v; break;
+ default: break;
+ }
+
+ char re_form[sizeof(form_4v) + 6];
+ int reg_num = instr->Rn();
+ snprintf(re_form, sizeof(re_form), form,
+ (reg_num + 1) % kNumberOfVRegisters,
+ (reg_num + 2) % kNumberOfVRegisters,
+ (reg_num + 3) % kNumberOfVRegisters);
+
+ Format(instr, mnemonic, nfd.Substitute(re_form));
+}
+
+
+void Disassembler::VisitNEONPerm(const Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Vd.%s, 'Vn.%s, 'Vm.%s";
+ NEONFormatDecoder nfd(instr);
+
+ switch (instr->Mask(NEONPermMask)) {
+ case NEON_TRN1: mnemonic = "trn1"; break;
+ case NEON_TRN2: mnemonic = "trn2"; break;
+ case NEON_UZP1: mnemonic = "uzp1"; break;
+ case NEON_UZP2: mnemonic = "uzp2"; break;
+ case NEON_ZIP1: mnemonic = "zip1"; break;
+ case NEON_ZIP2: mnemonic = "zip2"; break;
+ default: form = "(NEONPerm)";
+ }
+ Format(instr, mnemonic, nfd.Substitute(form));
+}
+
+
+void Disassembler::VisitUnimplemented(const Instruction* instr) {
+ Format(instr, "unimplemented", "(Unimplemented)");
+}
+
+
+void Disassembler::VisitUnallocated(const Instruction* instr) {
+ Format(instr, "unallocated", "(Unallocated)");
+}
+
+
+void Disassembler::ProcessOutput(const Instruction* /*instr*/) {
+ // The base disasm does nothing more than disassembling into a buffer.
+}
+
+
+void Disassembler::AppendRegisterNameToOutput(const Instruction* instr,
+ const CPURegister& reg) {
+ USE(instr);
+ VIXL_ASSERT(reg.IsValid());
+ char reg_char;
+
+ if (reg.IsRegister()) {
+ reg_char = reg.Is64Bits() ? 'x' : 'w';
+ } else {
+ VIXL_ASSERT(reg.IsVRegister());
+ switch (reg.SizeInBits()) {
+ case kBRegSize: reg_char = 'b'; break;
+ case kHRegSize: reg_char = 'h'; break;
+ case kSRegSize: reg_char = 's'; break;
+ case kDRegSize: reg_char = 'd'; break;
+ default:
+ VIXL_ASSERT(reg.Is128Bits());
+ reg_char = 'q';
+ }
+ }
+
+ if (reg.IsVRegister() || !(reg.Aliases(sp) || reg.Aliases(xzr))) {
+ // A core or scalar/vector register: [wx]0 - 30, [bhsdq]0 - 31.
+ AppendToOutput("%c%d", reg_char, reg.code());
+ } else if (reg.Aliases(sp)) {
+ // Disassemble w31/x31 as stack pointer wsp/sp.
+ AppendToOutput("%s", reg.Is64Bits() ? "sp" : "wsp");
+ } else {
+ // Disassemble w31/x31 as zero register wzr/xzr.
+ AppendToOutput("%czr", reg_char);
+ }
+}
+
+
+void Disassembler::AppendPCRelativeOffsetToOutput(const Instruction* instr,
+ int64_t offset) {
+ USE(instr);
+ char sign = (offset < 0) ? '-' : '+';
+ AppendToOutput("#%c0x%" PRIx64, sign, std::abs(offset));
+}
+
+
+void Disassembler::AppendAddressToOutput(const Instruction* instr,
+ const void* addr) {
+ USE(instr);
+ AppendToOutput("(addr 0x%" PRIxPTR ")", reinterpret_cast<uintptr_t>(addr));
+}
+
+
+void Disassembler::AppendCodeAddressToOutput(const Instruction* instr,
+ const void* addr) {
+ AppendAddressToOutput(instr, addr);
+}
+
+
+void Disassembler::AppendDataAddressToOutput(const Instruction* instr,
+ const void* addr) {
+ AppendAddressToOutput(instr, addr);
+}
+
+
+void Disassembler::AppendCodeRelativeAddressToOutput(const Instruction* instr,
+ const void* addr) {
+ USE(instr);
+ int64_t rel_addr = CodeRelativeAddress(addr);
+ if (rel_addr >= 0) {
+ AppendToOutput("(addr 0x%" PRIx64 ")", rel_addr);
+ } else {
+ AppendToOutput("(addr -0x%" PRIx64 ")", -rel_addr);
+ }
+}
+
+
+void Disassembler::AppendCodeRelativeCodeAddressToOutput(
+ const Instruction* instr, const void* addr) {
+ AppendCodeRelativeAddressToOutput(instr, addr);
+}
+
+
+void Disassembler::AppendCodeRelativeDataAddressToOutput(
+ const Instruction* instr, const void* addr) {
+ AppendCodeRelativeAddressToOutput(instr, addr);
+}
+
+
+void Disassembler::MapCodeAddress(int64_t base_address,
+ const Instruction* instr_address) {
+ set_code_address_offset(
+ base_address - reinterpret_cast<intptr_t>(instr_address));
+}
+int64_t Disassembler::CodeRelativeAddress(const void* addr) {
+ return reinterpret_cast<intptr_t>(addr) + code_address_offset();
+}
+
+
+void Disassembler::Format(const Instruction* instr, const char* mnemonic,
+ const char* format) {
+ VIXL_ASSERT(mnemonic != NULL);
+ ResetOutput();
+ Substitute(instr, mnemonic);
+ if (format != NULL) {
+ VIXL_ASSERT(buffer_pos_ < buffer_size_);
+ buffer_[buffer_pos_++] = ' ';
+ Substitute(instr, format);
+ }
+ VIXL_ASSERT(buffer_pos_ < buffer_size_);
+ buffer_[buffer_pos_] = 0;
+ ProcessOutput(instr);
+}
+
+
+void Disassembler::Substitute(const Instruction* instr, const char* string) {
+ char chr = *string++;
+ while (chr != '\0') {
+ if (chr == '\'') {
+ string += SubstituteField(instr, string);
+ } else {
+ VIXL_ASSERT(buffer_pos_ < buffer_size_);
+ buffer_[buffer_pos_++] = chr;
+ }
+ chr = *string++;
+ }
+}
+
+
+int Disassembler::SubstituteField(const Instruction* instr,
+ const char* format) {
+ switch (format[0]) {
+ // NB. The remaining substitution prefix characters are: GJKUZ.
+ case 'R': // Register. X or W, selected by sf bit.
+ case 'F': // FP register. S or D, selected by type field.
+ case 'V': // Vector register, V, vector format.
+ case 'W':
+ case 'X':
+ case 'B':
+ case 'H':
+ case 'S':
+ case 'D':
+ case 'Q': return SubstituteRegisterField(instr, format);
+ case 'I': return SubstituteImmediateField(instr, format);
+ case 'L': return SubstituteLiteralField(instr, format);
+ case 'N': return SubstituteShiftField(instr, format);
+ case 'P': return SubstitutePrefetchField(instr, format);
+ case 'C': return SubstituteConditionField(instr, format);
+ case 'E': return SubstituteExtendField(instr, format);
+ case 'A': return SubstitutePCRelAddressField(instr, format);
+ case 'T': return SubstituteBranchTargetField(instr, format);
+ case 'O': return SubstituteLSRegOffsetField(instr, format);
+ case 'M': return SubstituteBarrierField(instr, format);
+ case 'K': return SubstituteCrField(instr, format);
+ case 'G': return SubstituteSysOpField(instr, format);
+ default: {
+ VIXL_UNREACHABLE();
+ return 1;
+ }
+ }
+}
+
+
+int Disassembler::SubstituteRegisterField(const Instruction* instr,
+ const char* format) {
+ char reg_prefix = format[0];
+ unsigned reg_num = 0;
+ unsigned field_len = 2;
+
+ switch (format[1]) {
+ case 'd':
+ reg_num = instr->Rd();
+ if (format[2] == 'q') {
+ reg_prefix = instr->NEONQ() ? 'X' : 'W';
+ field_len = 3;
+ }
+ break;
+ case 'n': reg_num = instr->Rn(); break;
+ case 'm':
+ reg_num = instr->Rm();
+ switch (format[2]) {
+ // Handle registers tagged with b (bytes), z (instruction), or
+ // r (registers), used for address updates in
+ // NEON load/store instructions.
+ case 'r':
+ case 'b':
+ case 'z': {
+ field_len = 3;
+ char* eimm;
+ int imm = static_cast<int>(strtol(&format[3], &eimm, 10));
+ field_len += eimm - &format[3];
+ if (reg_num == 31) {
+ switch (format[2]) {
+ case 'z':
+ imm *= (1 << instr->NEONLSSize());
+ break;
+ case 'r':
+ imm *= (instr->NEONQ() == 0) ? kDRegSizeInBytes
+ : kQRegSizeInBytes;
+ break;
+ case 'b':
+ break;
+ }
+ AppendToOutput("#%d", imm);
+ return field_len;
+ }
+ break;
+ }
+ }
+ break;
+ case 'e':
+ // This is register Rm, but using a 4-bit specifier. Used in NEON
+ // by-element instructions.
+ reg_num = (instr->Rm() & 0xf);
+ break;
+ case 'a': reg_num = instr->Ra(); break;
+ case 's': reg_num = instr->Rs(); break;
+ case 't':
+ reg_num = instr->Rt();
+ if (format[0] == 'V') {
+ if ((format[2] >= '2') && (format[2] <= '4')) {
+ // Handle consecutive vector register specifiers Vt2, Vt3 and Vt4.
+ reg_num = (reg_num + format[2] - '1') % 32;
+ field_len = 3;
+ }
+ } else {
+ if (format[2] == '2') {
+ // Handle register specifier Rt2.
+ reg_num = instr->Rt2();
+ field_len = 3;
+ }
+ }
+ break;
+ default: VIXL_UNREACHABLE();
+ }
+
+ // Increase field length for registers tagged as stack.
+ if (format[2] == 's') {
+ field_len = 3;
+ }
+
+ CPURegister::RegisterType reg_type = CPURegister::kRegister;
+ unsigned reg_size = kXRegSize;
+
+ if (reg_prefix == 'R') {
+ reg_prefix = instr->SixtyFourBits() ? 'X' : 'W';
+ } else if (reg_prefix == 'F') {
+ reg_prefix = ((instr->FPType() & 1) == 0) ? 'S' : 'D';
+ }
+
+ switch (reg_prefix) {
+ case 'W':
+ reg_type = CPURegister::kRegister; reg_size = kWRegSize; break;
+ case 'X':
+ reg_type = CPURegister::kRegister; reg_size = kXRegSize; break;
+ case 'B':
+ reg_type = CPURegister::kVRegister; reg_size = kBRegSize; break;
+ case 'H':
+ reg_type = CPURegister::kVRegister; reg_size = kHRegSize; break;
+ case 'S':
+ reg_type = CPURegister::kVRegister; reg_size = kSRegSize; break;
+ case 'D':
+ reg_type = CPURegister::kVRegister; reg_size = kDRegSize; break;
+ case 'Q':
+ reg_type = CPURegister::kVRegister; reg_size = kQRegSize; break;
+ case 'V':
+ AppendToOutput("v%d", reg_num);
+ return field_len;
+ default:
+ VIXL_UNREACHABLE();
+ }
+
+ if ((reg_type == CPURegister::kRegister) &&
+ (reg_num == kZeroRegCode) && (format[2] == 's')) {
+ reg_num = kSPRegInternalCode;
+ }
+
+ AppendRegisterNameToOutput(instr, CPURegister(reg_num, reg_size, reg_type));
+
+ return field_len;
+}
+
+
+int Disassembler::SubstituteImmediateField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(format[0] == 'I');
+
+ switch (format[1]) {
+ case 'M': { // IMoveImm, IMoveNeg or IMoveLSL.
+ if (format[5] == 'L') {
+ AppendToOutput("#0x%" PRIx32, instr->ImmMoveWide());
+ if (instr->ShiftMoveWide() > 0) {
+ AppendToOutput(", lsl #%" PRId32, 16 * instr->ShiftMoveWide());
+ }
+ } else {
+ VIXL_ASSERT((format[5] == 'I') || (format[5] == 'N'));
+ uint64_t imm = static_cast<uint64_t>(instr->ImmMoveWide()) <<
+ (16 * instr->ShiftMoveWide());
+ if (format[5] == 'N')
+ imm = ~imm;
+ if (!instr->SixtyFourBits())
+ imm &= UINT64_C(0xffffffff);
+ AppendToOutput("#0x%" PRIx64, imm);
+ }
+ return 8;
+ }
+ case 'L': {
+ switch (format[2]) {
+ case 'L': { // ILLiteral - Immediate Load Literal.
+ AppendToOutput("pc%+" PRId32,
+ instr->ImmLLiteral() << kLiteralEntrySizeLog2);
+ return 9;
+ }
+ case 'S': { // ILS - Immediate Load/Store.
+ if (instr->ImmLS() != 0) {
+ AppendToOutput(", #%" PRId32, instr->ImmLS());
+ }
+ return 3;
+ }
+ case 'P': { // ILPx - Immediate Load/Store Pair, x = access size.
+ if (instr->ImmLSPair() != 0) {
+ // format[3] is the scale value. Convert to a number.
+ int scale = 1 << (format[3] - '0');
+ AppendToOutput(", #%" PRId32, instr->ImmLSPair() * scale);
+ }
+ return 4;
+ }
+ case 'U': { // ILU - Immediate Load/Store Unsigned.
+ if (instr->ImmLSUnsigned() != 0) {
+ int shift = instr->SizeLS();
+ AppendToOutput(", #%" PRId32, instr->ImmLSUnsigned() << shift);
+ }
+ return 3;
+ }
+ }
+ }
+ case 'C': { // ICondB - Immediate Conditional Branch.
+ int64_t offset = instr->ImmCondBranch() << 2;
+ AppendPCRelativeOffsetToOutput(instr, offset);
+ return 6;
+ }
+ case 'A': { // IAddSub.
+ VIXL_ASSERT(instr->ShiftAddSub() <= 1);
+ int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
+ AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
+ return 7;
+ }
+ case 'F': { // IFPSingle, IFPDouble or IFPFBits.
+ if (format[3] == 'F') { // IFPFbits.
+ AppendToOutput("#%" PRId32, 64 - instr->FPScale());
+ return 8;
+ } else {
+ AppendToOutput("#0x%" PRIx32 " (%.4f)", instr->ImmFP(),
+ format[3] == 'S' ? instr->ImmFP32() : instr->ImmFP64());
+ return 9;
+ }
+ }
+ case 'T': { // ITri - Immediate Triangular Encoded.
+ AppendToOutput("#0x%" PRIx64, instr->ImmLogical());
+ return 4;
+ }
+ case 'N': { // INzcv.
+ int nzcv = (instr->Nzcv() << Flags_offset);
+ AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N',
+ ((nzcv & ZFlag) == 0) ? 'z' : 'Z',
+ ((nzcv & CFlag) == 0) ? 'c' : 'C',
+ ((nzcv & VFlag) == 0) ? 'v' : 'V');
+ return 5;
+ }
+ case 'P': { // IP - Conditional compare.
+ AppendToOutput("#%" PRId32, instr->ImmCondCmp());
+ return 2;
+ }
+ case 'B': { // Bitfields.
+ return SubstituteBitfieldImmediateField(instr, format);
+ }
+ case 'E': { // IExtract.
+ AppendToOutput("#%" PRId32, instr->ImmS());
+ return 8;
+ }
+ case 'S': { // IS - Test and branch bit.
+ AppendToOutput("#%" PRId32, (instr->ImmTestBranchBit5() << 5) |
+ instr->ImmTestBranchBit40());
+ return 2;
+ }
+ case 's': { // Is - Shift (immediate).
+ switch (format[2]) {
+ case '1': { // Is1 - SSHR.
+ int shift = 16 << HighestSetBitPosition(instr->ImmNEONImmh());
+ shift -= instr->ImmNEONImmhImmb();
+ AppendToOutput("#%d", shift);
+ return 3;
+ }
+ case '2': { // Is2 - SLI.
+ int shift = instr->ImmNEONImmhImmb();
+ shift -= 8 << HighestSetBitPosition(instr->ImmNEONImmh());
+ AppendToOutput("#%d", shift);
+ return 3;
+ }
+ default: {
+ VIXL_UNIMPLEMENTED();
+ return 0;
+ }
+ }
+ }
+ case 'D': { // IDebug - HLT and BRK instructions.
+ AppendToOutput("#0x%" PRIx32, instr->ImmException());
+ return 6;
+ }
+ case 'V': { // Immediate Vector.
+ switch (format[2]) {
+ case 'E': { // IVExtract.
+ AppendToOutput("#%" PRId32, instr->ImmNEONExt());
+ return 9;
+ }
+ case 'B': { // IVByElemIndex.
+ int vm_index = (instr->NEONH() << 1) | instr->NEONL();
+ if (instr->NEONSize() == 1) {
+ vm_index = (vm_index << 1) | instr->NEONM();
+ }
+ AppendToOutput("%d", vm_index);
+ return strlen("IVByElemIndex");
+ }
+ case 'I': { // INS element.
+ if (strncmp(format, "IVInsIndex", strlen("IVInsIndex")) == 0) {
+ int rd_index, rn_index;
+ int imm5 = instr->ImmNEON5();
+ int imm4 = instr->ImmNEON4();
+ int tz = CountTrailingZeros(imm5, 32);
+ rd_index = imm5 >> (tz + 1);
+ rn_index = imm4 >> tz;
+ if (strncmp(format, "IVInsIndex1", strlen("IVInsIndex1")) == 0) {
+ AppendToOutput("%d", rd_index);
+ return strlen("IVInsIndex1");
+ } else if (strncmp(format, "IVInsIndex2",
+ strlen("IVInsIndex2")) == 0) {
+ AppendToOutput("%d", rn_index);
+ return strlen("IVInsIndex2");
+ } else {
+ VIXL_UNIMPLEMENTED();
+ return 0;
+ }
+ }
+ VIXL_FALLTHROUGH();
+ }
+ case 'L': { // IVLSLane[0123] - suffix indicates access size shift.
+ AppendToOutput("%d", instr->NEONLSIndex(format[8] - '0'));
+ return 9;
+ }
+ case 'M': { // Modified Immediate cases.
+ if (strncmp(format,
+ "IVMIImmFPSingle",
+ strlen("IVMIImmFPSingle")) == 0) {
+ AppendToOutput("#0x%" PRIx32 " (%.4f)", instr->ImmNEONabcdefgh(),
+ instr->ImmNEONFP32());
+ return strlen("IVMIImmFPSingle");
+ } else if (strncmp(format,
+ "IVMIImmFPDouble",
+ strlen("IVMIImmFPDouble")) == 0) {
+ AppendToOutput("#0x%" PRIx32 " (%.4f)", instr->ImmNEONabcdefgh(),
+ instr->ImmNEONFP64());
+ return strlen("IVMIImmFPDouble");
+ } else if (strncmp(format, "IVMIImm8", strlen("IVMIImm8")) == 0) {
+ uint64_t imm8 = instr->ImmNEONabcdefgh();
+ AppendToOutput("#0x%" PRIx64, imm8);
+ return strlen("IVMIImm8");
+ } else if (strncmp(format, "IVMIImm", strlen("IVMIImm")) == 0) {
+ uint64_t imm8 = instr->ImmNEONabcdefgh();
+ uint64_t imm = 0;
+ for (int i = 0; i < 8; ++i) {
+ if (imm8 & (1 << i)) {
+ imm |= (UINT64_C(0xff) << (8 * i));
+ }
+ }
+ AppendToOutput("#0x%" PRIx64, imm);
+ return strlen("IVMIImm");
+ } else if (strncmp(format, "IVMIShiftAmt1",
+ strlen("IVMIShiftAmt1")) == 0) {
+ int cmode = instr->NEONCmode();
+ int shift_amount = 8 * ((cmode >> 1) & 3);
+ AppendToOutput("#%d", shift_amount);
+ return strlen("IVMIShiftAmt1");
+ } else if (strncmp(format, "IVMIShiftAmt2",
+ strlen("IVMIShiftAmt2")) == 0) {
+ int cmode = instr->NEONCmode();
+ int shift_amount = 8 << (cmode & 1);
+ AppendToOutput("#%d", shift_amount);
+ return strlen("IVMIShiftAmt2");
+ } else {
+ VIXL_UNIMPLEMENTED();
+ return 0;
+ }
+ }
+ default: {
+ VIXL_UNIMPLEMENTED();
+ return 0;
+ }
+ }
+ }
+ case 'X': { // IX - CLREX instruction.
+ AppendToOutput("#0x%" PRIx32, instr->CRm());
+ return 2;
+ }
+ default: {
+ VIXL_UNIMPLEMENTED();
+ return 0;
+ }
+ }
+}
+
+
+int Disassembler::SubstituteBitfieldImmediateField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT((format[0] == 'I') && (format[1] == 'B'));
+ unsigned r = instr->ImmR();
+ unsigned s = instr->ImmS();
+
+ switch (format[2]) {
+ case 'r': { // IBr.
+ AppendToOutput("#%d", r);
+ return 3;
+ }
+ case 's': { // IBs+1 or IBs-r+1.
+ if (format[3] == '+') {
+ AppendToOutput("#%d", s + 1);
+ return 5;
+ } else {
+ VIXL_ASSERT(format[3] == '-');
+ AppendToOutput("#%d", s - r + 1);
+ return 7;
+ }
+ }
+ case 'Z': { // IBZ-r.
+ VIXL_ASSERT((format[3] == '-') && (format[4] == 'r'));
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize;
+ AppendToOutput("#%d", reg_size - r);
+ return 5;
+ }
+ default: {
+ VIXL_UNREACHABLE();
+ return 0;
+ }
+ }
+}
+
+
+int Disassembler::SubstituteLiteralField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(strncmp(format, "LValue", 6) == 0);
+ USE(format);
+
+ const void * address = instr->LiteralAddress<const void *>();
+ switch (instr->Mask(LoadLiteralMask)) {
+ case LDR_w_lit:
+ case LDR_x_lit:
+ case LDRSW_x_lit:
+ case LDR_s_lit:
+ case LDR_d_lit:
+ case LDR_q_lit:
+ AppendCodeRelativeDataAddressToOutput(instr, address);
+ break;
+ case PRFM_lit: {
+ // Use the prefetch hint to decide how to print the address.
+ switch (instr->PrefetchHint()) {
+ case 0x0: // PLD: prefetch for load.
+ case 0x2: // PST: prepare for store.
+ AppendCodeRelativeDataAddressToOutput(instr, address);
+ break;
+ case 0x1: // PLI: preload instructions.
+ AppendCodeRelativeCodeAddressToOutput(instr, address);
+ break;
+ case 0x3: // Unallocated hint.
+ AppendCodeRelativeAddressToOutput(instr, address);
+ break;
+ }
+ break;
+ }
+ default:
+ VIXL_UNREACHABLE();
+ }
+
+ return 6;
+}
+
+
+int Disassembler::SubstituteShiftField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(format[0] == 'N');
+ VIXL_ASSERT(instr->ShiftDP() <= 0x3);
+
+ switch (format[1]) {
+ case 'D': { // HDP.
+ VIXL_ASSERT(instr->ShiftDP() != ROR);
+ VIXL_FALLTHROUGH();
+ }
+ case 'L': { // HLo.
+ if (instr->ImmDPShift() != 0) {
+ const char* shift_type[] = {"lsl", "lsr", "asr", "ror"};
+ AppendToOutput(", %s #%" PRId32, shift_type[instr->ShiftDP()],
+ instr->ImmDPShift());
+ }
+ return 3;
+ }
+ default:
+ VIXL_UNIMPLEMENTED();
+ return 0;
+ }
+}
+
+
+int Disassembler::SubstituteConditionField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(format[0] == 'C');
+ const char* condition_code[] = { "eq", "ne", "hs", "lo",
+ "mi", "pl", "vs", "vc",
+ "hi", "ls", "ge", "lt",
+ "gt", "le", "al", "nv" };
+ int cond;
+ switch (format[1]) {
+ case 'B': cond = instr->ConditionBranch(); break;
+ case 'I': {
+ cond = InvertCondition(static_cast<Condition>(instr->Condition()));
+ break;
+ }
+ default: cond = instr->Condition();
+ }
+ AppendToOutput("%s", condition_code[cond]);
+ return 4;
+}
+
+
+int Disassembler::SubstitutePCRelAddressField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT((strcmp(format, "AddrPCRelByte") == 0) || // Used by `adr`.
+ (strcmp(format, "AddrPCRelPage") == 0)); // Used by `adrp`.
+
+ int64_t offset = instr->ImmPCRel();
+
+ // Compute the target address based on the effective address (after applying
+ // code_address_offset). This is required for correct behaviour of adrp.
+ const Instruction* base = instr + code_address_offset();
+ if (format[9] == 'P') {
+ offset *= kPageSize;
+ base = AlignDown(base, kPageSize);
+ }
+ // Strip code_address_offset before printing, so we can use the
+ // semantically-correct AppendCodeRelativeAddressToOutput.
+ const void* target =
+ reinterpret_cast<const void*>(base + offset - code_address_offset());
+
+ AppendPCRelativeOffsetToOutput(instr, offset);
+ AppendToOutput(" ");
+ AppendCodeRelativeAddressToOutput(instr, target);
+ return 13;
+}
+
+
+int Disassembler::SubstituteBranchTargetField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(strncmp(format, "TImm", 4) == 0);
+
+ int64_t offset = 0;
+ switch (format[5]) {
+ // BImmUncn - unconditional branch immediate.
+ case 'n': offset = instr->ImmUncondBranch(); break;
+ // BImmCond - conditional branch immediate.
+ case 'o': offset = instr->ImmCondBranch(); break;
+ // BImmCmpa - compare and branch immediate.
+ case 'm': offset = instr->ImmCmpBranch(); break;
+ // BImmTest - test and branch immediate.
+ case 'e': offset = instr->ImmTestBranch(); break;
+ default: VIXL_UNIMPLEMENTED();
+ }
+ offset <<= kInstructionSizeLog2;
+ const void* target_address = reinterpret_cast<const void*>(instr + offset);
+ VIXL_STATIC_ASSERT(sizeof(*instr) == 1);
+
+ AppendPCRelativeOffsetToOutput(instr, offset);
+ AppendToOutput(" ");
+ AppendCodeRelativeCodeAddressToOutput(instr, target_address);
+
+ return 8;
+}
+
+
+int Disassembler::SubstituteExtendField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(strncmp(format, "Ext", 3) == 0);
+ VIXL_ASSERT(instr->ExtendMode() <= 7);
+ USE(format);
+
+ const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
+ "sxtb", "sxth", "sxtw", "sxtx" };
+
+ // If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit
+ // registers becomes lsl.
+ if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) &&
+ (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
+ (instr->ExtendMode() == UXTX))) {
+ if (instr->ImmExtendShift() > 0) {
+ AppendToOutput(", lsl #%" PRId32, instr->ImmExtendShift());
+ }
+ } else {
+ AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
+ if (instr->ImmExtendShift() > 0) {
+ AppendToOutput(" #%" PRId32, instr->ImmExtendShift());
+ }
+ }
+ return 3;
+}
+
+
+int Disassembler::SubstituteLSRegOffsetField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(strncmp(format, "Offsetreg", 9) == 0);
+ const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
+ "undefined", "undefined", "sxtw", "sxtx" };
+ USE(format);
+
+ unsigned shift = instr->ImmShiftLS();
+ Extend ext = static_cast<Extend>(instr->ExtendMode());
+ char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x';
+
+ unsigned rm = instr->Rm();
+ if (rm == kZeroRegCode) {
+ AppendToOutput("%czr", reg_type);
+ } else {
+ AppendToOutput("%c%d", reg_type, rm);
+ }
+
+ // Extend mode UXTX is an alias for shift mode LSL here.
+ if (!((ext == UXTX) && (shift == 0))) {
+ AppendToOutput(", %s", extend_mode[ext]);
+ if (shift != 0) {
+ AppendToOutput(" #%d", instr->SizeLS());
+ }
+ }
+ return 9;
+}
+
+
+int Disassembler::SubstitutePrefetchField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(format[0] == 'P');
+ USE(format);
+
+ static const char* hints[] = {"ld", "li", "st"};
+ static const char* stream_options[] = {"keep", "strm"};
+
+ unsigned hint = instr->PrefetchHint();
+ unsigned target = instr->PrefetchTarget() + 1;
+ unsigned stream = instr->PrefetchStream();
+
+ if ((hint >= (sizeof(hints) / sizeof(hints[0]))) || (target > 3)) {
+ // Unallocated prefetch operations.
+ int prefetch_mode = instr->ImmPrefetchOperation();
+ AppendToOutput("#0b%c%c%c%c%c",
+ (prefetch_mode & (1 << 4)) ? '1' : '0',
+ (prefetch_mode & (1 << 3)) ? '1' : '0',
+ (prefetch_mode & (1 << 2)) ? '1' : '0',
+ (prefetch_mode & (1 << 1)) ? '1' : '0',
+ (prefetch_mode & (1 << 0)) ? '1' : '0');
+ } else {
+ VIXL_ASSERT(stream < (sizeof(stream_options) / sizeof(stream_options[0])));
+ AppendToOutput("p%sl%d%s", hints[hint], target, stream_options[stream]);
+ }
+ return 6;
+}
+
+int Disassembler::SubstituteBarrierField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(format[0] == 'M');
+ USE(format);
+
+ static const char* options[4][4] = {
+ { "sy (0b0000)", "oshld", "oshst", "osh" },
+ { "sy (0b0100)", "nshld", "nshst", "nsh" },
+ { "sy (0b1000)", "ishld", "ishst", "ish" },
+ { "sy (0b1100)", "ld", "st", "sy" }
+ };
+ int domain = instr->ImmBarrierDomain();
+ int type = instr->ImmBarrierType();
+
+ AppendToOutput("%s", options[domain][type]);
+ return 1;
+}
+
+int Disassembler::SubstituteSysOpField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(format[0] == 'G');
+ int op = -1;
+ switch (format[1]) {
+ case '1': op = instr->SysOp1(); break;
+ case '2': op = instr->SysOp2(); break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+ AppendToOutput("#%d", op);
+ return 2;
+}
+
+int Disassembler::SubstituteCrField(const Instruction* instr,
+ const char* format) {
+ VIXL_ASSERT(format[0] == 'K');
+ int cr = -1;
+ switch (format[1]) {
+ case 'n': cr = instr->CRn(); break;
+ case 'm': cr = instr->CRm(); break;
+ default:
+ VIXL_UNREACHABLE();
+ }
+ AppendToOutput("C%d", cr);
+ return 2;
+}
+
+void Disassembler::ResetOutput() {
+ buffer_pos_ = 0;
+ buffer_[buffer_pos_] = 0;
+}
+
+
+void Disassembler::AppendToOutput(const char* format, ...) {
+ va_list args;
+ va_start(args, format);
+ buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_ - buffer_pos_,
+ format, args);
+ va_end(args);
+}
+
+
+void PrintDisassembler::ProcessOutput(const Instruction* instr) {
+ fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n",
+ reinterpret_cast<uint64_t>(instr),
+ instr->InstructionBits(),
+ GetOutput());
+}
+
+} // namespace vixl
diff --git a/disas/libvixl/a64/disasm-a64.h b/disas/libvixl/vixl/a64/disasm-a64.h
index ddfe98be19..930df6ea6a 100644
--- a/disas/libvixl/a64/disasm-a64.h
+++ b/disas/libvixl/vixl/a64/disasm-a64.h
@@ -1,4 +1,4 @@
-// Copyright 2013, ARM Limited
+// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@@ -27,11 +27,11 @@
#ifndef VIXL_A64_DISASM_A64_H
#define VIXL_A64_DISASM_A64_H
-#include "globals.h"
-#include "utils.h"
-#include "instructions-a64.h"
-#include "decoder-a64.h"
-#include "assembler-a64.h"
+#include "vixl/globals.h"
+#include "vixl/utils.h"
+#include "vixl/a64/instructions-a64.h"
+#include "vixl/a64/decoder-a64.h"
+#include "vixl/a64/assembler-a64.h"
namespace vixl {
@@ -55,6 +55,7 @@ class Disassembler: public DecoderVisitor {
// customize the disassembly output.
// Prints the name of a register.
+ // TODO: This currently doesn't allow renaming of V registers.
virtual void AppendRegisterNameToOutput(const Instruction* instr,
const CPURegister& reg);
@@ -122,7 +123,8 @@ class Disassembler: public DecoderVisitor {
int SubstituteLSRegOffsetField(const Instruction* instr, const char* format);
int SubstitutePrefetchField(const Instruction* instr, const char* format);
int SubstituteBarrierField(const Instruction* instr, const char* format);
-
+ int SubstituteSysOpField(const Instruction* instr, const char* format);
+ int SubstituteCrField(const Instruction* instr, const char* format);
bool RdIsZROrSP(const Instruction* instr) const {
return (instr->Rd() == kZeroRegCode);
}
@@ -163,7 +165,6 @@ class Disassembler: public DecoderVisitor {
class PrintDisassembler: public Disassembler {
public:
explicit PrintDisassembler(FILE* stream) : stream_(stream) { }
- virtual ~PrintDisassembler() { }
protected:
virtual void ProcessOutput(const Instruction* instr);
diff --git a/disas/libvixl/vixl/a64/instructions-a64.cc b/disas/libvixl/vixl/a64/instructions-a64.cc
new file mode 100644
index 0000000000..33992f88a4
--- /dev/null
+++ b/disas/libvixl/vixl/a64/instructions-a64.cc
@@ -0,0 +1,622 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "vixl/a64/instructions-a64.h"
+#include "vixl/a64/assembler-a64.h"
+
+namespace vixl {
+
+
+// Floating-point infinity values.
+const float16 kFP16PositiveInfinity = 0x7c00;
+const float16 kFP16NegativeInfinity = 0xfc00;
+const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
+const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
+const double kFP64PositiveInfinity =
+ rawbits_to_double(UINT64_C(0x7ff0000000000000));
+const double kFP64NegativeInfinity =
+ rawbits_to_double(UINT64_C(0xfff0000000000000));
+
+
+// The default NaN values (for FPCR.DN=1).
+const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
+const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
+const float16 kFP16DefaultNaN = 0x7e00;
+
+
+static uint64_t RotateRight(uint64_t value,
+ unsigned int rotate,
+ unsigned int width) {
+ VIXL_ASSERT(width <= 64);
+ rotate &= 63;
+ return ((value & ((UINT64_C(1) << rotate) - 1)) <<
+ (width - rotate)) | (value >> rotate);
+}
+
+
+static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
+ uint64_t value,
+ unsigned width) {
+ VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
+ (width == 32));
+ VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ uint64_t result = value & ((UINT64_C(1) << width) - 1);
+ for (unsigned i = width; i < reg_size; i *= 2) {
+ result |= (result << i);
+ }
+ return result;
+}
+
+
+bool Instruction::IsLoad() const {
+ if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
+ return false;
+ }
+
+ if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
+ return Mask(LoadStorePairLBit) != 0;
+ } else {
+ LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
+ switch (op) {
+ case LDRB_w:
+ case LDRH_w:
+ case LDR_w:
+ case LDR_x:
+ case LDRSB_w:
+ case LDRSB_x:
+ case LDRSH_w:
+ case LDRSH_x:
+ case LDRSW_x:
+ case LDR_b:
+ case LDR_h:
+ case LDR_s:
+ case LDR_d:
+ case LDR_q: return true;
+ default: return false;
+ }
+ }
+}
+
+
+bool Instruction::IsStore() const {
+ if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
+ return false;
+ }
+
+ if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
+ return Mask(LoadStorePairLBit) == 0;
+ } else {
+ LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
+ switch (op) {
+ case STRB_w:
+ case STRH_w:
+ case STR_w:
+ case STR_x:
+ case STR_b:
+ case STR_h:
+ case STR_s:
+ case STR_d:
+ case STR_q: return true;
+ default: return false;
+ }
+ }
+}
+
+
+// Logical immediates can't encode zero, so a return value of zero is used to
+// indicate a failure case. Specifically, where the constraints on imm_s are
+// not met.
+uint64_t Instruction::ImmLogical() const {
+ unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
+ int32_t n = BitN();
+ int32_t imm_s = ImmSetBits();
+ int32_t imm_r = ImmRotate();
+
+ // An integer is constructed from the n, imm_s and imm_r bits according to
+ // the following table:
+ //
+ // N imms immr size S R
+ // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
+ // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
+ // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
+ // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
+ // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
+ // 0 11110s xxxxxr 2 UInt(s) UInt(r)
+ // (s bits must not be all set)
+ //
+ // A pattern is constructed of size bits, where the least significant S+1
+ // bits are set. The pattern is rotated right by R, and repeated across a
+ // 32 or 64-bit value, depending on destination register width.
+ //
+
+ if (n == 1) {
+ if (imm_s == 0x3f) {
+ return 0;
+ }
+ uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
+ return RotateRight(bits, imm_r, 64);
+ } else {
+ if ((imm_s >> 1) == 0x1f) {
+ return 0;
+ }
+ for (int width = 0x20; width >= 0x2; width >>= 1) {
+ if ((imm_s & width) == 0) {
+ int mask = width - 1;
+ if ((imm_s & mask) == mask) {
+ return 0;
+ }
+ uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
+ return RepeatBitsAcrossReg(reg_size,
+ RotateRight(bits, imm_r & mask, width),
+ width);
+ }
+ }
+ }
+ VIXL_UNREACHABLE();
+ return 0;
+}
+
+
+uint32_t Instruction::ImmNEONabcdefgh() const {
+ return ImmNEONabc() << 5 | ImmNEONdefgh();
+}
+
+
+float Instruction::Imm8ToFP32(uint32_t imm8) {
+ // Imm8: abcdefgh (8 bits)
+ // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
+ // where B is b ^ 1
+ uint32_t bits = imm8;
+ uint32_t bit7 = (bits >> 7) & 0x1;
+ uint32_t bit6 = (bits >> 6) & 0x1;
+ uint32_t bit5_to_0 = bits & 0x3f;
+ uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
+
+ return rawbits_to_float(result);
+}
+
+
+float Instruction::ImmFP32() const {
+ return Imm8ToFP32(ImmFP());
+}
+
+
+double Instruction::Imm8ToFP64(uint32_t imm8) {
+ // Imm8: abcdefgh (8 bits)
+ // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
+ // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
+ // where B is b ^ 1
+ uint32_t bits = imm8;
+ uint64_t bit7 = (bits >> 7) & 0x1;
+ uint64_t bit6 = (bits >> 6) & 0x1;
+ uint64_t bit5_to_0 = bits & 0x3f;
+ uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
+
+ return rawbits_to_double(result);
+}
+
+
+double Instruction::ImmFP64() const {
+ return Imm8ToFP64(ImmFP());
+}
+
+
+float Instruction::ImmNEONFP32() const {
+ return Imm8ToFP32(ImmNEONabcdefgh());
+}
+
+
+double Instruction::ImmNEONFP64() const {
+ return Imm8ToFP64(ImmNEONabcdefgh());
+}
+
+
+unsigned CalcLSDataSize(LoadStoreOp op) {
+ VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
+ unsigned size = static_cast<Instr>(op) >> LSSize_offset;
+ if ((op & LSVector_mask) != 0) {
+ // Vector register memory operations encode the access size in the "size"
+ // and "opc" fields.
+ if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
+ size = kQRegSizeInBytesLog2;
+ }
+ }
+ return size;
+}
+
+
+unsigned CalcLSPairDataSize(LoadStorePairOp op) {
+ VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
+ VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
+ switch (op) {
+ case STP_q:
+ case LDP_q: return kQRegSizeInBytesLog2;
+ case STP_x:
+ case LDP_x:
+ case STP_d:
+ case LDP_d: return kXRegSizeInBytesLog2;
+ default: return kWRegSizeInBytesLog2;
+ }
+}
+
+
+int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) {
+ switch (branch_type) {
+ case UncondBranchType:
+ return ImmUncondBranch_width;
+ case CondBranchType:
+ return ImmCondBranch_width;
+ case CompareBranchType:
+ return ImmCmpBranch_width;
+ case TestBranchType:
+ return ImmTestBranch_width;
+ default:
+ VIXL_UNREACHABLE();
+ return 0;
+ }
+}
+
+
+int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) {
+ int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1);
+ return encoded_max * kInstructionSize;
+}
+
+
+bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
+ int64_t offset) {
+ return is_intn(ImmBranchRangeBitwidth(branch_type), offset);
+}
+
+
+const Instruction* Instruction::ImmPCOffsetTarget() const {
+ const Instruction * base = this;
+ ptrdiff_t offset;
+ if (IsPCRelAddressing()) {
+ // ADR and ADRP.
+ offset = ImmPCRel();
+ if (Mask(PCRelAddressingMask) == ADRP) {
+ base = AlignDown(base, kPageSize);
+ offset *= kPageSize;
+ } else {
+ VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
+ }
+ } else {
+ // All PC-relative branches.
+ VIXL_ASSERT(BranchType() != UnknownBranchType);
+ // Relative branch offsets are instruction-size-aligned.
+ offset = ImmBranch() << kInstructionSizeLog2;
+ }
+ return base + offset;
+}
+
+
+int Instruction::ImmBranch() const {
+ switch (BranchType()) {
+ case CondBranchType: return ImmCondBranch();
+ case UncondBranchType: return ImmUncondBranch();
+ case CompareBranchType: return ImmCmpBranch();
+ case TestBranchType: return ImmTestBranch();
+ default: VIXL_UNREACHABLE();
+ }
+ return 0;
+}
+
+
+void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
+ if (IsPCRelAddressing()) {
+ SetPCRelImmTarget(target);
+ } else {
+ SetBranchImmTarget(target);
+ }
+}
+
+
+void Instruction::SetPCRelImmTarget(const Instruction* target) {
+ ptrdiff_t imm21;
+ if ((Mask(PCRelAddressingMask) == ADR)) {
+ imm21 = target - this;
+ } else {
+ VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
+ uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
+ uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
+ imm21 = target_page - this_page;
+ }
+ Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
+
+ SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
+}
+
+
+void Instruction::SetBranchImmTarget(const Instruction* target) {
+ VIXL_ASSERT(((target - this) & 3) == 0);
+ Instr branch_imm = 0;
+ uint32_t imm_mask = 0;
+ int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
+ switch (BranchType()) {
+ case CondBranchType: {
+ branch_imm = Assembler::ImmCondBranch(offset);
+ imm_mask = ImmCondBranch_mask;
+ break;
+ }
+ case UncondBranchType: {
+ branch_imm = Assembler::ImmUncondBranch(offset);
+ imm_mask = ImmUncondBranch_mask;
+ break;
+ }
+ case CompareBranchType: {
+ branch_imm = Assembler::ImmCmpBranch(offset);
+ imm_mask = ImmCmpBranch_mask;
+ break;
+ }
+ case TestBranchType: {
+ branch_imm = Assembler::ImmTestBranch(offset);
+ imm_mask = ImmTestBranch_mask;
+ break;
+ }
+ default: VIXL_UNREACHABLE();
+ }
+ SetInstructionBits(Mask(~imm_mask) | branch_imm);
+}
+
+
+void Instruction::SetImmLLiteral(const Instruction* source) {
+ VIXL_ASSERT(IsWordAligned(source));
+ ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
+ Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
+ Instr mask = ImmLLiteral_mask;
+
+ SetInstructionBits(Mask(~mask) | imm);
+}
+
+
+VectorFormat VectorFormatHalfWidth(const VectorFormat vform) {
+ VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
+ vform == kFormatH || vform == kFormatS || vform == kFormatD);
+ switch (vform) {
+ case kFormat8H: return kFormat8B;
+ case kFormat4S: return kFormat4H;
+ case kFormat2D: return kFormat2S;
+ case kFormatH: return kFormatB;
+ case kFormatS: return kFormatH;
+ case kFormatD: return kFormatS;
+ default: VIXL_UNREACHABLE(); return kFormatUndefined;
+ }
+}
+
+
+VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) {
+ VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
+ vform == kFormatB || vform == kFormatH || vform == kFormatS);
+ switch (vform) {
+ case kFormat8B: return kFormat8H;
+ case kFormat4H: return kFormat4S;
+ case kFormat2S: return kFormat2D;
+ case kFormatB: return kFormatH;
+ case kFormatH: return kFormatS;
+ case kFormatS: return kFormatD;
+ default: VIXL_UNREACHABLE(); return kFormatUndefined;
+ }
+}
+
+
+VectorFormat VectorFormatFillQ(const VectorFormat vform) {
+ switch (vform) {
+ case kFormatB:
+ case kFormat8B:
+ case kFormat16B: return kFormat16B;
+ case kFormatH:
+ case kFormat4H:
+ case kFormat8H: return kFormat8H;
+ case kFormatS:
+ case kFormat2S:
+ case kFormat4S: return kFormat4S;
+ case kFormatD:
+ case kFormat1D:
+ case kFormat2D: return kFormat2D;
+ default: VIXL_UNREACHABLE(); return kFormatUndefined;
+ }
+}
+
+VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) {
+ switch (vform) {
+ case kFormat4H: return kFormat8B;
+ case kFormat8H: return kFormat16B;
+ case kFormat2S: return kFormat4H;
+ case kFormat4S: return kFormat8H;
+ case kFormat1D: return kFormat2S;
+ case kFormat2D: return kFormat4S;
+ default: VIXL_UNREACHABLE(); return kFormatUndefined;
+ }
+}
+
+VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) {
+ VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
+ switch (vform) {
+ case kFormat8B: return kFormat16B;
+ case kFormat4H: return kFormat8H;
+ case kFormat2S: return kFormat4S;
+ default: VIXL_UNREACHABLE(); return kFormatUndefined;
+ }
+}
+
+
+VectorFormat VectorFormatHalfLanes(const VectorFormat vform) {
+ VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
+ switch (vform) {
+ case kFormat16B: return kFormat8B;
+ case kFormat8H: return kFormat4H;
+ case kFormat4S: return kFormat2S;
+ default: VIXL_UNREACHABLE(); return kFormatUndefined;
+ }
+}
+
+
+VectorFormat ScalarFormatFromLaneSize(int laneSize) {
+ switch (laneSize) {
+ case 8: return kFormatB;
+ case 16: return kFormatH;
+ case 32: return kFormatS;
+ case 64: return kFormatD;
+ default: VIXL_UNREACHABLE(); return kFormatUndefined;
+ }
+}
+
+
+unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
+ VIXL_ASSERT(vform != kFormatUndefined);
+ switch (vform) {
+ case kFormatB: return kBRegSize;
+ case kFormatH: return kHRegSize;
+ case kFormatS: return kSRegSize;
+ case kFormatD: return kDRegSize;
+ case kFormat8B:
+ case kFormat4H:
+ case kFormat2S:
+ case kFormat1D: return kDRegSize;
+ default: return kQRegSize;
+ }
+}
+
+
+unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
+ return RegisterSizeInBitsFromFormat(vform) / 8;
+}
+
+
+unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
+ VIXL_ASSERT(vform != kFormatUndefined);
+ switch (vform) {
+ case kFormatB:
+ case kFormat8B:
+ case kFormat16B: return 8;
+ case kFormatH:
+ case kFormat4H:
+ case kFormat8H: return 16;
+ case kFormatS:
+ case kFormat2S:
+ case kFormat4S: return 32;
+ case kFormatD:
+ case kFormat1D:
+ case kFormat2D: return 64;
+ default: VIXL_UNREACHABLE(); return 0;
+ }
+}
+
+
+int LaneSizeInBytesFromFormat(VectorFormat vform) {
+ return LaneSizeInBitsFromFormat(vform) / 8;
+}
+
+
+int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
+ VIXL_ASSERT(vform != kFormatUndefined);
+ switch (vform) {
+ case kFormatB:
+ case kFormat8B:
+ case kFormat16B: return 0;
+ case kFormatH:
+ case kFormat4H:
+ case kFormat8H: return 1;
+ case kFormatS:
+ case kFormat2S:
+ case kFormat4S: return 2;
+ case kFormatD:
+ case kFormat1D:
+ case kFormat2D: return 3;
+ default: VIXL_UNREACHABLE(); return 0;
+ }
+}
+
+
+int LaneCountFromFormat(VectorFormat vform) {
+ VIXL_ASSERT(vform != kFormatUndefined);
+ switch (vform) {
+ case kFormat16B: return 16;
+ case kFormat8B:
+ case kFormat8H: return 8;
+ case kFormat4H:
+ case kFormat4S: return 4;
+ case kFormat2S:
+ case kFormat2D: return 2;
+ case kFormat1D:
+ case kFormatB:
+ case kFormatH:
+ case kFormatS:
+ case kFormatD: return 1;
+ default: VIXL_UNREACHABLE(); return 0;
+ }
+}
+
+
+int MaxLaneCountFromFormat(VectorFormat vform) {
+ VIXL_ASSERT(vform != kFormatUndefined);
+ switch (vform) {
+ case kFormatB:
+ case kFormat8B:
+ case kFormat16B: return 16;
+ case kFormatH:
+ case kFormat4H:
+ case kFormat8H: return 8;
+ case kFormatS:
+ case kFormat2S:
+ case kFormat4S: return 4;
+ case kFormatD:
+ case kFormat1D:
+ case kFormat2D: return 2;
+ default: VIXL_UNREACHABLE(); return 0;
+ }
+}
+
+
+// Does 'vform' indicate a vector format or a scalar format?
+bool IsVectorFormat(VectorFormat vform) {
+ VIXL_ASSERT(vform != kFormatUndefined);
+ switch (vform) {
+ case kFormatB:
+ case kFormatH:
+ case kFormatS:
+ case kFormatD: return false;
+ default: return true;
+ }
+}
+
+
+int64_t MaxIntFromFormat(VectorFormat vform) {
+ return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
+}
+
+
+int64_t MinIntFromFormat(VectorFormat vform) {
+ return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
+}
+
+
+uint64_t MaxUintFromFormat(VectorFormat vform) {
+ return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
+}
+} // namespace vixl
+
diff --git a/disas/libvixl/vixl/a64/instructions-a64.h b/disas/libvixl/vixl/a64/instructions-a64.h
new file mode 100644
index 0000000000..7e0dbae36a
--- /dev/null
+++ b/disas/libvixl/vixl/a64/instructions-a64.h
@@ -0,0 +1,757 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
+#define VIXL_A64_INSTRUCTIONS_A64_H_
+
+#include "vixl/globals.h"
+#include "vixl/utils.h"
+#include "vixl/a64/constants-a64.h"
+
+namespace vixl {
+// ISA constants. --------------------------------------------------------------
+
+typedef uint32_t Instr;
+const unsigned kInstructionSize = 4;
+const unsigned kInstructionSizeLog2 = 2;
+const unsigned kLiteralEntrySize = 4;
+const unsigned kLiteralEntrySizeLog2 = 2;
+const unsigned kMaxLoadLiteralRange = 1 * MBytes;
+
+// This is the nominal page size (as used by the adrp instruction); the actual
+// size of the memory pages allocated by the kernel is likely to differ.
+const unsigned kPageSize = 4 * KBytes;
+const unsigned kPageSizeLog2 = 12;
+
+const unsigned kBRegSize = 8;
+const unsigned kBRegSizeLog2 = 3;
+const unsigned kBRegSizeInBytes = kBRegSize / 8;
+const unsigned kBRegSizeInBytesLog2 = kBRegSizeLog2 - 3;
+const unsigned kHRegSize = 16;
+const unsigned kHRegSizeLog2 = 4;
+const unsigned kHRegSizeInBytes = kHRegSize / 8;
+const unsigned kHRegSizeInBytesLog2 = kHRegSizeLog2 - 3;
+const unsigned kWRegSize = 32;
+const unsigned kWRegSizeLog2 = 5;
+const unsigned kWRegSizeInBytes = kWRegSize / 8;
+const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
+const unsigned kXRegSize = 64;
+const unsigned kXRegSizeLog2 = 6;
+const unsigned kXRegSizeInBytes = kXRegSize / 8;
+const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
+const unsigned kSRegSize = 32;
+const unsigned kSRegSizeLog2 = 5;
+const unsigned kSRegSizeInBytes = kSRegSize / 8;
+const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
+const unsigned kDRegSize = 64;
+const unsigned kDRegSizeLog2 = 6;
+const unsigned kDRegSizeInBytes = kDRegSize / 8;
+const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
+const unsigned kQRegSize = 128;
+const unsigned kQRegSizeLog2 = 7;
+const unsigned kQRegSizeInBytes = kQRegSize / 8;
+const unsigned kQRegSizeInBytesLog2 = kQRegSizeLog2 - 3;
+const uint64_t kWRegMask = UINT64_C(0xffffffff);
+const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
+const uint64_t kSRegMask = UINT64_C(0xffffffff);
+const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
+const uint64_t kSSignMask = UINT64_C(0x80000000);
+const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
+const uint64_t kWSignMask = UINT64_C(0x80000000);
+const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
+const uint64_t kByteMask = UINT64_C(0xff);
+const uint64_t kHalfWordMask = UINT64_C(0xffff);
+const uint64_t kWordMask = UINT64_C(0xffffffff);
+const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
+const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
+const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
+const int64_t kXMinInt = INT64_C(0x8000000000000000);
+const int32_t kWMaxInt = INT32_C(0x7fffffff);
+const int32_t kWMinInt = INT32_C(0x80000000);
+const unsigned kLinkRegCode = 30;
+const unsigned kZeroRegCode = 31;
+const unsigned kSPRegInternalCode = 63;
+const unsigned kRegCodeMask = 0x1f;
+
+const unsigned kAddressTagOffset = 56;
+const unsigned kAddressTagWidth = 8;
+const uint64_t kAddressTagMask =
+ ((UINT64_C(1) << kAddressTagWidth) - 1) << kAddressTagOffset;
+VIXL_STATIC_ASSERT(kAddressTagMask == UINT64_C(0xff00000000000000));
+
+// AArch64 floating-point specifics. These match IEEE-754.
+const unsigned kDoubleMantissaBits = 52;
+const unsigned kDoubleExponentBits = 11;
+const unsigned kFloatMantissaBits = 23;
+const unsigned kFloatExponentBits = 8;
+const unsigned kFloat16MantissaBits = 10;
+const unsigned kFloat16ExponentBits = 5;
+
+// Floating-point infinity values.
+extern const float16 kFP16PositiveInfinity;
+extern const float16 kFP16NegativeInfinity;
+extern const float kFP32PositiveInfinity;
+extern const float kFP32NegativeInfinity;
+extern const double kFP64PositiveInfinity;
+extern const double kFP64NegativeInfinity;
+
+// The default NaN values (for FPCR.DN=1).
+extern const float16 kFP16DefaultNaN;
+extern const float kFP32DefaultNaN;
+extern const double kFP64DefaultNaN;
+
+unsigned CalcLSDataSize(LoadStoreOp op);
+unsigned CalcLSPairDataSize(LoadStorePairOp op);
+
+enum ImmBranchType {
+ UnknownBranchType = 0,
+ CondBranchType = 1,
+ UncondBranchType = 2,
+ CompareBranchType = 3,
+ TestBranchType = 4
+};
+
+enum AddrMode {
+ Offset,
+ PreIndex,
+ PostIndex
+};
+
+enum FPRounding {
+ // The first four values are encodable directly by FPCR<RMode>.
+ FPTieEven = 0x0,
+ FPPositiveInfinity = 0x1,
+ FPNegativeInfinity = 0x2,
+ FPZero = 0x3,
+
+ // The final rounding modes are only available when explicitly specified by
+ // the instruction (such as with fcvta). It cannot be set in FPCR.
+ FPTieAway,
+ FPRoundOdd
+};
+
+enum Reg31Mode {
+ Reg31IsStackPointer,
+ Reg31IsZeroRegister
+};
+
+// Instructions. ---------------------------------------------------------------
+
+class Instruction {
+ public:
+ Instr InstructionBits() const {
+ return *(reinterpret_cast<const Instr*>(this));
+ }
+
+ void SetInstructionBits(Instr new_instr) {
+ *(reinterpret_cast<Instr*>(this)) = new_instr;
+ }
+
+ int Bit(int pos) const {
+ return (InstructionBits() >> pos) & 1;
+ }
+
+ uint32_t Bits(int msb, int lsb) const {
+ return unsigned_bitextract_32(msb, lsb, InstructionBits());
+ }
+
+ int32_t SignedBits(int msb, int lsb) const {
+ int32_t bits = *(reinterpret_cast<const int32_t*>(this));
+ return signed_bitextract_32(msb, lsb, bits);
+ }
+
+ Instr Mask(uint32_t mask) const {
+ return InstructionBits() & mask;
+ }
+
+ #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
+ int32_t Name() const { return Func(HighBit, LowBit); }
+ INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
+ #undef DEFINE_GETTER
+
+ // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
+ // formed from ImmPCRelLo and ImmPCRelHi.
+ int ImmPCRel() const {
+ int offset =
+ static_cast<int>((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
+ int width = ImmPCRelLo_width + ImmPCRelHi_width;
+ return signed_bitextract_32(width - 1, 0, offset);
+ }
+
+ uint64_t ImmLogical() const;
+ unsigned ImmNEONabcdefgh() const;
+ float ImmFP32() const;
+ double ImmFP64() const;
+ float ImmNEONFP32() const;
+ double ImmNEONFP64() const;
+
+ unsigned SizeLS() const {
+ return CalcLSDataSize(static_cast<LoadStoreOp>(Mask(LoadStoreMask)));
+ }
+
+ unsigned SizeLSPair() const {
+ return CalcLSPairDataSize(
+ static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
+ }
+
+ int NEONLSIndex(int access_size_shift) const {
+ int64_t q = NEONQ();
+ int64_t s = NEONS();
+ int64_t size = NEONLSSize();
+ int64_t index = (q << 3) | (s << 2) | size;
+ return static_cast<int>(index >> access_size_shift);
+ }
+
+ // Helpers.
+ bool IsCondBranchImm() const {
+ return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
+ }
+
+ bool IsUncondBranchImm() const {
+ return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
+ }
+
+ bool IsCompareBranch() const {
+ return Mask(CompareBranchFMask) == CompareBranchFixed;
+ }
+
+ bool IsTestBranch() const {
+ return Mask(TestBranchFMask) == TestBranchFixed;
+ }
+
+ bool IsImmBranch() const {
+ return BranchType() != UnknownBranchType;
+ }
+
+ bool IsPCRelAddressing() const {
+ return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
+ }
+
+ bool IsLogicalImmediate() const {
+ return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
+ }
+
+ bool IsAddSubImmediate() const {
+ return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
+ }
+
+ bool IsAddSubExtended() const {
+ return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
+ }
+
+ bool IsLoadOrStore() const {
+ return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
+ }
+
+ bool IsLoad() const;
+ bool IsStore() const;
+
+ bool IsLoadLiteral() const {
+ // This includes PRFM_lit.
+ return Mask(LoadLiteralFMask) == LoadLiteralFixed;
+ }
+
+ bool IsMovn() const {
+ return (Mask(MoveWideImmediateMask) == MOVN_x) ||
+ (Mask(MoveWideImmediateMask) == MOVN_w);
+ }
+
+ static int ImmBranchRangeBitwidth(ImmBranchType branch_type);
+ static int32_t ImmBranchForwardRange(ImmBranchType branch_type);
+ static bool IsValidImmPCOffset(ImmBranchType branch_type, int64_t offset);
+
+ // Indicate whether Rd can be the stack pointer or the zero register. This
+ // does not check that the instruction actually has an Rd field.
+ Reg31Mode RdMode() const {
+ // The following instructions use sp or wsp as Rd:
+ // Add/sub (immediate) when not setting the flags.
+ // Add/sub (extended) when not setting the flags.
+ // Logical (immediate) when not setting the flags.
+ // Otherwise, r31 is the zero register.
+ if (IsAddSubImmediate() || IsAddSubExtended()) {
+ if (Mask(AddSubSetFlagsBit)) {
+ return Reg31IsZeroRegister;
+ } else {
+ return Reg31IsStackPointer;
+ }
+ }
+ if (IsLogicalImmediate()) {
+ // Of the logical (immediate) instructions, only ANDS (and its aliases)
+ // can set the flags. The others can all write into sp.
+ // Note that some logical operations are not available to
+ // immediate-operand instructions, so we have to combine two masks here.
+ if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
+ return Reg31IsZeroRegister;
+ } else {
+ return Reg31IsStackPointer;
+ }
+ }
+ return Reg31IsZeroRegister;
+ }
+
+ // Indicate whether Rn can be the stack pointer or the zero register. This
+ // does not check that the instruction actually has an Rn field.
+ Reg31Mode RnMode() const {
+ // The following instructions use sp or wsp as Rn:
+ // All loads and stores.
+ // Add/sub (immediate).
+ // Add/sub (extended).
+ // Otherwise, r31 is the zero register.
+ if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
+ return Reg31IsStackPointer;
+ }
+ return Reg31IsZeroRegister;
+ }
+
+ ImmBranchType BranchType() const {
+ if (IsCondBranchImm()) {
+ return CondBranchType;
+ } else if (IsUncondBranchImm()) {
+ return UncondBranchType;
+ } else if (IsCompareBranch()) {
+ return CompareBranchType;
+ } else if (IsTestBranch()) {
+ return TestBranchType;
+ } else {
+ return UnknownBranchType;
+ }
+ }
+
+ // Find the target of this instruction. 'this' may be a branch or a
+ // PC-relative addressing instruction.
+ const Instruction* ImmPCOffsetTarget() const;
+
+ // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
+ // a PC-relative addressing instruction.
+ void SetImmPCOffsetTarget(const Instruction* target);
+ // Patch a literal load instruction to load from 'source'.
+ void SetImmLLiteral(const Instruction* source);
+
+ // The range of a load literal instruction, expressed as 'instr +- range'.
+ // The range is actually the 'positive' range; the branch instruction can
+ // target [instr - range - kInstructionSize, instr + range].
+ static const int kLoadLiteralImmBitwidth = 19;
+ static const int kLoadLiteralRange =
+ (1 << kLoadLiteralImmBitwidth) / 2 - kInstructionSize;
+
+ // Calculate the address of a literal referred to by a load-literal
+ // instruction, and return it as the specified type.
+ //
+ // The literal itself is safely mutable only if the backing buffer is safely
+ // mutable.
+ template <typename T>
+ T LiteralAddress() const {
+ uint64_t base_raw = reinterpret_cast<uint64_t>(this);
+ int64_t offset = ImmLLiteral() << kLiteralEntrySizeLog2;
+ uint64_t address_raw = base_raw + offset;
+
+ // Cast the address using a C-style cast. A reinterpret_cast would be
+ // appropriate, but it can't cast one integral type to another.
+ T address = (T)(address_raw);
+
+ // Assert that the address can be represented by the specified type.
+ VIXL_ASSERT((uint64_t)(address) == address_raw);
+
+ return address;
+ }
+
+ uint32_t Literal32() const {
+ uint32_t literal;
+ memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
+ return literal;
+ }
+
+ uint64_t Literal64() const {
+ uint64_t literal;
+ memcpy(&literal, LiteralAddress<const void*>(), sizeof(literal));
+ return literal;
+ }
+
+ float LiteralFP32() const {
+ return rawbits_to_float(Literal32());
+ }
+
+ double LiteralFP64() const {
+ return rawbits_to_double(Literal64());
+ }
+
+ const Instruction* NextInstruction() const {
+ return this + kInstructionSize;
+ }
+
+ const Instruction* InstructionAtOffset(int64_t offset) const {
+ VIXL_ASSERT(IsWordAligned(this + offset));
+ return this + offset;
+ }
+
+ template<typename T> static Instruction* Cast(T src) {
+ return reinterpret_cast<Instruction*>(src);
+ }
+
+ template<typename T> static const Instruction* CastConst(T src) {
+ return reinterpret_cast<const Instruction*>(src);
+ }
+
+ private:
+ int ImmBranch() const;
+
+ static float Imm8ToFP32(uint32_t imm8);
+ static double Imm8ToFP64(uint32_t imm8);
+
+ void SetPCRelImmTarget(const Instruction* target);
+ void SetBranchImmTarget(const Instruction* target);
+};
+
+
+// Functions for handling NEON vector format information.
+enum VectorFormat {
+ kFormatUndefined = 0xffffffff,
+ kFormat8B = NEON_8B,
+ kFormat16B = NEON_16B,
+ kFormat4H = NEON_4H,
+ kFormat8H = NEON_8H,
+ kFormat2S = NEON_2S,
+ kFormat4S = NEON_4S,
+ kFormat1D = NEON_1D,
+ kFormat2D = NEON_2D,
+
+ // Scalar formats. We add the scalar bit to distinguish between scalar and
+ // vector enumerations; the bit is always set in the encoding of scalar ops
+ // and always clear for vector ops. Although kFormatD and kFormat1D appear
+ // to be the same, their meaning is subtly different. The first is a scalar
+ // operation, the second a vector operation that only affects one lane.
+ kFormatB = NEON_B | NEONScalar,
+ kFormatH = NEON_H | NEONScalar,
+ kFormatS = NEON_S | NEONScalar,
+ kFormatD = NEON_D | NEONScalar
+};
+
+VectorFormat VectorFormatHalfWidth(const VectorFormat vform);
+VectorFormat VectorFormatDoubleWidth(const VectorFormat vform);
+VectorFormat VectorFormatDoubleLanes(const VectorFormat vform);
+VectorFormat VectorFormatHalfLanes(const VectorFormat vform);
+VectorFormat ScalarFormatFromLaneSize(int lanesize);
+VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform);
+VectorFormat VectorFormatFillQ(const VectorFormat vform);
+unsigned RegisterSizeInBitsFromFormat(VectorFormat vform);
+unsigned RegisterSizeInBytesFromFormat(VectorFormat vform);
+// TODO: Make the return types of these functions consistent.
+unsigned LaneSizeInBitsFromFormat(VectorFormat vform);
+int LaneSizeInBytesFromFormat(VectorFormat vform);
+int LaneSizeInBytesLog2FromFormat(VectorFormat vform);
+int LaneCountFromFormat(VectorFormat vform);
+int MaxLaneCountFromFormat(VectorFormat vform);
+bool IsVectorFormat(VectorFormat vform);
+int64_t MaxIntFromFormat(VectorFormat vform);
+int64_t MinIntFromFormat(VectorFormat vform);
+uint64_t MaxUintFromFormat(VectorFormat vform);
+
+
+enum NEONFormat {
+ NF_UNDEF = 0,
+ NF_8B = 1,
+ NF_16B = 2,
+ NF_4H = 3,
+ NF_8H = 4,
+ NF_2S = 5,
+ NF_4S = 6,
+ NF_1D = 7,
+ NF_2D = 8,
+ NF_B = 9,
+ NF_H = 10,
+ NF_S = 11,
+ NF_D = 12
+};
+
+static const unsigned kNEONFormatMaxBits = 6;
+
+struct NEONFormatMap {
+ // The bit positions in the instruction to consider.
+ uint8_t bits[kNEONFormatMaxBits];
+
+ // Mapping from concatenated bits to format.
+ NEONFormat map[1 << kNEONFormatMaxBits];
+};
+
+class NEONFormatDecoder {
+ public:
+ enum SubstitutionMode {
+ kPlaceholder,
+ kFormat
+ };
+
+ // Construct a format decoder with increasingly specific format maps for each
+ // subsitution. If no format map is specified, the default is the integer
+ // format map.
+ explicit NEONFormatDecoder(const Instruction* instr) {
+ instrbits_ = instr->InstructionBits();
+ SetFormatMaps(IntegerFormatMap());
+ }
+ NEONFormatDecoder(const Instruction* instr,
+ const NEONFormatMap* format) {
+ instrbits_ = instr->InstructionBits();
+ SetFormatMaps(format);
+ }
+ NEONFormatDecoder(const Instruction* instr,
+ const NEONFormatMap* format0,
+ const NEONFormatMap* format1) {
+ instrbits_ = instr->InstructionBits();
+ SetFormatMaps(format0, format1);
+ }
+ NEONFormatDecoder(const Instruction* instr,
+ const NEONFormatMap* format0,
+ const NEONFormatMap* format1,
+ const NEONFormatMap* format2) {
+ instrbits_ = instr->InstructionBits();
+ SetFormatMaps(format0, format1, format2);
+ }
+
+ // Set the format mapping for all or individual substitutions.
+ void SetFormatMaps(const NEONFormatMap* format0,
+ const NEONFormatMap* format1 = NULL,
+ const NEONFormatMap* format2 = NULL) {
+ VIXL_ASSERT(format0 != NULL);
+ formats_[0] = format0;
+ formats_[1] = (format1 == NULL) ? formats_[0] : format1;
+ formats_[2] = (format2 == NULL) ? formats_[1] : format2;
+ }
+ void SetFormatMap(unsigned index, const NEONFormatMap* format) {
+ VIXL_ASSERT(index <= (sizeof(formats_) / sizeof(formats_[0])));
+ VIXL_ASSERT(format != NULL);
+ formats_[index] = format;
+ }
+
+ // Substitute %s in the input string with the placeholder string for each
+ // register, ie. "'B", "'H", etc.
+ const char* SubstitutePlaceholders(const char* string) {
+ return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder);
+ }
+
+ // Substitute %s in the input string with a new string based on the
+ // substitution mode.
+ const char* Substitute(const char* string,
+ SubstitutionMode mode0 = kFormat,
+ SubstitutionMode mode1 = kFormat,
+ SubstitutionMode mode2 = kFormat) {
+ snprintf(form_buffer_, sizeof(form_buffer_), string,
+ GetSubstitute(0, mode0),
+ GetSubstitute(1, mode1),
+ GetSubstitute(2, mode2));
+ return form_buffer_;
+ }
+
+ // Append a "2" to a mnemonic string based of the state of the Q bit.
+ const char* Mnemonic(const char* mnemonic) {
+ if ((instrbits_ & NEON_Q) != 0) {
+ snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
+ return mne_buffer_;
+ }
+ return mnemonic;
+ }
+
+ VectorFormat GetVectorFormat(int format_index = 0) {
+ return GetVectorFormat(formats_[format_index]);
+ }
+
+ VectorFormat GetVectorFormat(const NEONFormatMap* format_map) {
+ static const VectorFormat vform[] = {
+ kFormatUndefined,
+ kFormat8B, kFormat16B, kFormat4H, kFormat8H,
+ kFormat2S, kFormat4S, kFormat1D, kFormat2D,
+ kFormatB, kFormatH, kFormatS, kFormatD
+ };
+ VIXL_ASSERT(GetNEONFormat(format_map) < (sizeof(vform) / sizeof(vform[0])));
+ return vform[GetNEONFormat(format_map)];
+ }
+
+ // Built in mappings for common cases.
+
+ // The integer format map uses three bits (Q, size<1:0>) to encode the
+ // "standard" set of NEON integer vector formats.
+ static const NEONFormatMap* IntegerFormatMap() {
+ static const NEONFormatMap map = {
+ {23, 22, 30},
+ {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_UNDEF, NF_2D}
+ };
+ return &map;
+ }
+
+ // The long integer format map uses two bits (size<1:0>) to encode the
+ // long set of NEON integer vector formats. These are used in narrow, wide
+ // and long operations.
+ static const NEONFormatMap* LongIntegerFormatMap() {
+ static const NEONFormatMap map = {
+ {23, 22}, {NF_8H, NF_4S, NF_2D}
+ };
+ return &map;
+ }
+
+ // The FP format map uses two bits (Q, size<0>) to encode the NEON FP vector
+ // formats: NF_2S, NF_4S, NF_2D.
+ static const NEONFormatMap* FPFormatMap() {
+ // The FP format map assumes two bits (Q, size<0>) are used to encode the
+ // NEON FP vector formats: NF_2S, NF_4S, NF_2D.
+ static const NEONFormatMap map = {
+ {22, 30}, {NF_2S, NF_4S, NF_UNDEF, NF_2D}
+ };
+ return &map;
+ }
+
+ // The load/store format map uses three bits (Q, 11, 10) to encode the
+ // set of NEON vector formats.
+ static const NEONFormatMap* LoadStoreFormatMap() {
+ static const NEONFormatMap map = {
+ {11, 10, 30},
+ {NF_8B, NF_16B, NF_4H, NF_8H, NF_2S, NF_4S, NF_1D, NF_2D}
+ };
+ return &map;
+ }
+
+ // The logical format map uses one bit (Q) to encode the NEON vector format:
+ // NF_8B, NF_16B.
+ static const NEONFormatMap* LogicalFormatMap() {
+ static const NEONFormatMap map = {
+ {30}, {NF_8B, NF_16B}
+ };
+ return &map;
+ }
+
+ // The triangular format map uses between two and five bits to encode the NEON
+ // vector format:
+ // xxx10->8B, xxx11->16B, xx100->4H, xx101->8H
+ // x1000->2S, x1001->4S, 10001->2D, all others undefined.
+ static const NEONFormatMap* TriangularFormatMap() {
+ static const NEONFormatMap map = {
+ {19, 18, 17, 16, 30},
+ {NF_UNDEF, NF_UNDEF, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S,
+ NF_4S, NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_UNDEF, NF_2D,
+ NF_8B, NF_16B, NF_4H, NF_8H, NF_8B, NF_16B, NF_2S, NF_4S, NF_8B, NF_16B,
+ NF_4H, NF_8H, NF_8B, NF_16B}
+ };
+ return &map;
+ }
+
+ // The scalar format map uses two bits (size<1:0>) to encode the NEON scalar
+ // formats: NF_B, NF_H, NF_S, NF_D.
+ static const NEONFormatMap* ScalarFormatMap() {
+ static const NEONFormatMap map = {
+ {23, 22}, {NF_B, NF_H, NF_S, NF_D}
+ };
+ return &map;
+ }
+
+ // The long scalar format map uses two bits (size<1:0>) to encode the longer
+ // NEON scalar formats: NF_H, NF_S, NF_D.
+ static const NEONFormatMap* LongScalarFormatMap() {
+ static const NEONFormatMap map = {
+ {23, 22}, {NF_H, NF_S, NF_D}
+ };
+ return &map;
+ }
+
+ // The FP scalar format map assumes one bit (size<0>) is used to encode the
+ // NEON FP scalar formats: NF_S, NF_D.
+ static const NEONFormatMap* FPScalarFormatMap() {
+ static const NEONFormatMap map = {
+ {22}, {NF_S, NF_D}
+ };
+ return &map;
+ }
+
+ // The triangular scalar format map uses between one and four bits to encode
+ // the NEON FP scalar formats:
+ // xxx1->B, xx10->H, x100->S, 1000->D, all others undefined.
+ static const NEONFormatMap* TriangularScalarFormatMap() {
+ static const NEONFormatMap map = {
+ {19, 18, 17, 16},
+ {NF_UNDEF, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B,
+ NF_D, NF_B, NF_H, NF_B, NF_S, NF_B, NF_H, NF_B}
+ };
+ return &map;
+ }
+
+ private:
+ // Get a pointer to a string that represents the format or placeholder for
+ // the specified substitution index, based on the format map and instruction.
+ const char* GetSubstitute(int index, SubstitutionMode mode) {
+ if (mode == kFormat) {
+ return NEONFormatAsString(GetNEONFormat(formats_[index]));
+ }
+ VIXL_ASSERT(mode == kPlaceholder);
+ return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
+ }
+
+ // Get the NEONFormat enumerated value for bits obtained from the
+ // instruction based on the specified format mapping.
+ NEONFormat GetNEONFormat(const NEONFormatMap* format_map) {
+ return format_map->map[PickBits(format_map->bits)];
+ }
+
+ // Convert a NEONFormat into a string.
+ static const char* NEONFormatAsString(NEONFormat format) {
+ static const char* formats[] = {
+ "undefined",
+ "8b", "16b", "4h", "8h", "2s", "4s", "1d", "2d",
+ "b", "h", "s", "d"
+ };
+ VIXL_ASSERT(format < (sizeof(formats) / sizeof(formats[0])));
+ return formats[format];
+ }
+
+ // Convert a NEONFormat into a register placeholder string.
+ static const char* NEONFormatAsPlaceholder(NEONFormat format) {
+ VIXL_ASSERT((format == NF_B) || (format == NF_H) ||
+ (format == NF_S) || (format == NF_D) ||
+ (format == NF_UNDEF));
+ static const char* formats[] = {
+ "undefined",
+ "undefined", "undefined", "undefined", "undefined",
+ "undefined", "undefined", "undefined", "undefined",
+ "'B", "'H", "'S", "'D"
+ };
+ return formats[format];
+ }
+
+ // Select bits from instrbits_ defined by the bits array, concatenate them,
+ // and return the value.
+ uint8_t PickBits(const uint8_t bits[]) {
+ uint8_t result = 0;
+ for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
+ if (bits[b] == 0) break;
+ result <<= 1;
+ result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
+ }
+ return result;
+ }
+
+ Instr instrbits_;
+ const NEONFormatMap* formats_[3];
+ char form_buffer_[64];
+ char mne_buffer_[16];
+};
+} // namespace vixl
+
+#endif // VIXL_A64_INSTRUCTIONS_A64_H_
diff --git a/disas/libvixl/code-buffer.h b/disas/libvixl/vixl/code-buffer.h
index da6233dd80..f93ebb6b82 100644
--- a/disas/libvixl/code-buffer.h
+++ b/disas/libvixl/vixl/code-buffer.h
@@ -28,7 +28,7 @@
#define VIXL_CODE_BUFFER_H
#include <string.h>
-#include "globals.h"
+#include "vixl/globals.h"
namespace vixl {
diff --git a/disas/libvixl/utils.cc b/disas/libvixl/vixl/compiler-intrinsics.cc
index 80b132a11e..fd551faeb1 100644
--- a/disas/libvixl/utils.cc
+++ b/disas/libvixl/vixl/compiler-intrinsics.cc
@@ -1,4 +1,4 @@
-// Copyright 2013, ARM Limited
+// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@@ -24,53 +24,13 @@
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-#include "utils.h"
-#include <stdio.h>
+#include "compiler-intrinsics.h"
namespace vixl {
-uint32_t float_to_rawbits(float value) {
- uint32_t bits = 0;
- memcpy(&bits, &value, 4);
- return bits;
-}
-
-
-uint64_t double_to_rawbits(double value) {
- uint64_t bits = 0;
- memcpy(&bits, &value, 8);
- return bits;
-}
-
-
-float rawbits_to_float(uint32_t bits) {
- float value = 0.0;
- memcpy(&value, &bits, 4);
- return value;
-}
-
-
-double rawbits_to_double(uint64_t bits) {
- double value = 0.0;
- memcpy(&value, &bits, 8);
- return value;
-}
-
-int CountLeadingZeros(uint64_t value, int width) {
- VIXL_ASSERT((width == 32) || (width == 64));
- int count = 0;
- uint64_t bit_test = UINT64_C(1) << (width - 1);
- while ((count < width) && ((bit_test & value) == 0)) {
- count++;
- bit_test >>= 1;
- }
- return count;
-}
-
-
-int CountLeadingSignBits(int64_t value, int width) {
- VIXL_ASSERT((width == 32) || (width == 64));
+int CountLeadingSignBitsFallBack(int64_t value, int width) {
+ VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
if (value >= 0) {
return CountLeadingZeros(value, width) - 1;
} else {
@@ -79,23 +39,46 @@ int CountLeadingSignBits(int64_t value, int width) {
}
-int CountTrailingZeros(uint64_t value, int width) {
- VIXL_ASSERT((width == 32) || (width == 64));
+int CountLeadingZerosFallBack(uint64_t value, int width) {
+ VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
+ if (value == 0) {
+ return width;
+ }
int count = 0;
- while ((count < width) && (((value >> count) & 1) == 0)) {
- count++;
+ value = value << (64 - width);
+ if ((value & UINT64_C(0xffffffff00000000)) == 0) {
+ count += 32;
+ value = value << 32;
}
+ if ((value & UINT64_C(0xffff000000000000)) == 0) {
+ count += 16;
+ value = value << 16;
+ }
+ if ((value & UINT64_C(0xff00000000000000)) == 0) {
+ count += 8;
+ value = value << 8;
+ }
+ if ((value & UINT64_C(0xf000000000000000)) == 0) {
+ count += 4;
+ value = value << 4;
+ }
+ if ((value & UINT64_C(0xc000000000000000)) == 0) {
+ count += 2;
+ value = value << 2;
+ }
+ if ((value & UINT64_C(0x8000000000000000)) == 0) {
+ count += 1;
+ }
+ count += (value == 0);
return count;
}
-int CountSetBits(uint64_t value, int width) {
- // TODO: Other widths could be added here, as the implementation already
- // supports them.
- VIXL_ASSERT((width == 32) || (width == 64));
+int CountSetBitsFallBack(uint64_t value, int width) {
+ VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
// Mask out unused bits to ensure that they are not counted.
- value &= (UINT64_C(0xffffffffffffffff) >> (64-width));
+ value &= (UINT64_C(0xffffffffffffffff) >> (64 - width));
// Add up the set bits.
// The algorithm works by adding pairs of bit fields together iteratively,
@@ -122,30 +105,40 @@ int CountSetBits(uint64_t value, int width) {
value = ((value >> shift) & kMasks[i]) + (value & kMasks[i]);
}
- return value;
-}
-
-
-uint64_t LowestSetBit(uint64_t value) {
- return value & -value;
-}
-
-
-bool IsPowerOf2(int64_t value) {
- return (value != 0) && ((value & (value - 1)) == 0);
+ return static_cast<int>(value);
}
-unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size) {
- VIXL_ASSERT((reg_size % 8) == 0);
+int CountTrailingZerosFallBack(uint64_t value, int width) {
+ VIXL_ASSERT(IsPowerOf2(width) && (width <= 64));
int count = 0;
- for (unsigned i = 0; i < (reg_size / 16); i++) {
- if ((imm & 0xffff) == 0) {
- count++;
- }
- imm >>= 16;
+ value = value << (64 - width);
+ if ((value & UINT64_C(0xffffffff)) == 0) {
+ count += 32;
+ value = value >> 32;
}
- return count;
+ if ((value & 0xffff) == 0) {
+ count += 16;
+ value = value >> 16;
+ }
+ if ((value & 0xff) == 0) {
+ count += 8;
+ value = value >> 8;
+ }
+ if ((value & 0xf) == 0) {
+ count += 4;
+ value = value >> 4;
+ }
+ if ((value & 0x3) == 0) {
+ count += 2;
+ value = value >> 2;
+ }
+ if ((value & 0x1) == 0) {
+ count += 1;
+ }
+ count += (value == 0);
+ return count - (64 - width);
}
+
} // namespace vixl
diff --git a/disas/libvixl/vixl/compiler-intrinsics.h b/disas/libvixl/vixl/compiler-intrinsics.h
new file mode 100644
index 0000000000..9431beddb9
--- /dev/null
+++ b/disas/libvixl/vixl/compiler-intrinsics.h
@@ -0,0 +1,155 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+
+#ifndef VIXL_COMPILER_INTRINSICS_H
+#define VIXL_COMPILER_INTRINSICS_H
+
+#include "globals.h"
+
+namespace vixl {
+
+// Helper to check whether the version of GCC used is greater than the specified
+// requirement.
+#define MAJOR 1000000
+#define MINOR 1000
+#if defined(__GNUC__) && defined(__GNUC_MINOR__) && defined(__GNUC_PATCHLEVEL__)
+#define GCC_VERSION_OR_NEWER(major, minor, patchlevel) \
+ ((__GNUC__ * MAJOR + __GNUC_MINOR__ * MINOR + __GNUC_PATCHLEVEL__) >= \
+ ((major) * MAJOR + (minor) * MINOR + (patchlevel)))
+#elif defined(__GNUC__) && defined(__GNUC_MINOR__)
+#define GCC_VERSION_OR_NEWER(major, minor, patchlevel) \
+ ((__GNUC__ * MAJOR + __GNUC_MINOR__ * MINOR) >= \
+ ((major) * MAJOR + (minor) * MINOR + (patchlevel)))
+#else
+#define GCC_VERSION_OR_NEWER(major, minor, patchlevel) 0
+#endif
+
+
+#if defined(__clang__) && !defined(VIXL_NO_COMPILER_BUILTINS)
+
+#define COMPILER_HAS_BUILTIN_CLRSB (__has_builtin(__builtin_clrsb))
+#define COMPILER_HAS_BUILTIN_CLZ (__has_builtin(__builtin_clz))
+#define COMPILER_HAS_BUILTIN_CTZ (__has_builtin(__builtin_ctz))
+#define COMPILER_HAS_BUILTIN_FFS (__has_builtin(__builtin_ffs))
+#define COMPILER_HAS_BUILTIN_POPCOUNT (__has_builtin(__builtin_popcount))
+
+#elif defined(__GNUC__) && !defined(VIXL_NO_COMPILER_BUILTINS)
+// The documentation for these builtins is available at:
+// https://gcc.gnu.org/onlinedocs/gcc-$MAJOR.$MINOR.$PATCHLEVEL/gcc//Other-Builtins.html
+
+# define COMPILER_HAS_BUILTIN_CLRSB (GCC_VERSION_OR_NEWER(4, 7, 0))
+# define COMPILER_HAS_BUILTIN_CLZ (GCC_VERSION_OR_NEWER(3, 4, 0))
+# define COMPILER_HAS_BUILTIN_CTZ (GCC_VERSION_OR_NEWER(3, 4, 0))
+# define COMPILER_HAS_BUILTIN_FFS (GCC_VERSION_OR_NEWER(3, 4, 0))
+# define COMPILER_HAS_BUILTIN_POPCOUNT (GCC_VERSION_OR_NEWER(3, 4, 0))
+
+#else
+// One can define VIXL_NO_COMPILER_BUILTINS to force using the manually
+// implemented C++ methods.
+
+#define COMPILER_HAS_BUILTIN_BSWAP false
+#define COMPILER_HAS_BUILTIN_CLRSB false
+#define COMPILER_HAS_BUILTIN_CLZ false
+#define COMPILER_HAS_BUILTIN_CTZ false
+#define COMPILER_HAS_BUILTIN_FFS false
+#define COMPILER_HAS_BUILTIN_POPCOUNT false
+
+#endif
+
+
+template<typename V>
+inline bool IsPowerOf2(V value) {
+ return (value != 0) && ((value & (value - 1)) == 0);
+}
+
+
+// Declaration of fallback functions.
+int CountLeadingSignBitsFallBack(int64_t value, int width);
+int CountLeadingZerosFallBack(uint64_t value, int width);
+int CountSetBitsFallBack(uint64_t value, int width);
+int CountTrailingZerosFallBack(uint64_t value, int width);
+
+
+// Implementation of intrinsics functions.
+// TODO: The implementations could be improved for sizes different from 32bit
+// and 64bit: we could mask the values and call the appropriate builtin.
+
+template<typename V>
+inline int CountLeadingSignBits(V value, int width = (sizeof(V) * 8)) {
+#if COMPILER_HAS_BUILTIN_CLRSB
+ if (width == 32) {
+ return __builtin_clrsb(value);
+ } else if (width == 64) {
+ return __builtin_clrsbll(value);
+ }
+#endif
+ return CountLeadingSignBitsFallBack(value, width);
+}
+
+
+template<typename V>
+inline int CountLeadingZeros(V value, int width = (sizeof(V) * 8)) {
+#if COMPILER_HAS_BUILTIN_CLZ
+ if (width == 32) {
+ return (value == 0) ? 32 : __builtin_clz(static_cast<unsigned>(value));
+ } else if (width == 64) {
+ return (value == 0) ? 64 : __builtin_clzll(value);
+ }
+#endif
+ return CountLeadingZerosFallBack(value, width);
+}
+
+
+template<typename V>
+inline int CountSetBits(V value, int width = (sizeof(V) * 8)) {
+#if COMPILER_HAS_BUILTIN_POPCOUNT
+ if (width == 32) {
+ return __builtin_popcount(static_cast<unsigned>(value));
+ } else if (width == 64) {
+ return __builtin_popcountll(value);
+ }
+#endif
+ return CountSetBitsFallBack(value, width);
+}
+
+
+template<typename V>
+inline int CountTrailingZeros(V value, int width = (sizeof(V) * 8)) {
+#if COMPILER_HAS_BUILTIN_CTZ
+ if (width == 32) {
+ return (value == 0) ? 32 : __builtin_ctz(static_cast<unsigned>(value));
+ } else if (width == 64) {
+ return (value == 0) ? 64 : __builtin_ctzll(value);
+ }
+#endif
+ return CountTrailingZerosFallBack(value, width);
+}
+
+} // namespace vixl
+
+#endif // VIXL_COMPILER_INTRINSICS_H
+
diff --git a/disas/libvixl/globals.h b/disas/libvixl/vixl/globals.h
index 0c2493105d..61dc9f7f7e 100644
--- a/disas/libvixl/globals.h
+++ b/disas/libvixl/vixl/globals.h
@@ -1,4 +1,4 @@
-// Copyright 2013, ARM Limited
+// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@@ -49,20 +49,26 @@
#include <stdint.h>
#include <stdlib.h>
#include <stddef.h>
-#include "platform.h"
+#include "vixl/platform.h"
typedef uint8_t byte;
+// Type for half-precision (16 bit) floating point numbers.
+typedef uint16_t float16;
+
const int KBytes = 1024;
const int MBytes = 1024 * KBytes;
-#define VIXL_ABORT() printf("in %s, line %i", __FILE__, __LINE__); abort()
+#define VIXL_ABORT() \
+ do { printf("in %s, line %i", __FILE__, __LINE__); abort(); } while (false)
#ifdef VIXL_DEBUG
#define VIXL_ASSERT(condition) assert(condition)
#define VIXL_CHECK(condition) VIXL_ASSERT(condition)
- #define VIXL_UNIMPLEMENTED() printf("UNIMPLEMENTED\t"); VIXL_ABORT()
- #define VIXL_UNREACHABLE() printf("UNREACHABLE\t"); VIXL_ABORT()
+ #define VIXL_UNIMPLEMENTED() \
+ do { fprintf(stderr, "UNIMPLEMENTED\t"); VIXL_ABORT(); } while (false)
+ #define VIXL_UNREACHABLE() \
+ do { fprintf(stderr, "UNREACHABLE\t"); VIXL_ABORT(); } while (false)
#else
#define VIXL_ASSERT(condition) ((void) 0)
#define VIXL_CHECK(condition) assert(condition)
@@ -76,10 +82,70 @@ const int MBytes = 1024 * KBytes;
#define VIXL_STATIC_ASSERT_LINE(line, condition) \
typedef char VIXL_CONCAT(STATIC_ASSERT_LINE_, line)[(condition) ? 1 : -1] \
__attribute__((unused))
-#define VIXL_STATIC_ASSERT(condition) VIXL_STATIC_ASSERT_LINE(__LINE__, condition) //NOLINT
+#define VIXL_STATIC_ASSERT(condition) \
+ VIXL_STATIC_ASSERT_LINE(__LINE__, condition)
+
+template <typename T1>
+inline void USE(T1) {}
+
+template <typename T1, typename T2>
+inline void USE(T1, T2) {}
+
+template <typename T1, typename T2, typename T3>
+inline void USE(T1, T2, T3) {}
+
+template <typename T1, typename T2, typename T3, typename T4>
+inline void USE(T1, T2, T3, T4) {}
+
+#define VIXL_ALIGNMENT_EXCEPTION() \
+ do { fprintf(stderr, "ALIGNMENT EXCEPTION\t"); VIXL_ABORT(); } while (0)
+
+// The clang::fallthrough attribute is used along with the Wimplicit-fallthrough
+// argument to annotate intentional fall-through between switch labels.
+// For more information please refer to:
+// http://clang.llvm.org/docs/AttributeReference.html#fallthrough-clang-fallthrough
+#ifndef __has_warning
+ #define __has_warning(x) 0
+#endif
+
+// Note: This option is only available for Clang. And will only be enabled for
+// C++11(201103L).
+#if __has_warning("-Wimplicit-fallthrough") && __cplusplus >= 201103L
+ #define VIXL_FALLTHROUGH() [[clang::fallthrough]] //NOLINT
+#else
+ #define VIXL_FALLTHROUGH() do {} while (0)
+#endif
+
+#if __cplusplus >= 201103L
+ #define VIXL_NO_RETURN [[noreturn]] //NOLINT
+#else
+ #define VIXL_NO_RETURN __attribute__((noreturn))
+#endif
+
+// Some functions might only be marked as "noreturn" for the DEBUG build. This
+// macro should be used for such cases (for more details see what
+// VIXL_UNREACHABLE expands to).
+#ifdef VIXL_DEBUG
+ #define VIXL_DEBUG_NO_RETURN VIXL_NO_RETURN
+#else
+ #define VIXL_DEBUG_NO_RETURN
+#endif
-template <typename T> inline void USE(T) {}
+#ifdef VIXL_INCLUDE_SIMULATOR
+#ifndef VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE
+ #define VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE 1
+#endif
+#else
+#ifndef VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE
+ #define VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE 0
+#endif
+#if VIXL_GENERATE_SIMULATOR_INSTRUCTIONS_VALUE
+ #warning "Generating Simulator instructions without Simulator support."
+#endif
+#endif
-#define VIXL_ALIGNMENT_EXCEPTION() printf("ALIGNMENT EXCEPTION\t"); VIXL_ABORT()
+#ifdef USE_SIMULATOR
+ #error "Please see the release notes for USE_SIMULATOR."
+#endif
#endif // VIXL_GLOBALS_H
diff --git a/disas/libvixl/vixl/invalset.h b/disas/libvixl/vixl/invalset.h
new file mode 100644
index 0000000000..ffdc0237b4
--- /dev/null
+++ b/disas/libvixl/vixl/invalset.h
@@ -0,0 +1,775 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_INVALSET_H_
+#define VIXL_INVALSET_H_
+
+#include <string.h>
+
+#include <algorithm>
+#include <vector>
+
+#include "vixl/globals.h"
+
+namespace vixl {
+
+// We define a custom data structure template and its iterator as `std`
+// containers do not fit the performance requirements for some of our use cases.
+//
+// The structure behaves like an iterable unordered set with special properties
+// and restrictions. "InvalSet" stands for "Invalidatable Set".
+//
+// Restrictions and requirements:
+// - Adding an element already present in the set is illegal. In debug mode,
+// this is checked at insertion time.
+// - The templated class `ElementType` must provide comparison operators so that
+// `std::sort()` can be used.
+// - A key must be available to represent invalid elements.
+// - Elements with an invalid key must compare higher or equal to any other
+// element.
+//
+// Use cases and performance considerations:
+// Our use cases present two specificities that allow us to design this
+// structure to provide fast insertion *and* fast search and deletion
+// operations:
+// - Elements are (generally) inserted in order (sorted according to their key).
+// - A key is available to mark elements as invalid (deleted).
+// The backing `std::vector` allows for fast insertions. When
+// searching for an element we ensure the elements are sorted (this is generally
+// the case) and perform a binary search. When deleting an element we do not
+// free the associated memory immediately. Instead, an element to be deleted is
+// marked with the 'invalid' key. Other methods of the container take care of
+// ignoring entries marked as invalid.
+// To avoid the overhead of the `std::vector` container when only few entries
+// are used, a number of elements are preallocated.
+
+// 'ElementType' and 'KeyType' are respectively the types of the elements and
+// their key. The structure only reclaims memory when safe to do so, if the
+// number of elements that can be reclaimed is greater than `RECLAIM_FROM` and
+// greater than `<total number of elements> / RECLAIM_FACTOR.
+#define TEMPLATE_INVALSET_P_DECL \
+ class ElementType, \
+ unsigned N_PREALLOCATED_ELEMENTS, \
+ class KeyType, \
+ KeyType INVALID_KEY, \
+ size_t RECLAIM_FROM, \
+ unsigned RECLAIM_FACTOR
+
+#define TEMPLATE_INVALSET_P_DEF \
+ElementType, N_PREALLOCATED_ELEMENTS, \
+KeyType, INVALID_KEY, RECLAIM_FROM, RECLAIM_FACTOR
+
+template<class S> class InvalSetIterator; // Forward declaration.
+
+template<TEMPLATE_INVALSET_P_DECL> class InvalSet {
+ public:
+ InvalSet();
+ ~InvalSet();
+
+ static const size_t kNPreallocatedElements = N_PREALLOCATED_ELEMENTS;
+ static const KeyType kInvalidKey = INVALID_KEY;
+
+ // It is illegal to insert an element already present in the set.
+ void insert(const ElementType& element);
+
+ // Looks for the specified element in the set and - if found - deletes it.
+ void erase(const ElementType& element);
+
+ // This indicates the number of (valid) elements stored in this set.
+ size_t size() const;
+
+ // Returns true if no elements are stored in the set.
+ // Note that this does not mean the the backing storage is empty: it can still
+ // contain invalid elements.
+ bool empty() const;
+
+ void clear();
+
+ const ElementType min_element();
+
+ // This returns the key of the minimum element in the set.
+ KeyType min_element_key();
+
+ static bool IsValid(const ElementType& element);
+ static KeyType Key(const ElementType& element);
+ static void SetKey(ElementType* element, KeyType key);
+
+ protected:
+ // Returns a pointer to the element in vector_ if it was found, or NULL
+ // otherwise.
+ ElementType* Search(const ElementType& element);
+
+ // The argument *must* point to an element stored in *this* set.
+ // This function is not allowed to move elements in the backing vector
+ // storage.
+ void EraseInternal(ElementType* element);
+
+ // The elements in the range searched must be sorted.
+ ElementType* BinarySearch(const ElementType& element,
+ ElementType* start,
+ ElementType* end) const;
+
+ // Sort the elements.
+ enum SortType {
+ // The 'hard' version guarantees that invalid elements are moved to the end
+ // of the container.
+ kHardSort,
+ // The 'soft' version only guarantees that the elements will be sorted.
+ // Invalid elements may still be present anywhere in the set.
+ kSoftSort
+ };
+ void Sort(SortType sort_type);
+
+ // Delete the elements that have an invalid key. The complexity is linear
+ // with the size of the vector.
+ void Clean();
+
+ const ElementType Front() const;
+ const ElementType Back() const;
+
+ // Delete invalid trailing elements and return the last valid element in the
+ // set.
+ const ElementType CleanBack();
+
+ // Returns a pointer to the start or end of the backing storage.
+ const ElementType* StorageBegin() const;
+ const ElementType* StorageEnd() const;
+ ElementType* StorageBegin();
+ ElementType* StorageEnd();
+
+ // Returns the index of the element within the backing storage. The element
+ // must belong to the backing storage.
+ size_t ElementIndex(const ElementType* element) const;
+
+ // Returns the element at the specified index in the backing storage.
+ const ElementType* ElementAt(size_t index) const;
+ ElementType* ElementAt(size_t index);
+
+ static const ElementType* FirstValidElement(const ElementType* from,
+ const ElementType* end);
+
+ void CacheMinElement();
+ const ElementType CachedMinElement() const;
+
+ bool ShouldReclaimMemory() const;
+ void ReclaimMemory();
+
+ bool IsUsingVector() const { return vector_ != NULL; }
+ void set_sorted(bool sorted) { sorted_ = sorted; }
+
+ // We cache some data commonly required by users to improve performance.
+ // We cannot cache pointers to elements as we do not control the backing
+ // storage.
+ bool valid_cached_min_;
+ size_t cached_min_index_; // Valid iff `valid_cached_min_` is true.
+ KeyType cached_min_key_; // Valid iff `valid_cached_min_` is true.
+
+ // Indicates whether the elements are sorted.
+ bool sorted_;
+
+ // This represents the number of (valid) elements in this set.
+ size_t size_;
+
+ // The backing storage is either the array of preallocated elements or the
+ // vector. The structure starts by using the preallocated elements, and
+ // transitions (permanently) to using the vector once more than
+ // kNPreallocatedElements are used.
+ // Elements are only invalidated when using the vector. The preallocated
+ // storage always only contains valid elements.
+ ElementType preallocated_[kNPreallocatedElements];
+ std::vector<ElementType>* vector_;
+
+#ifdef VIXL_DEBUG
+ // Iterators acquire and release this monitor. While a set is acquired,
+ // certain operations are illegal to ensure that the iterator will
+ // correctly iterate over the elements in the set.
+ int monitor_;
+ int monitor() const { return monitor_; }
+ void Acquire() { monitor_++; }
+ void Release() {
+ monitor_--;
+ VIXL_ASSERT(monitor_ >= 0);
+ }
+#endif
+
+ friend class InvalSetIterator<InvalSet<TEMPLATE_INVALSET_P_DEF> >;
+ typedef ElementType _ElementType;
+ typedef KeyType _KeyType;
+};
+
+
+template<class S> class InvalSetIterator {
+ private:
+ // Redefine types to mirror the associated set types.
+ typedef typename S::_ElementType ElementType;
+ typedef typename S::_KeyType KeyType;
+
+ public:
+ explicit InvalSetIterator(S* inval_set);
+ ~InvalSetIterator();
+
+ ElementType* Current() const;
+ void Advance();
+ bool Done() const;
+
+ // Mark this iterator as 'done'.
+ void Finish();
+
+ // Delete the current element and advance the iterator to point to the next
+ // element.
+ void DeleteCurrentAndAdvance();
+
+ static bool IsValid(const ElementType& element);
+ static KeyType Key(const ElementType& element);
+
+ protected:
+ void MoveToValidElement();
+
+ // Indicates if the iterator is looking at the vector or at the preallocated
+ // elements.
+ const bool using_vector_;
+ // Used when looking at the preallocated elements, or in debug mode when using
+ // the vector to track how many times the iterator has advanced.
+ size_t index_;
+ typename std::vector<ElementType>::iterator iterator_;
+ S* inval_set_;
+};
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+InvalSet<TEMPLATE_INVALSET_P_DEF>::InvalSet()
+ : valid_cached_min_(false),
+ sorted_(true), size_(0), vector_(NULL) {
+#ifdef VIXL_DEBUG
+ monitor_ = 0;
+#endif
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+InvalSet<TEMPLATE_INVALSET_P_DEF>::~InvalSet() {
+ VIXL_ASSERT(monitor_ == 0);
+ delete vector_;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+void InvalSet<TEMPLATE_INVALSET_P_DEF>::insert(const ElementType& element) {
+ VIXL_ASSERT(monitor() == 0);
+ VIXL_ASSERT(IsValid(element));
+ VIXL_ASSERT(Search(element) == NULL);
+ set_sorted(empty() || (sorted_ && (element > CleanBack())));
+ if (IsUsingVector()) {
+ vector_->push_back(element);
+ } else {
+ if (size_ < kNPreallocatedElements) {
+ preallocated_[size_] = element;
+ } else {
+ // Transition to using the vector.
+ vector_ = new std::vector<ElementType>(preallocated_,
+ preallocated_ + size_);
+ vector_->push_back(element);
+ }
+ }
+ size_++;
+
+ if (valid_cached_min_ && (element < min_element())) {
+ cached_min_index_ = IsUsingVector() ? vector_->size() - 1 : size_ - 1;
+ cached_min_key_ = Key(element);
+ valid_cached_min_ = true;
+ }
+
+ if (ShouldReclaimMemory()) {
+ ReclaimMemory();
+ }
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+void InvalSet<TEMPLATE_INVALSET_P_DEF>::erase(const ElementType& element) {
+ VIXL_ASSERT(monitor() == 0);
+ VIXL_ASSERT(IsValid(element));
+ ElementType* local_element = Search(element);
+ if (local_element != NULL) {
+ EraseInternal(local_element);
+ }
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::Search(
+ const ElementType& element) {
+ VIXL_ASSERT(monitor() == 0);
+ if (empty()) {
+ return NULL;
+ }
+ if (ShouldReclaimMemory()) {
+ ReclaimMemory();
+ }
+ if (!sorted_) {
+ Sort(kHardSort);
+ }
+ if (!valid_cached_min_) {
+ CacheMinElement();
+ }
+ return BinarySearch(element, ElementAt(cached_min_index_), StorageEnd());
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+size_t InvalSet<TEMPLATE_INVALSET_P_DEF>::size() const {
+ return size_;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+bool InvalSet<TEMPLATE_INVALSET_P_DEF>::empty() const {
+ return size_ == 0;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+void InvalSet<TEMPLATE_INVALSET_P_DEF>::clear() {
+ VIXL_ASSERT(monitor() == 0);
+ size_ = 0;
+ if (IsUsingVector()) {
+ vector_->clear();
+ }
+ set_sorted(true);
+ valid_cached_min_ = false;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::min_element() {
+ VIXL_ASSERT(monitor() == 0);
+ VIXL_ASSERT(!empty());
+ CacheMinElement();
+ return *ElementAt(cached_min_index_);
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+KeyType InvalSet<TEMPLATE_INVALSET_P_DEF>::min_element_key() {
+ VIXL_ASSERT(monitor() == 0);
+ if (valid_cached_min_) {
+ return cached_min_key_;
+ } else {
+ return Key(min_element());
+ }
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+bool InvalSet<TEMPLATE_INVALSET_P_DEF>::IsValid(const ElementType& element) {
+ return Key(element) != kInvalidKey;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+void InvalSet<TEMPLATE_INVALSET_P_DEF>::EraseInternal(ElementType* element) {
+ // Note that this function must be safe even while an iterator has acquired
+ // this set.
+ VIXL_ASSERT(element != NULL);
+ size_t deleted_index = ElementIndex(element);
+ if (IsUsingVector()) {
+ VIXL_ASSERT((&(vector_->front()) <= element) &&
+ (element <= &(vector_->back())));
+ SetKey(element, kInvalidKey);
+ } else {
+ VIXL_ASSERT((preallocated_ <= element) &&
+ (element < (preallocated_ + kNPreallocatedElements)));
+ ElementType* end = preallocated_ + kNPreallocatedElements;
+ size_t copy_size = sizeof(*element) * (end - element - 1);
+ memmove(element, element + 1, copy_size);
+ }
+ size_--;
+
+ if (valid_cached_min_ &&
+ (deleted_index == cached_min_index_)) {
+ if (sorted_ && !empty()) {
+ const ElementType* min = FirstValidElement(element, StorageEnd());
+ cached_min_index_ = ElementIndex(min);
+ cached_min_key_ = Key(*min);
+ valid_cached_min_ = true;
+ } else {
+ valid_cached_min_ = false;
+ }
+ }
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::BinarySearch(
+ const ElementType& element, ElementType* start, ElementType* end) const {
+ if (start == end) {
+ return NULL;
+ }
+ VIXL_ASSERT(sorted_);
+ VIXL_ASSERT(start < end);
+ VIXL_ASSERT(!empty());
+
+ // Perform a binary search through the elements while ignoring invalid
+ // elements.
+ ElementType* elements = start;
+ size_t low = 0;
+ size_t high = (end - start) - 1;
+ while (low < high) {
+ // Find valid bounds.
+ while (!IsValid(elements[low]) && (low < high)) ++low;
+ while (!IsValid(elements[high]) && (low < high)) --high;
+ VIXL_ASSERT(low <= high);
+ // Avoid overflow when computing the middle index.
+ size_t middle = low / 2 + high / 2 + (low & high & 1);
+ if ((middle == low) || (middle == high)) {
+ break;
+ }
+ while (!IsValid(elements[middle]) && (middle < high - 1)) ++middle;
+ while (!IsValid(elements[middle]) && (low + 1 < middle)) --middle;
+ if (!IsValid(elements[middle])) {
+ break;
+ }
+ if (elements[middle] < element) {
+ low = middle;
+ } else {
+ high = middle;
+ }
+ }
+
+ if (elements[low] == element) return &elements[low];
+ if (elements[high] == element) return &elements[high];
+ return NULL;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+void InvalSet<TEMPLATE_INVALSET_P_DEF>::Sort(SortType sort_type) {
+ VIXL_ASSERT(monitor() == 0);
+ if (sort_type == kSoftSort) {
+ if (sorted_) {
+ return;
+ }
+ }
+ if (empty()) {
+ return;
+ }
+
+ Clean();
+ std::sort(StorageBegin(), StorageEnd());
+
+ set_sorted(true);
+ cached_min_index_ = 0;
+ cached_min_key_ = Key(Front());
+ valid_cached_min_ = true;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+void InvalSet<TEMPLATE_INVALSET_P_DEF>::Clean() {
+ VIXL_ASSERT(monitor() == 0);
+ if (empty() || !IsUsingVector()) {
+ return;
+ }
+ // Manually iterate through the vector storage to discard invalid elements.
+ ElementType* start = &(vector_->front());
+ ElementType* end = start + vector_->size();
+ ElementType* c = start;
+ ElementType* first_invalid;
+ ElementType* first_valid;
+ ElementType* next_invalid;
+
+ while (c < end && IsValid(*c)) { c++; }
+ first_invalid = c;
+
+ while (c < end) {
+ while (c < end && !IsValid(*c)) { c++; }
+ first_valid = c;
+ while (c < end && IsValid(*c)) { c++; }
+ next_invalid = c;
+
+ ptrdiff_t n_moved_elements = (next_invalid - first_valid);
+ memmove(first_invalid, first_valid, n_moved_elements * sizeof(*c));
+ first_invalid = first_invalid + n_moved_elements;
+ c = next_invalid;
+ }
+
+ // Delete the trailing invalid elements.
+ vector_->erase(vector_->begin() + (first_invalid - start), vector_->end());
+ VIXL_ASSERT(vector_->size() == size_);
+
+ if (sorted_) {
+ valid_cached_min_ = true;
+ cached_min_index_ = 0;
+ cached_min_key_ = Key(*ElementAt(0));
+ } else {
+ valid_cached_min_ = false;
+ }
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::Front() const {
+ VIXL_ASSERT(!empty());
+ return IsUsingVector() ? vector_->front() : preallocated_[0];
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::Back() const {
+ VIXL_ASSERT(!empty());
+ return IsUsingVector() ? vector_->back() : preallocated_[size_ - 1];
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+const ElementType InvalSet<TEMPLATE_INVALSET_P_DEF>::CleanBack() {
+ VIXL_ASSERT(monitor() == 0);
+ if (IsUsingVector()) {
+ // Delete the invalid trailing elements.
+ typename std::vector<ElementType>::reverse_iterator it = vector_->rbegin();
+ while (!IsValid(*it)) {
+ it++;
+ }
+ vector_->erase(it.base(), vector_->end());
+ }
+ return Back();
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageBegin() const {
+ return IsUsingVector() ? &(vector_->front()) : preallocated_;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageEnd() const {
+ return IsUsingVector() ? &(vector_->back()) + 1 : preallocated_ + size_;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageBegin() {
+ return IsUsingVector() ? &(vector_->front()) : preallocated_;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::StorageEnd() {
+ return IsUsingVector() ? &(vector_->back()) + 1 : preallocated_ + size_;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+size_t InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementIndex(
+ const ElementType* element) const {
+ VIXL_ASSERT((StorageBegin() <= element) && (element < StorageEnd()));
+ return element - StorageBegin();
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementAt(
+ size_t index) const {
+ VIXL_ASSERT(
+ (IsUsingVector() && (index < vector_->size())) || (index < size_));
+ return StorageBegin() + index;
+}
+
+template<TEMPLATE_INVALSET_P_DECL>
+ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::ElementAt(size_t index) {
+ VIXL_ASSERT(
+ (IsUsingVector() && (index < vector_->size())) || (index < size_));
+ return StorageBegin() + index;
+}
+
+template<TEMPLATE_INVALSET_P_DECL>
+const ElementType* InvalSet<TEMPLATE_INVALSET_P_DEF>::FirstValidElement(
+ const ElementType* from, const ElementType* end) {
+ while ((from < end) && !IsValid(*from)) {
+ from++;
+ }
+ return from;
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+void InvalSet<TEMPLATE_INVALSET_P_DEF>::CacheMinElement() {
+ VIXL_ASSERT(monitor() == 0);
+ VIXL_ASSERT(!empty());
+
+ if (valid_cached_min_) {
+ return;
+ }
+
+ if (sorted_) {
+ const ElementType* min = FirstValidElement(StorageBegin(), StorageEnd());
+ cached_min_index_ = ElementIndex(min);
+ cached_min_key_ = Key(*min);
+ valid_cached_min_ = true;
+ } else {
+ Sort(kHardSort);
+ }
+ VIXL_ASSERT(valid_cached_min_);
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+bool InvalSet<TEMPLATE_INVALSET_P_DEF>::ShouldReclaimMemory() const {
+ if (!IsUsingVector()) {
+ return false;
+ }
+ size_t n_invalid_elements = vector_->size() - size_;
+ return (n_invalid_elements > RECLAIM_FROM) &&
+ (n_invalid_elements > vector_->size() / RECLAIM_FACTOR);
+}
+
+
+template<TEMPLATE_INVALSET_P_DECL>
+void InvalSet<TEMPLATE_INVALSET_P_DEF>::ReclaimMemory() {
+ VIXL_ASSERT(monitor() == 0);
+ Clean();
+}
+
+
+template<class S>
+InvalSetIterator<S>::InvalSetIterator(S* inval_set)
+ : using_vector_((inval_set != NULL) && inval_set->IsUsingVector()),
+ index_(0),
+ inval_set_(inval_set) {
+ if (inval_set != NULL) {
+ inval_set->Sort(S::kSoftSort);
+#ifdef VIXL_DEBUG
+ inval_set->Acquire();
+#endif
+ if (using_vector_) {
+ iterator_ = typename std::vector<ElementType>::iterator(
+ inval_set_->vector_->begin());
+ }
+ MoveToValidElement();
+ }
+}
+
+
+template<class S>
+InvalSetIterator<S>::~InvalSetIterator() {
+#ifdef VIXL_DEBUG
+ if (inval_set_ != NULL) {
+ inval_set_->Release();
+ }
+#endif
+}
+
+
+template<class S>
+typename S::_ElementType* InvalSetIterator<S>::Current() const {
+ VIXL_ASSERT(!Done());
+ if (using_vector_) {
+ return &(*iterator_);
+ } else {
+ return &(inval_set_->preallocated_[index_]);
+ }
+}
+
+
+template<class S>
+void InvalSetIterator<S>::Advance() {
+ VIXL_ASSERT(!Done());
+ if (using_vector_) {
+ iterator_++;
+#ifdef VIXL_DEBUG
+ index_++;
+#endif
+ MoveToValidElement();
+ } else {
+ index_++;
+ }
+}
+
+
+template<class S>
+bool InvalSetIterator<S>::Done() const {
+ if (using_vector_) {
+ bool done = (iterator_ == inval_set_->vector_->end());
+ VIXL_ASSERT(done == (index_ == inval_set_->size()));
+ return done;
+ } else {
+ return index_ == inval_set_->size();
+ }
+}
+
+
+template<class S>
+void InvalSetIterator<S>::Finish() {
+ VIXL_ASSERT(inval_set_->sorted_);
+ if (using_vector_) {
+ iterator_ = inval_set_->vector_->end();
+ }
+ index_ = inval_set_->size();
+}
+
+
+template<class S>
+void InvalSetIterator<S>::DeleteCurrentAndAdvance() {
+ if (using_vector_) {
+ inval_set_->EraseInternal(&(*iterator_));
+ MoveToValidElement();
+ } else {
+ inval_set_->EraseInternal(inval_set_->preallocated_ + index_);
+ }
+}
+
+
+template<class S>
+bool InvalSetIterator<S>::IsValid(const ElementType& element) {
+ return S::IsValid(element);
+}
+
+
+template<class S>
+typename S::_KeyType InvalSetIterator<S>::Key(const ElementType& element) {
+ return S::Key(element);
+}
+
+
+template<class S>
+void InvalSetIterator<S>::MoveToValidElement() {
+ if (using_vector_) {
+ while ((iterator_ != inval_set_->vector_->end()) && !IsValid(*iterator_)) {
+ iterator_++;
+ }
+ } else {
+ VIXL_ASSERT(inval_set_->empty() || IsValid(inval_set_->preallocated_[0]));
+ // Nothing to do.
+ }
+}
+
+#undef TEMPLATE_INVALSET_P_DECL
+#undef TEMPLATE_INVALSET_P_DEF
+
+} // namespace vixl
+
+#endif // VIXL_INVALSET_H_
diff --git a/disas/libvixl/platform.h b/disas/libvixl/vixl/platform.h
index de2b110cca..ab588f07f5 100644
--- a/disas/libvixl/platform.h
+++ b/disas/libvixl/vixl/platform.h
@@ -1,4 +1,4 @@
-// Copyright 2013, ARM Limited
+// Copyright 2014, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
diff --git a/disas/libvixl/vixl/utils.cc b/disas/libvixl/vixl/utils.cc
new file mode 100644
index 0000000000..3b8bd75fba
--- /dev/null
+++ b/disas/libvixl/vixl/utils.cc
@@ -0,0 +1,142 @@
+// Copyright 2015, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "vixl/utils.h"
+#include <stdio.h>
+
+namespace vixl {
+
+uint32_t float_to_rawbits(float value) {
+ uint32_t bits = 0;
+ memcpy(&bits, &value, 4);
+ return bits;
+}
+
+
+uint64_t double_to_rawbits(double value) {
+ uint64_t bits = 0;
+ memcpy(&bits, &value, 8);
+ return bits;
+}
+
+
+float rawbits_to_float(uint32_t bits) {
+ float value = 0.0;
+ memcpy(&value, &bits, 4);
+ return value;
+}
+
+
+double rawbits_to_double(uint64_t bits) {
+ double value = 0.0;
+ memcpy(&value, &bits, 8);
+ return value;
+}
+
+
+uint32_t float_sign(float val) {
+ uint32_t rawbits = float_to_rawbits(val);
+ return unsigned_bitextract_32(31, 31, rawbits);
+}
+
+
+uint32_t float_exp(float val) {
+ uint32_t rawbits = float_to_rawbits(val);
+ return unsigned_bitextract_32(30, 23, rawbits);
+}
+
+
+uint32_t float_mantissa(float val) {
+ uint32_t rawbits = float_to_rawbits(val);
+ return unsigned_bitextract_32(22, 0, rawbits);
+}
+
+
+uint32_t double_sign(double val) {
+ uint64_t rawbits = double_to_rawbits(val);
+ return static_cast<uint32_t>(unsigned_bitextract_64(63, 63, rawbits));
+}
+
+
+uint32_t double_exp(double val) {
+ uint64_t rawbits = double_to_rawbits(val);
+ return static_cast<uint32_t>(unsigned_bitextract_64(62, 52, rawbits));
+}
+
+
+uint64_t double_mantissa(double val) {
+ uint64_t rawbits = double_to_rawbits(val);
+ return unsigned_bitextract_64(51, 0, rawbits);
+}
+
+
+float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa) {
+ uint32_t bits = (sign << 31) | (exp << 23) | mantissa;
+ return rawbits_to_float(bits);
+}
+
+
+double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa) {
+ uint64_t bits = (sign << 63) | (exp << 52) | mantissa;
+ return rawbits_to_double(bits);
+}
+
+
+int float16classify(float16 value) {
+ uint16_t exponent_max = (1 << 5) - 1;
+ uint16_t exponent_mask = exponent_max << 10;
+ uint16_t mantissa_mask = (1 << 10) - 1;
+
+ uint16_t exponent = (value & exponent_mask) >> 10;
+ uint16_t mantissa = value & mantissa_mask;
+ if (exponent == 0) {
+ if (mantissa == 0) {
+ return FP_ZERO;
+ }
+ return FP_SUBNORMAL;
+ } else if (exponent == exponent_max) {
+ if (mantissa == 0) {
+ return FP_INFINITE;
+ }
+ return FP_NAN;
+ }
+ return FP_NORMAL;
+}
+
+
+unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size) {
+ VIXL_ASSERT((reg_size % 8) == 0);
+ int count = 0;
+ for (unsigned i = 0; i < (reg_size / 16); i++) {
+ if ((imm & 0xffff) == 0) {
+ count++;
+ }
+ imm >>= 16;
+ }
+ return count;
+}
+
+} // namespace vixl
diff --git a/disas/libvixl/utils.h b/disas/libvixl/vixl/utils.h
index b4406263ac..5ab134e240 100644
--- a/disas/libvixl/utils.h
+++ b/disas/libvixl/vixl/utils.h
@@ -1,4 +1,4 @@
-// Copyright 2013, ARM Limited
+// Copyright 2015, ARM Limited
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
@@ -27,16 +27,17 @@
#ifndef VIXL_UTILS_H
#define VIXL_UTILS_H
-#include <math.h>
#include <string.h>
-#include "globals.h"
+#include <cmath>
+#include "vixl/globals.h"
+#include "vixl/compiler-intrinsics.h"
namespace vixl {
// Macros for compile-time format checking.
-#if defined(__GNUC__)
+#if GCC_VERSION_OR_NEWER(4, 4, 0)
#define PRINTF_CHECK(format_index, varargs_index) \
- __attribute__((format(printf, format_index, varargs_index)))
+ __attribute__((format(gnu_printf, format_index, varargs_index)))
#else
#define PRINTF_CHECK(format_index, varargs_index)
#endif
@@ -53,9 +54,9 @@ inline bool is_uintn(unsigned n, int64_t x) {
return !(x >> n);
}
-inline unsigned truncate_to_intn(unsigned n, int64_t x) {
+inline uint32_t truncate_to_intn(unsigned n, int64_t x) {
VIXL_ASSERT((0 < n) && (n < 64));
- return (x & ((INT64_C(1) << n) - 1));
+ return static_cast<uint32_t>(x & ((INT64_C(1) << n) - 1));
}
#define INT_1_TO_63_LIST(V) \
@@ -73,7 +74,7 @@ inline bool is_int##N(int64_t x) { return is_intn(N, x); }
#define DECLARE_IS_UINT_N(N) \
inline bool is_uint##N(int64_t x) { return is_uintn(N, x); }
#define DECLARE_TRUNCATE_TO_INT_N(N) \
-inline int truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
+inline uint32_t truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
@@ -104,12 +105,24 @@ uint64_t double_to_rawbits(double value);
float rawbits_to_float(uint32_t bits);
double rawbits_to_double(uint64_t bits);
+uint32_t float_sign(float val);
+uint32_t float_exp(float val);
+uint32_t float_mantissa(float val);
+uint32_t double_sign(double val);
+uint32_t double_exp(double val);
+uint64_t double_mantissa(double val);
+
+float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa);
+double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa);
+
+// An fpclassify() function for 16-bit half-precision floats.
+int float16classify(float16 value);
// NaN tests.
inline bool IsSignallingNaN(double num) {
const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
uint64_t raw = double_to_rawbits(num);
- if (isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
+ if (std::isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
return true;
}
return false;
@@ -119,30 +132,37 @@ inline bool IsSignallingNaN(double num) {
inline bool IsSignallingNaN(float num) {
const uint32_t kFP32QuietNaNMask = 0x00400000;
uint32_t raw = float_to_rawbits(num);
- if (isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
+ if (std::isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
return true;
}
return false;
}
+inline bool IsSignallingNaN(float16 num) {
+ const uint16_t kFP16QuietNaNMask = 0x0200;
+ return (float16classify(num) == FP_NAN) &&
+ ((num & kFP16QuietNaNMask) == 0);
+}
+
+
template <typename T>
inline bool IsQuietNaN(T num) {
- return isnan(num) && !IsSignallingNaN(num);
+ return std::isnan(num) && !IsSignallingNaN(num);
}
// Convert the NaN in 'num' to a quiet NaN.
inline double ToQuietNaN(double num) {
const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
- VIXL_ASSERT(isnan(num));
+ VIXL_ASSERT(std::isnan(num));
return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
}
inline float ToQuietNaN(float num) {
const uint32_t kFP32QuietNaNMask = 0x00400000;
- VIXL_ASSERT(isnan(num));
+ VIXL_ASSERT(std::isnan(num));
return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
}
@@ -158,16 +178,71 @@ inline float FusedMultiplyAdd(float op1, float op2, float a) {
}
-// Bit counting.
-int CountLeadingZeros(uint64_t value, int width);
-int CountLeadingSignBits(int64_t value, int width);
-int CountTrailingZeros(uint64_t value, int width);
-int CountSetBits(uint64_t value, int width);
-uint64_t LowestSetBit(uint64_t value);
-bool IsPowerOf2(int64_t value);
+inline uint64_t LowestSetBit(uint64_t value) {
+ return value & -value;
+}
+
+
+template<typename T>
+inline int HighestSetBitPosition(T value) {
+ VIXL_ASSERT(value != 0);
+ return (sizeof(value) * 8 - 1) - CountLeadingZeros(value);
+}
+
+
+template<typename V>
+inline int WhichPowerOf2(V value) {
+ VIXL_ASSERT(IsPowerOf2(value));
+ return CountTrailingZeros(value);
+}
+
unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
+
+template <typename T>
+T ReverseBits(T value) {
+ VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) ||
+ (sizeof(value) == 4) || (sizeof(value) == 8));
+ T result = 0;
+ for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
+ result = (result << 1) | (value & 1);
+ value >>= 1;
+ }
+ return result;
+}
+
+
+template <typename T>
+T ReverseBytes(T value, int block_bytes_log2) {
+ VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8));
+ VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value));
+ // Split the 64-bit value into an 8-bit array, where b[0] is the least
+ // significant byte, and b[7] is the most significant.
+ uint8_t bytes[8];
+ uint64_t mask = UINT64_C(0xff00000000000000);
+ for (int i = 7; i >= 0; i--) {
+ bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8);
+ mask >>= 8;
+ }
+
+ // Permutation tables for REV instructions.
+ // permute_table[0] is used by REV16_x, REV16_w
+ // permute_table[1] is used by REV32_x, REV_w
+ // permute_table[2] is used by REV_x
+ VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4));
+ static const uint8_t permute_table[3][8] = { {6, 7, 4, 5, 2, 3, 0, 1},
+ {4, 5, 6, 7, 0, 1, 2, 3},
+ {0, 1, 2, 3, 4, 5, 6, 7} };
+ T result = 0;
+ for (int i = 0; i < 8; i++) {
+ result <<= 8;
+ result |= bytes[permute_table[block_bytes_log2 - 1][i]];
+ }
+ return result;
+}
+
+
// Pointer alignment
// TODO: rename/refactor to make it specific to instructions.
template<typename T>