aboutsummaryrefslogtreecommitdiff
path: root/cpus-common.c
diff options
context:
space:
mode:
Diffstat (limited to 'cpus-common.c')
-rw-r--r--cpus-common.c352
1 files changed, 352 insertions, 0 deletions
diff --git a/cpus-common.c b/cpus-common.c
new file mode 100644
index 0000000000..3e114529c9
--- /dev/null
+++ b/cpus-common.c
@@ -0,0 +1,352 @@
+/*
+ * CPU thread main loop - common bits for user and system mode emulation
+ *
+ * Copyright (c) 2003-2005 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/main-loop.h"
+#include "exec/cpu-common.h"
+#include "qom/cpu.h"
+#include "sysemu/cpus.h"
+
+static QemuMutex qemu_cpu_list_lock;
+static QemuCond exclusive_cond;
+static QemuCond exclusive_resume;
+static QemuCond qemu_work_cond;
+
+/* >= 1 if a thread is inside start_exclusive/end_exclusive. Written
+ * under qemu_cpu_list_lock, read with atomic operations.
+ */
+static int pending_cpus;
+
+void qemu_init_cpu_list(void)
+{
+ /* This is needed because qemu_init_cpu_list is also called by the
+ * child process in a fork. */
+ pending_cpus = 0;
+
+ qemu_mutex_init(&qemu_cpu_list_lock);
+ qemu_cond_init(&exclusive_cond);
+ qemu_cond_init(&exclusive_resume);
+ qemu_cond_init(&qemu_work_cond);
+}
+
+void cpu_list_lock(void)
+{
+ qemu_mutex_lock(&qemu_cpu_list_lock);
+}
+
+void cpu_list_unlock(void)
+{
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
+}
+
+static bool cpu_index_auto_assigned;
+
+static int cpu_get_free_index(void)
+{
+ CPUState *some_cpu;
+ int cpu_index = 0;
+
+ cpu_index_auto_assigned = true;
+ CPU_FOREACH(some_cpu) {
+ cpu_index++;
+ }
+ return cpu_index;
+}
+
+static void finish_safe_work(CPUState *cpu)
+{
+ cpu_exec_start(cpu);
+ cpu_exec_end(cpu);
+}
+
+void cpu_list_add(CPUState *cpu)
+{
+ qemu_mutex_lock(&qemu_cpu_list_lock);
+ if (cpu->cpu_index == UNASSIGNED_CPU_INDEX) {
+ cpu->cpu_index = cpu_get_free_index();
+ assert(cpu->cpu_index != UNASSIGNED_CPU_INDEX);
+ } else {
+ assert(!cpu_index_auto_assigned);
+ }
+ QTAILQ_INSERT_TAIL(&cpus, cpu, node);
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
+
+ finish_safe_work(cpu);
+}
+
+void cpu_list_remove(CPUState *cpu)
+{
+ qemu_mutex_lock(&qemu_cpu_list_lock);
+ if (!QTAILQ_IN_USE(cpu, node)) {
+ /* there is nothing to undo since cpu_exec_init() hasn't been called */
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
+ return;
+ }
+
+ assert(!(cpu_index_auto_assigned && cpu != QTAILQ_LAST(&cpus, CPUTailQ)));
+
+ QTAILQ_REMOVE(&cpus, cpu, node);
+ cpu->cpu_index = UNASSIGNED_CPU_INDEX;
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
+}
+
+struct qemu_work_item {
+ struct qemu_work_item *next;
+ run_on_cpu_func func;
+ void *data;
+ bool free, exclusive, done;
+};
+
+static void queue_work_on_cpu(CPUState *cpu, struct qemu_work_item *wi)
+{
+ qemu_mutex_lock(&cpu->work_mutex);
+ if (cpu->queued_work_first == NULL) {
+ cpu->queued_work_first = wi;
+ } else {
+ cpu->queued_work_last->next = wi;
+ }
+ cpu->queued_work_last = wi;
+ wi->next = NULL;
+ wi->done = false;
+ qemu_mutex_unlock(&cpu->work_mutex);
+
+ qemu_cpu_kick(cpu);
+}
+
+void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data,
+ QemuMutex *mutex)
+{
+ struct qemu_work_item wi;
+
+ if (qemu_cpu_is_self(cpu)) {
+ func(cpu, data);
+ return;
+ }
+
+ wi.func = func;
+ wi.data = data;
+ wi.done = false;
+ wi.free = false;
+ wi.exclusive = false;
+
+ queue_work_on_cpu(cpu, &wi);
+ while (!atomic_mb_read(&wi.done)) {
+ CPUState *self_cpu = current_cpu;
+
+ qemu_cond_wait(&qemu_work_cond, mutex);
+ current_cpu = self_cpu;
+ }
+}
+
+void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data)
+{
+ struct qemu_work_item *wi;
+
+ wi = g_malloc0(sizeof(struct qemu_work_item));
+ wi->func = func;
+ wi->data = data;
+ wi->free = true;
+
+ queue_work_on_cpu(cpu, wi);
+}
+
+/* Wait for pending exclusive operations to complete. The CPU list lock
+ must be held. */
+static inline void exclusive_idle(void)
+{
+ while (pending_cpus) {
+ qemu_cond_wait(&exclusive_resume, &qemu_cpu_list_lock);
+ }
+}
+
+/* Start an exclusive operation.
+ Must only be called from outside cpu_exec. */
+void start_exclusive(void)
+{
+ CPUState *other_cpu;
+ int running_cpus;
+
+ qemu_mutex_lock(&qemu_cpu_list_lock);
+ exclusive_idle();
+
+ /* Make all other cpus stop executing. */
+ atomic_set(&pending_cpus, 1);
+
+ /* Write pending_cpus before reading other_cpu->running. */
+ smp_mb();
+ running_cpus = 0;
+ CPU_FOREACH(other_cpu) {
+ if (atomic_read(&other_cpu->running)) {
+ other_cpu->has_waiter = true;
+ running_cpus++;
+ qemu_cpu_kick(other_cpu);
+ }
+ }
+
+ atomic_set(&pending_cpus, running_cpus + 1);
+ while (pending_cpus > 1) {
+ qemu_cond_wait(&exclusive_cond, &qemu_cpu_list_lock);
+ }
+
+ /* Can release mutex, no one will enter another exclusive
+ * section until end_exclusive resets pending_cpus to 0.
+ */
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
+}
+
+/* Finish an exclusive operation. */
+void end_exclusive(void)
+{
+ qemu_mutex_lock(&qemu_cpu_list_lock);
+ atomic_set(&pending_cpus, 0);
+ qemu_cond_broadcast(&exclusive_resume);
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
+}
+
+/* Wait for exclusive ops to finish, and begin cpu execution. */
+void cpu_exec_start(CPUState *cpu)
+{
+ atomic_set(&cpu->running, true);
+
+ /* Write cpu->running before reading pending_cpus. */
+ smp_mb();
+
+ /* 1. start_exclusive saw cpu->running == true and pending_cpus >= 1.
+ * After taking the lock we'll see cpu->has_waiter == true and run---not
+ * for long because start_exclusive kicked us. cpu_exec_end will
+ * decrement pending_cpus and signal the waiter.
+ *
+ * 2. start_exclusive saw cpu->running == false but pending_cpus >= 1.
+ * This includes the case when an exclusive item is running now.
+ * Then we'll see cpu->has_waiter == false and wait for the item to
+ * complete.
+ *
+ * 3. pending_cpus == 0. Then start_exclusive is definitely going to
+ * see cpu->running == true, and it will kick the CPU.
+ */
+ if (unlikely(atomic_read(&pending_cpus))) {
+ qemu_mutex_lock(&qemu_cpu_list_lock);
+ if (!cpu->has_waiter) {
+ /* Not counted in pending_cpus, let the exclusive item
+ * run. Since we have the lock, just set cpu->running to true
+ * while holding it; no need to check pending_cpus again.
+ */
+ atomic_set(&cpu->running, false);
+ exclusive_idle();
+ /* Now pending_cpus is zero. */
+ atomic_set(&cpu->running, true);
+ } else {
+ /* Counted in pending_cpus, go ahead and release the
+ * waiter at cpu_exec_end.
+ */
+ }
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
+ }
+}
+
+/* Mark cpu as not executing, and release pending exclusive ops. */
+void cpu_exec_end(CPUState *cpu)
+{
+ atomic_set(&cpu->running, false);
+
+ /* Write cpu->running before reading pending_cpus. */
+ smp_mb();
+
+ /* 1. start_exclusive saw cpu->running == true. Then it will increment
+ * pending_cpus and wait for exclusive_cond. After taking the lock
+ * we'll see cpu->has_waiter == true.
+ *
+ * 2. start_exclusive saw cpu->running == false but here pending_cpus >= 1.
+ * This includes the case when an exclusive item started after setting
+ * cpu->running to false and before we read pending_cpus. Then we'll see
+ * cpu->has_waiter == false and not touch pending_cpus. The next call to
+ * cpu_exec_start will run exclusive_idle if still necessary, thus waiting
+ * for the item to complete.
+ *
+ * 3. pending_cpus == 0. Then start_exclusive is definitely going to
+ * see cpu->running == false, and it can ignore this CPU until the
+ * next cpu_exec_start.
+ */
+ if (unlikely(atomic_read(&pending_cpus))) {
+ qemu_mutex_lock(&qemu_cpu_list_lock);
+ if (cpu->has_waiter) {
+ cpu->has_waiter = false;
+ atomic_set(&pending_cpus, pending_cpus - 1);
+ if (pending_cpus == 1) {
+ qemu_cond_signal(&exclusive_cond);
+ }
+ }
+ qemu_mutex_unlock(&qemu_cpu_list_lock);
+ }
+}
+
+void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, void *data)
+{
+ struct qemu_work_item *wi;
+
+ wi = g_malloc0(sizeof(struct qemu_work_item));
+ wi->func = func;
+ wi->data = data;
+ wi->free = true;
+ wi->exclusive = true;
+
+ queue_work_on_cpu(cpu, wi);
+}
+
+void process_queued_cpu_work(CPUState *cpu)
+{
+ struct qemu_work_item *wi;
+
+ if (cpu->queued_work_first == NULL) {
+ return;
+ }
+
+ qemu_mutex_lock(&cpu->work_mutex);
+ while (cpu->queued_work_first != NULL) {
+ wi = cpu->queued_work_first;
+ cpu->queued_work_first = wi->next;
+ if (!cpu->queued_work_first) {
+ cpu->queued_work_last = NULL;
+ }
+ qemu_mutex_unlock(&cpu->work_mutex);
+ if (wi->exclusive) {
+ /* Running work items outside the BQL avoids the following deadlock:
+ * 1) start_exclusive() is called with the BQL taken while another
+ * CPU is running; 2) cpu_exec in the other CPU tries to takes the
+ * BQL, so it goes to sleep; start_exclusive() is sleeping too, so
+ * neither CPU can proceed.
+ */
+ qemu_mutex_unlock_iothread();
+ start_exclusive();
+ wi->func(cpu, wi->data);
+ end_exclusive();
+ qemu_mutex_lock_iothread();
+ } else {
+ wi->func(cpu, wi->data);
+ }
+ qemu_mutex_lock(&cpu->work_mutex);
+ if (wi->free) {
+ g_free(wi);
+ } else {
+ atomic_mb_set(&wi->done, true);
+ }
+ }
+ qemu_mutex_unlock(&cpu->work_mutex);
+ qemu_cond_broadcast(&qemu_work_cond);
+}