diff options
Diffstat (limited to 'disas/libvixl/vixl/a64/instructions-a64.cc')
-rw-r--r-- | disas/libvixl/vixl/a64/instructions-a64.cc | 622 |
1 files changed, 0 insertions, 622 deletions
diff --git a/disas/libvixl/vixl/a64/instructions-a64.cc b/disas/libvixl/vixl/a64/instructions-a64.cc deleted file mode 100644 index 33992f88a4..0000000000 --- a/disas/libvixl/vixl/a64/instructions-a64.cc +++ /dev/null @@ -1,622 +0,0 @@ -// Copyright 2015, ARM Limited -// All rights reserved. -// -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are met: -// -// * Redistributions of source code must retain the above copyright notice, -// this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above copyright notice, -// this list of conditions and the following disclaimer in the documentation -// and/or other materials provided with the distribution. -// * Neither the name of ARM Limited nor the names of its contributors may be -// used to endorse or promote products derived from this software without -// specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND -// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED -// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE -// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#include "vixl/a64/instructions-a64.h" -#include "vixl/a64/assembler-a64.h" - -namespace vixl { - - -// Floating-point infinity values. -const float16 kFP16PositiveInfinity = 0x7c00; -const float16 kFP16NegativeInfinity = 0xfc00; -const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000); -const float kFP32NegativeInfinity = rawbits_to_float(0xff800000); -const double kFP64PositiveInfinity = - rawbits_to_double(UINT64_C(0x7ff0000000000000)); -const double kFP64NegativeInfinity = - rawbits_to_double(UINT64_C(0xfff0000000000000)); - - -// The default NaN values (for FPCR.DN=1). -const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000)); -const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000); -const float16 kFP16DefaultNaN = 0x7e00; - - -static uint64_t RotateRight(uint64_t value, - unsigned int rotate, - unsigned int width) { - VIXL_ASSERT(width <= 64); - rotate &= 63; - return ((value & ((UINT64_C(1) << rotate) - 1)) << - (width - rotate)) | (value >> rotate); -} - - -static uint64_t RepeatBitsAcrossReg(unsigned reg_size, - uint64_t value, - unsigned width) { - VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) || - (width == 32)); - VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); - uint64_t result = value & ((UINT64_C(1) << width) - 1); - for (unsigned i = width; i < reg_size; i *= 2) { - result |= (result << i); - } - return result; -} - - -bool Instruction::IsLoad() const { - if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) { - return false; - } - - if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) { - return Mask(LoadStorePairLBit) != 0; - } else { - LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask)); - switch (op) { - case LDRB_w: - case LDRH_w: - case LDR_w: - case LDR_x: - case LDRSB_w: - case LDRSB_x: - case LDRSH_w: - case LDRSH_x: - case LDRSW_x: - case LDR_b: - case LDR_h: - case LDR_s: - case LDR_d: - case LDR_q: return true; - default: return false; - } - } -} - - -bool Instruction::IsStore() const { - if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) { - return false; - } - - if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) { - return Mask(LoadStorePairLBit) == 0; - } else { - LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask)); - switch (op) { - case STRB_w: - case STRH_w: - case STR_w: - case STR_x: - case STR_b: - case STR_h: - case STR_s: - case STR_d: - case STR_q: return true; - default: return false; - } - } -} - - -// Logical immediates can't encode zero, so a return value of zero is used to -// indicate a failure case. Specifically, where the constraints on imm_s are -// not met. -uint64_t Instruction::ImmLogical() const { - unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize; - int32_t n = BitN(); - int32_t imm_s = ImmSetBits(); - int32_t imm_r = ImmRotate(); - - // An integer is constructed from the n, imm_s and imm_r bits according to - // the following table: - // - // N imms immr size S R - // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) - // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) - // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) - // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) - // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) - // 0 11110s xxxxxr 2 UInt(s) UInt(r) - // (s bits must not be all set) - // - // A pattern is constructed of size bits, where the least significant S+1 - // bits are set. The pattern is rotated right by R, and repeated across a - // 32 or 64-bit value, depending on destination register width. - // - - if (n == 1) { - if (imm_s == 0x3f) { - return 0; - } - uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1; - return RotateRight(bits, imm_r, 64); - } else { - if ((imm_s >> 1) == 0x1f) { - return 0; - } - for (int width = 0x20; width >= 0x2; width >>= 1) { - if ((imm_s & width) == 0) { - int mask = width - 1; - if ((imm_s & mask) == mask) { - return 0; - } - uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1; - return RepeatBitsAcrossReg(reg_size, - RotateRight(bits, imm_r & mask, width), - width); - } - } - } - VIXL_UNREACHABLE(); - return 0; -} - - -uint32_t Instruction::ImmNEONabcdefgh() const { - return ImmNEONabc() << 5 | ImmNEONdefgh(); -} - - -float Instruction::Imm8ToFP32(uint32_t imm8) { - // Imm8: abcdefgh (8 bits) - // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits) - // where B is b ^ 1 - uint32_t bits = imm8; - uint32_t bit7 = (bits >> 7) & 0x1; - uint32_t bit6 = (bits >> 6) & 0x1; - uint32_t bit5_to_0 = bits & 0x3f; - uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19); - - return rawbits_to_float(result); -} - - -float Instruction::ImmFP32() const { - return Imm8ToFP32(ImmFP()); -} - - -double Instruction::Imm8ToFP64(uint32_t imm8) { - // Imm8: abcdefgh (8 bits) - // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 - // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits) - // where B is b ^ 1 - uint32_t bits = imm8; - uint64_t bit7 = (bits >> 7) & 0x1; - uint64_t bit6 = (bits >> 6) & 0x1; - uint64_t bit5_to_0 = bits & 0x3f; - uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48); - - return rawbits_to_double(result); -} - - -double Instruction::ImmFP64() const { - return Imm8ToFP64(ImmFP()); -} - - -float Instruction::ImmNEONFP32() const { - return Imm8ToFP32(ImmNEONabcdefgh()); -} - - -double Instruction::ImmNEONFP64() const { - return Imm8ToFP64(ImmNEONabcdefgh()); -} - - -unsigned CalcLSDataSize(LoadStoreOp op) { - VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8)); - unsigned size = static_cast<Instr>(op) >> LSSize_offset; - if ((op & LSVector_mask) != 0) { - // Vector register memory operations encode the access size in the "size" - // and "opc" fields. - if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) { - size = kQRegSizeInBytesLog2; - } - } - return size; -} - - -unsigned CalcLSPairDataSize(LoadStorePairOp op) { - VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes); - VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes); - switch (op) { - case STP_q: - case LDP_q: return kQRegSizeInBytesLog2; - case STP_x: - case LDP_x: - case STP_d: - case LDP_d: return kXRegSizeInBytesLog2; - default: return kWRegSizeInBytesLog2; - } -} - - -int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) { - switch (branch_type) { - case UncondBranchType: - return ImmUncondBranch_width; - case CondBranchType: - return ImmCondBranch_width; - case CompareBranchType: - return ImmCmpBranch_width; - case TestBranchType: - return ImmTestBranch_width; - default: - VIXL_UNREACHABLE(); - return 0; - } -} - - -int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) { - int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1); - return encoded_max * kInstructionSize; -} - - -bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type, - int64_t offset) { - return is_intn(ImmBranchRangeBitwidth(branch_type), offset); -} - - -const Instruction* Instruction::ImmPCOffsetTarget() const { - const Instruction * base = this; - ptrdiff_t offset; - if (IsPCRelAddressing()) { - // ADR and ADRP. - offset = ImmPCRel(); - if (Mask(PCRelAddressingMask) == ADRP) { - base = AlignDown(base, kPageSize); - offset *= kPageSize; - } else { - VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR); - } - } else { - // All PC-relative branches. - VIXL_ASSERT(BranchType() != UnknownBranchType); - // Relative branch offsets are instruction-size-aligned. - offset = ImmBranch() << kInstructionSizeLog2; - } - return base + offset; -} - - -int Instruction::ImmBranch() const { - switch (BranchType()) { - case CondBranchType: return ImmCondBranch(); - case UncondBranchType: return ImmUncondBranch(); - case CompareBranchType: return ImmCmpBranch(); - case TestBranchType: return ImmTestBranch(); - default: VIXL_UNREACHABLE(); - } - return 0; -} - - -void Instruction::SetImmPCOffsetTarget(const Instruction* target) { - if (IsPCRelAddressing()) { - SetPCRelImmTarget(target); - } else { - SetBranchImmTarget(target); - } -} - - -void Instruction::SetPCRelImmTarget(const Instruction* target) { - ptrdiff_t imm21; - if ((Mask(PCRelAddressingMask) == ADR)) { - imm21 = target - this; - } else { - VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP); - uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize; - uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize; - imm21 = target_page - this_page; - } - Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21)); - - SetInstructionBits(Mask(~ImmPCRel_mask) | imm); -} - - -void Instruction::SetBranchImmTarget(const Instruction* target) { - VIXL_ASSERT(((target - this) & 3) == 0); - Instr branch_imm = 0; - uint32_t imm_mask = 0; - int offset = static_cast<int>((target - this) >> kInstructionSizeLog2); - switch (BranchType()) { - case CondBranchType: { - branch_imm = Assembler::ImmCondBranch(offset); - imm_mask = ImmCondBranch_mask; - break; - } - case UncondBranchType: { - branch_imm = Assembler::ImmUncondBranch(offset); - imm_mask = ImmUncondBranch_mask; - break; - } - case CompareBranchType: { - branch_imm = Assembler::ImmCmpBranch(offset); - imm_mask = ImmCmpBranch_mask; - break; - } - case TestBranchType: { - branch_imm = Assembler::ImmTestBranch(offset); - imm_mask = ImmTestBranch_mask; - break; - } - default: VIXL_UNREACHABLE(); - } - SetInstructionBits(Mask(~imm_mask) | branch_imm); -} - - -void Instruction::SetImmLLiteral(const Instruction* source) { - VIXL_ASSERT(IsWordAligned(source)); - ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2; - Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset)); - Instr mask = ImmLLiteral_mask; - - SetInstructionBits(Mask(~mask) | imm); -} - - -VectorFormat VectorFormatHalfWidth(const VectorFormat vform) { - VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D || - vform == kFormatH || vform == kFormatS || vform == kFormatD); - switch (vform) { - case kFormat8H: return kFormat8B; - case kFormat4S: return kFormat4H; - case kFormat2D: return kFormat2S; - case kFormatH: return kFormatB; - case kFormatS: return kFormatH; - case kFormatD: return kFormatS; - default: VIXL_UNREACHABLE(); return kFormatUndefined; - } -} - - -VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) { - VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S || - vform == kFormatB || vform == kFormatH || vform == kFormatS); - switch (vform) { - case kFormat8B: return kFormat8H; - case kFormat4H: return kFormat4S; - case kFormat2S: return kFormat2D; - case kFormatB: return kFormatH; - case kFormatH: return kFormatS; - case kFormatS: return kFormatD; - default: VIXL_UNREACHABLE(); return kFormatUndefined; - } -} - - -VectorFormat VectorFormatFillQ(const VectorFormat vform) { - switch (vform) { - case kFormatB: - case kFormat8B: - case kFormat16B: return kFormat16B; - case kFormatH: - case kFormat4H: - case kFormat8H: return kFormat8H; - case kFormatS: - case kFormat2S: - case kFormat4S: return kFormat4S; - case kFormatD: - case kFormat1D: - case kFormat2D: return kFormat2D; - default: VIXL_UNREACHABLE(); return kFormatUndefined; - } -} - -VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) { - switch (vform) { - case kFormat4H: return kFormat8B; - case kFormat8H: return kFormat16B; - case kFormat2S: return kFormat4H; - case kFormat4S: return kFormat8H; - case kFormat1D: return kFormat2S; - case kFormat2D: return kFormat4S; - default: VIXL_UNREACHABLE(); return kFormatUndefined; - } -} - -VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) { - VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S); - switch (vform) { - case kFormat8B: return kFormat16B; - case kFormat4H: return kFormat8H; - case kFormat2S: return kFormat4S; - default: VIXL_UNREACHABLE(); return kFormatUndefined; - } -} - - -VectorFormat VectorFormatHalfLanes(const VectorFormat vform) { - VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S); - switch (vform) { - case kFormat16B: return kFormat8B; - case kFormat8H: return kFormat4H; - case kFormat4S: return kFormat2S; - default: VIXL_UNREACHABLE(); return kFormatUndefined; - } -} - - -VectorFormat ScalarFormatFromLaneSize(int laneSize) { - switch (laneSize) { - case 8: return kFormatB; - case 16: return kFormatH; - case 32: return kFormatS; - case 64: return kFormatD; - default: VIXL_UNREACHABLE(); return kFormatUndefined; - } -} - - -unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) { - VIXL_ASSERT(vform != kFormatUndefined); - switch (vform) { - case kFormatB: return kBRegSize; - case kFormatH: return kHRegSize; - case kFormatS: return kSRegSize; - case kFormatD: return kDRegSize; - case kFormat8B: - case kFormat4H: - case kFormat2S: - case kFormat1D: return kDRegSize; - default: return kQRegSize; - } -} - - -unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) { - return RegisterSizeInBitsFromFormat(vform) / 8; -} - - -unsigned LaneSizeInBitsFromFormat(VectorFormat vform) { - VIXL_ASSERT(vform != kFormatUndefined); - switch (vform) { - case kFormatB: - case kFormat8B: - case kFormat16B: return 8; - case kFormatH: - case kFormat4H: - case kFormat8H: return 16; - case kFormatS: - case kFormat2S: - case kFormat4S: return 32; - case kFormatD: - case kFormat1D: - case kFormat2D: return 64; - default: VIXL_UNREACHABLE(); return 0; - } -} - - -int LaneSizeInBytesFromFormat(VectorFormat vform) { - return LaneSizeInBitsFromFormat(vform) / 8; -} - - -int LaneSizeInBytesLog2FromFormat(VectorFormat vform) { - VIXL_ASSERT(vform != kFormatUndefined); - switch (vform) { - case kFormatB: - case kFormat8B: - case kFormat16B: return 0; - case kFormatH: - case kFormat4H: - case kFormat8H: return 1; - case kFormatS: - case kFormat2S: - case kFormat4S: return 2; - case kFormatD: - case kFormat1D: - case kFormat2D: return 3; - default: VIXL_UNREACHABLE(); return 0; - } -} - - -int LaneCountFromFormat(VectorFormat vform) { - VIXL_ASSERT(vform != kFormatUndefined); - switch (vform) { - case kFormat16B: return 16; - case kFormat8B: - case kFormat8H: return 8; - case kFormat4H: - case kFormat4S: return 4; - case kFormat2S: - case kFormat2D: return 2; - case kFormat1D: - case kFormatB: - case kFormatH: - case kFormatS: - case kFormatD: return 1; - default: VIXL_UNREACHABLE(); return 0; - } -} - - -int MaxLaneCountFromFormat(VectorFormat vform) { - VIXL_ASSERT(vform != kFormatUndefined); - switch (vform) { - case kFormatB: - case kFormat8B: - case kFormat16B: return 16; - case kFormatH: - case kFormat4H: - case kFormat8H: return 8; - case kFormatS: - case kFormat2S: - case kFormat4S: return 4; - case kFormatD: - case kFormat1D: - case kFormat2D: return 2; - default: VIXL_UNREACHABLE(); return 0; - } -} - - -// Does 'vform' indicate a vector format or a scalar format? -bool IsVectorFormat(VectorFormat vform) { - VIXL_ASSERT(vform != kFormatUndefined); - switch (vform) { - case kFormatB: - case kFormatH: - case kFormatS: - case kFormatD: return false; - default: return true; - } -} - - -int64_t MaxIntFromFormat(VectorFormat vform) { - return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform)); -} - - -int64_t MinIntFromFormat(VectorFormat vform) { - return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform)); -} - - -uint64_t MaxUintFromFormat(VectorFormat vform) { - return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform)); -} -} // namespace vixl - |