diff options
-rw-r--r-- | gdbstub.c | 15 | ||||
-rw-r--r-- | hw/arm/boot.c | 4 | ||||
-rw-r--r-- | hw/arm/pxa2xx.c | 6 | ||||
-rw-r--r-- | hw/arm/realview.c | 3 | ||||
-rw-r--r-- | hw/intc/arm_gic_kvm.c | 20 | ||||
-rw-r--r-- | include/exec/gdbstub.h | 6 | ||||
-rw-r--r-- | linux-user/aarch64/target_cpu.h | 2 | ||||
-rw-r--r-- | linux-user/arm/target_cpu.h | 2 | ||||
-rw-r--r-- | linux-user/main.c | 2 | ||||
-rw-r--r-- | qemu-options.hx | 12 | ||||
-rw-r--r-- | target-arm/arm-semi.c | 11 | ||||
-rw-r--r-- | target-arm/cpu.c | 10 | ||||
-rw-r--r-- | target-arm/cpu.h | 364 | ||||
-rw-r--r-- | target-arm/helper.c | 677 | ||||
-rw-r--r-- | target-arm/internals.h | 6 | ||||
-rw-r--r-- | target-arm/kvm.c | 107 | ||||
-rw-r--r-- | target-arm/kvm32.c | 100 | ||||
-rw-r--r-- | target-arm/kvm64.c | 24 | ||||
-rw-r--r-- | target-arm/kvm_arm.h | 22 | ||||
-rw-r--r-- | target-arm/machine.c | 22 | ||||
-rw-r--r-- | target-arm/op_helper.c | 4 | ||||
-rw-r--r-- | target-arm/translate.c | 15 | ||||
-rw-r--r-- | target-arm/translate.h | 1 | ||||
-rw-r--r-- | vl.c | 48 |
24 files changed, 1141 insertions, 342 deletions
@@ -317,6 +317,8 @@ static GDBState *gdbserver_state; bool gdb_has_xml; +int semihosting_target = SEMIHOSTING_TARGET_AUTO; + #ifdef CONFIG_USER_ONLY /* XXX: This is not thread safe. Do we care? */ static int gdbserver_fd = -1; @@ -351,10 +353,19 @@ static enum { GDB_SYS_DISABLED, } gdb_syscall_mode; -/* If gdb is connected when the first semihosting syscall occurs then use - remote gdb syscalls. Otherwise use native file IO. */ +/* Decide if either remote gdb syscalls or native file IO should be used. */ int use_gdb_syscalls(void) { + if (semihosting_target == SEMIHOSTING_TARGET_NATIVE) { + /* -semihosting-config target=native */ + return false; + } else if (semihosting_target == SEMIHOSTING_TARGET_GDB) { + /* -semihosting-config target=gdb */ + return true; + } + + /* -semihosting-config target=auto */ + /* On the first call check if gdb is connected and remember. */ if (gdb_syscall_mode == GDB_SYS_UNKNOWN) { gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED : GDB_SYS_DISABLED); diff --git a/hw/arm/boot.c b/hw/arm/boot.c index 0014c34ddd..e6a3c5bcfb 100644 --- a/hw/arm/boot.c +++ b/hw/arm/boot.c @@ -329,6 +329,8 @@ static void set_kernel_args_old(const struct arm_boot_info *info) * Returns: the size of the device tree image on success, * 0 if the image size exceeds the limit, * -1 on errors. + * + * Note: Must not be called unless have_dtb(binfo) is true. */ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, hwaddr addr_limit) @@ -352,7 +354,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, goto fail; } g_free(filename); - } else if (binfo->get_dtb) { + } else { fdt = binfo->get_dtb(binfo, &size); if (!fdt) { fprintf(stderr, "Board was unable to create a dtb blob\n"); diff --git a/hw/arm/pxa2xx.c b/hw/arm/pxa2xx.c index 693dfec9f2..8967cc4e0b 100644 --- a/hw/arm/pxa2xx.c +++ b/hw/arm/pxa2xx.c @@ -273,10 +273,10 @@ static void pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri, case 3: s->cpu->env.uncached_cpsr = ARM_CPU_MODE_SVC; s->cpu->env.daif = PSTATE_A | PSTATE_F | PSTATE_I; - s->cpu->env.cp15.c1_sys = 0; + s->cpu->env.cp15.sctlr_ns = 0; s->cpu->env.cp15.c1_coproc = 0; - s->cpu->env.cp15.ttbr0_el1 = 0; - s->cpu->env.cp15.c3 = 0; + s->cpu->env.cp15.ttbr0_el[1] = 0; + s->cpu->env.cp15.dacr_ns = 0; s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */ s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ diff --git a/hw/arm/realview.c b/hw/arm/realview.c index af65aa4082..d41ec97a23 100644 --- a/hw/arm/realview.c +++ b/hw/arm/realview.c @@ -52,7 +52,7 @@ static void realview_init(MachineState *machine, CPUARMState *env; ObjectClass *cpu_oc; MemoryRegion *sysmem = get_system_memory(); - MemoryRegion *ram_lo = g_new(MemoryRegion, 1); + MemoryRegion *ram_lo; MemoryRegion *ram_hi = g_new(MemoryRegion, 1); MemoryRegion *ram_alias = g_new(MemoryRegion, 1); MemoryRegion *ram_hack = g_new(MemoryRegion, 1); @@ -135,6 +135,7 @@ static void realview_init(MachineState *machine, if (is_pb && ram_size > 0x20000000) { /* Core tile RAM. */ + ram_lo = g_new(MemoryRegion, 1); low_ram_size = ram_size - 0x20000000; ram_size = 0x20000000; memory_region_init_ram(ram_lo, NULL, "realview.lowmem", low_ram_size, diff --git a/hw/intc/arm_gic_kvm.c b/hw/intc/arm_gic_kvm.c index 5038885afd..1ad3eb0ff8 100644 --- a/hw/intc/arm_gic_kvm.c +++ b/hw/intc/arm_gic_kvm.c @@ -92,6 +92,21 @@ static bool kvm_arm_gic_can_save_restore(GICState *s) return s->dev_fd >= 0; } +static bool kvm_gic_supports_attr(GICState *s, int group, int attrnum) +{ + struct kvm_device_attr attr = { + .group = group, + .attr = attrnum, + .flags = 0, + }; + + if (s->dev_fd == -1) { + return false; + } + + return kvm_device_ioctl(s->dev_fd, KVM_HAS_DEVICE_ATTR, &attr) == 0; +} + static void kvm_gic_access(GICState *s, int group, int offset, int cpu, uint32_t *val, bool write) { @@ -553,6 +568,11 @@ static void kvm_arm_gic_realize(DeviceState *dev, Error **errp) return; } + if (kvm_gic_supports_attr(s, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0)) { + uint32_t numirqs = s->num_irq; + kvm_gic_access(s, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, 0, &numirqs, 1); + } + /* Distributor */ memory_region_init_reservation(&s->iomem, OBJECT(s), "kvm-gic_dist", 0x1000); diff --git a/include/exec/gdbstub.h b/include/exec/gdbstub.h index a608a26c30..c6332489a7 100644 --- a/include/exec/gdbstub.h +++ b/include/exec/gdbstub.h @@ -95,4 +95,10 @@ extern bool gdb_has_xml; /* in gdbstub-xml.c, generated by scripts/feature_to_c.sh */ extern const char *const xml_builtin[][2]; +/* Command line option defining whether semihosting should go via gdb or not */ +extern int semihosting_target; +#define SEMIHOSTING_TARGET_AUTO 0 +#define SEMIHOSTING_TARGET_NATIVE 1 +#define SEMIHOSTING_TARGET_GDB 2 + #endif diff --git a/linux-user/aarch64/target_cpu.h b/linux-user/aarch64/target_cpu.h index 21560ef832..b5593dc5ad 100644 --- a/linux-user/aarch64/target_cpu.h +++ b/linux-user/aarch64/target_cpu.h @@ -32,7 +32,7 @@ static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls) /* Note that AArch64 Linux keeps the TLS pointer in TPIDR; this is * different from AArch32 Linux, which uses TPIDRRO. */ - env->cp15.tpidr_el0 = newtls; + env->cp15.tpidr_el[0] = newtls; } #endif diff --git a/linux-user/arm/target_cpu.h b/linux-user/arm/target_cpu.h index 39d65b692b..d8a534d7b1 100644 --- a/linux-user/arm/target_cpu.h +++ b/linux-user/arm/target_cpu.h @@ -29,7 +29,7 @@ static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp) static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls) { - env->cp15.tpidrro_el0 = newtls; + env->cp15.tpidrro_el[0] = newtls; } #endif diff --git a/linux-user/main.c b/linux-user/main.c index 5c14c1e874..186ee4d54f 100644 --- a/linux-user/main.c +++ b/linux-user/main.c @@ -564,7 +564,7 @@ do_kernel_trap(CPUARMState *env) end_exclusive(); break; case 0xffff0fe0: /* __kernel_get_tls */ - env->regs[0] = env->cp15.tpidrro_el0; + env->regs[0] = env->cp15.tpidrro_el[0]; break; case 0xffff0f60: /* __kernel_cmpxchg64 */ arm_kernel_cmpxchg64_helper(env); diff --git a/qemu-options.hx b/qemu-options.hx index 6f273ee7f0..10b9568815 100644 --- a/qemu-options.hx +++ b/qemu-options.hx @@ -3226,7 +3226,17 @@ DEF("semihosting", 0, QEMU_OPTION_semihosting, STEXI @item -semihosting @findex -semihosting -Semihosting mode (ARM, M68K, Xtensa only). +Enable semihosting mode (ARM, M68K, Xtensa only). +ETEXI +DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config, + "-semihosting-config [enable=on|off,]target=native|gdb|auto semihosting configuration\n", +QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32) +STEXI +@item -semihosting-config [enable=on|off,]target=native|gdb|auto +@findex -semihosting-config +Enable semihosting and define where the semihosting calls will be addressed, +to QEMU (@code{native}) or to GDB (@code{gdb}). The default is @code{auto}, which means +@code{gdb} during debug sessions and @code{native} otherwise (ARM, M68K, Xtensa only). ETEXI DEF("old-param", 0, QEMU_OPTION_old_param, "-old-param old param mode\n", QEMU_ARCH_ARM) diff --git a/target-arm/arm-semi.c b/target-arm/arm-semi.c index ebb5235521..a8b83e6912 100644 --- a/target-arm/arm-semi.c +++ b/target-arm/arm-semi.c @@ -58,6 +58,10 @@ #define TARGET_SYS_HEAPINFO 0x16 #define TARGET_SYS_EXIT 0x18 +/* ADP_Stopped_ApplicationExit is used for exit(0), + * anything else is implemented as exit(1) */ +#define ADP_Stopped_ApplicationExit (0x20026) + #ifndef O_BINARY #define O_BINARY 0 #endif @@ -551,8 +555,11 @@ uint32_t do_arm_semihosting(CPUARMState *env) return 0; } case TARGET_SYS_EXIT: - gdb_exit(env, 0); - exit(0); + /* ARM specifies only Stopped_ApplicationExit as normal + * exit, everything else is considered an error */ + ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1; + gdb_exit(env, ret); + exit(ret); default: fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr); cpu_dump_state(cs, stderr, fprintf, 0); diff --git a/target-arm/cpu.c b/target-arm/cpu.c index 5ce7350ce6..d3db279e1b 100644 --- a/target-arm/cpu.c +++ b/target-arm/cpu.c @@ -109,7 +109,7 @@ static void arm_cpu_reset(CPUState *s) #if defined(CONFIG_USER_ONLY) env->pstate = PSTATE_MODE_EL0t; /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ - env->cp15.c1_sys |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; + env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; /* and to the FP/Neon instructions */ env->cp15.c1_coproc = deposit64(env->cp15.c1_coproc, 20, 2, 3); #else @@ -167,7 +167,11 @@ static void arm_cpu_reset(CPUState *s) env->thumb = initial_pc & 1; } - if (env->cp15.c1_sys & SCTLR_V) { + /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently + * executing as AArch32 then check if highvecs are enabled and + * adjust the PC accordingly. + */ + if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { env->regs[15] = 0xFFFF0000; } @@ -548,7 +552,7 @@ static void arm1026_initfn(Object *obj) ARMCPRegInfo ifar = { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, - .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[1]), + .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns), .resetvalue = 0 }; define_one_arm_cp_reg(cpu, &ifar); diff --git a/target-arm/cpu.h b/target-arm/cpu.h index 7f800908f4..7ba55f0c2e 100644 --- a/target-arm/cpu.h +++ b/target-arm/cpu.h @@ -120,6 +120,12 @@ typedef struct ARMGenericTimer { #define GTIMER_VIRT 1 #define NUM_GTIMERS 2 +typedef struct { + uint64_t raw_tcr; + uint32_t mask; + uint32_t base_mask; +} TCR; + typedef struct CPUARMState { /* Regs for current mode. */ uint32_t regs[16]; @@ -177,28 +183,111 @@ typedef struct CPUARMState { /* System control coprocessor (cp15) */ struct { uint32_t c0_cpuid; - uint64_t c0_cssel; /* Cache size selection. */ - uint64_t c1_sys; /* System control register. */ + union { /* Cache size selection */ + struct { + uint64_t _unused_csselr0; + uint64_t csselr_ns; + uint64_t _unused_csselr1; + uint64_t csselr_s; + }; + uint64_t csselr_el[4]; + }; + union { /* System control register. */ + struct { + uint64_t _unused_sctlr; + uint64_t sctlr_ns; + uint64_t hsctlr; + uint64_t sctlr_s; + }; + uint64_t sctlr_el[4]; + }; uint64_t c1_coproc; /* Coprocessor access register. */ uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ - uint64_t ttbr0_el1; /* MMU translation table base 0. */ - uint64_t ttbr1_el1; /* MMU translation table base 1. */ - uint64_t c2_control; /* MMU translation table base control. */ - uint32_t c2_mask; /* MMU translation table base selection mask. */ - uint32_t c2_base_mask; /* MMU translation table base 0 mask. */ + uint64_t sder; /* Secure debug enable register. */ + uint32_t nsacr; /* Non-secure access control register. */ + union { /* MMU translation table base 0. */ + struct { + uint64_t _unused_ttbr0_0; + uint64_t ttbr0_ns; + uint64_t _unused_ttbr0_1; + uint64_t ttbr0_s; + }; + uint64_t ttbr0_el[4]; + }; + union { /* MMU translation table base 1. */ + struct { + uint64_t _unused_ttbr1_0; + uint64_t ttbr1_ns; + uint64_t _unused_ttbr1_1; + uint64_t ttbr1_s; + }; + uint64_t ttbr1_el[4]; + }; + /* MMU translation table base control. */ + TCR tcr_el[4]; uint32_t c2_data; /* MPU data cachable bits. */ uint32_t c2_insn; /* MPU instruction cachable bits. */ - uint32_t c3; /* MMU domain access control register - MPU write buffer control. */ + union { /* MMU domain access control register + * MPU write buffer control. + */ + struct { + uint64_t dacr_ns; + uint64_t dacr_s; + }; + struct { + uint64_t dacr32_el2; + }; + }; uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ uint64_t hcr_el2; /* Hypervisor configuration register */ uint64_t scr_el3; /* Secure configuration register. */ - uint32_t ifsr_el2; /* Fault status registers. */ - uint64_t esr_el[4]; + union { /* Fault status registers. */ + struct { + uint64_t ifsr_ns; + uint64_t ifsr_s; + }; + struct { + uint64_t ifsr32_el2; + }; + }; + union { + struct { + uint64_t _unused_dfsr; + uint64_t dfsr_ns; + uint64_t hsr; + uint64_t dfsr_s; + }; + uint64_t esr_el[4]; + }; uint32_t c6_region[8]; /* MPU base/size registers. */ - uint64_t far_el[4]; /* Fault address registers. */ - uint64_t par_el1; /* Translation result. */ + union { /* Fault address registers. */ + struct { + uint64_t _unused_far0; +#ifdef HOST_WORDS_BIGENDIAN + uint32_t ifar_ns; + uint32_t dfar_ns; + uint32_t ifar_s; + uint32_t dfar_s; +#else + uint32_t dfar_ns; + uint32_t ifar_ns; + uint32_t dfar_s; + uint32_t ifar_s; +#endif + uint64_t _unused_far3; + }; + uint64_t far_el[4]; + }; + union { /* Translation result. */ + struct { + uint64_t _unused_par_0; + uint64_t par_ns; + uint64_t _unused_par_1; + uint64_t par_s; + }; + uint64_t par_el[4]; + }; uint32_t c9_insn; /* Cache lockdown registers. */ uint32_t c9_data; uint64_t c9_pmcr; /* performance monitor control register */ @@ -207,13 +296,67 @@ typedef struct CPUARMState { uint32_t c9_pmxevtyper; /* perf monitor event type */ uint32_t c9_pmuserenr; /* perf monitor user enable */ uint32_t c9_pminten; /* perf monitor interrupt enables */ - uint64_t mair_el1; - uint64_t vbar_el[4]; /* vector base address register */ - uint32_t c13_fcse; /* FCSE PID. */ - uint64_t contextidr_el1; /* Context ID. */ - uint64_t tpidr_el0; /* User RW Thread register. */ - uint64_t tpidrro_el0; /* User RO Thread register. */ - uint64_t tpidr_el1; /* Privileged Thread register. */ + union { /* Memory attribute redirection */ + struct { +#ifdef HOST_WORDS_BIGENDIAN + uint64_t _unused_mair_0; + uint32_t mair1_ns; + uint32_t mair0_ns; + uint64_t _unused_mair_1; + uint32_t mair1_s; + uint32_t mair0_s; +#else + uint64_t _unused_mair_0; + uint32_t mair0_ns; + uint32_t mair1_ns; + uint64_t _unused_mair_1; + uint32_t mair0_s; + uint32_t mair1_s; +#endif + }; + uint64_t mair_el[4]; + }; + union { /* vector base address register */ + struct { + uint64_t _unused_vbar; + uint64_t vbar_ns; + uint64_t hvbar; + uint64_t vbar_s; + }; + uint64_t vbar_el[4]; + }; + uint32_t mvbar; /* (monitor) vector base address register */ + struct { /* FCSE PID. */ + uint32_t fcseidr_ns; + uint32_t fcseidr_s; + }; + union { /* Context ID. */ + struct { + uint64_t _unused_contextidr_0; + uint64_t contextidr_ns; + uint64_t _unused_contextidr_1; + uint64_t contextidr_s; + }; + uint64_t contextidr_el[4]; + }; + union { /* User RW Thread register. */ + struct { + uint64_t tpidrurw_ns; + uint64_t tpidrprw_ns; + uint64_t htpidr; + uint64_t _tpidr_el3; + }; + uint64_t tpidr_el[4]; + }; + /* The secure banks of these registers don't map anywhere */ + uint64_t tpidrurw_s; + uint64_t tpidrprw_s; + uint64_t tpidruro_s; + + union { /* User RO Thread register. */ + uint64_t tpidruro_ns; + uint64_t tpidrro_el[1]; + }; uint64_t c14_cntfrq; /* Counter Frequency register */ uint64_t c14_cntkctl; /* Timer Control register */ ARMGenericTimer c14_timer[NUM_GTIMERS]; @@ -817,6 +960,49 @@ static inline bool arm_el_is_aa64(CPUARMState *env, int el) return arm_feature(env, ARM_FEATURE_AARCH64); } +/* Function for determing whether guest cp register reads and writes should + * access the secure or non-secure bank of a cp register. When EL3 is + * operating in AArch32 state, the NS-bit determines whether the secure + * instance of a cp register should be used. When EL3 is AArch64 (or if + * it doesn't exist at all) then there is no register banking, and all + * accesses are to the non-secure version. + */ +static inline bool access_secure_reg(CPUARMState *env) +{ + bool ret = (arm_feature(env, ARM_FEATURE_EL3) && + !arm_el_is_aa64(env, 3) && + !(env->cp15.scr_el3 & SCR_NS)); + + return ret; +} + +/* Macros for accessing a specified CP register bank */ +#define A32_BANKED_REG_GET(_env, _regname, _secure) \ + ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) + +#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ + do { \ + if (_secure) { \ + (_env)->cp15._regname##_s = (_val); \ + } else { \ + (_env)->cp15._regname##_ns = (_val); \ + } \ + } while (0) + +/* Macros for automatically accessing a specific CP register bank depending on + * the current secure state of the system. These macros are not intended for + * supporting instruction translation reads/writes as these are dependent + * solely on the SCR.NS bit and not the mode. + */ +#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ + A32_BANKED_REG_GET((_env), _regname, \ + ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env)))) + +#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ + A32_BANKED_REG_SET((_env), _regname, \ + ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))), \ + (_val)) + void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf); unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx); @@ -836,6 +1022,7 @@ void armv7m_nvic_complete_irq(void *opaque, int irq); * Crn, Crm, opc1, opc2 fields * 32 or 64 bit register (ie is it accessed via MRC/MCR * or via MRRC/MCRR?) + * non-secure/secure bank (AArch32 only) * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. * (In this case crn and opc2 should be zero.) * For AArch64, there is no 32/64 bit size distinction; @@ -853,9 +1040,16 @@ void armv7m_nvic_complete_irq(void *opaque, int irq); #define CP_REG_AA64_SHIFT 28 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) -#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \ - (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \ - ((crm) << 7) | ((opc1) << 3) | (opc2)) +/* To enable banking of coprocessor registers depending on ns-bit we + * add a bit to distinguish between secure and non-secure cpregs in the + * hashtable. + */ +#define CP_REG_NS_SHIFT 29 +#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) + +#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ + ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ + ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ (CP_REG_AA64_MASK | \ @@ -874,8 +1068,15 @@ static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) uint32_t cpregid = kvmid; if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { cpregid |= CP_REG_AA64_MASK; - } else if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { - cpregid |= (1 << 15); + } else { + if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { + cpregid |= (1 << 15); + } + + /* KVM is always non-secure so add the NS flag on AArch32 register + * entries. + */ + cpregid |= 1 << CP_REG_NS_SHIFT; } return cpregid; } @@ -950,6 +1151,21 @@ enum { ARM_CP_STATE_BOTH = 2, }; +/* ARM CP register secure state flags. These flags identify security state + * attributes for a given CP register entry. + * The existence of both or neither secure and non-secure flags indicates that + * the register has both a secure and non-secure hash entry. A single one of + * these flags causes the register to only be hashed for the specified + * security state. + * Although definitions may have any combination of the S/NS bits, each + * registered entry will only have one to identify whether the entry is secure + * or non-secure. + */ +enum { + ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ + ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ +}; + /* Return true if cptype is a valid type field. This is used to try to * catch errors where the sentinel has been accidentally left off the end * of a list of registers. @@ -1084,6 +1300,8 @@ struct ARMCPRegInfo { int type; /* Access rights: PL*_[RW] */ int access; + /* Security state: ARM_CP_SECSTATE_* bits/values */ + int secure; /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when * this register was defined: can be used to hand data through to the * register read/write functions, since they are passed the ARMCPRegInfo*. @@ -1093,12 +1311,27 @@ struct ARMCPRegInfo { * fieldoffset is non-zero, the reset value of the register. */ uint64_t resetvalue; - /* Offset of the field in CPUARMState for this register. This is not - * needed if either: + /* Offset of the field in CPUARMState for this register. + * + * This is not needed if either: * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs * 2. both readfn and writefn are specified */ ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ + + /* Offsets of the secure and non-secure fields in CPUARMState for the + * register if it is banked. These fields are only used during the static + * registration of a register. During hashing the bank associated + * with a given security state is copied to fieldoffset which is used from + * there on out. + * + * It is expected that register definitions use either fieldoffset or + * bank_fieldoffsets in the definition but not both. It is also expected + * that both bank offsets are set when defining a banked register. This + * use indicates that a register is banked. + */ + ptrdiff_t bank_fieldoffsets[2]; + /* Function for making any access checks for this register in addition to * those specified by the 'access' permissions bits. If NULL, no extra * checks required. The access check is performed at runtime, not at @@ -1247,27 +1480,50 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx) CPUARMState *env = cs->env_ptr; unsigned int cur_el = arm_current_el(env); unsigned int target_el = arm_excp_target_el(cs, excp_idx); - /* FIXME: Use actual secure state. */ - bool secure = false; - /* If in EL1/0, Physical IRQ routing to EL2 only happens from NS state. */ - bool irq_can_hyp = !secure && cur_el < 2 && target_el == 2; - - /* Don't take exceptions if they target a lower EL. */ + bool secure = arm_is_secure(env); + uint32_t scr; + uint32_t hcr; + bool pstate_unmasked; + int8_t unmasked = 0; + + /* Don't take exceptions if they target a lower EL. + * This check should catch any exceptions that would not be taken but left + * pending. + */ if (cur_el > target_el) { return false; } switch (excp_idx) { case EXCP_FIQ: - if (irq_can_hyp && (env->cp15.hcr_el2 & HCR_FMO)) { - return true; - } - return !(env->daif & PSTATE_F); + /* If FIQs are routed to EL3 or EL2 then there are cases where we + * override the CPSR.F in determining if the exception is masked or + * not. If neither of these are set then we fall back to the CPSR.F + * setting otherwise we further assess the state below. + */ + hcr = (env->cp15.hcr_el2 & HCR_FMO); + scr = (env->cp15.scr_el3 & SCR_FIQ); + + /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit + * masks FIQ interrupts when taken in non-secure state. If SCR.FW is + * set then FIQs can be masked by CPSR.F when non-secure but only + * when FIQs are only routed to EL3. + */ + scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr); + pstate_unmasked = !(env->daif & PSTATE_F); + break; + case EXCP_IRQ: - if (irq_can_hyp && (env->cp15.hcr_el2 & HCR_IMO)) { - return true; - } - return !(env->daif & PSTATE_I); + /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may + * override the CPSR.I masking when in non-secure state. The SCR.IRQ + * setting has already been taken into consideration when setting the + * target EL, so it does not have a further affect here. + */ + hcr = (env->cp15.hcr_el2 & HCR_IMO); + scr = false; + pstate_unmasked = !(env->daif & PSTATE_I); + break; + case EXCP_VFIQ: if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { /* VFIQs are only taken when hypervized and non-secure. */ @@ -1283,6 +1539,21 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx) default: g_assert_not_reached(); } + + /* Use the target EL, current execution state and SCR/HCR settings to + * determine whether the corresponding CPSR bit is used to mask the + * interrupt. + */ + if ((target_el > cur_el) && (target_el != 1)) { + if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) { + unmasked = 1; + } + } + + /* The PSTATE bits only mask the interrupt if we have not overriden the + * ability above. + */ + return unmasked || pstate_unmasked; } static inline CPUARMState *cpu_init(const char *cpu_model) @@ -1402,6 +1673,12 @@ static inline bool arm_singlestep_active(CPUARMState *env) */ #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT) +/* Indicates whether cp register reads and writes by guest code should access + * the secure or nonsecure bank of banked registers; note that this is not + * the same thing as the current security state of the processor! + */ +#define ARM_TBFLAG_NS_SHIFT 22 +#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT) /* Bit usage when in AArch64 state */ #define ARM_TBFLAG_AA64_EL_SHIFT 0 @@ -1446,6 +1723,8 @@ static inline bool arm_singlestep_active(CPUARMState *env) (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT) #define ARM_TBFLAG_AA64_PSTATE_SS(F) \ (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT) +#define ARM_TBFLAG_NS(F) \ + (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT) static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, target_ulong *cs_base, int *flags) @@ -1495,6 +1774,9 @@ static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, if (privmode) { *flags |= ARM_TBFLAG_PRIV_MASK; } + if (!(access_secure_reg(env))) { + *flags |= ARM_TBFLAG_NS_MASK; + } if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) || arm_el_is_aa64(env, 1)) { *flags |= ARM_TBFLAG_VFPEN_MASK; diff --git a/target-arm/helper.c b/target-arm/helper.c index b74d348a3b..96abbed935 100644 --- a/target-arm/helper.c +++ b/target-arm/helper.c @@ -136,6 +136,11 @@ static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, } } +static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) +{ + return (char *)env + ri->fieldoffset; +} + static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) { /* Raw read of a coprocessor register (as needed for migration, etc). */ @@ -419,13 +424,36 @@ static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, } static const ARMCPRegInfo cp_reginfo[] = { - { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse), + /* Define the secure and non-secure FCSE identifier CP registers + * separately because there is no secure bank in V8 (no _EL3). This allows + * the secure register to be properly reset and migrated. There is also no + * v8 EL1 version of the register so the non-secure instance stands alone. + */ + { .name = "FCSEIDR(NS)", + .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, + .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, + .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), + .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, + { .name = "FCSEIDR(S)", + .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, + .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, + .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, - { .name = "CONTEXTIDR", .state = ARM_CP_STATE_BOTH, + /* Define the secure and non-secure context identifier CP registers + * separately because there is no secure bank in V8 (no _EL3). This allows + * the secure register to be properly reset and migrated. In the + * non-secure case, the 32-bit register will have reset and migration + * disabled during registration as it is handled by the 64-bit instance. + */ + { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el1), + .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, + .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), + .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, + { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, + .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, + .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, + .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, REGINFO_SENTINEL }; @@ -435,10 +463,12 @@ static const ARMCPRegInfo not_v8_cp_reginfo[] = { * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). */ /* MMU Domain access control / MPU write buffer control */ - { .name = "DACR", .cp = 15, - .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), - .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, + { .name = "DACR", + .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, + .access = PL1_RW, .resetvalue = 0, + .writefn = dacr_write, .raw_writefn = raw_write, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), + offsetoflow32(CPUARMState, cp15.dacr_ns) } }, /* ??? This covers not just the impdef TLB lockdown registers but also * some v7VMSA registers relating to TEX remap, so it is overly broad. */ @@ -552,7 +582,8 @@ static const ARMCPRegInfo v6_cp_reginfo[] = { .access = PL0_W, .type = ARM_CP_NOP }, { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, - .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[1]), + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), + offsetof(CPUARMState, cp15.ifar_ns) }, .resetvalue = 0, }, /* Watchpoint Fault Address Register : should actually only be present * for 1136, 1176, 11MPCore. @@ -776,7 +807,14 @@ static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) { ARMCPU *cpu = arm_env_get_cpu(env); - return cpu->ccsidr[env->cp15.c0_cssel]; + + /* Acquire the CSSELR index from the bank corresponding to the CCSIDR + * bank + */ + uint32_t index = A32_BANKED_REG_GET(env, csselr, + ri->secure & ARM_CP_SECSTATE_S); + + return cpu->ccsidr[index]; } static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, @@ -896,18 +934,17 @@ static const ARMCPRegInfo v7_cp_reginfo[] = { { .name = "VBAR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .writefn = vbar_write, - .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[1]), + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), + offsetof(CPUARMState, cp15.vbar_ns) }, .resetvalue = 0 }, - { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), - .resetvalue = 0, .writefn = scr_write }, { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE }, { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel), - .writefn = csselr_write, .resetvalue = 0 }, + .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), + offsetof(CPUARMState, cp15.csselr_ns) } }, /* Auxiliary ID register: this actually has an IMPDEF value but for now * just RAZ for all cores: */ @@ -928,20 +965,26 @@ static const ARMCPRegInfo v7_cp_reginfo[] = { */ { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1), + .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), .resetvalue = 0 }, /* For non-long-descriptor page tables these are PRRR and NMRR; * regardless they still act as reads-as-written for QEMU. * The override is necessary because of the overly-broad TLB_LOCKDOWN * definition. */ + /* MAIR0/1 are defined seperately from their 64-bit counterpart which + * allows them to assign the correct fieldoffset based on the endianness + * handled in the field definitions. + */ { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, - .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1), + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), + offsetof(CPUARMState, cp15.mair0_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE, .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, - .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1), + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), + offsetof(CPUARMState, cp15.mair1_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, @@ -1017,23 +1060,31 @@ static const ARMCPRegInfo v6k_cp_reginfo[] = { { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, .access = PL0_RW, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 }, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL0_RW, - .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0), + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), + offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, .resetfn = arm_cp_reset_ignore }, { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, .access = PL0_R|PL1_W, - .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 }, + .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), + .resetvalue = 0}, { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, .access = PL0_R|PL1_W, - .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0), + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), + offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, .resetfn = arm_cp_reset_ignore }, - { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH, + { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 }, + .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, + { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, + .access = PL1_RW, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), + offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, + .resetvalue = 0 }, REGINFO_SENTINEL }; @@ -1391,6 +1442,7 @@ static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) int prot; int ret, is_user = ri->opc2 & 2; int access_type = ri->opc2 & 1; + uint64_t par64; ret = get_phys_addr(env, value, access_type, is_user, &phys_addr, &prot, &page_size); @@ -1399,7 +1451,7 @@ static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) * translation table format, but with WnR always clear. * Convert it to a 64-bit PAR. */ - uint64_t par64 = (1 << 11); /* LPAE bit always set */ + par64 = (1 << 11); /* LPAE bit always set */ if (ret == 0) { par64 |= phys_addr & ~0xfffULL; /* We don't set the ATTR or SH fields in the PAR. */ @@ -1411,7 +1463,6 @@ static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) * fault. */ } - env->cp15.par_el1 = par64; } else { /* ret is a DFSR/IFSR value for the short descriptor * translation table format (with WnR always clear). @@ -1421,23 +1472,25 @@ static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) /* We do not set any attribute bits in the PAR */ if (page_size == (1 << 24) && arm_feature(env, ARM_FEATURE_V7)) { - env->cp15.par_el1 = (phys_addr & 0xff000000) | 1 << 1; + par64 = (phys_addr & 0xff000000) | (1 << 1); } else { - env->cp15.par_el1 = phys_addr & 0xfffff000; + par64 = phys_addr & 0xfffff000; } } else { - env->cp15.par_el1 = ((ret & (1 << 10)) >> 5) | - ((ret & (1 << 12)) >> 6) | - ((ret & 0xf) << 1) | 1; + par64 = ((ret & (1 << 10)) >> 5) | ((ret & (1 << 12)) >> 6) | + ((ret & 0xf) << 1) | 1; } } + + A32_BANKED_CURRENT_REG_SET(env, par, par64); } #endif static const ARMCPRegInfo vapa_cp_reginfo[] = { { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .resetvalue = 0, - .fieldoffset = offsetoflow32(CPUARMState, cp15.par_el1), + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), + offsetoflow32(CPUARMState, cp15.par_ns) }, .writefn = par_write }, #ifndef CONFIG_USER_ONLY { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, @@ -1555,6 +1608,7 @@ static const ARMCPRegInfo pmsav5_cp_reginfo[] = { static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { + TCR *tcr = raw_ptr(env, ri); int maskshift = extract32(value, 0, 3); if (!arm_feature(env, ARM_FEATURE_V8)) { @@ -1573,14 +1627,15 @@ static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, } } - /* Note that we always calculate c2_mask and c2_base_mask, but + /* Update the masks corresponding to the the TCR bank being written + * Note that we always calculate mask and base_mask, but * they are only used for short-descriptor tables (ie if EAE is 0); - * for long-descriptor tables the TTBCR fields are used differently - * and the c2_mask and c2_base_mask values are meaningless. + * for long-descriptor tables the TCR fields are used differently + * and the mask and base_mask values are meaningless. */ - raw_write(env, ri, value); - env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift); - env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift); + tcr->raw_tcr = value; + tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); + tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); } static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, @@ -1599,19 +1654,25 @@ static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) { - env->cp15.c2_base_mask = 0xffffc000u; - raw_write(env, ri, 0); - env->cp15.c2_mask = 0; + TCR *tcr = raw_ptr(env, ri); + + /* Reset both the TCR as well as the masks corresponding to the bank of + * the TCR being reset. + */ + tcr->raw_tcr = 0; + tcr->mask = 0; + tcr->base_mask = 0xffffc000u; } static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); + TCR *tcr = raw_ptr(env, ri); /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ tlb_flush(CPU(cpu), 1); - raw_write(env, ri, value); + tcr->raw_tcr = value; } static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, @@ -1631,37 +1692,45 @@ static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, static const ARMCPRegInfo vmsa_cp_reginfo[] = { { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, - .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), + offsetoflow32(CPUARMState, cp15.dfsr_ns) }, .resetfn = arm_cp_reset_ignore, }, { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, - .fieldoffset = offsetof(CPUARMState, cp15.ifsr_el2), .resetvalue = 0, }, + .access = PL1_RW, .resetvalue = 0, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), + offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), - .writefn = vmsa_ttbr_write, .resetvalue = 0 }, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), + offsetof(CPUARMState, cp15.ttbr0_ns) } }, { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), - .writefn = vmsa_ttbr_write, .resetvalue = 0 }, + .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, + .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), + offsetof(CPUARMState, cp15.ttbr1_ns) } }, { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .writefn = vmsa_tcr_el1_write, .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, - .fieldoffset = offsetof(CPUARMState, cp15.c2_control) }, + .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write, .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write, - .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) }, - /* 64-bit FAR; this entry also gives us the AArch32 DFAR */ - { .name = "FAR_EL1", .state = ARM_CP_STATE_BOTH, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), + offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, + { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), .resetvalue = 0, }, + { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, + .access = PL1_RW, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), + offsetof(CPUARMState, cp15.dfar_ns) } }, REGINFO_SENTINEL }; @@ -1874,15 +1943,18 @@ static const ARMCPRegInfo lpae_cp_reginfo[] = { .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, - .access = PL1_RW, .type = ARM_CP_64BIT, - .fieldoffset = offsetof(CPUARMState, cp15.par_el1), .resetvalue = 0 }, + .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), + offsetof(CPUARMState, cp15.par_ns)} }, { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1), + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), + offsetof(CPUARMState, cp15.ttbr0_ns) }, .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE, - .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1), + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), + offsetof(CPUARMState, cp15.ttbr1_ns) }, .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore }, REGINFO_SENTINEL }; @@ -1911,7 +1983,7 @@ static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri) { - if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) { + if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; @@ -1929,7 +2001,7 @@ static CPAccessResult aa64_cacheop_access(CPUARMState *env, /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless * SCTLR_EL1.UCI is set. */ - if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) { + if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; @@ -2006,7 +2078,7 @@ static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri) /* We don't implement EL2, so the only control on DC ZVA is the * bit in the SCTLR which can prohibit access for EL0. */ - if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_DZE)) { + if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; @@ -2045,6 +2117,24 @@ static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) update_spsel(env, val); } +static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, + uint64_t value) +{ + ARMCPU *cpu = arm_env_get_cpu(env); + + if (raw_read(env, ri) == value) { + /* Skip the TLB flush if nothing actually changed; Linux likes + * to do a lot of pointless SCTLR writes. + */ + return; + } + + raw_write(env, ri, value); + /* ??? Lots of these bits are not implemented. */ + /* This may enable/disable the MMU, so do a TLB flush. */ + tlb_flush(CPU(cpu), 1); +} + static const ARMCPRegInfo v8_cp_reginfo[] = { /* Minimal set of EL0-visible registers. This will need to be expanded * significantly for system emulation of AArch64 CPUs. @@ -2216,10 +2306,11 @@ static const ARMCPRegInfo v8_cp_reginfo[] = { { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, .type = ARM_CP_NOP, .access = PL1_W }, /* MMU Domain access control / MPU write buffer control */ - { .name = "DACR", .cp = 15, - .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3), - .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, }, + { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, + .access = PL1_RW, .resetvalue = 0, + .writefn = dacr_write, .raw_writefn = raw_write, + .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), + offsetoflow32(CPUARMState, cp15.dacr_ns) } }, { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, .type = ARM_CP_NO_MIGRATE, .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, @@ -2289,6 +2380,11 @@ static const ARMCPRegInfo v8_el2_cp_reginfo[] = { .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), .writefn = hcr_write }, + { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, + .access = PL2_RW, .resetvalue = 0, + .writefn = dacr_write, .raw_writefn = raw_write, + .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, .type = ARM_CP_NO_MIGRATE, .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, @@ -2298,6 +2394,10 @@ static const ARMCPRegInfo v8_el2_cp_reginfo[] = { .type = ARM_CP_NO_MIGRATE, .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, + { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, + .access = PL2_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, @@ -2314,6 +2414,19 @@ static const ARMCPRegInfo v8_el2_cp_reginfo[] = { }; static const ARMCPRegInfo v8_el3_cp_reginfo[] = { + { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write, + .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) }, + { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, + .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, + { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, + .access = PL3_RW, .writefn = vmsa_tcr_el1_write, + .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, + .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, .type = ARM_CP_NO_MIGRATE, .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, @@ -2335,38 +2448,42 @@ static const ARMCPRegInfo v8_el3_cp_reginfo[] = { .access = PL3_RW, .writefn = vbar_write, .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), .resetvalue = 0 }, + REGINFO_SENTINEL +}; + +static const ARMCPRegInfo el3_cp_reginfo[] = { { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, - .type = ARM_CP_NO_MIGRATE, .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), - .writefn = scr_write }, + .resetvalue = 0, .writefn = scr_write }, + { .name = "SCR", .type = ARM_CP_NO_MIGRATE, + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, + .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), + .resetfn = arm_cp_reset_ignore, .writefn = scr_write }, + { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, + .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.sder) }, + { .name = "SDER", + .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, + .access = PL3_RW, .resetvalue = 0, + .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, + /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */ + { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, + .access = PL3_W | PL1_R, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.nsacr) }, + { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, + .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0, + .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, REGINFO_SENTINEL }; -static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, - uint64_t value) -{ - ARMCPU *cpu = arm_env_get_cpu(env); - - if (raw_read(env, ri) == value) { - /* Skip the TLB flush if nothing actually changed; Linux likes - * to do a lot of pointless SCTLR writes. - */ - return; - } - - raw_write(env, ri, value); - /* ??? Lots of these bits are not implemented. */ - /* This may enable/disable the MMU, so do a TLB flush. */ - tlb_flush(CPU(cpu), 1); -} - static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri) { /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, * but the AArch32 CTR has its own reginfo struct) */ - if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) { + if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { return CP_ACCESS_TRAP; } return CP_ACCESS_OK; @@ -2960,7 +3077,10 @@ void register_cp_regs_for_features(ARMCPU *cpu) } } if (arm_feature(env, ARM_FEATURE_EL3)) { - define_arm_cp_regs(cpu, v8_el3_cp_reginfo); + if (arm_feature(env, ARM_FEATURE_V8)) { + define_arm_cp_regs(cpu, v8_el3_cp_reginfo); + } + define_arm_cp_regs(cpu, el3_cp_reginfo); } if (arm_feature(env, ARM_FEATURE_MPU)) { /* These are the MPU registers prior to PMSAv6. Any new @@ -3160,8 +3280,10 @@ void register_cp_regs_for_features(ARMCPU *cpu) { ARMCPRegInfo sctlr = { .name = "SCTLR", .state = ARM_CP_STATE_BOTH, - .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, - .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys), + .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, + .access = PL1_RW, + .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), + offsetof(CPUARMState, cp15.sctlr_ns) }, .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, .raw_writefn = raw_write, }; @@ -3287,7 +3409,7 @@ CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) } static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, - void *opaque, int state, + void *opaque, int state, int secstate, int crm, int opc1, int opc2) { /* Private utility function for define_one_arm_cp_reg_with_opaque(): @@ -3296,22 +3418,59 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, uint32_t *key = g_new(uint32_t, 1); ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; - if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) { - /* The AArch32 view of a shared register sees the lower 32 bits - * of a 64 bit backing field. It is not migratable as the AArch64 - * view handles that. AArch64 also handles reset. - * We assume it is a cp15 register if the .cp field is left unset. + int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; + + /* Reset the secure state to the specific incoming state. This is + * necessary as the register may have been defined with both states. + */ + r2->secure = secstate; + + if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { + /* Register is banked (using both entries in array). + * Overwriting fieldoffset as the array is only used to define + * banked registers but later only fieldoffset is used. */ - if (r2->cp == 0) { - r2->cp = 15; + r2->fieldoffset = r->bank_fieldoffsets[ns]; + } + + if (state == ARM_CP_STATE_AA32) { + if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { + /* If the register is banked then we don't need to migrate or + * reset the 32-bit instance in certain cases: + * + * 1) If the register has both 32-bit and 64-bit instances then we + * can count on the 64-bit instance taking care of the + * non-secure bank. + * 2) If ARMv8 is enabled then we can count on a 64-bit version + * taking care of the secure bank. This requires that separate + * 32 and 64-bit definitions are provided. + */ + if ((r->state == ARM_CP_STATE_BOTH && ns) || + (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { + r2->type |= ARM_CP_NO_MIGRATE; + r2->resetfn = arm_cp_reset_ignore; + } + } else if ((secstate != r->secure) && !ns) { + /* The register is not banked so we only want to allow migration of + * the non-secure instance. + */ + r2->type |= ARM_CP_NO_MIGRATE; + r2->resetfn = arm_cp_reset_ignore; } - r2->type |= ARM_CP_NO_MIGRATE; - r2->resetfn = arm_cp_reset_ignore; + + if (r->state == ARM_CP_STATE_BOTH) { + /* We assume it is a cp15 register if the .cp field is left unset. + */ + if (r2->cp == 0) { + r2->cp = 15; + } + #ifdef HOST_WORDS_BIGENDIAN - if (r2->fieldoffset) { - r2->fieldoffset += sizeof(uint32_t); - } + if (r2->fieldoffset) { + r2->fieldoffset += sizeof(uint32_t); + } #endif + } } if (state == ARM_CP_STATE_AA64) { /* To allow abbreviation of ARMCPRegInfo @@ -3327,7 +3486,7 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, r2->opc0, opc1, opc2); } else { - *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2); + *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); } if (opaque) { r2->opaque = opaque; @@ -3460,10 +3619,14 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, */ if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { if (r->access & PL3_R) { - assert(r->fieldoffset || r->readfn); + assert((r->fieldoffset || + (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || + r->readfn); } if (r->access & PL3_W) { - assert(r->fieldoffset || r->writefn); + assert((r->fieldoffset || + (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || + r->writefn); } } /* Bad type field probably means missing sentinel at end of reg list */ @@ -3476,8 +3639,32 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, if (r->state != state && r->state != ARM_CP_STATE_BOTH) { continue; } - add_cpreg_to_hashtable(cpu, r, opaque, state, - crm, opc1, opc2); + if (state == ARM_CP_STATE_AA32) { + /* Under AArch32 CP registers can be common + * (same for secure and non-secure world) or banked. + */ + switch (r->secure) { + case ARM_CP_SECSTATE_S: + case ARM_CP_SECSTATE_NS: + add_cpreg_to_hashtable(cpu, r, opaque, state, + r->secure, crm, opc1, opc2); + break; + default: + add_cpreg_to_hashtable(cpu, r, opaque, state, + ARM_CP_SECSTATE_S, + crm, opc1, opc2); + add_cpreg_to_hashtable(cpu, r, opaque, state, + ARM_CP_SECSTATE_NS, + crm, opc1, opc2); + break; + } + } else { + /* AArch64 registers get mapped to non-secure instance + * of AArch32 */ + add_cpreg_to_hashtable(cpu, r, opaque, state, + ARM_CP_SECSTATE_NS, + crm, opc1, opc2); + } } } } @@ -3551,6 +3738,8 @@ uint32_t cpsr_read(CPUARMState *env) void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) { + uint32_t changed_daif; + if (mask & CPSR_NZCV) { env->ZF = (~val) & CPSR_Z; env->NF = val; @@ -3573,6 +3762,58 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) env->GE = (val >> 16) & 0xf; } + /* In a V7 implementation that includes the security extensions but does + * not include Virtualization Extensions the SCR.FW and SCR.AW bits control + * whether non-secure software is allowed to change the CPSR_F and CPSR_A + * bits respectively. + * + * In a V8 implementation, it is permitted for privileged software to + * change the CPSR A/F bits regardless of the SCR.AW/FW bits. + */ + if (!arm_feature(env, ARM_FEATURE_V8) && + arm_feature(env, ARM_FEATURE_EL3) && + !arm_feature(env, ARM_FEATURE_EL2) && + !arm_is_secure(env)) { + + changed_daif = (env->daif ^ val) & mask; + + if (changed_daif & CPSR_A) { + /* Check to see if we are allowed to change the masking of async + * abort exceptions from a non-secure state. + */ + if (!(env->cp15.scr_el3 & SCR_AW)) { + qemu_log_mask(LOG_GUEST_ERROR, + "Ignoring attempt to switch CPSR_A flag from " + "non-secure world with SCR.AW bit clear\n"); + mask &= ~CPSR_A; + } + } + + if (changed_daif & CPSR_F) { + /* Check to see if we are allowed to change the masking of FIQ + * exceptions from a non-secure state. + */ + if (!(env->cp15.scr_el3 & SCR_FW)) { + qemu_log_mask(LOG_GUEST_ERROR, + "Ignoring attempt to switch CPSR_F flag from " + "non-secure world with SCR.FW bit clear\n"); + mask &= ~CPSR_F; + } + + /* Check whether non-maskable FIQ (NMFI) support is enabled. + * If this bit is set software is not allowed to mask + * FIQs, but is allowed to set CPSR_F to 0. + */ + if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && + (val & CPSR_F)) { + qemu_log_mask(LOG_GUEST_ERROR, + "Ignoring attempt to enable CPSR_F flag " + "(non-maskable FIQ [NMFI] support enabled)\n"); + mask &= ~CPSR_F; + } + } + } + env->daif &= ~(CPSR_AIF & mask); env->daif |= val & CPSR_AIF & mask; @@ -3761,6 +4002,101 @@ void switch_mode(CPUARMState *env, int mode) env->spsr = env->banked_spsr[i]; } +/* Physical Interrupt Target EL Lookup Table + * + * [ From ARM ARM section G1.13.4 (Table G1-15) ] + * + * The below multi-dimensional table is used for looking up the target + * exception level given numerous condition criteria. Specifically, the + * target EL is based on SCR and HCR routing controls as well as the + * currently executing EL and secure state. + * + * Dimensions: + * target_el_table[2][2][2][2][2][4] + * | | | | | +--- Current EL + * | | | | +------ Non-secure(0)/Secure(1) + * | | | +--------- HCR mask override + * | | +------------ SCR exec state control + * | +--------------- SCR mask override + * +------------------ 32-bit(0)/64-bit(1) EL3 + * + * The table values are as such: + * 0-3 = EL0-EL3 + * -1 = Cannot occur + * + * The ARM ARM target EL table includes entries indicating that an "exception + * is not taken". The two cases where this is applicable are: + * 1) An exception is taken from EL3 but the SCR does not have the exception + * routed to EL3. + * 2) An exception is taken from EL2 but the HCR does not have the exception + * routed to EL2. + * In these two cases, the below table contain a target of EL1. This value is + * returned as it is expected that the consumer of the table data will check + * for "target EL >= current EL" to ensure the exception is not taken. + * + * SCR HCR + * 64 EA AMO From + * BIT IRQ IMO Non-secure Secure + * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 + */ +const int8_t target_el_table[2][2][2][2][2][4] = { + {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, + {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, + {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, + {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, + {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, + {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, + {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, + {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, + {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, + {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, + {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, + {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, + {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, + {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, + {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, + {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, +}; + +/* + * Determine the target EL for physical exceptions + */ +static inline uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, + uint32_t cur_el, bool secure) +{ + CPUARMState *env = cs->env_ptr; + int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); + int scr; + int hcr; + int target_el; + int is64 = arm_el_is_aa64(env, 3); + + switch (excp_idx) { + case EXCP_IRQ: + scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); + hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); + break; + case EXCP_FIQ: + scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); + hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); + break; + default: + scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); + hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); + break; + }; + + /* If HCR.TGE is set then HCR is treated as being 1 */ + hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); + + /* Perform a table-lookup for the target EL given the current state */ + target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; + + assert(target_el > 0); + + return target_el; +} + /* * Determine the target EL for a given exception type. */ @@ -3770,13 +4106,7 @@ unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx) CPUARMState *env = &cpu->env; unsigned int cur_el = arm_current_el(env); unsigned int target_el; - /* FIXME: Use actual secure state. */ - bool secure = false; - - if (!env->aarch64) { - /* TODO: Add EL2 and 3 exception handling for AArch32. */ - return 1; - } + bool secure = arm_is_secure(env); switch (excp_idx) { case EXCP_HVC: @@ -3788,19 +4118,8 @@ unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx) break; case EXCP_FIQ: case EXCP_IRQ: - { - const uint64_t hcr_mask = excp_idx == EXCP_FIQ ? HCR_FMO : HCR_IMO; - const uint32_t scr_mask = excp_idx == EXCP_FIQ ? SCR_FIQ : SCR_IRQ; - - target_el = 1; - if (!secure && (env->cp15.hcr_el2 & hcr_mask)) { - target_el = 2; - } - if (env->cp15.scr_el3 & scr_mask) { - target_el = 3; - } + target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); break; - } case EXCP_VIRQ: case EXCP_VFIQ: target_el = 1; @@ -4055,22 +4374,20 @@ void arm_cpu_do_interrupt(CPUState *cs) env->exception.fsr = 2; /* Fall through to prefetch abort. */ case EXCP_PREFETCH_ABORT: - env->cp15.ifsr_el2 = env->exception.fsr; - env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 32, 32, - env->exception.vaddress); + A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); + A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", - env->cp15.ifsr_el2, (uint32_t)env->exception.vaddress); + env->exception.fsr, (uint32_t)env->exception.vaddress); new_mode = ARM_CPU_MODE_ABT; addr = 0x0c; mask = CPSR_A | CPSR_I; offset = 4; break; case EXCP_DATA_ABORT: - env->cp15.esr_el[1] = env->exception.fsr; - env->cp15.far_el[1] = deposit64(env->cp15.far_el[1], 0, 32, - env->exception.vaddress); + A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); + A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", - (uint32_t)env->cp15.esr_el[1], + env->exception.fsr, (uint32_t)env->exception.vaddress); new_mode = ARM_CPU_MODE_ABT; addr = 0x10; @@ -4083,12 +4400,21 @@ void arm_cpu_do_interrupt(CPUState *cs) /* Disable IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I; offset = 4; + if (env->cp15.scr_el3 & SCR_IRQ) { + /* IRQ routed to monitor mode */ + new_mode = ARM_CPU_MODE_MON; + mask |= CPSR_F; + } break; case EXCP_FIQ: new_mode = ARM_CPU_MODE_FIQ; addr = 0x1c; /* Disable FIQ, IRQ and imprecise data aborts. */ mask = CPSR_A | CPSR_I | CPSR_F; + if (env->cp15.scr_el3 & SCR_FIQ) { + /* FIQ routed to monitor mode */ + new_mode = ARM_CPU_MODE_MON; + } offset = 4; break; case EXCP_SMC: @@ -4101,19 +4427,19 @@ void arm_cpu_do_interrupt(CPUState *cs) cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); return; /* Never happens. Keep compiler happy. */ } - /* High vectors. */ - if (env->cp15.c1_sys & SCTLR_V) { - /* when enabled, base address cannot be remapped. */ + + if (new_mode == ARM_CPU_MODE_MON) { + addr += env->cp15.mvbar; + } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { + /* High vectors. When enabled, base address cannot be remapped. */ addr += 0xffff0000; } else { /* ARM v7 architectures provide a vector base address register to remap * the interrupt vector table. - * This register is only followed in non-monitor mode, and has a secure - * and un-secure copy. Since the cpu is always in a un-secure operation - * and is never in monitor mode this feature is always active. + * This register is only followed in non-monitor mode, and is banked. * Note: only bits 31:5 are valid. */ - addr += env->cp15.vbar_el[1]; + addr += A32_BANKED_CURRENT_REG_GET(env, vbar); } if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { @@ -4134,7 +4460,7 @@ void arm_cpu_do_interrupt(CPUState *cs) /* this is a lie, as the was no c1_sys on V4T/V5, but who cares * and we should just guard the thumb mode on V4 */ if (arm_feature(env, ARM_FEATURE_V4T)) { - env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0; + env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; } env->regs[14] = env->regs[15] + offset; env->regs[15] = addr; @@ -4165,7 +4491,7 @@ static inline int check_ap(CPUARMState *env, int ap, int domain_prot, } if (access_type == 1) return 0; - switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) { + switch (A32_BANKED_CURRENT_REG_GET(env, sctlr) & (SCTLR_S | SCTLR_R)) { case SCTLR_S: return is_user ? 0 : PAGE_READ; case SCTLR_R: @@ -4200,18 +4526,25 @@ static inline int check_ap(CPUARMState *env, int ap, int domain_prot, static bool get_level1_table_address(CPUARMState *env, uint32_t *table, uint32_t address) { - if (address & env->cp15.c2_mask) { - if ((env->cp15.c2_control & TTBCR_PD1)) { + /* Get the TCR bank based on our security state */ + TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; + + /* We only get here if EL1 is running in AArch32. If EL3 is running in + * AArch32 there is a secure and non-secure instance of the translation + * table registers. + */ + if (address & tcr->mask) { + if (tcr->raw_tcr & TTBCR_PD1) { /* Translation table walk disabled for TTBR1 */ return false; } - *table = env->cp15.ttbr1_el1 & 0xffffc000; + *table = A32_BANKED_CURRENT_REG_GET(env, ttbr1) & 0xffffc000; } else { - if ((env->cp15.c2_control & TTBCR_PD0)) { + if (tcr->raw_tcr & TTBCR_PD0) { /* Translation table walk disabled for TTBR0 */ return false; } - *table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask; + *table = A32_BANKED_CURRENT_REG_GET(env, ttbr0) & tcr->base_mask; } *table |= (address >> 18) & 0x3ffc; return true; @@ -4241,7 +4574,7 @@ static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type, desc = ldl_phys(cs->as, table); type = (desc & 3); domain = (desc >> 5) & 0x0f; - domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; + domain_prot = (A32_BANKED_CURRENT_REG_GET(env, dacr) >> (domain * 2)) & 3; if (type == 0) { /* Section translation fault. */ code = 5; @@ -4353,7 +4686,7 @@ static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, /* Page or Section. */ domain = (desc >> 5) & 0x0f; } - domain_prot = (env->cp15.c3 >> (domain * 2)) & 3; + domain_prot = (A32_BANKED_CURRENT_REG_GET(env, dacr) >> (domain * 2)) & 3; if (domain_prot == 0 || domain_prot == 2) { if (type != 1) { code = 9; /* Section domain fault. */ @@ -4414,7 +4747,8 @@ static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type, goto do_fault; /* The simplified model uses AP[0] as an access control bit. */ - if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) { + if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_AFE) + && (ap & 1) == 0) { /* Access flag fault. */ code = (code == 15) ? 6 : 3; goto do_fault; @@ -4464,13 +4798,14 @@ static int get_phys_addr_lpae(CPUARMState *env, target_ulong address, int32_t granule_sz = 9; int32_t va_size = 32; int32_t tbi = 0; + TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; if (arm_el_is_aa64(env, 1)) { va_size = 64; if (extract64(address, 55, 1)) - tbi = extract64(env->cp15.c2_control, 38, 1); + tbi = extract64(tcr->raw_tcr, 38, 1); else - tbi = extract64(env->cp15.c2_control, 37, 1); + tbi = extract64(tcr->raw_tcr, 37, 1); tbi *= 8; } @@ -4479,12 +4814,12 @@ static int get_phys_addr_lpae(CPUARMState *env, target_ulong address, * This is a Non-secure PL0/1 stage 1 translation, so controlled by * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: */ - uint32_t t0sz = extract32(env->cp15.c2_control, 0, 6); + uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6); if (arm_el_is_aa64(env, 1)) { t0sz = MIN(t0sz, 39); t0sz = MAX(t0sz, 16); } - uint32_t t1sz = extract32(env->cp15.c2_control, 16, 6); + uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6); if (arm_el_is_aa64(env, 1)) { t1sz = MIN(t1sz, 39); t1sz = MAX(t1sz, 16); @@ -4515,11 +4850,11 @@ static int get_phys_addr_lpae(CPUARMState *env, target_ulong address, * we will always flush the TLB any time the ASID is changed). */ if (ttbr_select == 0) { - ttbr = env->cp15.ttbr0_el1; - epd = extract32(env->cp15.c2_control, 7, 1); + ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr0); + epd = extract32(tcr->raw_tcr, 7, 1); tsz = t0sz; - tg = extract32(env->cp15.c2_control, 14, 2); + tg = extract32(tcr->raw_tcr, 14, 2); if (tg == 1) { /* 64KB pages */ granule_sz = 13; } @@ -4527,11 +4862,11 @@ static int get_phys_addr_lpae(CPUARMState *env, target_ulong address, granule_sz = 11; } } else { - ttbr = env->cp15.ttbr1_el1; - epd = extract32(env->cp15.c2_control, 23, 1); + ttbr = A32_BANKED_CURRENT_REG_GET(env, ttbr1); + epd = extract32(tcr->raw_tcr, 23, 1); tsz = t1sz; - tg = extract32(env->cp15.c2_control, 30, 2); + tg = extract32(tcr->raw_tcr, 30, 2); if (tg == 3) { /* 64KB pages */ granule_sz = 13; } @@ -4747,11 +5082,17 @@ static inline int get_phys_addr(CPUARMState *env, target_ulong address, hwaddr *phys_ptr, int *prot, target_ulong *page_size) { + /* This is not entirely correct as get_phys_addr() can also be called + * from ats_write() for an address translation of a specific regime. + */ + uint32_t sctlr = A32_BANKED_CURRENT_REG_GET(env, sctlr); + /* Fast Context Switch Extension. */ - if (address < 0x02000000) - address += env->cp15.c13_fcse; + if (address < 0x02000000) { + address += A32_BANKED_CURRENT_REG_GET(env, fcseidr); + } - if ((env->cp15.c1_sys & SCTLR_M) == 0) { + if ((sctlr & SCTLR_M) == 0) { /* MMU/MPU disabled. */ *phys_ptr = address; *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; @@ -4764,7 +5105,7 @@ static inline int get_phys_addr(CPUARMState *env, target_ulong address, } else if (extended_addresses_enabled(env)) { return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr, prot, page_size); - } else if (env->cp15.c1_sys & SCTLR_XP) { + } else if (sctlr & SCTLR_XP) { return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr, prot, page_size); } else { diff --git a/target-arm/internals.h b/target-arm/internals.h index 2dff4ffb19..bb171a73bd 100644 --- a/target-arm/internals.h +++ b/target-arm/internals.h @@ -153,9 +153,9 @@ static inline void update_spsel(CPUARMState *env, uint32_t imm) */ static inline bool extended_addresses_enabled(CPUARMState *env) { - return arm_el_is_aa64(env, 1) - || ((arm_feature(env, ARM_FEATURE_LPAE) - && (env->cp15.c2_control & TTBCR_EAE))); + TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; + return arm_el_is_aa64(env, 1) || + (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); } /* Valid Syndrome Register EC field values */ diff --git a/target-arm/kvm.c b/target-arm/kvm.c index 319784d689..4d81f3d765 100644 --- a/target-arm/kvm.c +++ b/target-arm/kvm.c @@ -21,6 +21,7 @@ #include "sysemu/kvm.h" #include "kvm_arm.h" #include "cpu.h" +#include "internals.h" #include "hw/arm/arm.h" const KVMCapabilityInfo kvm_arch_required_capabilities[] = { @@ -279,6 +280,94 @@ void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, memory_region_ref(kd->mr); } +static int compare_u64(const void *a, const void *b) +{ + if (*(uint64_t *)a > *(uint64_t *)b) { + return 1; + } + if (*(uint64_t *)a < *(uint64_t *)b) { + return -1; + } + return 0; +} + +/* Initialize the CPUState's cpreg list according to the kernel's + * definition of what CPU registers it knows about (and throw away + * the previous TCG-created cpreg list). + */ +int kvm_arm_init_cpreg_list(ARMCPU *cpu) +{ + struct kvm_reg_list rl; + struct kvm_reg_list *rlp; + int i, ret, arraylen; + CPUState *cs = CPU(cpu); + + rl.n = 0; + ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); + if (ret != -E2BIG) { + return ret; + } + rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); + rlp->n = rl.n; + ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); + if (ret) { + goto out; + } + /* Sort the list we get back from the kernel, since cpreg_tuples + * must be in strictly ascending order. + */ + qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); + + for (i = 0, arraylen = 0; i < rlp->n; i++) { + if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { + continue; + } + switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U32: + case KVM_REG_SIZE_U64: + break; + default: + fprintf(stderr, "Can't handle size of register in kernel list\n"); + ret = -EINVAL; + goto out; + } + + arraylen++; + } + + cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); + cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); + cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, + arraylen); + cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, + arraylen); + cpu->cpreg_array_len = arraylen; + cpu->cpreg_vmstate_array_len = arraylen; + + for (i = 0, arraylen = 0; i < rlp->n; i++) { + uint64_t regidx = rlp->reg[i]; + if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { + continue; + } + cpu->cpreg_indexes[arraylen] = regidx; + arraylen++; + } + assert(cpu->cpreg_array_len == arraylen); + + if (!write_kvmstate_to_list(cpu)) { + /* Shouldn't happen unless kernel is inconsistent about + * what registers exist. + */ + fprintf(stderr, "Initial read of kernel register state failed\n"); + ret = -EINVAL; + goto out; + } + +out: + g_free(rlp); + return ret; +} + bool write_kvmstate_to_list(ARMCPU *cpu) { CPUState *cs = CPU(cpu); @@ -351,6 +440,24 @@ bool write_list_to_kvmstate(ARMCPU *cpu) return ok; } +void kvm_arm_reset_vcpu(ARMCPU *cpu) +{ + int ret; + + /* Re-init VCPU so that all registers are set to + * their respective reset values. + */ + ret = kvm_arm_vcpu_init(CPU(cpu)); + if (ret < 0) { + fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); + abort(); + } + if (!write_kvmstate_to_list(cpu)) { + fprintf(stderr, "write_kvmstate_to_list failed\n"); + abort(); + } +} + void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) { } diff --git a/target-arm/kvm32.c b/target-arm/kvm32.c index 5ec4eb1f32..94030d1acb 100644 --- a/target-arm/kvm32.c +++ b/target-arm/kvm32.c @@ -51,17 +51,17 @@ bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc) struct kvm_one_reg idregs[] = { { .id = KVM_REG_ARM | KVM_REG_SIZE_U32 - | ENCODE_CP_REG(15, 0, 0, 0, 0, 0), + | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0), .addr = (uintptr_t)&midr, }, { .id = KVM_REG_ARM | KVM_REG_SIZE_U32 - | ENCODE_CP_REG(15, 0, 0, 1, 0, 0), + | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0), .addr = (uintptr_t)&id_pfr0, }, { .id = KVM_REG_ARM | KVM_REG_SIZE_U32 - | ENCODE_CP_REG(15, 0, 0, 2, 0, 0), + | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0), .addr = (uintptr_t)&id_isar0, }, { @@ -138,7 +138,7 @@ bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc) return true; } -static bool reg_syncs_via_tuple_list(uint64_t regidx) +bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) { /* Return true if the regidx is a register we should synchronize * via the cpreg_tuples array (ie is not a core reg we sync by @@ -153,24 +153,11 @@ static bool reg_syncs_via_tuple_list(uint64_t regidx) } } -static int compare_u64(const void *a, const void *b) -{ - if (*(uint64_t *)a > *(uint64_t *)b) { - return 1; - } - if (*(uint64_t *)a < *(uint64_t *)b) { - return -1; - } - return 0; -} - int kvm_arch_init_vcpu(CPUState *cs) { - int i, ret, arraylen; + int ret; uint64_t v; struct kvm_one_reg r; - struct kvm_reg_list rl; - struct kvm_reg_list *rlp; ARMCPU *cpu = ARM_CPU(cs); if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) { @@ -206,73 +193,7 @@ int kvm_arch_init_vcpu(CPUState *cs) return -EINVAL; } - /* Populate the cpreg list based on the kernel's idea - * of what registers exist (and throw away the TCG-created list). - */ - rl.n = 0; - ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); - if (ret != -E2BIG) { - return ret; - } - rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); - rlp->n = rl.n; - ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); - if (ret) { - goto out; - } - /* Sort the list we get back from the kernel, since cpreg_tuples - * must be in strictly ascending order. - */ - qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); - - for (i = 0, arraylen = 0; i < rlp->n; i++) { - if (!reg_syncs_via_tuple_list(rlp->reg[i])) { - continue; - } - switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { - case KVM_REG_SIZE_U32: - case KVM_REG_SIZE_U64: - break; - default: - fprintf(stderr, "Can't handle size of register in kernel list\n"); - ret = -EINVAL; - goto out; - } - - arraylen++; - } - - cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); - cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); - cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, - arraylen); - cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, - arraylen); - cpu->cpreg_array_len = arraylen; - cpu->cpreg_vmstate_array_len = arraylen; - - for (i = 0, arraylen = 0; i < rlp->n; i++) { - uint64_t regidx = rlp->reg[i]; - if (!reg_syncs_via_tuple_list(regidx)) { - continue; - } - cpu->cpreg_indexes[arraylen] = regidx; - arraylen++; - } - assert(cpu->cpreg_array_len == arraylen); - - if (!write_kvmstate_to_list(cpu)) { - /* Shouldn't happen unless kernel is inconsistent about - * what registers exist. - */ - fprintf(stderr, "Initial read of kernel register state failed\n"); - ret = -EINVAL; - goto out; - } - -out: - g_free(rlp); - return ret; + return kvm_arm_init_cpreg_list(cpu); } typedef struct Reg { @@ -508,12 +429,3 @@ int kvm_arch_get_registers(CPUState *cs) return 0; } - -void kvm_arm_reset_vcpu(ARMCPU *cpu) -{ - /* Re-init VCPU so that all registers are set to - * their respective reset values. - */ - kvm_arm_vcpu_init(CPU(cpu)); - write_kvmstate_to_list(cpu); -} diff --git a/target-arm/kvm64.c b/target-arm/kvm64.c index c615286158..ba16821737 100644 --- a/target-arm/kvm64.c +++ b/target-arm/kvm64.c @@ -103,9 +103,21 @@ int kvm_arch_init_vcpu(CPUState *cs) return ret; } - /* TODO : support for save/restore/reset of system regs via tuple list */ + return kvm_arm_init_cpreg_list(cpu); +} - return 0; +bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) +{ + /* Return true if the regidx is a register we should synchronize + * via the cpreg_tuples array (ie is not a core reg we sync by + * hand in kvm_arch_get/put_registers()) + */ + switch (regidx & KVM_REG_ARM_COPROC_MASK) { + case KVM_REG_ARM_CORE: + return false; + default: + return true; + } } #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ @@ -260,11 +272,3 @@ int kvm_arch_get_registers(CPUState *cs) /* TODO: other registers */ return ret; } - -void kvm_arm_reset_vcpu(ARMCPU *cpu) -{ - /* Re-init VCPU so that all registers are set to - * their respective reset values. - */ - kvm_arm_vcpu_init(CPU(cpu)); -} diff --git a/target-arm/kvm_arm.h b/target-arm/kvm_arm.h index af93105517..455dea3f3f 100644 --- a/target-arm/kvm_arm.h +++ b/target-arm/kvm_arm.h @@ -47,6 +47,28 @@ void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, uint64_t attr, int dev_fd); /** + * kvm_arm_init_cpreg_list: + * @cs: CPUState + * + * Initialize the CPUState's cpreg list according to the kernel's + * definition of what CPU registers it knows about (and throw away + * the previous TCG-created cpreg list). + * + * Returns: 0 if success, else < 0 error code + */ +int kvm_arm_init_cpreg_list(ARMCPU *cpu); + +/** + * kvm_arm_reg_syncs_via_cpreg_list + * regidx: KVM register index + * + * Return true if this KVM register should be synchronized via the + * cpreg list of arbitrary system registers, false if it is synchronized + * by hand using code in kvm_arch_get/put_registers(). + */ +bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx); + +/** * write_list_to_kvmstate: * @cpu: ARMCPU * diff --git a/target-arm/machine.c b/target-arm/machine.c index 6437690af7..c29e7a2ac1 100644 --- a/target-arm/machine.c +++ b/target-arm/machine.c @@ -127,6 +127,13 @@ static int get_cpsr(QEMUFile *f, void *opaque, size_t size) CPUARMState *env = &cpu->env; uint32_t val = qemu_get_be32(f); + env->aarch64 = ((val & PSTATE_nRW) == 0); + + if (is_a64(env)) { + pstate_write(env, val); + return 0; + } + /* Avoid mode switch when restoring CPSR */ env->uncached_cpsr = val & CPSR_M; cpsr_write(env, val, 0xffffffff); @@ -137,8 +144,15 @@ static void put_cpsr(QEMUFile *f, void *opaque, size_t size) { ARMCPU *cpu = opaque; CPUARMState *env = &cpu->env; + uint32_t val; + + if (is_a64(env)) { + val = pstate_read(env); + } else { + val = cpsr_read(env); + } - qemu_put_be32(f, cpsr_read(env)); + qemu_put_be32(f, val); } static const VMStateInfo vmstate_cpsr = { @@ -222,12 +236,14 @@ static int cpu_post_load(void *opaque, int version_id) const VMStateDescription vmstate_arm_cpu = { .name = "cpu", - .version_id = 21, - .minimum_version_id = 21, + .version_id = 22, + .minimum_version_id = 22, .pre_save = cpu_pre_save, .post_load = cpu_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16), + VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32), + VMSTATE_UINT64(env.pc, ARMCPU), { .name = "cpsr", .version_id = 0, diff --git a/target-arm/op_helper.c b/target-arm/op_helper.c index 62012c3a6e..2bed914770 100644 --- a/target-arm/op_helper.c +++ b/target-arm/op_helper.c @@ -361,7 +361,7 @@ void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm) * Note that SPSel is never OK from EL0; we rely on handle_msr_i() * to catch that case at translate time. */ - if (arm_current_el(env) == 0 && !(env->cp15.c1_sys & SCTLR_UMA)) { + if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { raise_exception(env, EXCP_UDEF); } @@ -575,7 +575,7 @@ static bool linked_bp_matches(ARMCPU *cpu, int lbn) * short descriptor format (in which case it holds both PROCID and ASID), * since we don't implement the optional v7 context ID masking. */ - contextidr = extract64(env->cp15.contextidr_el1, 0, 32); + contextidr = extract64(env->cp15.contextidr_el[1], 0, 32); switch (bt) { case 3: /* linked context ID match */ diff --git a/target-arm/translate.c b/target-arm/translate.c index af5156857e..b52c758698 100644 --- a/target-arm/translate.c +++ b/target-arm/translate.c @@ -7091,7 +7091,7 @@ static int disas_coproc_insn(DisasContext *s, uint32_t insn) rt = (insn >> 12) & 0xf; ri = get_arm_cp_reginfo(s->cp_regs, - ENCODE_CP_REG(cpnum, is64, crn, crm, opc1, opc2)); + ENCODE_CP_REG(cpnum, is64, s->ns, crn, crm, opc1, opc2)); if (ri) { /* Check access permissions */ if (!cp_access_ok(s->current_el, ri, isread)) { @@ -7281,12 +7281,16 @@ static int disas_coproc_insn(DisasContext *s, uint32_t insn) */ if (is64) { qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " - "64 bit system register cp:%d opc1: %d crm:%d\n", - isread ? "read" : "write", cpnum, opc1, crm); + "64 bit system register cp:%d opc1: %d crm:%d " + "(%s)\n", + isread ? "read" : "write", cpnum, opc1, crm, + s->ns ? "non-secure" : "secure"); } else { qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " - "system register cp:%d opc1:%d crn:%d crm:%d opc2:%d\n", - isread ? "read" : "write", cpnum, opc1, crn, crm, opc2); + "system register cp:%d opc1:%d crn:%d crm:%d opc2:%d " + "(%s)\n", + isread ? "read" : "write", cpnum, opc1, crn, crm, opc2, + s->ns ? "non-secure" : "secure"); } return 1; @@ -11031,6 +11035,7 @@ static inline void gen_intermediate_code_internal(ARMCPU *cpu, #if !defined(CONFIG_USER_ONLY) dc->user = (ARM_TBFLAG_PRIV(tb->flags) == 0); #endif + dc->ns = ARM_TBFLAG_NS(tb->flags); dc->cpacr_fpen = ARM_TBFLAG_CPACR_FPEN(tb->flags); dc->vfp_enabled = ARM_TBFLAG_VFPEN(tb->flags); dc->vec_len = ARM_TBFLAG_VECLEN(tb->flags); diff --git a/target-arm/translate.h b/target-arm/translate.h index 41a907157f..f6ee7892ba 100644 --- a/target-arm/translate.h +++ b/target-arm/translate.h @@ -20,6 +20,7 @@ typedef struct DisasContext { #if !defined(CONFIG_USER_ONLY) int user; #endif + bool ns; /* Use non-secure CPREG bank on access */ bool cpacr_fpen; /* FP enabled via CPACR.FPEN */ bool vfp_enabled; /* FP enabled via FPSCR.EN */ int vec_len; @@ -554,6 +554,22 @@ static QemuOptsList qemu_icount_opts = { }, }; +static QemuOptsList qemu_semihosting_config_opts = { + .name = "semihosting-config", + .implied_opt_name = "enable", + .head = QTAILQ_HEAD_INITIALIZER(qemu_semihosting_config_opts.head), + .desc = { + { + .name = "enable", + .type = QEMU_OPT_BOOL, + }, { + .name = "target", + .type = QEMU_OPT_STRING, + }, + { /* end of list */ } + }, +}; + /** * Get machine options * @@ -2812,6 +2828,7 @@ int main(int argc, char **argv, char **envp) qemu_add_opts(&qemu_name_opts); qemu_add_opts(&qemu_numa_opts); qemu_add_opts(&qemu_icount_opts); + qemu_add_opts(&qemu_semihosting_config_opts); runstate_init(); @@ -3623,6 +3640,37 @@ int main(int argc, char **argv, char **envp) break; case QEMU_OPTION_semihosting: semihosting_enabled = 1; + semihosting_target = SEMIHOSTING_TARGET_AUTO; + break; + case QEMU_OPTION_semihosting_config: + semihosting_enabled = 1; + opts = qemu_opts_parse(qemu_find_opts("semihosting-config"), + optarg, 0); + if (opts != NULL) { + semihosting_enabled = qemu_opt_get_bool(opts, "enable", + true); + const char *target = qemu_opt_get(opts, "target"); + if (target != NULL) { + if (strcmp("native", target) == 0) { + semihosting_target = SEMIHOSTING_TARGET_NATIVE; + } else if (strcmp("gdb", target) == 0) { + semihosting_target = SEMIHOSTING_TARGET_GDB; + } else if (strcmp("auto", target) == 0) { + semihosting_target = SEMIHOSTING_TARGET_AUTO; + } else { + fprintf(stderr, "Unsupported semihosting-config" + " %s\n", + optarg); + exit(1); + } + } else { + semihosting_target = SEMIHOSTING_TARGET_AUTO; + } + } else { + fprintf(stderr, "Unsupported semihosting-config %s\n", + optarg); + exit(1); + } break; case QEMU_OPTION_tdf: fprintf(stderr, "Warning: user space PIT time drift fix " |