aboutsummaryrefslogtreecommitdiff
path: root/accel/tcg/cputlb.c
diff options
context:
space:
mode:
Diffstat (limited to 'accel/tcg/cputlb.c')
-rw-r--r--accel/tcg/cputlb.c626
1 files changed, 546 insertions, 80 deletions
diff --git a/accel/tcg/cputlb.c b/accel/tcg/cputlb.c
index f2f618217d..a083324768 100644
--- a/accel/tcg/cputlb.c
+++ b/accel/tcg/cputlb.c
@@ -856,9 +856,8 @@ static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
}
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
- int mmu_idx,
- target_ulong addr, uintptr_t retaddr,
- bool recheck, MMUAccessType access_type, int size)
+ int mmu_idx, target_ulong addr, uintptr_t retaddr,
+ MMUAccessType access_type, int size)
{
CPUState *cpu = ENV_GET_CPU(env);
hwaddr mr_offset;
@@ -868,30 +867,6 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
bool locked = false;
MemTxResult r;
- if (recheck) {
- /*
- * This is a TLB_RECHECK access, where the MMU protection
- * covers a smaller range than a target page, and we must
- * repeat the MMU check here. This tlb_fill() call might
- * longjump out if this access should cause a guest exception.
- */
- CPUTLBEntry *entry;
- target_ulong tlb_addr;
-
- tlb_fill(cpu, addr, size, access_type, mmu_idx, retaddr);
-
- entry = tlb_entry(env, mmu_idx, addr);
- tlb_addr = (access_type == MMU_DATA_LOAD ?
- entry->addr_read : entry->addr_code);
- if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
- /* RAM access */
- uintptr_t haddr = addr + entry->addend;
-
- return ldn_p((void *)haddr, size);
- }
- /* Fall through for handling IO accesses */
- }
-
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
mr = section->mr;
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
@@ -925,9 +900,8 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
}
static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
- int mmu_idx,
- uint64_t val, target_ulong addr,
- uintptr_t retaddr, bool recheck, int size)
+ int mmu_idx, uint64_t val, target_ulong addr,
+ uintptr_t retaddr, int size)
{
CPUState *cpu = ENV_GET_CPU(env);
hwaddr mr_offset;
@@ -936,30 +910,6 @@ static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
bool locked = false;
MemTxResult r;
- if (recheck) {
- /*
- * This is a TLB_RECHECK access, where the MMU protection
- * covers a smaller range than a target page, and we must
- * repeat the MMU check here. This tlb_fill() call might
- * longjump out if this access should cause a guest exception.
- */
- CPUTLBEntry *entry;
- target_ulong tlb_addr;
-
- tlb_fill(cpu, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
-
- entry = tlb_entry(env, mmu_idx, addr);
- tlb_addr = tlb_addr_write(entry);
- if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
- /* RAM access */
- uintptr_t haddr = addr + entry->addend;
-
- stn_p((void *)haddr, size, val);
- return;
- }
- /* Fall through for handling IO accesses */
- }
-
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
mr = section->mr;
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
@@ -1168,26 +1118,481 @@ static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
}
#ifdef TARGET_WORDS_BIGENDIAN
-# define TGT_BE(X) (X)
-# define TGT_LE(X) BSWAP(X)
+#define NEED_BE_BSWAP 0
+#define NEED_LE_BSWAP 1
#else
-# define TGT_BE(X) BSWAP(X)
-# define TGT_LE(X) (X)
+#define NEED_BE_BSWAP 1
+#define NEED_LE_BSWAP 0
#endif
-#define MMUSUFFIX _mmu
+/*
+ * Byte Swap Helper
+ *
+ * This should all dead code away depending on the build host and
+ * access type.
+ */
-#define DATA_SIZE 1
-#include "softmmu_template.h"
+static inline uint64_t handle_bswap(uint64_t val, int size, bool big_endian)
+{
+ if ((big_endian && NEED_BE_BSWAP) || (!big_endian && NEED_LE_BSWAP)) {
+ switch (size) {
+ case 1: return val;
+ case 2: return bswap16(val);
+ case 4: return bswap32(val);
+ case 8: return bswap64(val);
+ default:
+ g_assert_not_reached();
+ }
+ } else {
+ return val;
+ }
+}
-#define DATA_SIZE 2
-#include "softmmu_template.h"
+/*
+ * Load Helpers
+ *
+ * We support two different access types. SOFTMMU_CODE_ACCESS is
+ * specifically for reading instructions from system memory. It is
+ * called by the translation loop and in some helpers where the code
+ * is disassembled. It shouldn't be called directly by guest code.
+ */
-#define DATA_SIZE 4
-#include "softmmu_template.h"
+typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr);
-#define DATA_SIZE 8
-#include "softmmu_template.h"
+static inline uint64_t __attribute__((always_inline))
+load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
+ uintptr_t retaddr, size_t size, bool big_endian, bool code_read,
+ FullLoadHelper *full_load)
+{
+ uintptr_t mmu_idx = get_mmuidx(oi);
+ uintptr_t index = tlb_index(env, mmu_idx, addr);
+ CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
+ target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
+ const size_t tlb_off = code_read ?
+ offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
+ const MMUAccessType access_type =
+ code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
+ void *haddr;
+ uint64_t res;
+
+ /* Handle CPU specific unaligned behaviour */
+ if (addr & ((1 << a_bits) - 1)) {
+ cpu_unaligned_access(ENV_GET_CPU(env), addr, access_type,
+ mmu_idx, retaddr);
+ }
+
+ /* If the TLB entry is for a different page, reload and try again. */
+ if (!tlb_hit(tlb_addr, addr)) {
+ if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
+ addr & TARGET_PAGE_MASK)) {
+ tlb_fill(ENV_GET_CPU(env), addr, size,
+ access_type, mmu_idx, retaddr);
+ index = tlb_index(env, mmu_idx, addr);
+ entry = tlb_entry(env, mmu_idx, addr);
+ }
+ tlb_addr = code_read ? entry->addr_code : entry->addr_read;
+ }
+
+ /* Handle an IO access. */
+ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
+ if ((addr & (size - 1)) != 0) {
+ goto do_unaligned_access;
+ }
+
+ if (tlb_addr & TLB_RECHECK) {
+ /*
+ * This is a TLB_RECHECK access, where the MMU protection
+ * covers a smaller range than a target page, and we must
+ * repeat the MMU check here. This tlb_fill() call might
+ * longjump out if this access should cause a guest exception.
+ */
+ tlb_fill(ENV_GET_CPU(env), addr, size,
+ access_type, mmu_idx, retaddr);
+ index = tlb_index(env, mmu_idx, addr);
+ entry = tlb_entry(env, mmu_idx, addr);
+
+ tlb_addr = code_read ? entry->addr_code : entry->addr_read;
+ tlb_addr &= ~TLB_RECHECK;
+ if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
+ /* RAM access */
+ goto do_aligned_access;
+ }
+ }
+
+ res = io_readx(env, &env->iotlb[mmu_idx][index], mmu_idx, addr,
+ retaddr, access_type, size);
+ return handle_bswap(res, size, big_endian);
+ }
+
+ /* Handle slow unaligned access (it spans two pages or IO). */
+ if (size > 1
+ && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
+ >= TARGET_PAGE_SIZE)) {
+ target_ulong addr1, addr2;
+ tcg_target_ulong r1, r2;
+ unsigned shift;
+ do_unaligned_access:
+ addr1 = addr & ~(size - 1);
+ addr2 = addr1 + size;
+ r1 = full_load(env, addr1, oi, retaddr);
+ r2 = full_load(env, addr2, oi, retaddr);
+ shift = (addr & (size - 1)) * 8;
+
+ if (big_endian) {
+ /* Big-endian combine. */
+ res = (r1 << shift) | (r2 >> ((size * 8) - shift));
+ } else {
+ /* Little-endian combine. */
+ res = (r1 >> shift) | (r2 << ((size * 8) - shift));
+ }
+ return res & MAKE_64BIT_MASK(0, size * 8);
+ }
+
+ do_aligned_access:
+ haddr = (void *)((uintptr_t)addr + entry->addend);
+ switch (size) {
+ case 1:
+ res = ldub_p(haddr);
+ break;
+ case 2:
+ if (big_endian) {
+ res = lduw_be_p(haddr);
+ } else {
+ res = lduw_le_p(haddr);
+ }
+ break;
+ case 4:
+ if (big_endian) {
+ res = (uint32_t)ldl_be_p(haddr);
+ } else {
+ res = (uint32_t)ldl_le_p(haddr);
+ }
+ break;
+ case 8:
+ if (big_endian) {
+ res = ldq_be_p(haddr);
+ } else {
+ res = ldq_le_p(haddr);
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ return res;
+}
+
+/*
+ * For the benefit of TCG generated code, we want to avoid the
+ * complication of ABI-specific return type promotion and always
+ * return a value extended to the register size of the host. This is
+ * tcg_target_long, except in the case of a 32-bit host and 64-bit
+ * data, and for that we always have uint64_t.
+ *
+ * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
+ */
+
+static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 1, false, false,
+ full_ldub_mmu);
+}
+
+tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_ldub_mmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 2, false, false,
+ full_le_lduw_mmu);
+}
+
+tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_le_lduw_mmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 2, true, false,
+ full_be_lduw_mmu);
+}
+
+tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_be_lduw_mmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 4, false, false,
+ full_le_ldul_mmu);
+}
+
+tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_le_ldul_mmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 4, true, false,
+ full_be_ldul_mmu);
+}
+
+tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_be_ldul_mmu(env, addr, oi, retaddr);
+}
+
+uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 8, false, false,
+ helper_le_ldq_mmu);
+}
+
+uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 8, true, false,
+ helper_be_ldq_mmu);
+}
+
+/*
+ * Provide signed versions of the load routines as well. We can of course
+ * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
+ */
+
+
+tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
+}
+
+tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
+}
+
+tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
+}
+
+tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
+}
+
+tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
+}
+
+/*
+ * Store Helpers
+ */
+
+static inline void __attribute__((always_inline))
+store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
+ TCGMemOpIdx oi, uintptr_t retaddr, size_t size, bool big_endian)
+{
+ uintptr_t mmu_idx = get_mmuidx(oi);
+ uintptr_t index = tlb_index(env, mmu_idx, addr);
+ CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
+ target_ulong tlb_addr = tlb_addr_write(entry);
+ const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
+ void *haddr;
+
+ /* Handle CPU specific unaligned behaviour */
+ if (addr & ((1 << a_bits) - 1)) {
+ cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ }
+
+ /* If the TLB entry is for a different page, reload and try again. */
+ if (!tlb_hit(tlb_addr, addr)) {
+ if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
+ addr & TARGET_PAGE_MASK)) {
+ tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ index = tlb_index(env, mmu_idx, addr);
+ entry = tlb_entry(env, mmu_idx, addr);
+ }
+ tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
+ }
+
+ /* Handle an IO access. */
+ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
+ if ((addr & (size - 1)) != 0) {
+ goto do_unaligned_access;
+ }
+
+ if (tlb_addr & TLB_RECHECK) {
+ /*
+ * This is a TLB_RECHECK access, where the MMU protection
+ * covers a smaller range than a target page, and we must
+ * repeat the MMU check here. This tlb_fill() call might
+ * longjump out if this access should cause a guest exception.
+ */
+ tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ index = tlb_index(env, mmu_idx, addr);
+ entry = tlb_entry(env, mmu_idx, addr);
+
+ tlb_addr = tlb_addr_write(entry);
+ tlb_addr &= ~TLB_RECHECK;
+ if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
+ /* RAM access */
+ goto do_aligned_access;
+ }
+ }
+
+ io_writex(env, &env->iotlb[mmu_idx][index], mmu_idx,
+ handle_bswap(val, size, big_endian),
+ addr, retaddr, size);
+ return;
+ }
+
+ /* Handle slow unaligned access (it spans two pages or IO). */
+ if (size > 1
+ && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
+ >= TARGET_PAGE_SIZE)) {
+ int i;
+ uintptr_t index2;
+ CPUTLBEntry *entry2;
+ target_ulong page2, tlb_addr2;
+ do_unaligned_access:
+ /*
+ * Ensure the second page is in the TLB. Note that the first page
+ * is already guaranteed to be filled, and that the second page
+ * cannot evict the first.
+ */
+ page2 = (addr + size) & TARGET_PAGE_MASK;
+ index2 = tlb_index(env, mmu_idx, page2);
+ entry2 = tlb_entry(env, mmu_idx, page2);
+ tlb_addr2 = tlb_addr_write(entry2);
+ if (!tlb_hit_page(tlb_addr2, page2)
+ && !victim_tlb_hit(env, mmu_idx, index2, tlb_off,
+ page2 & TARGET_PAGE_MASK)) {
+ tlb_fill(ENV_GET_CPU(env), page2, size, MMU_DATA_STORE,
+ mmu_idx, retaddr);
+ }
+
+ /*
+ * XXX: not efficient, but simple.
+ * This loop must go in the forward direction to avoid issues
+ * with self-modifying code in Windows 64-bit.
+ */
+ for (i = 0; i < size; ++i) {
+ uint8_t val8;
+ if (big_endian) {
+ /* Big-endian extract. */
+ val8 = val >> (((size - 1) * 8) - (i * 8));
+ } else {
+ /* Little-endian extract. */
+ val8 = val >> (i * 8);
+ }
+ helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
+ }
+ return;
+ }
+
+ do_aligned_access:
+ haddr = (void *)((uintptr_t)addr + entry->addend);
+ switch (size) {
+ case 1:
+ stb_p(haddr, val);
+ break;
+ case 2:
+ if (big_endian) {
+ stw_be_p(haddr, val);
+ } else {
+ stw_le_p(haddr, val);
+ }
+ break;
+ case 4:
+ if (big_endian) {
+ stl_be_p(haddr, val);
+ } else {
+ stl_le_p(haddr, val);
+ }
+ break;
+ case 8:
+ if (big_endian) {
+ stq_be_p(haddr, val);
+ } else {
+ stq_le_p(haddr, val);
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ break;
+ }
+}
+
+void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ store_helper(env, addr, val, oi, retaddr, 1, false);
+}
+
+void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ store_helper(env, addr, val, oi, retaddr, 2, false);
+}
+
+void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ store_helper(env, addr, val, oi, retaddr, 2, true);
+}
+
+void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ store_helper(env, addr, val, oi, retaddr, 4, false);
+}
+
+void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ store_helper(env, addr, val, oi, retaddr, 4, true);
+}
+
+void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ store_helper(env, addr, val, oi, retaddr, 8, false);
+}
+
+void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ store_helper(env, addr, val, oi, retaddr, 8, true);
+}
/* First set of helpers allows passing in of OI and RETADDR. This makes
them callable from other helpers. */
@@ -1248,20 +1653,81 @@ static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
/* Code access functions. */
-#undef MMUSUFFIX
-#define MMUSUFFIX _cmmu
-#undef GETPC
-#define GETPC() ((uintptr_t)0)
-#define SOFTMMU_CODE_ACCESS
+static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 1, false, true,
+ full_ldub_cmmu);
+}
-#define DATA_SIZE 1
-#include "softmmu_template.h"
+uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_ldub_cmmu(env, addr, oi, retaddr);
+}
-#define DATA_SIZE 2
-#include "softmmu_template.h"
+static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 2, false, true,
+ full_le_lduw_cmmu);
+}
-#define DATA_SIZE 4
-#include "softmmu_template.h"
+uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_le_lduw_cmmu(env, addr, oi, retaddr);
+}
-#define DATA_SIZE 8
-#include "softmmu_template.h"
+static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 2, true, true,
+ full_be_lduw_cmmu);
+}
+
+uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_be_lduw_cmmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 4, false, true,
+ full_le_ldul_cmmu);
+}
+
+uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_le_ldul_cmmu(env, addr, oi, retaddr);
+}
+
+static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 4, true, true,
+ full_be_ldul_cmmu);
+}
+
+uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return full_be_ldul_cmmu(env, addr, oi, retaddr);
+}
+
+uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 8, false, true,
+ helper_le_ldq_cmmu);
+}
+
+uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr,
+ TCGMemOpIdx oi, uintptr_t retaddr)
+{
+ return load_helper(env, addr, oi, retaddr, 8, true, true,
+ helper_be_ldq_cmmu);
+}