diff options
-rw-r--r-- | linux-user/vm86.c | 407 |
1 files changed, 407 insertions, 0 deletions
diff --git a/linux-user/vm86.c b/linux-user/vm86.c new file mode 100644 index 0000000000..8316117e4d --- /dev/null +++ b/linux-user/vm86.c @@ -0,0 +1,407 @@ +/* + * vm86 linux syscall support + * + * Copyright (c) 2003 Fabrice Bellard + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ +#include <stdlib.h> +#include <stdio.h> +#include <stdarg.h> +#include <string.h> +#include <errno.h> +#include <unistd.h> + +#include "qemu.h" + +//#define DEBUG_VM86 + +#define set_flags(X,new,mask) \ +((X) = ((X) & ~(mask)) | ((new) & (mask))) + +#define SAFE_MASK (0xDD5) +#define RETURN_MASK (0xDFF) + +static inline int is_revectored(int nr, struct target_revectored_struct *bitmap) +{ + return (tswap32(bitmap->__map[nr >> 5]) >> (nr & 0x1f)) & 1; +} + +static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val) +{ + *(uint16_t *)(segptr + (reg16 & 0xffff)) = tswap16(val); +} + +static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val) +{ + *(uint32_t *)(segptr + (reg16 & 0xffff)) = tswap32(val); +} + +static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16) +{ + return tswap16(*(uint16_t *)(segptr + (reg16 & 0xffff))); +} + +static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16) +{ + return tswap32(*(uint16_t *)(segptr + (reg16 & 0xffff))); +} + +void save_v86_state(CPUX86State *env) +{ + TaskState *ts = env->opaque; + + /* put the VM86 registers in the userspace register structure */ + ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]); + ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]); + ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]); + ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]); + ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]); + ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]); + ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]); + ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]); + ts->target_v86->regs.eip = tswap32(env->eip); + ts->target_v86->regs.cs = tswap16(env->segs[R_CS]); + ts->target_v86->regs.ss = tswap16(env->segs[R_SS]); + ts->target_v86->regs.ds = tswap16(env->segs[R_DS]); + ts->target_v86->regs.es = tswap16(env->segs[R_ES]); + ts->target_v86->regs.fs = tswap16(env->segs[R_FS]); + ts->target_v86->regs.gs = tswap16(env->segs[R_GS]); + set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask); + ts->target_v86->regs.eflags = tswap32(env->eflags); +#ifdef DEBUG_VM86 + fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n", + env->eflags, env->segs[R_CS], env->eip); +#endif + + /* restore 32 bit registers */ + env->regs[R_EAX] = ts->vm86_saved_regs.eax; + env->regs[R_EBX] = ts->vm86_saved_regs.ebx; + env->regs[R_ECX] = ts->vm86_saved_regs.ecx; + env->regs[R_EDX] = ts->vm86_saved_regs.edx; + env->regs[R_ESI] = ts->vm86_saved_regs.esi; + env->regs[R_EDI] = ts->vm86_saved_regs.edi; + env->regs[R_EBP] = ts->vm86_saved_regs.ebp; + env->regs[R_ESP] = ts->vm86_saved_regs.esp; + env->eflags = ts->vm86_saved_regs.eflags; + env->eip = ts->vm86_saved_regs.eip; + + cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs); + cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss); + cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds); + cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es); + cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs); + cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs); +} + +/* return from vm86 mode to 32 bit. The vm86() syscall will return + 'retval' */ +static inline void return_to_32bit(CPUX86State *env, int retval) +{ +#ifdef DEBUG_VM86 + fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval); +#endif + save_v86_state(env); + env->regs[R_EAX] = retval; +} + +static inline int set_IF(CPUX86State *env) +{ + TaskState *ts = env->opaque; + + ts->v86flags |= VIF_MASK; + if (ts->v86flags & VIP_MASK) { + return_to_32bit(env, TARGET_VM86_STI); + return 1; + } + return 0; +} + +static inline void clear_IF(CPUX86State *env) +{ + TaskState *ts = env->opaque; + + ts->v86flags &= ~VIF_MASK; +} + +static inline void clear_TF(CPUX86State *env) +{ + env->eflags &= ~TF_MASK; +} + +static inline int set_vflags_long(unsigned long eflags, CPUX86State *env) +{ + TaskState *ts = env->opaque; + + set_flags(ts->v86flags, eflags, ts->v86mask); + set_flags(env->eflags, eflags, SAFE_MASK); + if (eflags & IF_MASK) + return set_IF(env); + return 0; +} + +static inline int set_vflags_short(unsigned short flags, CPUX86State *env) +{ + TaskState *ts = env->opaque; + + set_flags(ts->v86flags, flags, ts->v86mask & 0xffff); + set_flags(env->eflags, flags, SAFE_MASK); + if (flags & IF_MASK) + return set_IF(env); + return 0; +} + +static inline unsigned int get_vflags(CPUX86State *env) +{ + TaskState *ts = env->opaque; + unsigned int flags; + + flags = env->eflags & RETURN_MASK; + if (ts->v86flags & VIF_MASK) + flags |= IF_MASK; + return flags | (ts->v86flags & ts->v86mask); +} + +#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff) + +/* handle VM86 interrupt (NOTE: the CPU core currently does not + support TSS interrupt revectoring, so this code is always executed) */ +void do_int(CPUX86State *env, int intno) +{ + TaskState *ts = env->opaque; + uint32_t *int_ptr, segoffs; + uint8_t *ssp; + unsigned int sp; + +#if 1 + if (intno == 0xe6 && (env->regs[R_EAX] & 0xffff) == 0x00c0) + loglevel = 1; +#endif + + if (env->segs[R_CS] == TARGET_BIOSSEG) + goto cannot_handle; + if (is_revectored(intno, &ts->target_v86->int_revectored)) + goto cannot_handle; + if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, + &ts->target_v86->int21_revectored)) + goto cannot_handle; + int_ptr = (uint32_t *)(intno << 2); + segoffs = tswap32(*int_ptr); + if ((segoffs >> 16) == TARGET_BIOSSEG) + goto cannot_handle; +#if defined(DEBUG_VM86) + fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", + intno, segoffs >> 16, segoffs & 0xffff); +#endif + /* save old state */ + ssp = (uint8_t *)(env->segs[R_SS] << 4); + sp = env->regs[R_ESP] & 0xffff; + vm_putw(ssp, sp - 2, get_vflags(env)); + vm_putw(ssp, sp - 4, env->segs[R_CS]); + vm_putw(ssp, sp - 6, env->eip); + ADD16(env->regs[R_ESP], -6); + /* goto interrupt handler */ + env->eip = segoffs & 0xffff; + cpu_x86_load_seg(env, R_CS, segoffs >> 16); + clear_TF(env); + clear_IF(env); + return; + cannot_handle: +#if defined(DEBUG_VM86) + fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno); +#endif + return_to_32bit(env, TARGET_VM86_INTx | (intno << 8)); +} + +#define CHECK_IF_IN_TRAP(disp) \ + if ((tswap32(ts->target_v86->vm86plus.flags) & TARGET_vm86dbg_active) && \ + (tswap32(ts->target_v86->vm86plus.flags) & TARGET_vm86dbg_TFpendig)) \ + vm_putw(ssp,sp + disp,vm_getw(ssp,sp + disp) | TF_MASK) + +#define VM86_FAULT_RETURN \ + if ((tswap32(ts->target_v86->vm86plus.flags) & TARGET_force_return_for_pic) && \ + (ts->v86flags & (IF_MASK | VIF_MASK))) \ + return_to_32bit(env, TARGET_VM86_PICRETURN); \ + return + +void handle_vm86_fault(CPUX86State *env) +{ + TaskState *ts = env->opaque; + uint8_t *csp, *pc, *ssp; + unsigned int ip, sp; + + csp = (uint8_t *)(env->segs[R_CS] << 4); + ip = env->eip & 0xffff; + pc = csp + ip; + + ssp = (uint8_t *)(env->segs[R_SS] << 4); + sp = env->regs[R_ESP] & 0xffff; + +#if defined(DEBUG_VM86) + fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n", + env->segs[R_CS], env->eip, pc[0], pc[1]); +#endif + + /* VM86 mode */ + switch(pc[0]) { + case 0x66: + switch(pc[1]) { + case 0x9c: /* pushfd */ + ADD16(env->eip, 2); + ADD16(env->regs[R_ESP], -4); + vm_putl(ssp, sp - 4, get_vflags(env)); + VM86_FAULT_RETURN; + + case 0x9d: /* popfd */ + ADD16(env->eip, 2); + ADD16(env->regs[R_ESP], 4); + CHECK_IF_IN_TRAP(0); + if (set_vflags_long(vm_getl(ssp, sp), env)) + return; + VM86_FAULT_RETURN; + + case 0xcf: /* iretd */ + ADD16(env->regs[R_ESP], 12); + env->eip = vm_getl(ssp, sp) & 0xffff; + cpu_x86_load_seg(env, R_CS, vm_getl(ssp, sp + 4) & 0xffff); + CHECK_IF_IN_TRAP(8); + if (set_vflags_long(vm_getl(ssp, sp + 8), env)) + return; + VM86_FAULT_RETURN; + + default: + goto vm86_gpf; + } + break; + case 0x9c: /* pushf */ + ADD16(env->eip, 1); + ADD16(env->regs[R_ESP], -2); + vm_putw(ssp, sp - 2, get_vflags(env)); + VM86_FAULT_RETURN; + + case 0x9d: /* popf */ + ADD16(env->eip, 1); + ADD16(env->regs[R_ESP], 2); + CHECK_IF_IN_TRAP(0); + if (set_vflags_short(vm_getw(ssp, sp), env)) + return; + VM86_FAULT_RETURN; + + case 0xcd: /* int */ + ADD16(env->eip, 2); + do_int(env, pc[1]); + break; + + case 0xcf: /* iret */ + ADD16(env->regs[R_ESP], 6); + env->eip = vm_getw(ssp, sp); + cpu_x86_load_seg(env, R_CS, vm_getw(ssp, sp + 2)); + CHECK_IF_IN_TRAP(4); + if (set_vflags_short(vm_getw(ssp, sp + 4), env)) + return; + VM86_FAULT_RETURN; + + case 0xfa: /* cli */ + ADD16(env->eip, 1); + clear_IF(env); + VM86_FAULT_RETURN; + + case 0xfb: /* sti */ + ADD16(env->eip, 1); + if (set_IF(env)) + return; + VM86_FAULT_RETURN; + + default: + vm86_gpf: + /* real VM86 GPF exception */ + return_to_32bit(env, TARGET_VM86_UNKNOWN); + break; + } +} + +int do_vm86(CPUX86State *env, long subfunction, + struct target_vm86plus_struct * target_v86) +{ + TaskState *ts = env->opaque; + int ret; + + switch (subfunction) { + case TARGET_VM86_REQUEST_IRQ: + case TARGET_VM86_FREE_IRQ: + case TARGET_VM86_GET_IRQ_BITS: + case TARGET_VM86_GET_AND_RESET_IRQ: + gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction); + ret = -EINVAL; + goto out; + case TARGET_VM86_PLUS_INSTALL_CHECK: + /* NOTE: on old vm86 stuff this will return the error + from verify_area(), because the subfunction is + interpreted as (invalid) address to vm86_struct. + So the installation check works. + */ + ret = 0; + goto out; + } + + ts->target_v86 = target_v86; + /* save current CPU regs */ + ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */ + ts->vm86_saved_regs.ebx = env->regs[R_EBX]; + ts->vm86_saved_regs.ecx = env->regs[R_ECX]; + ts->vm86_saved_regs.edx = env->regs[R_EDX]; + ts->vm86_saved_regs.esi = env->regs[R_ESI]; + ts->vm86_saved_regs.edi = env->regs[R_EDI]; + ts->vm86_saved_regs.ebp = env->regs[R_EBP]; + ts->vm86_saved_regs.esp = env->regs[R_ESP]; + ts->vm86_saved_regs.eflags = env->eflags; + ts->vm86_saved_regs.eip = env->eip; + ts->vm86_saved_regs.cs = env->segs[R_CS]; + ts->vm86_saved_regs.ss = env->segs[R_SS]; + ts->vm86_saved_regs.ds = env->segs[R_DS]; + ts->vm86_saved_regs.es = env->segs[R_ES]; + ts->vm86_saved_regs.fs = env->segs[R_FS]; + ts->vm86_saved_regs.gs = env->segs[R_GS]; + + /* build vm86 CPU state */ + ts->v86flags = tswap32(target_v86->regs.eflags); + env->eflags = (env->eflags & ~SAFE_MASK) | + (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK; + ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK; + + env->regs[R_EBX] = tswap32(target_v86->regs.ebx); + env->regs[R_ECX] = tswap32(target_v86->regs.ecx); + env->regs[R_EDX] = tswap32(target_v86->regs.edx); + env->regs[R_ESI] = tswap32(target_v86->regs.esi); + env->regs[R_EDI] = tswap32(target_v86->regs.edi); + env->regs[R_EBP] = tswap32(target_v86->regs.ebp); + env->regs[R_ESP] = tswap32(target_v86->regs.esp); + env->eip = tswap32(target_v86->regs.eip); + cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs)); + cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss)); + cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds)); + cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es)); + cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs)); + cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs)); + ret = tswap32(target_v86->regs.eax); /* eax will be restored at + the end of the syscall */ +#ifdef DEBUG_VM86 + fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n", env->segs[R_CS], env->eip); +#endif + /* now the virtual CPU is ready for vm86 execution ! */ + out: + return ret; +} + |