diff options
Diffstat (limited to 'cputlb.c')
-rw-r--r-- | cputlb.c | 463 |
1 files changed, 389 insertions, 74 deletions
@@ -18,6 +18,7 @@ */ #include "qemu/osdep.h" +#include "qemu/main-loop.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/memory.h" @@ -57,6 +58,40 @@ } \ } while (0) +#define assert_cpu_is_self(this_cpu) do { \ + if (DEBUG_TLB_GATE) { \ + g_assert(!cpu->created || qemu_cpu_is_self(cpu)); \ + } \ + } while (0) + +/* run_on_cpu_data.target_ptr should always be big enough for a + * target_ulong even on 32 bit builds */ +QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); + +/* We currently can't handle more than 16 bits in the MMUIDX bitmask. + */ +QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); +#define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) + +/* flush_all_helper: run fn across all cpus + * + * If the wait flag is set then the src cpu's helper will be queued as + * "safe" work and the loop exited creating a synchronisation point + * where all queued work will be finished before execution starts + * again. + */ +static void flush_all_helper(CPUState *src, run_on_cpu_func fn, + run_on_cpu_data d) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) { + if (cpu != src) { + async_run_on_cpu(cpu, fn, d); + } + } +} + /* statistics */ int tlb_flush_count; @@ -65,10 +100,22 @@ int tlb_flush_count; * flushing more entries than required is only an efficiency issue, * not a correctness issue. */ -void tlb_flush(CPUState *cpu) +static void tlb_flush_nocheck(CPUState *cpu) { CPUArchState *env = cpu->env_ptr; + /* The QOM tests will trigger tlb_flushes without setting up TCG + * so we bug out here in that case. + */ + if (!tcg_enabled()) { + return; + } + + assert_cpu_is_self(cpu); + tlb_debug("(count: %d)\n", tlb_flush_count++); + + tb_lock(); + memset(env->tlb_table, -1, sizeof(env->tlb_table)); memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table)); memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); @@ -76,39 +123,117 @@ void tlb_flush(CPUState *cpu) env->vtlb_index = 0; env->tlb_flush_addr = -1; env->tlb_flush_mask = 0; - tlb_flush_count++; + + tb_unlock(); + + atomic_mb_set(&cpu->pending_tlb_flush, 0); +} + +static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data) +{ + tlb_flush_nocheck(cpu); +} + +void tlb_flush(CPUState *cpu) +{ + if (cpu->created && !qemu_cpu_is_self(cpu)) { + if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) { + atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS); + async_run_on_cpu(cpu, tlb_flush_global_async_work, + RUN_ON_CPU_NULL); + } + } else { + tlb_flush_nocheck(cpu); + } +} + +void tlb_flush_all_cpus(CPUState *src_cpu) +{ + const run_on_cpu_func fn = tlb_flush_global_async_work; + flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); + fn(src_cpu, RUN_ON_CPU_NULL); +} + +void tlb_flush_all_cpus_synced(CPUState *src_cpu) +{ + const run_on_cpu_func fn = tlb_flush_global_async_work; + flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL); } -static inline void v_tlb_flush_by_mmuidx(CPUState *cpu, va_list argp) +static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) { CPUArchState *env = cpu->env_ptr; + unsigned long mmu_idx_bitmask = data.host_int; + int mmu_idx; - tlb_debug("start\n"); + assert_cpu_is_self(cpu); - for (;;) { - int mmu_idx = va_arg(argp, int); + tb_lock(); - if (mmu_idx < 0) { - break; - } + tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask); - tlb_debug("%d\n", mmu_idx); + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + + if (test_bit(mmu_idx, &mmu_idx_bitmask)) { + tlb_debug("%d\n", mmu_idx); - memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0])); - memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); + memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0])); + memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); + } } memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache)); + + tlb_debug("done\n"); + + tb_unlock(); } -void tlb_flush_by_mmuidx(CPUState *cpu, ...) +void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) { - va_list argp; - va_start(argp, cpu); - v_tlb_flush_by_mmuidx(cpu, argp); - va_end(argp); + tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); + + if (!qemu_cpu_is_self(cpu)) { + uint16_t pending_flushes = idxmap; + pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush); + + if (pending_flushes) { + tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes); + + atomic_or(&cpu->pending_tlb_flush, pending_flushes); + async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, + RUN_ON_CPU_HOST_INT(pending_flushes)); + } + } else { + tlb_flush_by_mmuidx_async_work(cpu, + RUN_ON_CPU_HOST_INT(idxmap)); + } +} + +void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; + + tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); + fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); } +void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, + uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; + + tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); +} + + + static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) { if (addr == (tlb_entry->addr_read & @@ -121,12 +246,15 @@ static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr) } } -void tlb_flush_page(CPUState *cpu, target_ulong addr) +static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data) { CPUArchState *env = cpu->env_ptr; + target_ulong addr = (target_ulong) data.target_ptr; int i; int mmu_idx; + assert_cpu_is_self(cpu); + tlb_debug("page :" TARGET_FMT_lx "\n", addr); /* Check if we need to flush due to large pages. */ @@ -156,15 +284,62 @@ void tlb_flush_page(CPUState *cpu, target_ulong addr) tb_flush_jmp_cache(cpu, addr); } -void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...) +void tlb_flush_page(CPUState *cpu, target_ulong addr) +{ + tlb_debug("page :" TARGET_FMT_lx "\n", addr); + + if (!qemu_cpu_is_self(cpu)) { + async_run_on_cpu(cpu, tlb_flush_page_async_work, + RUN_ON_CPU_TARGET_PTR(addr)); + } else { + tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr)); + } +} + +/* As we are going to hijack the bottom bits of the page address for a + * mmuidx bit mask we need to fail to build if we can't do that + */ +QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); + +static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, + run_on_cpu_data data) { CPUArchState *env = cpu->env_ptr; - int i, k; - va_list argp; + target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; + target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; + unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; + int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); + int mmu_idx; + int i; + + assert_cpu_is_self(cpu); - va_start(argp, addr); + tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n", + page, addr, mmu_idx_bitmap); + + for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { + if (test_bit(mmu_idx, &mmu_idx_bitmap)) { + tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr); + + /* check whether there are vltb entries that need to be flushed */ + for (i = 0; i < CPU_VTLB_SIZE; i++) { + tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr); + } + } + } + + tb_flush_jmp_cache(cpu, addr); +} + +static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu, + run_on_cpu_data data) +{ + CPUArchState *env = cpu->env_ptr; + target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; + target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; + unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; - tlb_debug("addr "TARGET_FMT_lx"\n", addr); + tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap); /* Check if we need to flush due to large pages. */ if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) { @@ -172,33 +347,80 @@ void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...) TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", env->tlb_flush_addr, env->tlb_flush_mask); - v_tlb_flush_by_mmuidx(cpu, argp); - va_end(argp); - return; + tlb_flush_by_mmuidx_async_work(cpu, + RUN_ON_CPU_HOST_INT(mmu_idx_bitmap)); + } else { + tlb_flush_page_by_mmuidx_async_work(cpu, data); } +} - addr &= TARGET_PAGE_MASK; - i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); +void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) +{ + target_ulong addr_and_mmu_idx; - for (;;) { - int mmu_idx = va_arg(argp, int); + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); - if (mmu_idx < 0) { - break; - } + /* This should already be page aligned */ + addr_and_mmu_idx = addr & TARGET_PAGE_MASK; + addr_and_mmu_idx |= idxmap; - tlb_debug("idx %d\n", mmu_idx); + if (!qemu_cpu_is_self(cpu)) { + async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work, + RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + } else { + tlb_check_page_and_flush_by_mmuidx_async_work( + cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + } +} - tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr); +void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, + uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; + target_ulong addr_and_mmu_idx; - /* check whether there are vltb entries that need to be flushed */ - for (k = 0; k < CPU_VTLB_SIZE; k++) { - tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr); - } - } - va_end(argp); + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); - tb_flush_jmp_cache(cpu, addr); + /* This should already be page aligned */ + addr_and_mmu_idx = addr & TARGET_PAGE_MASK; + addr_and_mmu_idx |= idxmap; + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); +} + +void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, + target_ulong addr, + uint16_t idxmap) +{ + const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work; + target_ulong addr_and_mmu_idx; + + tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); + + /* This should already be page aligned */ + addr_and_mmu_idx = addr & TARGET_PAGE_MASK; + addr_and_mmu_idx |= idxmap; + + flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); + async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); +} + +void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) +{ + const run_on_cpu_func fn = tlb_flush_page_async_work; + + flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); + fn(src, RUN_ON_CPU_TARGET_PTR(addr)); +} + +void tlb_flush_page_all_cpus_synced(CPUState *src, + target_ulong addr) +{ + const run_on_cpu_func fn = tlb_flush_page_async_work; + + flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); + async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr)); } /* update the TLBs so that writes to code in the virtual page 'addr' @@ -216,36 +438,84 @@ void tlb_unprotect_code(ram_addr_t ram_addr) cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); } -static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe) -{ - return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0; -} -void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, +/* + * Dirty write flag handling + * + * When the TCG code writes to a location it looks up the address in + * the TLB and uses that data to compute the final address. If any of + * the lower bits of the address are set then the slow path is forced. + * There are a number of reasons to do this but for normal RAM the + * most usual is detecting writes to code regions which may invalidate + * generated code. + * + * Because we want other vCPUs to respond to changes straight away we + * update the te->addr_write field atomically. If the TLB entry has + * been changed by the vCPU in the mean time we skip the update. + * + * As this function uses atomic accesses we also need to ensure + * updates to tlb_entries follow the same access rules. We don't need + * to worry about this for oversized guests as MTTCG is disabled for + * them. + */ + +static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start, uintptr_t length) { - uintptr_t addr; +#if TCG_OVERSIZED_GUEST + uintptr_t addr = tlb_entry->addr_write; - if (tlb_is_dirty_ram(tlb_entry)) { - addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend; + if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { + addr &= TARGET_PAGE_MASK; + addr += tlb_entry->addend; if ((addr - start) < length) { tlb_entry->addr_write |= TLB_NOTDIRTY; } } +#else + /* paired with atomic_mb_set in tlb_set_page_with_attrs */ + uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write); + uintptr_t addr = orig_addr; + + if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { + addr &= TARGET_PAGE_MASK; + addr += atomic_read(&tlb_entry->addend); + if ((addr - start) < length) { + uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY; + atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr); + } + } +#endif } -static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) +/* For atomic correctness when running MTTCG we need to use the right + * primitives when copying entries */ +static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s, + bool atomic_set) { - ram_addr_t ram_addr; - - ram_addr = qemu_ram_addr_from_host(ptr); - if (ram_addr == RAM_ADDR_INVALID) { - fprintf(stderr, "Bad ram pointer %p\n", ptr); - abort(); +#if TCG_OVERSIZED_GUEST + *d = *s; +#else + if (atomic_set) { + d->addr_read = s->addr_read; + d->addr_code = s->addr_code; + atomic_set(&d->addend, atomic_read(&s->addend)); + /* Pairs with flag setting in tlb_reset_dirty_range */ + atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write)); + } else { + d->addr_read = s->addr_read; + d->addr_write = atomic_read(&s->addr_write); + d->addr_code = s->addr_code; + d->addend = atomic_read(&s->addend); } - return ram_addr; +#endif } +/* This is a cross vCPU call (i.e. another vCPU resetting the flags of + * the target vCPU). As such care needs to be taken that we don't + * dangerously race with another vCPU update. The only thing actually + * updated is the target TLB entry ->addr_write flags. + */ void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) { CPUArchState *env; @@ -283,6 +553,8 @@ void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) int i; int mmu_idx; + assert_cpu_is_self(cpu); + vaddr &= TARGET_PAGE_MASK; i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { @@ -337,11 +609,12 @@ void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, target_ulong address; target_ulong code_address; uintptr_t addend; - CPUTLBEntry *te; + CPUTLBEntry *te, *tv, tn; hwaddr iotlb, xlat, sz; unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE; int asidx = cpu_asidx_from_attrs(cpu, attrs); + assert_cpu_is_self(cpu); assert(size >= TARGET_PAGE_SIZE); if (size != TARGET_PAGE_SIZE) { tlb_add_large_page(env, vaddr, size); @@ -371,41 +644,50 @@ void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); te = &env->tlb_table[mmu_idx][index]; - /* do not discard the translation in te, evict it into a victim tlb */ - env->tlb_v_table[mmu_idx][vidx] = *te; + tv = &env->tlb_v_table[mmu_idx][vidx]; + + /* addr_write can race with tlb_reset_dirty_range */ + copy_tlb_helper(tv, te, true); + env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; /* refill the tlb */ env->iotlb[mmu_idx][index].addr = iotlb - vaddr; env->iotlb[mmu_idx][index].attrs = attrs; - te->addend = addend - vaddr; + + /* Now calculate the new entry */ + tn.addend = addend - vaddr; if (prot & PAGE_READ) { - te->addr_read = address; + tn.addr_read = address; } else { - te->addr_read = -1; + tn.addr_read = -1; } if (prot & PAGE_EXEC) { - te->addr_code = code_address; + tn.addr_code = code_address; } else { - te->addr_code = -1; + tn.addr_code = -1; } + + tn.addr_write = -1; if (prot & PAGE_WRITE) { if ((memory_region_is_ram(section->mr) && section->readonly) || memory_region_is_romd(section->mr)) { /* Write access calls the I/O callback. */ - te->addr_write = address | TLB_MMIO; + tn.addr_write = address | TLB_MMIO; } else if (memory_region_is_ram(section->mr) && cpu_physical_memory_is_clean( memory_region_get_ram_addr(section->mr) + xlat)) { - te->addr_write = address | TLB_NOTDIRTY; + tn.addr_write = address | TLB_NOTDIRTY; } else { - te->addr_write = address; + tn.addr_write = address; } - } else { - te->addr_write = -1; } + + /* Pairs with flag setting in tlb_reset_dirty_range */ + copy_tlb_helper(te, &tn, true); + /* atomic_mb_set(&te->addr_write, write_address); */ } /* Add a new TLB entry, but without specifying the memory @@ -452,6 +734,18 @@ static void report_bad_exec(CPUState *cpu, target_ulong addr) log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); } +static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) +{ + ram_addr_t ram_addr; + + ram_addr = qemu_ram_addr_from_host(ptr); + if (ram_addr == RAM_ADDR_INVALID) { + error_report("Bad ram pointer %p", ptr); + abort(); + } + return ram_addr; +} + /* NOTE: this function can trigger an exception */ /* NOTE2: the returned address is not exactly the physical address: it * is actually a ram_addr_t (in system mode; the user mode emulation @@ -495,6 +789,7 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, hwaddr physaddr = iotlbentry->addr; MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); uint64_t val; + bool locked = false; physaddr = (physaddr & TARGET_PAGE_MASK) + addr; cpu->mem_io_pc = retaddr; @@ -503,7 +798,16 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, } cpu->mem_io_vaddr = addr; + + if (mr->global_locking) { + qemu_mutex_lock_iothread(); + locked = true; + } memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs); + if (locked) { + qemu_mutex_unlock_iothread(); + } + return val; } @@ -514,15 +818,23 @@ static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, CPUState *cpu = ENV_GET_CPU(env); hwaddr physaddr = iotlbentry->addr; MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs); + bool locked = false; physaddr = (physaddr & TARGET_PAGE_MASK) + addr; if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { cpu_io_recompile(cpu, retaddr); } - cpu->mem_io_vaddr = addr; cpu->mem_io_pc = retaddr; + + if (mr->global_locking) { + qemu_mutex_lock_iothread(); + locked = true; + } memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs); + if (locked) { + qemu_mutex_unlock_iothread(); + } } /* Return true if ADDR is present in the victim tlb, and has been copied @@ -538,10 +850,13 @@ static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, if (cmp == page) { /* Found entry in victim tlb, swap tlb and iotlb. */ CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index]; + + copy_tlb_helper(&tmptlb, tlb, false); + copy_tlb_helper(tlb, vtlb, true); + copy_tlb_helper(vtlb, &tmptlb, true); + CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index]; CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx]; - - tmptlb = *tlb; *tlb = *vtlb; *vtlb = tmptlb; tmpio = *io; *io = *vio; *vio = tmpio; return true; } |