aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--target-ppc/Makefile.objs2
-rw-r--r--target-ppc/int_helper.c1538
-rw-r--r--target-ppc/op_helper.c1500
3 files changed, 1540 insertions, 1500 deletions
diff --git a/target-ppc/Makefile.objs b/target-ppc/Makefile.objs
index 5bea9c3377..97e440be85 100644
--- a/target-ppc/Makefile.objs
+++ b/target-ppc/Makefile.objs
@@ -4,5 +4,7 @@ obj-$(CONFIG_KVM) += kvm.o kvm_ppc.o
obj-y += op_helper.o helper.o
obj-y += excp_helper.o
obj-y += fpu_helper.o
+obj-y += int_helper.o
+$(obj)/int_helper.o: QEMU_CFLAGS += $(HELPER_CFLAGS)
$(obj)/op_helper.o: QEMU_CFLAGS += $(HELPER_CFLAGS)
diff --git a/target-ppc/int_helper.c b/target-ppc/int_helper.c
new file mode 100644
index 0000000000..71c7304b57
--- /dev/null
+++ b/target-ppc/int_helper.c
@@ -0,0 +1,1538 @@
+/*
+ * PowerPC integer and vector emulation helpers for QEMU.
+ *
+ * Copyright (c) 2003-2007 Jocelyn Mayer
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "cpu.h"
+#include "dyngen-exec.h"
+#include "host-utils.h"
+#include "helper.h"
+
+#include "helper_regs.h"
+/*****************************************************************************/
+/* Fixed point operations helpers */
+#if defined(TARGET_PPC64)
+
+/* multiply high word */
+uint64_t helper_mulhd(uint64_t arg1, uint64_t arg2)
+{
+ uint64_t tl, th;
+
+ muls64(&tl, &th, arg1, arg2);
+ return th;
+}
+
+/* multiply high word unsigned */
+uint64_t helper_mulhdu(uint64_t arg1, uint64_t arg2)
+{
+ uint64_t tl, th;
+
+ mulu64(&tl, &th, arg1, arg2);
+ return th;
+}
+
+uint64_t helper_mulldo(uint64_t arg1, uint64_t arg2)
+{
+ int64_t th;
+ uint64_t tl;
+
+ muls64(&tl, (uint64_t *)&th, arg1, arg2);
+ /* If th != 0 && th != -1, then we had an overflow */
+ if (likely((uint64_t)(th + 1) <= 1)) {
+ env->xer &= ~(1 << XER_OV);
+ } else {
+ env->xer |= (1 << XER_OV) | (1 << XER_SO);
+ }
+ return (int64_t)tl;
+}
+#endif
+
+target_ulong helper_cntlzw(target_ulong t)
+{
+ return clz32(t);
+}
+
+#if defined(TARGET_PPC64)
+target_ulong helper_cntlzd(target_ulong t)
+{
+ return clz64(t);
+}
+#endif
+
+/* shift right arithmetic helper */
+target_ulong helper_sraw(target_ulong value, target_ulong shift)
+{
+ int32_t ret;
+
+ if (likely(!(shift & 0x20))) {
+ if (likely((uint32_t)shift != 0)) {
+ shift &= 0x1f;
+ ret = (int32_t)value >> shift;
+ if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
+ env->xer &= ~(1 << XER_CA);
+ } else {
+ env->xer |= (1 << XER_CA);
+ }
+ } else {
+ ret = (int32_t)value;
+ env->xer &= ~(1 << XER_CA);
+ }
+ } else {
+ ret = (int32_t)value >> 31;
+ if (ret) {
+ env->xer |= (1 << XER_CA);
+ } else {
+ env->xer &= ~(1 << XER_CA);
+ }
+ }
+ return (target_long)ret;
+}
+
+#if defined(TARGET_PPC64)
+target_ulong helper_srad(target_ulong value, target_ulong shift)
+{
+ int64_t ret;
+
+ if (likely(!(shift & 0x40))) {
+ if (likely((uint64_t)shift != 0)) {
+ shift &= 0x3f;
+ ret = (int64_t)value >> shift;
+ if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
+ env->xer &= ~(1 << XER_CA);
+ } else {
+ env->xer |= (1 << XER_CA);
+ }
+ } else {
+ ret = (int64_t)value;
+ env->xer &= ~(1 << XER_CA);
+ }
+ } else {
+ ret = (int64_t)value >> 63;
+ if (ret) {
+ env->xer |= (1 << XER_CA);
+ } else {
+ env->xer &= ~(1 << XER_CA);
+ }
+ }
+ return ret;
+}
+#endif
+
+#if defined(TARGET_PPC64)
+target_ulong helper_popcntb(target_ulong val)
+{
+ val = (val & 0x5555555555555555ULL) + ((val >> 1) &
+ 0x5555555555555555ULL);
+ val = (val & 0x3333333333333333ULL) + ((val >> 2) &
+ 0x3333333333333333ULL);
+ val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
+ 0x0f0f0f0f0f0f0f0fULL);
+ return val;
+}
+
+target_ulong helper_popcntw(target_ulong val)
+{
+ val = (val & 0x5555555555555555ULL) + ((val >> 1) &
+ 0x5555555555555555ULL);
+ val = (val & 0x3333333333333333ULL) + ((val >> 2) &
+ 0x3333333333333333ULL);
+ val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
+ 0x0f0f0f0f0f0f0f0fULL);
+ val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
+ 0x00ff00ff00ff00ffULL);
+ val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
+ 0x0000ffff0000ffffULL);
+ return val;
+}
+
+target_ulong helper_popcntd(target_ulong val)
+{
+ return ctpop64(val);
+}
+#else
+target_ulong helper_popcntb(target_ulong val)
+{
+ val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
+ val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
+ val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
+ return val;
+}
+
+target_ulong helper_popcntw(target_ulong val)
+{
+ val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
+ val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
+ val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
+ val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff);
+ val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff);
+ return val;
+}
+#endif
+
+/*****************************************************************************/
+/* PowerPC 601 specific instructions (POWER bridge) */
+target_ulong helper_div(target_ulong arg1, target_ulong arg2)
+{
+ uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
+
+ if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
+ (int32_t)arg2 == 0) {
+ env->spr[SPR_MQ] = 0;
+ return INT32_MIN;
+ } else {
+ env->spr[SPR_MQ] = tmp % arg2;
+ return tmp / (int32_t)arg2;
+ }
+}
+
+target_ulong helper_divo(target_ulong arg1, target_ulong arg2)
+{
+ uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
+
+ if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
+ (int32_t)arg2 == 0) {
+ env->xer |= (1 << XER_OV) | (1 << XER_SO);
+ env->spr[SPR_MQ] = 0;
+ return INT32_MIN;
+ } else {
+ env->spr[SPR_MQ] = tmp % arg2;
+ tmp /= (int32_t)arg2;
+ if ((int32_t)tmp != tmp) {
+ env->xer |= (1 << XER_OV) | (1 << XER_SO);
+ } else {
+ env->xer &= ~(1 << XER_OV);
+ }
+ return tmp;
+ }
+}
+
+target_ulong helper_divs(target_ulong arg1, target_ulong arg2)
+{
+ if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
+ (int32_t)arg2 == 0) {
+ env->spr[SPR_MQ] = 0;
+ return INT32_MIN;
+ } else {
+ env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
+ return (int32_t)arg1 / (int32_t)arg2;
+ }
+}
+
+target_ulong helper_divso(target_ulong arg1, target_ulong arg2)
+{
+ if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
+ (int32_t)arg2 == 0) {
+ env->xer |= (1 << XER_OV) | (1 << XER_SO);
+ env->spr[SPR_MQ] = 0;
+ return INT32_MIN;
+ } else {
+ env->xer &= ~(1 << XER_OV);
+ env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
+ return (int32_t)arg1 / (int32_t)arg2;
+ }
+}
+
+/*****************************************************************************/
+/* 602 specific instructions */
+/* mfrom is the most crazy instruction ever seen, imho ! */
+/* Real implementation uses a ROM table. Do the same */
+/* Extremely decomposed:
+ * -arg / 256
+ * return 256 * log10(10 + 1.0) + 0.5
+ */
+#if !defined(CONFIG_USER_ONLY)
+target_ulong helper_602_mfrom(target_ulong arg)
+{
+ if (likely(arg < 602)) {
+#include "mfrom_table.c"
+ return mfrom_ROM_table[arg];
+ } else {
+ return 0;
+ }
+}
+#endif
+
+/*****************************************************************************/
+/* Altivec extension helpers */
+#if defined(HOST_WORDS_BIGENDIAN)
+#define HI_IDX 0
+#define LO_IDX 1
+#else
+#define HI_IDX 1
+#define LO_IDX 0
+#endif
+
+#if defined(HOST_WORDS_BIGENDIAN)
+#define VECTOR_FOR_INORDER_I(index, element) \
+ for (index = 0; index < ARRAY_SIZE(r->element); index++)
+#else
+#define VECTOR_FOR_INORDER_I(index, element) \
+ for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
+#endif
+
+/* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
+ * execute the following block. */
+#define DO_HANDLE_NAN(result, x) \
+ if (float32_is_any_nan(x)) { \
+ CPU_FloatU __f; \
+ __f.f = x; \
+ __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
+ result = __f.f; \
+ } else
+
+#define HANDLE_NAN1(result, x) \
+ DO_HANDLE_NAN(result, x)
+#define HANDLE_NAN2(result, x, y) \
+ DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
+#define HANDLE_NAN3(result, x, y, z) \
+ DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
+
+/* Saturating arithmetic helpers. */
+#define SATCVT(from, to, from_type, to_type, min, max) \
+ static inline to_type cvt##from##to(from_type x, int *sat) \
+ { \
+ to_type r; \
+ \
+ if (x < (from_type)min) { \
+ r = min; \
+ *sat = 1; \
+ } else if (x > (from_type)max) { \
+ r = max; \
+ *sat = 1; \
+ } else { \
+ r = x; \
+ } \
+ return r; \
+ }
+#define SATCVTU(from, to, from_type, to_type, min, max) \
+ static inline to_type cvt##from##to(from_type x, int *sat) \
+ { \
+ to_type r; \
+ \
+ if (x > (from_type)max) { \
+ r = max; \
+ *sat = 1; \
+ } else { \
+ r = x; \
+ } \
+ return r; \
+ }
+SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
+SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
+SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
+
+SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
+SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
+SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
+SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
+SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
+SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
+#undef SATCVT
+#undef SATCVTU
+
+void helper_lvsl(ppc_avr_t *r, target_ulong sh)
+{
+ int i, j = (sh & 0xf);
+
+ VECTOR_FOR_INORDER_I(i, u8) {
+ r->u8[i] = j++;
+ }
+}
+
+void helper_lvsr(ppc_avr_t *r, target_ulong sh)
+{
+ int i, j = 0x10 - (sh & 0xf);
+
+ VECTOR_FOR_INORDER_I(i, u8) {
+ r->u8[i] = j++;
+ }
+}
+
+void helper_mtvscr(ppc_avr_t *r)
+{
+#if defined(HOST_WORDS_BIGENDIAN)
+ env->vscr = r->u32[3];
+#else
+ env->vscr = r->u32[0];
+#endif
+ set_flush_to_zero(vscr_nj, &env->vec_status);
+}
+
+void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
+ r->u32[i] = ~a->u32[i] < b->u32[i];
+ }
+}
+
+#define VARITH_DO(name, op, element) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ r->element[i] = a->element[i] op b->element[i]; \
+ } \
+ }
+#define VARITH(suffix, element) \
+ VARITH_DO(add##suffix, +, element) \
+ VARITH_DO(sub##suffix, -, element)
+VARITH(ubm, u8)
+VARITH(uhm, u16)
+VARITH(uwm, u32)
+#undef VARITH_DO
+#undef VARITH
+
+#define VARITHFP(suffix, func) \
+ void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
+ r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
+ } \
+ } \
+ }
+VARITHFP(addfp, float32_add)
+VARITHFP(subfp, float32_sub)
+#undef VARITHFP
+
+#define VARITHSAT_CASE(type, op, cvt, element) \
+ { \
+ type result = (type)a->element[i] op (type)b->element[i]; \
+ r->element[i] = cvt(result, &sat); \
+ }
+
+#define VARITHSAT_DO(name, op, optype, cvt, element) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int sat = 0; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ switch (sizeof(r->element[0])) { \
+ case 1: \
+ VARITHSAT_CASE(optype, op, cvt, element); \
+ break; \
+ case 2: \
+ VARITHSAT_CASE(optype, op, cvt, element); \
+ break; \
+ case 4: \
+ VARITHSAT_CASE(optype, op, cvt, element); \
+ break; \
+ } \
+ } \
+ if (sat) { \
+ env->vscr |= (1 << VSCR_SAT); \
+ } \
+ }
+#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
+ VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
+ VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
+#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
+ VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
+ VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
+VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
+VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
+VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
+VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
+VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
+VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
+#undef VARITHSAT_CASE
+#undef VARITHSAT_DO
+#undef VARITHSAT_SIGNED
+#undef VARITHSAT_UNSIGNED
+
+#define VAVG_DO(name, element, etype) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
+ r->element[i] = x >> 1; \
+ } \
+ }
+
+#define VAVG(type, signed_element, signed_type, unsigned_element, \
+ unsigned_type) \
+ VAVG_DO(avgs##type, signed_element, signed_type) \
+ VAVG_DO(avgu##type, unsigned_element, unsigned_type)
+VAVG(b, s8, int16_t, u8, uint16_t)
+VAVG(h, s16, int32_t, u16, uint32_t)
+VAVG(w, s32, int64_t, u32, uint64_t)
+#undef VAVG_DO
+#undef VAVG
+
+#define VCF(suffix, cvt, element) \
+ void helper_vcf##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ float32 t = cvt(b->element[i], &env->vec_status); \
+ r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
+ } \
+ }
+VCF(ux, uint32_to_float32, u32)
+VCF(sx, int32_to_float32, s32)
+#undef VCF
+
+#define VCMP_DO(suffix, compare, element, record) \
+ void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ uint32_t ones = (uint32_t)-1; \
+ uint32_t all = ones; \
+ uint32_t none = 0; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ uint32_t result = (a->element[i] compare b->element[i] ? \
+ ones : 0x0); \
+ switch (sizeof(a->element[0])) { \
+ case 4: \
+ r->u32[i] = result; \
+ break; \
+ case 2: \
+ r->u16[i] = result; \
+ break; \
+ case 1: \
+ r->u8[i] = result; \
+ break; \
+ } \
+ all &= result; \
+ none |= result; \
+ } \
+ if (record) { \
+ env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
+ } \
+ }
+#define VCMP(suffix, compare, element) \
+ VCMP_DO(suffix, compare, element, 0) \
+ VCMP_DO(suffix##_dot, compare, element, 1)
+VCMP(equb, ==, u8)
+VCMP(equh, ==, u16)
+VCMP(equw, ==, u32)
+VCMP(gtub, >, u8)
+VCMP(gtuh, >, u16)
+VCMP(gtuw, >, u32)
+VCMP(gtsb, >, s8)
+VCMP(gtsh, >, s16)
+VCMP(gtsw, >, s32)
+#undef VCMP_DO
+#undef VCMP
+
+#define VCMPFP_DO(suffix, compare, order, record) \
+ void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ uint32_t ones = (uint32_t)-1; \
+ uint32_t all = ones; \
+ uint32_t none = 0; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ uint32_t result; \
+ int rel = float32_compare_quiet(a->f[i], b->f[i], \
+ &env->vec_status); \
+ if (rel == float_relation_unordered) { \
+ result = 0; \
+ } else if (rel compare order) { \
+ result = ones; \
+ } else { \
+ result = 0; \
+ } \
+ r->u32[i] = result; \
+ all &= result; \
+ none |= result; \
+ } \
+ if (record) { \
+ env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
+ } \
+ }
+#define VCMPFP(suffix, compare, order) \
+ VCMPFP_DO(suffix, compare, order, 0) \
+ VCMPFP_DO(suffix##_dot, compare, order, 1)
+VCMPFP(eqfp, ==, float_relation_equal)
+VCMPFP(gefp, !=, float_relation_less)
+VCMPFP(gtfp, ==, float_relation_greater)
+#undef VCMPFP_DO
+#undef VCMPFP
+
+static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
+ int record)
+{
+ int i;
+ int all_in = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
+ if (le_rel == float_relation_unordered) {
+ r->u32[i] = 0xc0000000;
+ /* ALL_IN does not need to be updated here. */
+ } else {
+ float32 bneg = float32_chs(b->f[i]);
+ int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
+ int le = le_rel != float_relation_greater;
+ int ge = ge_rel != float_relation_less;
+
+ r->u32[i] = ((!le) << 31) | ((!ge) << 30);
+ all_in |= (!le | !ge);
+ }
+ }
+ if (record) {
+ env->crf[6] = (all_in == 0) << 1;
+ }
+}
+
+void helper_vcmpbfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ vcmpbfp_internal(r, a, b, 0);
+}
+
+void helper_vcmpbfp_dot(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ vcmpbfp_internal(r, a, b, 1);
+}
+
+#define VCT(suffix, satcvt, element) \
+ void helper_vct##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
+ { \
+ int i; \
+ int sat = 0; \
+ float_status s = env->vec_status; \
+ \
+ set_float_rounding_mode(float_round_to_zero, &s); \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ if (float32_is_any_nan(b->f[i])) { \
+ r->element[i] = 0; \
+ } else { \
+ float64 t = float32_to_float64(b->f[i], &s); \
+ int64_t j; \
+ \
+ t = float64_scalbn(t, uim, &s); \
+ j = float64_to_int64(t, &s); \
+ r->element[i] = satcvt(j, &sat); \
+ } \
+ } \
+ if (sat) { \
+ env->vscr |= (1 << VSCR_SAT); \
+ } \
+ }
+VCT(uxs, cvtsduw, u32)
+VCT(sxs, cvtsdsw, s32)
+#undef VCT
+
+void helper_vmaddfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
+ /* Need to do the computation in higher precision and round
+ * once at the end. */
+ float64 af, bf, cf, t;
+
+ af = float32_to_float64(a->f[i], &env->vec_status);
+ bf = float32_to_float64(b->f[i], &env->vec_status);
+ cf = float32_to_float64(c->f[i], &env->vec_status);
+ t = float64_mul(af, cf, &env->vec_status);
+ t = float64_add(t, bf, &env->vec_status);
+ r->f[i] = float64_to_float32(t, &env->vec_status);
+ }
+ }
+}
+
+void helper_vmhaddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int sat = 0;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ int32_t prod = a->s16[i] * b->s16[i];
+ int32_t t = (int32_t)c->s16[i] + (prod >> 15);
+
+ r->s16[i] = cvtswsh(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vmhraddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int sat = 0;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
+ int32_t t = (int32_t)c->s16[i] + (prod >> 15);
+ r->s16[i] = cvtswsh(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+#define VMINMAX_DO(name, compare, element) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ if (a->element[i] compare b->element[i]) { \
+ r->element[i] = b->element[i]; \
+ } else { \
+ r->element[i] = a->element[i]; \
+ } \
+ } \
+ }
+#define VMINMAX(suffix, element) \
+ VMINMAX_DO(min##suffix, >, element) \
+ VMINMAX_DO(max##suffix, <, element)
+VMINMAX(sb, s8)
+VMINMAX(sh, s16)
+VMINMAX(sw, s32)
+VMINMAX(ub, u8)
+VMINMAX(uh, u16)
+VMINMAX(uw, u32)
+#undef VMINMAX_DO
+#undef VMINMAX
+
+#define VMINMAXFP(suffix, rT, rF) \
+ void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
+ if (float32_lt_quiet(a->f[i], b->f[i], \
+ &env->vec_status)) { \
+ r->f[i] = rT->f[i]; \
+ } else { \
+ r->f[i] = rF->f[i]; \
+ } \
+ } \
+ } \
+ }
+VMINMAXFP(minfp, a, b)
+VMINMAXFP(maxfp, b, a)
+#undef VMINMAXFP
+
+void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ int32_t prod = a->s16[i] * b->s16[i];
+ r->s16[i] = (int16_t) (prod + c->s16[i]);
+ }
+}
+
+#define VMRG_DO(name, element, highp) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ ppc_avr_t result; \
+ int i; \
+ size_t n_elems = ARRAY_SIZE(r->element); \
+ \
+ for (i = 0; i < n_elems / 2; i++) { \
+ if (highp) { \
+ result.element[i*2+HI_IDX] = a->element[i]; \
+ result.element[i*2+LO_IDX] = b->element[i]; \
+ } else { \
+ result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
+ b->element[n_elems - i - 1]; \
+ result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
+ a->element[n_elems - i - 1]; \
+ } \
+ } \
+ *r = result; \
+ }
+#if defined(HOST_WORDS_BIGENDIAN)
+#define MRGHI 0
+#define MRGLO 1
+#else
+#define MRGHI 1
+#define MRGLO 0
+#endif
+#define VMRG(suffix, element) \
+ VMRG_DO(mrgl##suffix, element, MRGHI) \
+ VMRG_DO(mrgh##suffix, element, MRGLO)
+VMRG(b, u8)
+VMRG(h, u16)
+VMRG(w, u32)
+#undef VMRG_DO
+#undef VMRG
+#undef MRGHI
+#undef MRGLO
+
+void helper_vmsummbm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int32_t prod[16];
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
+ prod[i] = (int32_t)a->s8[i] * b->u8[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, s32) {
+ r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
+ prod[4 * i + 2] + prod[4 * i + 3];
+ }
+}
+
+void helper_vmsumshm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int32_t prod[8];
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ prod[i] = a->s16[i] * b->s16[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, s32) {
+ r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
+ }
+}
+
+void helper_vmsumshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int32_t prod[8];
+ int i;
+ int sat = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
+ prod[i] = (int32_t)a->s16[i] * b->s16[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, s32) {
+ int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
+
+ r->u32[i] = cvtsdsw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vmsumubm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ uint16_t prod[16];
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
+ prod[i] = a->u8[i] * b->u8[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, u32) {
+ r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
+ prod[4 * i + 2] + prod[4 * i + 3];
+ }
+}
+
+void helper_vmsumuhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ uint32_t prod[8];
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
+ prod[i] = a->u16[i] * b->u16[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, u32) {
+ r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
+ }
+}
+
+void helper_vmsumuhs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ uint32_t prod[8];
+ int i;
+ int sat = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
+ prod[i] = a->u16[i] * b->u16[i];
+ }
+
+ VECTOR_FOR_INORDER_I(i, s32) {
+ uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
+
+ r->u32[i] = cvtuduw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+#define VMUL_DO(name, mul_element, prod_element, evenp) \
+ void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ VECTOR_FOR_INORDER_I(i, prod_element) { \
+ if (evenp) { \
+ r->prod_element[i] = a->mul_element[i * 2 + HI_IDX] * \
+ b->mul_element[i * 2 + HI_IDX]; \
+ } else { \
+ r->prod_element[i] = a->mul_element[i * 2 + LO_IDX] * \
+ b->mul_element[i * 2 + LO_IDX]; \
+ } \
+ } \
+ }
+#define VMUL(suffix, mul_element, prod_element) \
+ VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
+ VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
+VMUL(sb, s8, s16)
+VMUL(sh, s16, s32)
+VMUL(ub, u8, u16)
+VMUL(uh, u16, u32)
+#undef VMUL_DO
+#undef VMUL
+
+void helper_vnmsubfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
+ /* Need to do the computation is higher precision and round
+ * once at the end. */
+ float64 af, bf, cf, t;
+
+ af = float32_to_float64(a->f[i], &env->vec_status);
+ bf = float32_to_float64(b->f[i], &env->vec_status);
+ cf = float32_to_float64(c->f[i], &env->vec_status);
+ t = float64_mul(af, cf, &env->vec_status);
+ t = float64_sub(t, bf, &env->vec_status);
+ t = float64_chs(t);
+ r->f[i] = float64_to_float32(t, &env->vec_status);
+ }
+ }
+}
+
+void helper_vperm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ ppc_avr_t result;
+ int i;
+
+ VECTOR_FOR_INORDER_I(i, u8) {
+ int s = c->u8[i] & 0x1f;
+#if defined(HOST_WORDS_BIGENDIAN)
+ int index = s & 0xf;
+#else
+ int index = 15 - (s & 0xf);
+#endif
+
+ if (s & 0x10) {
+ result.u8[i] = b->u8[index];
+ } else {
+ result.u8[i] = a->u8[index];
+ }
+ }
+ *r = result;
+}
+
+#if defined(HOST_WORDS_BIGENDIAN)
+#define PKBIG 1
+#else
+#define PKBIG 0
+#endif
+void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i, j;
+ ppc_avr_t result;
+#if defined(HOST_WORDS_BIGENDIAN)
+ const ppc_avr_t *x[2] = { a, b };
+#else
+ const ppc_avr_t *x[2] = { b, a };
+#endif
+
+ VECTOR_FOR_INORDER_I(i, u64) {
+ VECTOR_FOR_INORDER_I(j, u32) {
+ uint32_t e = x[i]->u32[j];
+
+ result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
+ ((e >> 6) & 0x3e0) |
+ ((e >> 3) & 0x1f));
+ }
+ }
+ *r = result;
+}
+
+#define VPK(suffix, from, to, cvt, dosat) \
+ void helper_vpk##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ int sat = 0; \
+ ppc_avr_t result; \
+ ppc_avr_t *a0 = PKBIG ? a : b; \
+ ppc_avr_t *a1 = PKBIG ? b : a; \
+ \
+ VECTOR_FOR_INORDER_I(i, from) { \
+ result.to[i] = cvt(a0->from[i], &sat); \
+ result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
+ } \
+ *r = result; \
+ if (dosat && sat) { \
+ env->vscr |= (1 << VSCR_SAT); \
+ } \
+ }
+#define I(x, y) (x)
+VPK(shss, s16, s8, cvtshsb, 1)
+VPK(shus, s16, u8, cvtshub, 1)
+VPK(swss, s32, s16, cvtswsh, 1)
+VPK(swus, s32, u16, cvtswuh, 1)
+VPK(uhus, u16, u8, cvtuhub, 1)
+VPK(uwus, u32, u16, cvtuwuh, 1)
+VPK(uhum, u16, u8, I, 0)
+VPK(uwum, u32, u16, I, 0)
+#undef I
+#undef VPK
+#undef PKBIG
+
+void helper_vrefp(ppc_avr_t *r, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN1(r->f[i], b->f[i]) {
+ r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
+ }
+ }
+}
+
+#define VRFI(suffix, rounding) \
+ void helper_vrfi##suffix(ppc_avr_t *r, ppc_avr_t *b) \
+ { \
+ int i; \
+ float_status s = env->vec_status; \
+ \
+ set_float_rounding_mode(rounding, &s); \
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
+ HANDLE_NAN1(r->f[i], b->f[i]) { \
+ r->f[i] = float32_round_to_int (b->f[i], &s); \
+ } \
+ } \
+ }
+VRFI(n, float_round_nearest_even)
+VRFI(m, float_round_down)
+VRFI(p, float_round_up)
+VRFI(z, float_round_to_zero)
+#undef VRFI
+
+#define VROTATE(suffix, element) \
+ void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ unsigned int mask = ((1 << \
+ (3 + (sizeof(a->element[0]) >> 1))) \
+ - 1); \
+ unsigned int shift = b->element[i] & mask; \
+ r->element[i] = (a->element[i] << shift) | \
+ (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
+ } \
+ }
+VROTATE(b, u8)
+VROTATE(h, u16)
+VROTATE(w, u32)
+#undef VROTATE
+
+void helper_vrsqrtefp(ppc_avr_t *r, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN1(r->f[i], b->f[i]) {
+ float32 t = float32_sqrt(b->f[i], &env->vec_status);
+
+ r->f[i] = float32_div(float32_one, t, &env->vec_status);
+ }
+ }
+}
+
+void helper_vsel(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
+{
+ r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
+ r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
+}
+
+void helper_vexptefp(ppc_avr_t *r, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN1(r->f[i], b->f[i]) {
+ r->f[i] = float32_exp2(b->f[i], &env->vec_status);
+ }
+ }
+}
+
+void helper_vlogefp(ppc_avr_t *r, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->f); i++) {
+ HANDLE_NAN1(r->f[i], b->f[i]) {
+ r->f[i] = float32_log2(b->f[i], &env->vec_status);
+ }
+ }
+}
+
+#if defined(HOST_WORDS_BIGENDIAN)
+#define LEFT 0
+#define RIGHT 1
+#else
+#define LEFT 1
+#define RIGHT 0
+#endif
+/* The specification says that the results are undefined if all of the
+ * shift counts are not identical. We check to make sure that they are
+ * to conform to what real hardware appears to do. */
+#define VSHIFT(suffix, leftp) \
+ void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int shift = b->u8[LO_IDX*15] & 0x7; \
+ int doit = 1; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
+ doit = doit && ((b->u8[i] & 0x7) == shift); \
+ } \
+ if (doit) { \
+ if (shift == 0) { \
+ *r = *a; \
+ } else if (leftp) { \
+ uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
+ \
+ r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
+ r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
+ } else { \
+ uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
+ \
+ r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
+ r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
+ } \
+ } \
+ }
+VSHIFT(l, LEFT)
+VSHIFT(r, RIGHT)
+#undef VSHIFT
+#undef LEFT
+#undef RIGHT
+
+#define VSL(suffix, element) \
+ void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ unsigned int mask = ((1 << \
+ (3 + (sizeof(a->element[0]) >> 1))) \
+ - 1); \
+ unsigned int shift = b->element[i] & mask; \
+ \
+ r->element[i] = a->element[i] << shift; \
+ } \
+ }
+VSL(b, u8)
+VSL(h, u16)
+VSL(w, u32)
+#undef VSL
+
+void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
+{
+ int sh = shift & 0xf;
+ int i;
+ ppc_avr_t result;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
+ int index = sh + i;
+ if (index > 0xf) {
+ result.u8[i] = b->u8[index - 0x10];
+ } else {
+ result.u8[i] = a->u8[index];
+ }
+ }
+#else
+ for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
+ int index = (16 - sh) + i;
+ if (index > 0xf) {
+ result.u8[i] = a->u8[index - 0x10];
+ } else {
+ result.u8[i] = b->u8[index];
+ }
+ }
+#endif
+ *r = result;
+}
+
+void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ memmove(&r->u8[0], &a->u8[sh], 16 - sh);
+ memset(&r->u8[16-sh], 0, sh);
+#else
+ memmove(&r->u8[sh], &a->u8[0], 16 - sh);
+ memset(&r->u8[0], 0, sh);
+#endif
+}
+
+/* Experimental testing shows that hardware masks the immediate. */
+#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
+#if defined(HOST_WORDS_BIGENDIAN)
+#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
+#else
+#define SPLAT_ELEMENT(element) \
+ (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
+#endif
+#define VSPLT(suffix, element) \
+ void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
+ { \
+ uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ r->element[i] = s; \
+ } \
+ }
+VSPLT(b, u8)
+VSPLT(h, u16)
+VSPLT(w, u32)
+#undef VSPLT
+#undef SPLAT_ELEMENT
+#undef _SPLAT_MASKED
+
+#define VSPLTI(suffix, element, splat_type) \
+ void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
+ { \
+ splat_type x = (int8_t)(splat << 3) >> 3; \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ r->element[i] = x; \
+ } \
+ }
+VSPLTI(b, s8, int8_t)
+VSPLTI(h, s16, int16_t)
+VSPLTI(w, s32, int32_t)
+#undef VSPLTI
+
+#define VSR(suffix, element) \
+ void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
+ { \
+ int i; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
+ unsigned int mask = ((1 << \
+ (3 + (sizeof(a->element[0]) >> 1))) \
+ - 1); \
+ unsigned int shift = b->element[i] & mask; \
+ \
+ r->element[i] = a->element[i] >> shift; \
+ } \
+ }
+VSR(ab, s8)
+VSR(ah, s16)
+VSR(aw, s32)
+VSR(b, u8)
+VSR(h, u16)
+VSR(w, u32)
+#undef VSR
+
+void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ memmove(&r->u8[sh], &a->u8[0], 16 - sh);
+ memset(&r->u8[0], 0, sh);
+#else
+ memmove(&r->u8[0], &a->u8[sh], 16 - sh);
+ memset(&r->u8[16 - sh], 0, sh);
+#endif
+}
+
+void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
+ r->u32[i] = a->u32[i] >= b->u32[i];
+ }
+}
+
+void helper_vsumsws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int64_t t;
+ int i, upper;
+ ppc_avr_t result;
+ int sat = 0;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ upper = ARRAY_SIZE(r->s32)-1;
+#else
+ upper = 0;
+#endif
+ t = (int64_t)b->s32[upper];
+ for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
+ t += a->s32[i];
+ result.s32[i] = 0;
+ }
+ result.s32[upper] = cvtsdsw(t, &sat);
+ *r = result;
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vsum2sws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i, j, upper;
+ ppc_avr_t result;
+ int sat = 0;
+
+#if defined(HOST_WORDS_BIGENDIAN)
+ upper = 1;
+#else
+ upper = 0;
+#endif
+ for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
+ int64_t t = (int64_t)b->s32[upper + i * 2];
+
+ result.u64[i] = 0;
+ for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
+ t += a->s32[2 * i + j];
+ }
+ result.s32[upper + i * 2] = cvtsdsw(t, &sat);
+ }
+
+ *r = result;
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vsum4sbs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i, j;
+ int sat = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
+ int64_t t = (int64_t)b->s32[i];
+
+ for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
+ t += a->s8[4 * i + j];
+ }
+ r->s32[i] = cvtsdsw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vsum4shs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int sat = 0;
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
+ int64_t t = (int64_t)b->s32[i];
+
+ t += a->s16[2 * i] + a->s16[2 * i + 1];
+ r->s32[i] = cvtsdsw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+void helper_vsum4ubs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
+{
+ int i, j;
+ int sat = 0;
+
+ for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
+ uint64_t t = (uint64_t)b->u32[i];
+
+ for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
+ t += a->u8[4 * i + j];
+ }
+ r->u32[i] = cvtuduw(t, &sat);
+ }
+
+ if (sat) {
+ env->vscr |= (1 << VSCR_SAT);
+ }
+}
+
+#if defined(HOST_WORDS_BIGENDIAN)
+#define UPKHI 1
+#define UPKLO 0
+#else
+#define UPKHI 0
+#define UPKLO 1
+#endif
+#define VUPKPX(suffix, hi) \
+ void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
+ { \
+ int i; \
+ ppc_avr_t result; \
+ \
+ for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
+ uint16_t e = b->u16[hi ? i : i+4]; \
+ uint8_t a = (e >> 15) ? 0xff : 0; \
+ uint8_t r = (e >> 10) & 0x1f; \
+ uint8_t g = (e >> 5) & 0x1f; \
+ uint8_t b = e & 0x1f; \
+ \
+ result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
+ } \
+ *r = result; \
+ }
+VUPKPX(lpx, UPKLO)
+VUPKPX(hpx, UPKHI)
+#undef VUPKPX
+
+#define VUPK(suffix, unpacked, packee, hi) \
+ void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
+ { \
+ int i; \
+ ppc_avr_t result; \
+ \
+ if (hi) { \
+ for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
+ result.unpacked[i] = b->packee[i]; \
+ } \
+ } else { \
+ for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
+ i++) { \
+ result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
+ } \
+ } \
+ *r = result; \
+ }
+VUPK(hsb, s16, s8, UPKHI)
+VUPK(hsh, s32, s16, UPKHI)
+VUPK(lsb, s16, s8, UPKLO)
+VUPK(lsh, s32, s16, UPKLO)
+#undef VUPK
+#undef UPKHI
+#undef UPKLO
+
+#undef DO_HANDLE_NAN
+#undef HANDLE_NAN1
+#undef HANDLE_NAN2
+#undef HANDLE_NAN3
+#undef VECTOR_FOR_INORDER_I
+#undef HI_IDX
+#undef LO_IDX
+
+/*****************************************************************************/
+/* SPE extension helpers */
+/* Use a table to make this quicker */
+static uint8_t hbrev[16] = {
+ 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
+ 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
+};
+
+static inline uint8_t byte_reverse(uint8_t val)
+{
+ return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
+}
+
+static inline uint32_t word_reverse(uint32_t val)
+{
+ return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
+ (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
+}
+
+#define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
+target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
+{
+ uint32_t a, b, d, mask;
+
+ mask = UINT32_MAX >> (32 - MASKBITS);
+ a = arg1 & mask;
+ b = arg2 & mask;
+ d = word_reverse(1 + word_reverse(a | ~b));
+ return (arg1 & ~mask) | (d & b);
+}
+
+uint32_t helper_cntlsw32(uint32_t val)
+{
+ if (val & 0x80000000) {
+ return clz32(~val);
+ } else {
+ return clz32(val);
+ }
+}
+
+uint32_t helper_cntlzw32(uint32_t val)
+{
+ return clz32(val);
+}
+
+/* 440 specific */
+target_ulong helper_dlmzb(target_ulong high, target_ulong low,
+ uint32_t update_Rc)
+{
+ target_ulong mask;
+ int i;
+
+ i = 1;
+ for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
+ if ((high & mask) == 0) {
+ if (update_Rc) {
+ env->crf[0] = 0x4;
+ }
+ goto done;
+ }
+ i++;
+ }
+ for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
+ if ((low & mask) == 0) {
+ if (update_Rc) {
+ env->crf[0] = 0x8;
+ }
+ goto done;
+ }
+ i++;
+ }
+ if (update_Rc) {
+ env->crf[0] = 0x2;
+ }
+ done:
+ env->xer = (env->xer & ~0x7F) | i;
+ if (update_Rc) {
+ env->crf[0] |= xer_so;
+ }
+ return i;
+}
diff --git a/target-ppc/op_helper.c b/target-ppc/op_helper.c
index 3f677f6da1..55b9e9dcb9 100644
--- a/target-ppc/op_helper.c
+++ b/target-ppc/op_helper.c
@@ -387,166 +387,6 @@ target_ulong helper_lscbx(target_ulong addr, uint32_t reg, uint32_t ra,
}
/*****************************************************************************/
-/* Fixed point operations helpers */
-#if defined(TARGET_PPC64)
-
-/* multiply high word */
-uint64_t helper_mulhd(uint64_t arg1, uint64_t arg2)
-{
- uint64_t tl, th;
-
- muls64(&tl, &th, arg1, arg2);
- return th;
-}
-
-/* multiply high word unsigned */
-uint64_t helper_mulhdu(uint64_t arg1, uint64_t arg2)
-{
- uint64_t tl, th;
-
- mulu64(&tl, &th, arg1, arg2);
- return th;
-}
-
-uint64_t helper_mulldo(uint64_t arg1, uint64_t arg2)
-{
- int64_t th;
- uint64_t tl;
-
- muls64(&tl, (uint64_t *)&th, arg1, arg2);
- /* If th != 0 && th != -1, then we had an overflow */
- if (likely((uint64_t)(th + 1) <= 1)) {
- env->xer &= ~(1 << XER_OV);
- } else {
- env->xer |= (1 << XER_OV) | (1 << XER_SO);
- }
- return (int64_t)tl;
-}
-#endif
-
-target_ulong helper_cntlzw(target_ulong t)
-{
- return clz32(t);
-}
-
-#if defined(TARGET_PPC64)
-target_ulong helper_cntlzd(target_ulong t)
-{
- return clz64(t);
-}
-#endif
-
-/* shift right arithmetic helper */
-target_ulong helper_sraw(target_ulong value, target_ulong shift)
-{
- int32_t ret;
-
- if (likely(!(shift & 0x20))) {
- if (likely((uint32_t)shift != 0)) {
- shift &= 0x1f;
- ret = (int32_t)value >> shift;
- if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
- env->xer &= ~(1 << XER_CA);
- } else {
- env->xer |= (1 << XER_CA);
- }
- } else {
- ret = (int32_t)value;
- env->xer &= ~(1 << XER_CA);
- }
- } else {
- ret = (int32_t)value >> 31;
- if (ret) {
- env->xer |= (1 << XER_CA);
- } else {
- env->xer &= ~(1 << XER_CA);
- }
- }
- return (target_long)ret;
-}
-
-#if defined(TARGET_PPC64)
-target_ulong helper_srad(target_ulong value, target_ulong shift)
-{
- int64_t ret;
-
- if (likely(!(shift & 0x40))) {
- if (likely((uint64_t)shift != 0)) {
- shift &= 0x3f;
- ret = (int64_t)value >> shift;
- if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
- env->xer &= ~(1 << XER_CA);
- } else {
- env->xer |= (1 << XER_CA);
- }
- } else {
- ret = (int64_t)value;
- env->xer &= ~(1 << XER_CA);
- }
- } else {
- ret = (int64_t)value >> 63;
- if (ret) {
- env->xer |= (1 << XER_CA);
- } else {
- env->xer &= ~(1 << XER_CA);
- }
- }
- return ret;
-}
-#endif
-
-#if defined(TARGET_PPC64)
-target_ulong helper_popcntb(target_ulong val)
-{
- val = (val & 0x5555555555555555ULL) + ((val >> 1) &
- 0x5555555555555555ULL);
- val = (val & 0x3333333333333333ULL) + ((val >> 2) &
- 0x3333333333333333ULL);
- val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
- 0x0f0f0f0f0f0f0f0fULL);
- return val;
-}
-
-target_ulong helper_popcntw(target_ulong val)
-{
- val = (val & 0x5555555555555555ULL) + ((val >> 1) &
- 0x5555555555555555ULL);
- val = (val & 0x3333333333333333ULL) + ((val >> 2) &
- 0x3333333333333333ULL);
- val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) &
- 0x0f0f0f0f0f0f0f0fULL);
- val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) &
- 0x00ff00ff00ff00ffULL);
- val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) &
- 0x0000ffff0000ffffULL);
- return val;
-}
-
-target_ulong helper_popcntd(target_ulong val)
-{
- return ctpop64(val);
-}
-#else
-target_ulong helper_popcntb(target_ulong val)
-{
- val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
- val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
- val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
- return val;
-}
-
-target_ulong helper_popcntw(target_ulong val)
-{
- val = (val & 0x55555555) + ((val >> 1) & 0x55555555);
- val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
- val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f);
- val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff);
- val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff);
- return val;
-}
-#endif
-
-/*****************************************************************************/
/* PowerPC 601 specific instructions (POWER bridge) */
target_ulong helper_clcs(uint32_t arg)
@@ -577,67 +417,6 @@ target_ulong helper_clcs(uint32_t arg)
}
}
-target_ulong helper_div(target_ulong arg1, target_ulong arg2)
-{
- uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
-
- if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
- (int32_t)arg2 == 0) {
- env->spr[SPR_MQ] = 0;
- return INT32_MIN;
- } else {
- env->spr[SPR_MQ] = tmp % arg2;
- return tmp / (int32_t)arg2;
- }
-}
-
-target_ulong helper_divo(target_ulong arg1, target_ulong arg2)
-{
- uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
-
- if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
- (int32_t)arg2 == 0) {
- env->xer |= (1 << XER_OV) | (1 << XER_SO);
- env->spr[SPR_MQ] = 0;
- return INT32_MIN;
- } else {
- env->spr[SPR_MQ] = tmp % arg2;
- tmp /= (int32_t)arg2;
- if ((int32_t)tmp != tmp) {
- env->xer |= (1 << XER_OV) | (1 << XER_SO);
- } else {
- env->xer &= ~(1 << XER_OV);
- }
- return tmp;
- }
-}
-
-target_ulong helper_divs(target_ulong arg1, target_ulong arg2)
-{
- if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
- (int32_t)arg2 == 0) {
- env->spr[SPR_MQ] = 0;
- return INT32_MIN;
- } else {
- env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
- return (int32_t)arg1 / (int32_t)arg2;
- }
-}
-
-target_ulong helper_divso(target_ulong arg1, target_ulong arg2)
-{
- if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
- (int32_t)arg2 == 0) {
- env->xer |= (1 << XER_OV) | (1 << XER_SO);
- env->spr[SPR_MQ] = 0;
- return INT32_MIN;
- } else {
- env->xer &= ~(1 << XER_OV);
- env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
- return (int32_t)arg1 / (int32_t)arg2;
- }
-}
-
#if !defined(CONFIG_USER_ONLY)
target_ulong helper_rac(target_ulong addr)
{
@@ -660,26 +439,6 @@ target_ulong helper_rac(target_ulong addr)
#endif
/*****************************************************************************/
-/* 602 specific instructions */
-/* mfrom is the most crazy instruction ever seen, imho ! */
-/* Real implementation uses a ROM table. Do the same */
-/* Extremely decomposed:
- * -arg / 256
- * return 256 * log10(10 + 1.0) + 0.5
- */
-#if !defined(CONFIG_USER_ONLY)
-target_ulong helper_602_mfrom(target_ulong arg)
-{
- if (likely(arg < 602)) {
-#include "mfrom_table.c"
- return mfrom_ROM_table[arg];
- } else {
- return 0;
- }
-}
-#endif
-
-/*****************************************************************************/
/* Embedded PowerPC specific helpers */
/* XXX: to be improved to check access rights when in user-mode */
@@ -716,43 +475,6 @@ void helper_store_dcr(target_ulong dcrn, target_ulong val)
}
}
-/* 440 specific */
-target_ulong helper_dlmzb(target_ulong high, target_ulong low,
- uint32_t update_Rc)
-{
- target_ulong mask;
- int i;
-
- i = 1;
- for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
- if ((high & mask) == 0) {
- if (update_Rc) {
- env->crf[0] = 0x4;
- }
- goto done;
- }
- i++;
- }
- for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
- if ((low & mask) == 0) {
- if (update_Rc) {
- env->crf[0] = 0x8;
- }
- goto done;
- }
- i++;
- }
- if (update_Rc) {
- env->crf[0] = 0x2;
- }
- done:
- env->xer = (env->xer & ~0x7F) | i;
- if (update_Rc) {
- env->crf[0] |= xer_so;
- }
- return i;
-}
-
/*****************************************************************************/
/* Altivec extension helpers */
#if defined(HOST_WORDS_BIGENDIAN)
@@ -763,74 +485,6 @@ target_ulong helper_dlmzb(target_ulong high, target_ulong low,
#define LO_IDX 0
#endif
-#if defined(HOST_WORDS_BIGENDIAN)
-#define VECTOR_FOR_INORDER_I(index, element) \
- for (index = 0; index < ARRAY_SIZE(r->element); index++)
-#else
-#define VECTOR_FOR_INORDER_I(index, element) \
- for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
-#endif
-
-/* If X is a NaN, store the corresponding QNaN into RESULT. Otherwise,
- * execute the following block. */
-#define DO_HANDLE_NAN(result, x) \
- if (float32_is_any_nan(x)) { \
- CPU_FloatU __f; \
- __f.f = x; \
- __f.l = __f.l | (1 << 22); /* Set QNaN bit. */ \
- result = __f.f; \
- } else
-
-#define HANDLE_NAN1(result, x) \
- DO_HANDLE_NAN(result, x)
-#define HANDLE_NAN2(result, x, y) \
- DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
-#define HANDLE_NAN3(result, x, y, z) \
- DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
-
-/* Saturating arithmetic helpers. */
-#define SATCVT(from, to, from_type, to_type, min, max) \
- static inline to_type cvt##from##to(from_type x, int *sat) \
- { \
- to_type r; \
- \
- if (x < (from_type)min) { \
- r = min; \
- *sat = 1; \
- } else if (x > (from_type)max) { \
- r = max; \
- *sat = 1; \
- } else { \
- r = x; \
- } \
- return r; \
- }
-#define SATCVTU(from, to, from_type, to_type, min, max) \
- static inline to_type cvt##from##to(from_type x, int *sat) \
- { \
- to_type r; \
- \
- if (x > (from_type)max) { \
- r = max; \
- *sat = 1; \
- } else { \
- r = x; \
- } \
- return r; \
- }
-SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX)
-SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX)
-SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX)
-
-SATCVTU(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX)
-SATCVTU(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX)
-SATCVTU(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX)
-SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX)
-SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX)
-SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX)
-#undef SATCVT
-#undef SATCVTU
-
#define LVE(name, access, swap, element) \
void helper_##name(ppc_avr_t *r, target_ulong addr) \
{ \
@@ -854,24 +508,6 @@ LVE(lvewx, ldl, bswap32, u32)
#undef I
#undef LVE
-void helper_lvsl(ppc_avr_t *r, target_ulong sh)
-{
- int i, j = (sh & 0xf);
-
- VECTOR_FOR_INORDER_I(i, u8) {
- r->u8[i] = j++;
- }
-}
-
-void helper_lvsr(ppc_avr_t *r, target_ulong sh)
-{
- int i, j = 0x10 - (sh & 0xf);
-
- VECTOR_FOR_INORDER_I(i, u8) {
- r->u8[i] = j++;
- }
-}
-
#define STVE(name, access, swap, element) \
void helper_##name(ppc_avr_t *r, target_ulong addr) \
{ \
@@ -893,1146 +529,10 @@ STVE(stvewx, stl, bswap32, u32)
#undef I
#undef LVE
-void helper_mtvscr(ppc_avr_t *r)
-{
-#if defined(HOST_WORDS_BIGENDIAN)
- env->vscr = r->u32[3];
-#else
- env->vscr = r->u32[0];
-#endif
- set_flush_to_zero(vscr_nj, &env->vec_status);
-}
-
-void helper_vaddcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
- r->u32[i] = ~a->u32[i] < b->u32[i];
- }
-}
-
-#define VARITH_DO(name, op, element) \
- void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- r->element[i] = a->element[i] op b->element[i]; \
- } \
- }
-#define VARITH(suffix, element) \
- VARITH_DO(add##suffix, +, element) \
- VARITH_DO(sub##suffix, -, element)
-VARITH(ubm, u8)
-VARITH(uhm, u16)
-VARITH(uwm, u32)
-#undef VARITH_DO
-#undef VARITH
-
-#define VARITHFP(suffix, func) \
- void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
- HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
- r->f[i] = func(a->f[i], b->f[i], &env->vec_status); \
- } \
- } \
- }
-VARITHFP(addfp, float32_add)
-VARITHFP(subfp, float32_sub)
-#undef VARITHFP
-
-#define VARITHSAT_CASE(type, op, cvt, element) \
- { \
- type result = (type)a->element[i] op (type)b->element[i]; \
- r->element[i] = cvt(result, &sat); \
- }
-
-#define VARITHSAT_DO(name, op, optype, cvt, element) \
- void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int sat = 0; \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- switch (sizeof(r->element[0])) { \
- case 1: \
- VARITHSAT_CASE(optype, op, cvt, element); \
- break; \
- case 2: \
- VARITHSAT_CASE(optype, op, cvt, element); \
- break; \
- case 4: \
- VARITHSAT_CASE(optype, op, cvt, element); \
- break; \
- } \
- } \
- if (sat) { \
- env->vscr |= (1 << VSCR_SAT); \
- } \
- }
-#define VARITHSAT_SIGNED(suffix, element, optype, cvt) \
- VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element) \
- VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
-#define VARITHSAT_UNSIGNED(suffix, element, optype, cvt) \
- VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element) \
- VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
-VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
-VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
-VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
-VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
-VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
-VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
-#undef VARITHSAT_CASE
-#undef VARITHSAT_DO
-#undef VARITHSAT_SIGNED
-#undef VARITHSAT_UNSIGNED
-
-#define VAVG_DO(name, element, etype) \
- void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- etype x = (etype)a->element[i] + (etype)b->element[i] + 1; \
- r->element[i] = x >> 1; \
- } \
- }
-
-#define VAVG(type, signed_element, signed_type, unsigned_element, \
- unsigned_type) \
- VAVG_DO(avgs##type, signed_element, signed_type) \
- VAVG_DO(avgu##type, unsigned_element, unsigned_type)
-VAVG(b, s8, int16_t, u8, uint16_t)
-VAVG(h, s16, int32_t, u16, uint32_t)
-VAVG(w, s32, int64_t, u32, uint64_t)
-#undef VAVG_DO
-#undef VAVG
-
-#define VCF(suffix, cvt, element) \
- void helper_vcf##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
- { \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
- float32 t = cvt(b->element[i], &env->vec_status); \
- r->f[i] = float32_scalbn(t, -uim, &env->vec_status); \
- } \
- }
-VCF(ux, uint32_to_float32, u32)
-VCF(sx, int32_to_float32, s32)
-#undef VCF
-
-#define VCMP_DO(suffix, compare, element, record) \
- void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- uint32_t ones = (uint32_t)-1; \
- uint32_t all = ones; \
- uint32_t none = 0; \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- uint32_t result = (a->element[i] compare b->element[i] ? \
- ones : 0x0); \
- switch (sizeof(a->element[0])) { \
- case 4: \
- r->u32[i] = result; \
- break; \
- case 2: \
- r->u16[i] = result; \
- break; \
- case 1: \
- r->u8[i] = result; \
- break; \
- } \
- all &= result; \
- none |= result; \
- } \
- if (record) { \
- env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
- } \
- }
-#define VCMP(suffix, compare, element) \
- VCMP_DO(suffix, compare, element, 0) \
- VCMP_DO(suffix##_dot, compare, element, 1)
-VCMP(equb, ==, u8)
-VCMP(equh, ==, u16)
-VCMP(equw, ==, u32)
-VCMP(gtub, >, u8)
-VCMP(gtuh, >, u16)
-VCMP(gtuw, >, u32)
-VCMP(gtsb, >, s8)
-VCMP(gtsh, >, s16)
-VCMP(gtsw, >, s32)
-#undef VCMP_DO
-#undef VCMP
-
-#define VCMPFP_DO(suffix, compare, order, record) \
- void helper_vcmp##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- uint32_t ones = (uint32_t)-1; \
- uint32_t all = ones; \
- uint32_t none = 0; \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
- uint32_t result; \
- int rel = float32_compare_quiet(a->f[i], b->f[i], \
- &env->vec_status); \
- if (rel == float_relation_unordered) { \
- result = 0; \
- } else if (rel compare order) { \
- result = ones; \
- } else { \
- result = 0; \
- } \
- r->u32[i] = result; \
- all &= result; \
- none |= result; \
- } \
- if (record) { \
- env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1); \
- } \
- }
-#define VCMPFP(suffix, compare, order) \
- VCMPFP_DO(suffix, compare, order, 0) \
- VCMPFP_DO(suffix##_dot, compare, order, 1)
-VCMPFP(eqfp, ==, float_relation_equal)
-VCMPFP(gefp, !=, float_relation_less)
-VCMPFP(gtfp, ==, float_relation_greater)
-#undef VCMPFP_DO
-#undef VCMPFP
-
-static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
- int record)
-{
- int i;
- int all_in = 0;
-
- for (i = 0; i < ARRAY_SIZE(r->f); i++) {
- int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
- if (le_rel == float_relation_unordered) {
- r->u32[i] = 0xc0000000;
- /* ALL_IN does not need to be updated here. */
- } else {
- float32 bneg = float32_chs(b->f[i]);
- int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
- int le = le_rel != float_relation_greater;
- int ge = ge_rel != float_relation_less;
-
- r->u32[i] = ((!le) << 31) | ((!ge) << 30);
- all_in |= (!le | !ge);
- }
- }
- if (record) {
- env->crf[6] = (all_in == 0) << 1;
- }
-}
-
-void helper_vcmpbfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- vcmpbfp_internal(r, a, b, 0);
-}
-
-void helper_vcmpbfp_dot(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- vcmpbfp_internal(r, a, b, 1);
-}
-
-#define VCT(suffix, satcvt, element) \
- void helper_vct##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t uim) \
- { \
- int i; \
- int sat = 0; \
- float_status s = env->vec_status; \
- \
- set_float_rounding_mode(float_round_to_zero, &s); \
- for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
- if (float32_is_any_nan(b->f[i])) { \
- r->element[i] = 0; \
- } else { \
- float64 t = float32_to_float64(b->f[i], &s); \
- int64_t j; \
- \
- t = float64_scalbn(t, uim, &s); \
- j = float64_to_int64(t, &s); \
- r->element[i] = satcvt(j, &sat); \
- } \
- } \
- if (sat) { \
- env->vscr |= (1 << VSCR_SAT); \
- } \
- }
-VCT(uxs, cvtsduw, u32)
-VCT(sxs, cvtsdsw, s32)
-#undef VCT
-
-void helper_vmaddfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->f); i++) {
- HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
- /* Need to do the computation in higher precision and round
- * once at the end. */
- float64 af, bf, cf, t;
-
- af = float32_to_float64(a->f[i], &env->vec_status);
- bf = float32_to_float64(b->f[i], &env->vec_status);
- cf = float32_to_float64(c->f[i], &env->vec_status);
- t = float64_mul(af, cf, &env->vec_status);
- t = float64_add(t, bf, &env->vec_status);
- r->f[i] = float64_to_float32(t, &env->vec_status);
- }
- }
-}
-
-void helper_vmhaddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- int sat = 0;
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
- int32_t prod = a->s16[i] * b->s16[i];
- int32_t t = (int32_t)c->s16[i] + (prod >> 15);
-
- r->s16[i] = cvtswsh(t, &sat);
- }
-
- if (sat) {
- env->vscr |= (1 << VSCR_SAT);
- }
-}
-
-void helper_vmhraddshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- int sat = 0;
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
- int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
- int32_t t = (int32_t)c->s16[i] + (prod >> 15);
- r->s16[i] = cvtswsh(t, &sat);
- }
-
- if (sat) {
- env->vscr |= (1 << VSCR_SAT);
- }
-}
-
-#define VMINMAX_DO(name, compare, element) \
- void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- if (a->element[i] compare b->element[i]) { \
- r->element[i] = b->element[i]; \
- } else { \
- r->element[i] = a->element[i]; \
- } \
- } \
- }
-#define VMINMAX(suffix, element) \
- VMINMAX_DO(min##suffix, >, element) \
- VMINMAX_DO(max##suffix, <, element)
-VMINMAX(sb, s8)
-VMINMAX(sh, s16)
-VMINMAX(sw, s32)
-VMINMAX(ub, u8)
-VMINMAX(uh, u16)
-VMINMAX(uw, u32)
-#undef VMINMAX_DO
-#undef VMINMAX
-
-#define VMINMAXFP(suffix, rT, rF) \
- void helper_v##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
- HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) { \
- if (float32_lt_quiet(a->f[i], b->f[i], \
- &env->vec_status)) { \
- r->f[i] = rT->f[i]; \
- } else { \
- r->f[i] = rF->f[i]; \
- } \
- } \
- } \
- }
-VMINMAXFP(minfp, a, b)
-VMINMAXFP(maxfp, b, a)
-#undef VMINMAXFP
-
-void helper_vmladduhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
- int32_t prod = a->s16[i] * b->s16[i];
- r->s16[i] = (int16_t) (prod + c->s16[i]);
- }
-}
-
-#define VMRG_DO(name, element, highp) \
- void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- ppc_avr_t result; \
- int i; \
- size_t n_elems = ARRAY_SIZE(r->element); \
- \
- for (i = 0; i < n_elems / 2; i++) { \
- if (highp) { \
- result.element[i*2+HI_IDX] = a->element[i]; \
- result.element[i*2+LO_IDX] = b->element[i]; \
- } else { \
- result.element[n_elems - i * 2 - (1 + HI_IDX)] = \
- b->element[n_elems - i - 1]; \
- result.element[n_elems - i * 2 - (1 + LO_IDX)] = \
- a->element[n_elems - i - 1]; \
- } \
- } \
- *r = result; \
- }
-#if defined(HOST_WORDS_BIGENDIAN)
-#define MRGHI 0
-#define MRGLO 1
-#else
-#define MRGHI 1
-#define MRGLO 0
-#endif
-#define VMRG(suffix, element) \
- VMRG_DO(mrgl##suffix, element, MRGHI) \
- VMRG_DO(mrgh##suffix, element, MRGLO)
-VMRG(b, u8)
-VMRG(h, u16)
-VMRG(w, u32)
-#undef VMRG_DO
-#undef VMRG
-#undef MRGHI
-#undef MRGLO
-
-void helper_vmsummbm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- int32_t prod[16];
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
- prod[i] = (int32_t)a->s8[i] * b->u8[i];
- }
-
- VECTOR_FOR_INORDER_I(i, s32) {
- r->s32[i] = c->s32[i] + prod[4 * i] + prod[4 * i + 1] +
- prod[4 * i + 2] + prod[4 * i + 3];
- }
-}
-
-void helper_vmsumshm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- int32_t prod[8];
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
- prod[i] = a->s16[i] * b->s16[i];
- }
-
- VECTOR_FOR_INORDER_I(i, s32) {
- r->s32[i] = c->s32[i] + prod[2 * i] + prod[2 * i + 1];
- }
-}
-
-void helper_vmsumshs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- int32_t prod[8];
- int i;
- int sat = 0;
-
- for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
- prod[i] = (int32_t)a->s16[i] * b->s16[i];
- }
-
- VECTOR_FOR_INORDER_I(i, s32) {
- int64_t t = (int64_t)c->s32[i] + prod[2 * i] + prod[2 * i + 1];
-
- r->u32[i] = cvtsdsw(t, &sat);
- }
-
- if (sat) {
- env->vscr |= (1 << VSCR_SAT);
- }
-}
-
-void helper_vmsumubm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- uint16_t prod[16];
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
- prod[i] = a->u8[i] * b->u8[i];
- }
-
- VECTOR_FOR_INORDER_I(i, u32) {
- r->u32[i] = c->u32[i] + prod[4 * i] + prod[4 * i + 1] +
- prod[4 * i + 2] + prod[4 * i + 3];
- }
-}
-
-void helper_vmsumuhm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- uint32_t prod[8];
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
- prod[i] = a->u16[i] * b->u16[i];
- }
-
- VECTOR_FOR_INORDER_I(i, u32) {
- r->u32[i] = c->u32[i] + prod[2 * i] + prod[2 * i + 1];
- }
-}
-
-void helper_vmsumuhs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- uint32_t prod[8];
- int i;
- int sat = 0;
-
- for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
- prod[i] = a->u16[i] * b->u16[i];
- }
-
- VECTOR_FOR_INORDER_I(i, s32) {
- uint64_t t = (uint64_t)c->u32[i] + prod[2 * i] + prod[2 * i + 1];
-
- r->u32[i] = cvtuduw(t, &sat);
- }
-
- if (sat) {
- env->vscr |= (1 << VSCR_SAT);
- }
-}
-
-#define VMUL_DO(name, mul_element, prod_element, evenp) \
- void helper_v##name(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- \
- VECTOR_FOR_INORDER_I(i, prod_element) { \
- if (evenp) { \
- r->prod_element[i] = a->mul_element[i * 2 + HI_IDX] * \
- b->mul_element[i * 2 + HI_IDX]; \
- } else { \
- r->prod_element[i] = a->mul_element[i * 2 + LO_IDX] * \
- b->mul_element[i * 2 + LO_IDX]; \
- } \
- } \
- }
-#define VMUL(suffix, mul_element, prod_element) \
- VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
- VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
-VMUL(sb, s8, s16)
-VMUL(sh, s16, s32)
-VMUL(ub, u8, u16)
-VMUL(uh, u16, u32)
-#undef VMUL_DO
-#undef VMUL
-
-void helper_vnmsubfp(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->f); i++) {
- HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
- /* Need to do the computation is higher precision and round
- * once at the end. */
- float64 af, bf, cf, t;
-
- af = float32_to_float64(a->f[i], &env->vec_status);
- bf = float32_to_float64(b->f[i], &env->vec_status);
- cf = float32_to_float64(c->f[i], &env->vec_status);
- t = float64_mul(af, cf, &env->vec_status);
- t = float64_sub(t, bf, &env->vec_status);
- t = float64_chs(t);
- r->f[i] = float64_to_float32(t, &env->vec_status);
- }
- }
-}
-
-void helper_vperm(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- ppc_avr_t result;
- int i;
-
- VECTOR_FOR_INORDER_I(i, u8) {
- int s = c->u8[i] & 0x1f;
-#if defined(HOST_WORDS_BIGENDIAN)
- int index = s & 0xf;
-#else
- int index = 15 - (s & 0xf);
-#endif
-
- if (s & 0x10) {
- result.u8[i] = b->u8[index];
- } else {
- result.u8[i] = a->u8[index];
- }
- }
- *r = result;
-}
-
-#if defined(HOST_WORDS_BIGENDIAN)
-#define PKBIG 1
-#else
-#define PKBIG 0
-#endif
-void helper_vpkpx(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int i, j;
- ppc_avr_t result;
-#if defined(HOST_WORDS_BIGENDIAN)
- const ppc_avr_t *x[2] = { a, b };
-#else
- const ppc_avr_t *x[2] = { b, a };
-#endif
-
- VECTOR_FOR_INORDER_I(i, u64) {
- VECTOR_FOR_INORDER_I(j, u32) {
- uint32_t e = x[i]->u32[j];
-
- result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
- ((e >> 6) & 0x3e0) |
- ((e >> 3) & 0x1f));
- }
- }
- *r = result;
-}
-
-#define VPK(suffix, from, to, cvt, dosat) \
- void helper_vpk##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- int sat = 0; \
- ppc_avr_t result; \
- ppc_avr_t *a0 = PKBIG ? a : b; \
- ppc_avr_t *a1 = PKBIG ? b : a; \
- \
- VECTOR_FOR_INORDER_I(i, from) { \
- result.to[i] = cvt(a0->from[i], &sat); \
- result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat); \
- } \
- *r = result; \
- if (dosat && sat) { \
- env->vscr |= (1 << VSCR_SAT); \
- } \
- }
-#define I(x, y) (x)
-VPK(shss, s16, s8, cvtshsb, 1)
-VPK(shus, s16, u8, cvtshub, 1)
-VPK(swss, s32, s16, cvtswsh, 1)
-VPK(swus, s32, u16, cvtswuh, 1)
-VPK(uhus, u16, u8, cvtuhub, 1)
-VPK(uwus, u32, u16, cvtuwuh, 1)
-VPK(uhum, u16, u8, I, 0)
-VPK(uwum, u32, u16, I, 0)
-#undef I
-#undef VPK
-#undef PKBIG
-
-void helper_vrefp(ppc_avr_t *r, ppc_avr_t *b)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->f); i++) {
- HANDLE_NAN1(r->f[i], b->f[i]) {
- r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
- }
- }
-}
-
-#define VRFI(suffix, rounding) \
- void helper_vrfi##suffix(ppc_avr_t *r, ppc_avr_t *b) \
- { \
- int i; \
- float_status s = env->vec_status; \
- \
- set_float_rounding_mode(rounding, &s); \
- for (i = 0; i < ARRAY_SIZE(r->f); i++) { \
- HANDLE_NAN1(r->f[i], b->f[i]) { \
- r->f[i] = float32_round_to_int (b->f[i], &s); \
- } \
- } \
- }
-VRFI(n, float_round_nearest_even)
-VRFI(m, float_round_down)
-VRFI(p, float_round_up)
-VRFI(z, float_round_to_zero)
-#undef VRFI
-
-#define VROTATE(suffix, element) \
- void helper_vrl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- unsigned int mask = ((1 << \
- (3 + (sizeof(a->element[0]) >> 1))) \
- - 1); \
- unsigned int shift = b->element[i] & mask; \
- r->element[i] = (a->element[i] << shift) | \
- (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
- } \
- }
-VROTATE(b, u8)
-VROTATE(h, u16)
-VROTATE(w, u32)
-#undef VROTATE
-
-void helper_vrsqrtefp(ppc_avr_t *r, ppc_avr_t *b)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->f); i++) {
- HANDLE_NAN1(r->f[i], b->f[i]) {
- float32 t = float32_sqrt(b->f[i], &env->vec_status);
-
- r->f[i] = float32_div(float32_one, t, &env->vec_status);
- }
- }
-}
-
-void helper_vsel(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
-{
- r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
- r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
-}
-
-void helper_vexptefp(ppc_avr_t *r, ppc_avr_t *b)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->f); i++) {
- HANDLE_NAN1(r->f[i], b->f[i]) {
- r->f[i] = float32_exp2(b->f[i], &env->vec_status);
- }
- }
-}
-
-void helper_vlogefp(ppc_avr_t *r, ppc_avr_t *b)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->f); i++) {
- HANDLE_NAN1(r->f[i], b->f[i]) {
- r->f[i] = float32_log2(b->f[i], &env->vec_status);
- }
- }
-}
-
-#if defined(HOST_WORDS_BIGENDIAN)
-#define LEFT 0
-#define RIGHT 1
-#else
-#define LEFT 1
-#define RIGHT 0
-#endif
-/* The specification says that the results are undefined if all of the
- * shift counts are not identical. We check to make sure that they are
- * to conform to what real hardware appears to do. */
-#define VSHIFT(suffix, leftp) \
- void helper_vs##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int shift = b->u8[LO_IDX*15] & 0x7; \
- int doit = 1; \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->u8); i++) { \
- doit = doit && ((b->u8[i] & 0x7) == shift); \
- } \
- if (doit) { \
- if (shift == 0) { \
- *r = *a; \
- } else if (leftp) { \
- uint64_t carry = a->u64[LO_IDX] >> (64 - shift); \
- \
- r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry; \
- r->u64[LO_IDX] = a->u64[LO_IDX] << shift; \
- } else { \
- uint64_t carry = a->u64[HI_IDX] << (64 - shift); \
- \
- r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry; \
- r->u64[HI_IDX] = a->u64[HI_IDX] >> shift; \
- } \
- } \
- }
-VSHIFT(l, LEFT)
-VSHIFT(r, RIGHT)
-#undef VSHIFT
-#undef LEFT
-#undef RIGHT
-
-#define VSL(suffix, element) \
- void helper_vsl##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- unsigned int mask = ((1 << \
- (3 + (sizeof(a->element[0]) >> 1))) \
- - 1); \
- unsigned int shift = b->element[i] & mask; \
- \
- r->element[i] = a->element[i] << shift; \
- } \
- }
-VSL(b, u8)
-VSL(h, u16)
-VSL(w, u32)
-#undef VSL
-
-void helper_vsldoi(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
-{
- int sh = shift & 0xf;
- int i;
- ppc_avr_t result;
-
-#if defined(HOST_WORDS_BIGENDIAN)
- for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
- int index = sh + i;
- if (index > 0xf) {
- result.u8[i] = b->u8[index - 0x10];
- } else {
- result.u8[i] = a->u8[index];
- }
- }
-#else
- for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
- int index = (16 - sh) + i;
- if (index > 0xf) {
- result.u8[i] = a->u8[index - 0x10];
- } else {
- result.u8[i] = b->u8[index];
- }
- }
-#endif
- *r = result;
-}
-
-void helper_vslo(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
-
-#if defined(HOST_WORDS_BIGENDIAN)
- memmove(&r->u8[0], &a->u8[sh], 16 - sh);
- memset(&r->u8[16-sh], 0, sh);
-#else
- memmove(&r->u8[sh], &a->u8[0], 16 - sh);
- memset(&r->u8[0], 0, sh);
-#endif
-}
-
-/* Experimental testing shows that hardware masks the immediate. */
-#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
-#if defined(HOST_WORDS_BIGENDIAN)
-#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
-#else
-#define SPLAT_ELEMENT(element) \
- (ARRAY_SIZE(r->element) - 1 - _SPLAT_MASKED(element))
-#endif
-#define VSPLT(suffix, element) \
- void helper_vsplt##suffix(ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
- { \
- uint32_t s = b->element[SPLAT_ELEMENT(element)]; \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- r->element[i] = s; \
- } \
- }
-VSPLT(b, u8)
-VSPLT(h, u16)
-VSPLT(w, u32)
-#undef VSPLT
-#undef SPLAT_ELEMENT
-#undef _SPLAT_MASKED
-
-#define VSPLTI(suffix, element, splat_type) \
- void helper_vspltis##suffix(ppc_avr_t *r, uint32_t splat) \
- { \
- splat_type x = (int8_t)(splat << 3) >> 3; \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- r->element[i] = x; \
- } \
- }
-VSPLTI(b, s8, int8_t)
-VSPLTI(h, s16, int16_t)
-VSPLTI(w, s32, int32_t)
-#undef VSPLTI
-
-#define VSR(suffix, element) \
- void helper_vsr##suffix(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
- { \
- int i; \
- \
- for (i = 0; i < ARRAY_SIZE(r->element); i++) { \
- unsigned int mask = ((1 << \
- (3 + (sizeof(a->element[0]) >> 1))) \
- - 1); \
- unsigned int shift = b->element[i] & mask; \
- \
- r->element[i] = a->element[i] >> shift; \
- } \
- }
-VSR(ab, s8)
-VSR(ah, s16)
-VSR(aw, s32)
-VSR(b, u8)
-VSR(h, u16)
-VSR(w, u32)
-#undef VSR
-
-void helper_vsro(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int sh = (b->u8[LO_IDX * 0xf] >> 3) & 0xf;
-
-#if defined(HOST_WORDS_BIGENDIAN)
- memmove(&r->u8[sh], &a->u8[0], 16 - sh);
- memset(&r->u8[0], 0, sh);
-#else
- memmove(&r->u8[0], &a->u8[sh], 16 - sh);
- memset(&r->u8[16 - sh], 0, sh);
-#endif
-}
-
-void helper_vsubcuw(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
- r->u32[i] = a->u32[i] >= b->u32[i];
- }
-}
-
-void helper_vsumsws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int64_t t;
- int i, upper;
- ppc_avr_t result;
- int sat = 0;
-
-#if defined(HOST_WORDS_BIGENDIAN)
- upper = ARRAY_SIZE(r->s32)-1;
-#else
- upper = 0;
-#endif
- t = (int64_t)b->s32[upper];
- for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
- t += a->s32[i];
- result.s32[i] = 0;
- }
- result.s32[upper] = cvtsdsw(t, &sat);
- *r = result;
-
- if (sat) {
- env->vscr |= (1 << VSCR_SAT);
- }
-}
-
-void helper_vsum2sws(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int i, j, upper;
- ppc_avr_t result;
- int sat = 0;
-
-#if defined(HOST_WORDS_BIGENDIAN)
- upper = 1;
-#else
- upper = 0;
-#endif
- for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
- int64_t t = (int64_t)b->s32[upper + i * 2];
-
- result.u64[i] = 0;
- for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
- t += a->s32[2 * i + j];
- }
- result.s32[upper + i * 2] = cvtsdsw(t, &sat);
- }
-
- *r = result;
- if (sat) {
- env->vscr |= (1 << VSCR_SAT);
- }
-}
-
-void helper_vsum4sbs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int i, j;
- int sat = 0;
-
- for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
- int64_t t = (int64_t)b->s32[i];
-
- for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
- t += a->s8[4 * i + j];
- }
- r->s32[i] = cvtsdsw(t, &sat);
- }
-
- if (sat) {
- env->vscr |= (1 << VSCR_SAT);
- }
-}
-
-void helper_vsum4shs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int sat = 0;
- int i;
-
- for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
- int64_t t = (int64_t)b->s32[i];
-
- t += a->s16[2 * i] + a->s16[2 * i + 1];
- r->s32[i] = cvtsdsw(t, &sat);
- }
-
- if (sat) {
- env->vscr |= (1 << VSCR_SAT);
- }
-}
-
-void helper_vsum4ubs(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
-{
- int i, j;
- int sat = 0;
-
- for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
- uint64_t t = (uint64_t)b->u32[i];
-
- for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
- t += a->u8[4 * i + j];
- }
- r->u32[i] = cvtuduw(t, &sat);
- }
-
- if (sat) {
- env->vscr |= (1 << VSCR_SAT);
- }
-}
-
-#if defined(HOST_WORDS_BIGENDIAN)
-#define UPKHI 1
-#define UPKLO 0
-#else
-#define UPKHI 0
-#define UPKLO 1
-#endif
-#define VUPKPX(suffix, hi) \
- void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
- { \
- int i; \
- ppc_avr_t result; \
- \
- for (i = 0; i < ARRAY_SIZE(r->u32); i++) { \
- uint16_t e = b->u16[hi ? i : i+4]; \
- uint8_t a = (e >> 15) ? 0xff : 0; \
- uint8_t r = (e >> 10) & 0x1f; \
- uint8_t g = (e >> 5) & 0x1f; \
- uint8_t b = e & 0x1f; \
- \
- result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b; \
- } \
- *r = result; \
- }
-VUPKPX(lpx, UPKLO)
-VUPKPX(hpx, UPKHI)
-#undef VUPKPX
-
-#define VUPK(suffix, unpacked, packee, hi) \
- void helper_vupk##suffix(ppc_avr_t *r, ppc_avr_t *b) \
- { \
- int i; \
- ppc_avr_t result; \
- \
- if (hi) { \
- for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) { \
- result.unpacked[i] = b->packee[i]; \
- } \
- } else { \
- for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); \
- i++) { \
- result.unpacked[i - ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
- } \
- } \
- *r = result; \
- }
-VUPK(hsb, s16, s8, UPKHI)
-VUPK(hsh, s32, s16, UPKHI)
-VUPK(lsb, s16, s8, UPKLO)
-VUPK(lsh, s32, s16, UPKLO)
-#undef VUPK
-#undef UPKHI
-#undef UPKLO
-
-#undef DO_HANDLE_NAN
-#undef HANDLE_NAN1
-#undef HANDLE_NAN2
-#undef HANDLE_NAN3
-#undef VECTOR_FOR_INORDER_I
#undef HI_IDX
#undef LO_IDX
/*****************************************************************************/
-/* SPE extension helpers */
-/* Use a table to make this quicker */
-static uint8_t hbrev[16] = {
- 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
- 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
-};
-
-static inline uint8_t byte_reverse(uint8_t val)
-{
- return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
-}
-
-static inline uint32_t word_reverse(uint32_t val)
-{
- return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
- (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
-}
-
-#define MASKBITS 16 /* Random value - to be fixed (implementation dependent) */
-target_ulong helper_brinc(target_ulong arg1, target_ulong arg2)
-{
- uint32_t a, b, d, mask;
-
- mask = UINT32_MAX >> (32 - MASKBITS);
- a = arg1 & mask;
- b = arg2 & mask;
- d = word_reverse(1 + word_reverse(a | ~b));
- return (arg1 & ~mask) | (d & b);
-}
-
-uint32_t helper_cntlsw32(uint32_t val)
-{
- if (val & 0x80000000) {
- return clz32(~val);
- } else {
- return clz32(val);
- }
-}
-
-uint32_t helper_cntlzw32(uint32_t val)
-{
- return clz32(val);
-}
-
-/*****************************************************************************/
/* Softmmu support */
#if !defined(CONFIG_USER_ONLY)