diff options
-rw-r--r-- | hw/arm/boot.c | 21 | ||||
-rw-r--r-- | hw/block/nand.c | 48 | ||||
-rw-r--r-- | hw/misc/imx_ccm.c | 2 | ||||
-rw-r--r-- | hw/timer/imx_gpt.c | 558 |
4 files changed, 369 insertions, 260 deletions
diff --git a/hw/arm/boot.c b/hw/arm/boot.c index defcf15097..7c0090ff4e 100644 --- a/hw/arm/boot.c +++ b/hw/arm/boot.c @@ -237,14 +237,14 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo) filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); if (!filename) { fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); - return -1; + goto fail; } fdt = load_device_tree(filename, &size); if (!fdt) { fprintf(stderr, "Couldn't open dtb file %s\n", filename); g_free(filename); - return -1; + goto fail; } g_free(filename); @@ -252,7 +252,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo) scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells"); if (acells == 0 || scells == 0) { fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); - return -1; + goto fail; } mem_reg_propsize = acells + scells; @@ -264,7 +264,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo) } else if (hival != 0) { fprintf(stderr, "qemu: dtb file not compatible with " "RAM start address > 4GB\n"); - exit(1); + goto fail; } mem_reg_property[acells + scells - 1] = cpu_to_be32(binfo->ram_size); hival = cpu_to_be32(binfo->ram_size >> 32); @@ -273,13 +273,14 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo) } else if (hival != 0) { fprintf(stderr, "qemu: dtb file not compatible with " "RAM size > 4GB\n"); - exit(1); + goto fail; } rc = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property, mem_reg_propsize * sizeof(uint32_t)); if (rc < 0) { fprintf(stderr, "couldn't set /memory/reg\n"); + goto fail; } if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { @@ -287,6 +288,7 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo) binfo->kernel_cmdline); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/bootargs\n"); + goto fail; } } @@ -295,18 +297,27 @@ static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo) binfo->initrd_start); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); + goto fail; } rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end", binfo->initrd_start + binfo->initrd_size); if (rc < 0) { fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); + goto fail; } } + qemu_devtree_dumpdtb(fdt, size); cpu_physical_memory_write(addr, fdt, size); + g_free(fdt); + return 0; + +fail: + g_free(fdt); + return -1; } static void do_cpu_reset(void *opaque) diff --git a/hw/block/nand.c b/hw/block/nand.c index 43401a0b1b..a871ce059a 100644 --- a/hw/block/nand.c +++ b/hw/block/nand.c @@ -21,7 +21,7 @@ # include "hw/hw.h" # include "hw/block/flash.h" # include "sysemu/blockdev.h" -# include "hw/sysbus.h" +#include "hw/qdev.h" #include "qemu/error-report.h" # define NAND_CMD_READ0 0x00 @@ -54,7 +54,8 @@ typedef struct NANDFlashState NANDFlashState; struct NANDFlashState { - SysBusDevice busdev; + DeviceState parent_obj; + uint8_t manf_id, chip_id; uint8_t buswidth; /* in BYTES */ int size, pages; @@ -82,6 +83,11 @@ struct NANDFlashState { uint32_t ioaddr_vmstate; }; +#define TYPE_NAND "nand" + +#define NAND(obj) \ + OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND) + static void mem_and(uint8_t *dest, const uint8_t *src, size_t n) { /* Like memcpy() but we logical-AND the data into the destination */ @@ -224,7 +230,7 @@ static const struct { static void nand_reset(DeviceState *dev) { - NANDFlashState *s = FROM_SYSBUS(NANDFlashState, SYS_BUS_DEVICE(dev)); + NANDFlashState *s = NAND(dev); s->cmd = NAND_CMD_READ0; s->addr = 0; s->addrlen = 0; @@ -279,7 +285,7 @@ static void nand_command(NANDFlashState *s) break; case NAND_CMD_RESET: - nand_reset(&s->busdev.qdev); + nand_reset(DEVICE(s)); break; case NAND_CMD_PAGEPROGRAM1: @@ -319,14 +325,14 @@ static void nand_command(NANDFlashState *s) static void nand_pre_save(void *opaque) { - NANDFlashState *s = opaque; + NANDFlashState *s = NAND(opaque); s->ioaddr_vmstate = s->ioaddr - s->io; } static int nand_post_load(void *opaque, int version_id) { - NANDFlashState *s = opaque; + NANDFlashState *s = NAND(opaque); if (s->ioaddr_vmstate > sizeof(s->io)) { return -EINVAL; @@ -362,10 +368,10 @@ static const VMStateDescription vmstate_nand = { } }; -static int nand_device_init(SysBusDevice *dev) +static void nand_realize(DeviceState *dev, Error **errp) { int pagesize; - NANDFlashState *s = FROM_SYSBUS(NANDFlashState, dev); + NANDFlashState *s = NAND(dev); s->buswidth = nand_flash_ids[s->chip_id].width >> 3; s->size = nand_flash_ids[s->chip_id].size << 20; @@ -388,16 +394,17 @@ static int nand_device_init(SysBusDevice *dev) nand_init_2048(s); break; default: - error_report("Unsupported NAND block size"); - return -1; + error_setg(errp, "Unsupported NAND block size %#x\n", + 1 << s->page_shift); + return; } pagesize = 1 << s->oob_shift; s->mem_oob = 1; if (s->bdrv) { if (bdrv_is_read_only(s->bdrv)) { - error_report("Can't use a read-only drive"); - return -1; + error_setg(errp, "Can't use a read-only drive"); + return; } if (bdrv_getlength(s->bdrv) >= (s->pages << s->page_shift) + (s->pages << s->oob_shift)) { @@ -413,8 +420,6 @@ static int nand_device_init(SysBusDevice *dev) } /* Give s->ioaddr a sane value in case we save state before it is used. */ s->ioaddr = s->io; - - return 0; } static Property nand_properties[] = { @@ -427,17 +432,16 @@ static Property nand_properties[] = { static void nand_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); - SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); - k->init = nand_device_init; + dc->realize = nand_realize; dc->reset = nand_reset; dc->vmsd = &vmstate_nand; dc->props = nand_properties; } static const TypeInfo nand_info = { - .name = "nand", - .parent = TYPE_SYS_BUS_DEVICE, + .name = TYPE_NAND, + .parent = TYPE_DEVICE, .instance_size = sizeof(NANDFlashState), .class_init = nand_class_init, }; @@ -456,7 +460,8 @@ static void nand_register_types(void) void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale, uint8_t ce, uint8_t wp, uint8_t gnd) { - NANDFlashState *s = (NANDFlashState *) dev; + NANDFlashState *s = NAND(dev); + s->cle = cle; s->ale = ale; s->ce = ce; @@ -477,7 +482,8 @@ void nand_getpins(DeviceState *dev, int *rb) void nand_setio(DeviceState *dev, uint32_t value) { int i; - NANDFlashState *s = (NANDFlashState *) dev; + NANDFlashState *s = NAND(dev); + if (!s->ce && s->cle) { if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2) @@ -581,7 +587,7 @@ uint32_t nand_getio(DeviceState *dev) { int offset; uint32_t x = 0; - NANDFlashState *s = (NANDFlashState *) dev; + NANDFlashState *s = NAND(dev); /* Allow sequential reading */ if (!s->iolen && s->cmd == NAND_CMD_READ0) { diff --git a/hw/misc/imx_ccm.c b/hw/misc/imx_ccm.c index c153a24310..427ce5cd1d 100644 --- a/hw/misc/imx_ccm.c +++ b/hw/misc/imx_ccm.c @@ -153,7 +153,7 @@ static void update_clocks(IMXCCMState *s) * approach */ - if ((s->ccmr & CCMR_PRCS) == 1) { + if ((s->ccmr & CCMR_PRCS) == 2) { s->pll_refclk_freq = CKIL_FREQ * 1024; } else { s->pll_refclk_freq = CKIH_FREQ; diff --git a/hw/timer/imx_gpt.c b/hw/timer/imx_gpt.c index d8c4f0baee..de53b13287 100644 --- a/hw/timer/imx_gpt.c +++ b/hw/timer/imx_gpt.c @@ -5,6 +5,7 @@ * Copyright (c) 2011 NICTA Pty Ltd * Originally written by Hans Jiang * Updated by Peter Chubb + * Updated by Jean-Christophe Dubois * * This code is licensed under GPL version 2 or later. See * the COPYING file in the top-level directory. @@ -18,10 +19,44 @@ #include "hw/sysbus.h" #include "hw/arm/imx.h" -//#define DEBUG_TIMER 1 -#ifdef DEBUG_TIMER +#define TYPE_IMX_GPT "imx.gpt" + +/* + * Define to 1 for debug messages + */ +#define DEBUG_TIMER 0 +#if DEBUG_TIMER + +static char const *imx_gpt_reg_name(uint32_t reg) +{ + switch (reg) { + case 0: + return "CR"; + case 1: + return "PR"; + case 2: + return "SR"; + case 3: + return "IR"; + case 4: + return "OCR1"; + case 5: + return "OCR2"; + case 6: + return "OCR3"; + case 7: + return "ICR1"; + case 8: + return "ICR2"; + case 9: + return "CNT"; + default: + return "[?]"; + } +} + # define DPRINTF(fmt, args...) \ - do { printf("imx_timer: " fmt , ##args); } while (0) + do { printf("%s: " fmt , __func__, ##args); } while (0) #else # define DPRINTF(fmt, args...) do {} while (0) #endif @@ -32,27 +67,20 @@ */ #define DEBUG_IMPLEMENTATION 1 #if DEBUG_IMPLEMENTATION -# define IPRINTF(fmt, args...) \ - do { fprintf(stderr, "imx_timer: " fmt, ##args); } while (0) +# define IPRINTF(fmt, args...) \ + do { fprintf(stderr, "%s: " fmt, __func__, ##args); } while (0) #else # define IPRINTF(fmt, args...) do {} while (0) #endif +#define IMX_GPT(obj) \ + OBJECT_CHECK(IMXGPTState, (obj), TYPE_IMX_GPT) /* * GPT : General purpose timer * * This timer counts up continuously while it is enabled, resetting itself * to 0 when it reaches TIMER_MAX (in freerun mode) or when it - * reaches the value of ocr1 (in periodic mode). WE simulate this using a - * QEMU ptimer counting down from ocr1 and reloading from ocr1 in - * periodic mode, or counting from ocr1 to zero, then TIMER_MAX - ocr1. - * waiting_rov is set when counting from TIMER_MAX. - * - * In the real hardware, there are three comparison registers that can - * trigger interrupts, and compare channel 1 can be used to - * force-reset the timer. However, this is a `bare-bones' - * implementation: only what Linux 3.x uses has been implemented - * (free-running timer from 0 to OCR1 or TIMER_MAX) . + * reaches the value of one of the ocrX (in periodic mode). */ #define TIMER_MAX 0XFFFFFFFFUL @@ -79,9 +107,13 @@ #define GPT_CR_FO3 (1 << 31) /* Force Output Compare Channel 3 */ #define GPT_SR_OF1 (1 << 0) +#define GPT_SR_OF2 (1 << 1) +#define GPT_SR_OF3 (1 << 2) #define GPT_SR_ROV (1 << 5) #define GPT_IR_OF1IE (1 << 0) +#define GPT_IR_OF2IE (1 << 1) +#define GPT_IR_OF3IE (1 << 2) #define GPT_IR_ROVIE (1 << 5) typedef struct { @@ -101,33 +133,39 @@ typedef struct { uint32_t icr2; uint32_t cnt; - uint32_t waiting_rov; + uint32_t next_timeout; + uint32_t next_int; + + uint32_t freq; + qemu_irq irq; -} IMXTimerGState; +} IMXGPTState; -static const VMStateDescription vmstate_imx_timerg = { - .name = "imx-timerg", - .version_id = 2, - .minimum_version_id = 2, - .minimum_version_id_old = 2, +static const VMStateDescription vmstate_imx_timer_gpt = { + .name = TYPE_IMX_GPT, + .version_id = 3, + .minimum_version_id = 3, + .minimum_version_id_old = 3, .fields = (VMStateField[]) { - VMSTATE_UINT32(cr, IMXTimerGState), - VMSTATE_UINT32(pr, IMXTimerGState), - VMSTATE_UINT32(sr, IMXTimerGState), - VMSTATE_UINT32(ir, IMXTimerGState), - VMSTATE_UINT32(ocr1, IMXTimerGState), - VMSTATE_UINT32(ocr2, IMXTimerGState), - VMSTATE_UINT32(ocr3, IMXTimerGState), - VMSTATE_UINT32(icr1, IMXTimerGState), - VMSTATE_UINT32(icr2, IMXTimerGState), - VMSTATE_UINT32(cnt, IMXTimerGState), - VMSTATE_UINT32(waiting_rov, IMXTimerGState), - VMSTATE_PTIMER(timer, IMXTimerGState), + VMSTATE_UINT32(cr, IMXGPTState), + VMSTATE_UINT32(pr, IMXGPTState), + VMSTATE_UINT32(sr, IMXGPTState), + VMSTATE_UINT32(ir, IMXGPTState), + VMSTATE_UINT32(ocr1, IMXGPTState), + VMSTATE_UINT32(ocr2, IMXGPTState), + VMSTATE_UINT32(ocr3, IMXGPTState), + VMSTATE_UINT32(icr1, IMXGPTState), + VMSTATE_UINT32(icr2, IMXGPTState), + VMSTATE_UINT32(cnt, IMXGPTState), + VMSTATE_UINT32(next_timeout, IMXGPTState), + VMSTATE_UINT32(next_int, IMXGPTState), + VMSTATE_UINT32(freq, IMXGPTState), + VMSTATE_PTIMER(timer, IMXGPTState), VMSTATE_END_OF_LIST() } }; -static const IMXClk imx_timerg_clocks[] = { +static const IMXClk imx_gpt_clocks[] = { NOCLK, /* 000 No clock source */ IPG, /* 001 ipg_clk, 532MHz*/ IPG, /* 010 ipg_clk_highfreq */ @@ -138,128 +176,190 @@ static const IMXClk imx_timerg_clocks[] = { NOCLK, /* 111 not defined */ }; - -static void imx_timerg_set_freq(IMXTimerGState *s) +static void imx_gpt_set_freq(IMXGPTState *s) { - int clksrc; - uint32_t freq; + uint32_t clksrc = extract32(s->cr, GPT_CR_CLKSRC_SHIFT, 3); + uint32_t freq = imx_clock_frequency(s->ccm, imx_gpt_clocks[clksrc]) + / (1 + s->pr); + s->freq = freq; - clksrc = (s->cr >> GPT_CR_CLKSRC_SHIFT) & GPT_CR_CLKSRC_MASK; - freq = imx_clock_frequency(s->ccm, imx_timerg_clocks[clksrc]) / (1 + s->pr); - - DPRINTF("Setting gtimer clksrc %d to frequency %d\n", clksrc, freq); + DPRINTF("Setting clksrc %d to frequency %d\n", clksrc, freq); if (freq) { ptimer_set_freq(s->timer, freq); } } -static void imx_timerg_update(IMXTimerGState *s) +static void imx_gpt_update_int(IMXGPTState *s) { - uint32_t flags = s->sr & s->ir & (GPT_SR_OF1 | GPT_SR_ROV); + if ((s->sr & s->ir) && (s->cr & GPT_CR_EN)) { + qemu_irq_raise(s->irq); + } else { + qemu_irq_lower(s->irq); + } +} - DPRINTF("g-timer SR: %s %s IR=%s %s, %s\n", - s->sr & GPT_SR_OF1 ? "OF1" : "", - s->sr & GPT_SR_ROV ? "ROV" : "", - s->ir & GPT_SR_OF1 ? "OF1" : "", - s->ir & GPT_SR_ROV ? "ROV" : "", - s->cr & GPT_CR_EN ? "CR_EN" : "Not Enabled"); +static uint32_t imx_gpt_update_count(IMXGPTState *s) +{ + s->cnt = s->next_timeout - (uint32_t)ptimer_get_count(s->timer); - qemu_set_irq(s->irq, (s->cr & GPT_CR_EN) && flags); + return s->cnt; } -static uint32_t imx_timerg_update_counts(IMXTimerGState *s) +static inline uint32_t imx_gpt_find_limit(uint32_t count, uint32_t reg, + uint32_t timeout) { - uint64_t target = s->waiting_rov ? TIMER_MAX : s->ocr1; - uint64_t cnt = ptimer_get_count(s->timer); - s->cnt = target - cnt; - return s->cnt; + if ((count < reg) && (timeout > reg)) { + timeout = reg; + } + + return timeout; } -static void imx_timerg_reload(IMXTimerGState *s, uint32_t timeout) +static void imx_gpt_compute_next_timeout(IMXGPTState *s, bool event) { - uint64_t diff_cnt; + uint32_t timeout = TIMER_MAX; + uint32_t count = 0; + long long limit; - if (!(s->cr & GPT_CR_FRR)) { - IPRINTF("IMX_timerg_reload --- called in reset-mode\n"); + if (!(s->cr & GPT_CR_EN)) { + /* if not enabled just return */ return; } - /* - * For small timeouts, qemu sometimes runs too slow. - * Better deliver a late interrupt than none. - * - * In Reset mode (FRR bit clear) - * the ptimer reloads itself from OCR1; - * in free-running mode we need to fake - * running from 0 to ocr1 to TIMER_MAX - */ - if (timeout > s->cnt) { - diff_cnt = timeout - s->cnt; + if (event) { + /* This is a timer event */ + + if ((s->cr & GPT_CR_FRR) && (s->next_timeout != TIMER_MAX)) { + /* + * if we are in free running mode and we have not reached + * the TIMER_MAX limit, then update the count + */ + count = imx_gpt_update_count(s); + } } else { - diff_cnt = 0; + /* not a timer event, then just update the count */ + + count = imx_gpt_update_count(s); + } + + /* now, find the next timeout related to count */ + + if (s->ir & GPT_IR_OF1IE) { + timeout = imx_gpt_find_limit(count, s->ocr1, timeout); + } + if (s->ir & GPT_IR_OF2IE) { + timeout = imx_gpt_find_limit(count, s->ocr2, timeout); + } + if (s->ir & GPT_IR_OF3IE) { + timeout = imx_gpt_find_limit(count, s->ocr3, timeout); + } + + /* find the next set of interrupts to raise for next timer event */ + + s->next_int = 0; + if ((s->ir & GPT_IR_OF1IE) && (timeout == s->ocr1)) { + s->next_int |= GPT_SR_OF1; + } + if ((s->ir & GPT_IR_OF2IE) && (timeout == s->ocr2)) { + s->next_int |= GPT_SR_OF2; + } + if ((s->ir & GPT_IR_OF3IE) && (timeout == s->ocr3)) { + s->next_int |= GPT_SR_OF3; + } + if ((s->ir & GPT_IR_ROVIE) && (timeout == TIMER_MAX)) { + s->next_int |= GPT_SR_ROV; + } + + /* the new range to count down from */ + limit = timeout - imx_gpt_update_count(s); + + if (limit < 0) { + /* + * if we reach here, then QEMU is running too slow and we pass the + * timeout limit while computing it. Let's deliver the interrupt + * and compute a new limit. + */ + s->sr |= s->next_int; + + imx_gpt_compute_next_timeout(s, event); + + imx_gpt_update_int(s); + } else { + /* New timeout value */ + s->next_timeout = timeout; + + /* reset the limit to the computed range */ + ptimer_set_limit(s->timer, limit, 1); } - ptimer_set_count(s->timer, diff_cnt); } -static uint64_t imx_timerg_read(void *opaque, hwaddr offset, - unsigned size) +static uint64_t imx_gpt_read(void *opaque, hwaddr offset, unsigned size) { - IMXTimerGState *s = (IMXTimerGState *)opaque; + IMXGPTState *s = IMX_GPT(opaque); + uint32_t reg_value = 0; + uint32_t reg = offset >> 2; - DPRINTF("g-read(offset=%x)", (unsigned int)(offset >> 2)); - switch (offset >> 2) { + switch (reg) { case 0: /* Control Register */ - DPRINTF(" cr = %x\n", s->cr); - return s->cr; + reg_value = s->cr; + break; case 1: /* prescaler */ - DPRINTF(" pr = %x\n", s->pr); - return s->pr; + reg_value = s->pr; + break; case 2: /* Status Register */ - DPRINTF(" sr = %x\n", s->sr); - return s->sr; + reg_value = s->sr; + break; case 3: /* Interrupt Register */ - DPRINTF(" ir = %x\n", s->ir); - return s->ir; + reg_value = s->ir; + break; case 4: /* Output Compare Register 1 */ - DPRINTF(" ocr1 = %x\n", s->ocr1); - return s->ocr1; + reg_value = s->ocr1; + break; case 5: /* Output Compare Register 2 */ - DPRINTF(" ocr2 = %x\n", s->ocr2); - return s->ocr2; + reg_value = s->ocr2; + break; case 6: /* Output Compare Register 3 */ - DPRINTF(" ocr3 = %x\n", s->ocr3); - return s->ocr3; + reg_value = s->ocr3; + break; case 7: /* input Capture Register 1 */ - DPRINTF(" icr1 = %x\n", s->icr1); - return s->icr1; + qemu_log_mask(LOG_UNIMP, "icr1 feature is not implemented\n"); + reg_value = s->icr1; + break; case 8: /* input Capture Register 2 */ - DPRINTF(" icr2 = %x\n", s->icr2); - return s->icr2; + qemu_log_mask(LOG_UNIMP, "icr2 feature is not implemented\n"); + reg_value = s->icr2; + break; case 9: /* cnt */ - imx_timerg_update_counts(s); - DPRINTF(" cnt = %x\n", s->cnt); - return s->cnt; + imx_gpt_update_count(s); + reg_value = s->cnt; + break; + + default: + IPRINTF("Bad offset %x\n", reg); + break; } - IPRINTF("imx_timerg_read: Bad offset %x\n", - (int)offset >> 2); + DPRINTF("(%s) = 0x%08x\n", imx_gpt_reg_name(reg), reg_value); - return 0; + return reg_value; } -static void imx_timerg_reset(DeviceState *dev) +static void imx_gpt_reset(DeviceState *dev) { - IMXTimerGState *s = container_of(dev, IMXTimerGState, busdev.qdev); + IMXGPTState *s = IMX_GPT(dev); + + /* stop timer */ + ptimer_stop(s->timer); /* * Soft reset doesn't touch some bits; hard reset clears them @@ -275,191 +375,183 @@ static void imx_timerg_reset(DeviceState *dev) s->ocr3 = TIMER_MAX; s->icr1 = 0; s->icr2 = 0; - ptimer_stop(s->timer); + + s->next_timeout = TIMER_MAX; + s->next_int = 0; + + /* compute new freq */ + imx_gpt_set_freq(s); + + /* reset the limit to TIMER_MAX */ ptimer_set_limit(s->timer, TIMER_MAX, 1); - ptimer_set_count(s->timer, TIMER_MAX); - imx_timerg_set_freq(s); + + /* if the timer is still enabled, restart it */ + if (s->freq && (s->cr & GPT_CR_EN)) { + ptimer_run(s->timer, 1); + } } -static void imx_timerg_write(void *opaque, hwaddr offset, - uint64_t value, unsigned size) +static void imx_gpt_write(void *opaque, hwaddr offset, uint64_t value, + unsigned size) { - IMXTimerGState *s = (IMXTimerGState *)opaque; - DPRINTF("g-write(offset=%x, value = 0x%x)\n", (unsigned int)offset >> 2, - (unsigned int)value); - - switch (offset >> 2) { - case 0: { - uint32_t oldcr = s->cr; - /* CR */ - if (value & GPT_CR_SWR) { /* force reset */ - value &= ~GPT_CR_SWR; - imx_timerg_reset(&s->busdev.qdev); - imx_timerg_update(s); - } - - s->cr = value & ~0x7c00; - imx_timerg_set_freq(s); - if ((oldcr ^ value) & GPT_CR_EN) { - if (value & GPT_CR_EN) { - if (value & GPT_CR_ENMOD) { - ptimer_set_count(s->timer, s->ocr1); - s->cnt = 0; + IMXGPTState *s = IMX_GPT(opaque); + uint32_t oldreg; + uint32_t reg = offset >> 2; + + DPRINTF("(%s, value = 0x%08x)\n", imx_gpt_reg_name(reg), + (uint32_t)value); + + switch (reg) { + case 0: + oldreg = s->cr; + s->cr = value & ~0x7c14; + if (s->cr & GPT_CR_SWR) { /* force reset */ + /* handle the reset */ + imx_gpt_reset(DEVICE(s)); + } else { + /* set our freq, as the source might have changed */ + imx_gpt_set_freq(s); + + if ((oldreg ^ s->cr) & GPT_CR_EN) { + if (s->cr & GPT_CR_EN) { + if (s->cr & GPT_CR_ENMOD) { + s->next_timeout = TIMER_MAX; + ptimer_set_count(s->timer, TIMER_MAX); + imx_gpt_compute_next_timeout(s, false); + } + ptimer_run(s->timer, 1); + } else { + /* stop timer */ + ptimer_stop(s->timer); } - ptimer_run(s->timer, - (value & GPT_CR_FRR) && (s->ocr1 != TIMER_MAX)); - } else { - ptimer_stop(s->timer); - }; + } } - return; - } + break; case 1: /* Prescaler */ s->pr = value & 0xfff; - imx_timerg_set_freq(s); - return; + imx_gpt_set_freq(s); + break; case 2: /* SR */ - /* - * No point in implementing the status register bits to do with - * external interrupt sources. - */ - value &= GPT_SR_OF1 | GPT_SR_ROV; - s->sr &= ~value; - imx_timerg_update(s); - return; + s->sr &= ~(value & 0x3f); + imx_gpt_update_int(s); + break; case 3: /* IR -- interrupt register */ s->ir = value & 0x3f; - imx_timerg_update(s); - return; + imx_gpt_update_int(s); + + imx_gpt_compute_next_timeout(s, false); + + break; case 4: /* OCR1 -- output compare register */ + s->ocr1 = value; + /* In non-freerun mode, reset count when this register is written */ if (!(s->cr & GPT_CR_FRR)) { - s->waiting_rov = 0; - ptimer_set_limit(s->timer, value, 1); - } else { - imx_timerg_update_counts(s); - if (value > s->cnt) { - s->waiting_rov = 0; - imx_timerg_reload(s, value); - } else { - s->waiting_rov = 1; - imx_timerg_reload(s, TIMER_MAX - s->cnt); - } + s->next_timeout = TIMER_MAX; + ptimer_set_limit(s->timer, TIMER_MAX, 1); } - s->ocr1 = value; - return; + + /* compute the new timeout */ + imx_gpt_compute_next_timeout(s, false); + + break; case 5: /* OCR2 -- output compare register */ + s->ocr2 = value; + + /* compute the new timeout */ + imx_gpt_compute_next_timeout(s, false); + + break; + case 6: /* OCR3 -- output compare register */ + s->ocr3 = value; + + /* compute the new timeout */ + imx_gpt_compute_next_timeout(s, false); + + break; + default: - IPRINTF("imx_timerg_write: Bad offset %x\n", - (int)offset >> 2); + IPRINTF("Bad offset %x\n", reg); + break; } } -static void imx_timerg_timeout(void *opaque) +static void imx_gpt_timeout(void *opaque) { - IMXTimerGState *s = (IMXTimerGState *)opaque; + IMXGPTState *s = IMX_GPT(opaque); - DPRINTF("imx_timerg_timeout, waiting rov=%d\n", s->waiting_rov); - if (s->cr & GPT_CR_FRR) { - /* - * Free running timer from 0 -> TIMERMAX - * Generates interrupt at TIMER_MAX and at cnt==ocr1 - * If ocr1 == TIMER_MAX, then no need to reload timer. - */ - if (s->ocr1 == TIMER_MAX) { - DPRINTF("s->ocr1 == TIMER_MAX, FRR\n"); - s->sr |= GPT_SR_OF1 | GPT_SR_ROV; - imx_timerg_update(s); - return; - } + DPRINTF("\n"); - if (s->waiting_rov) { - /* - * We were waiting for cnt==TIMER_MAX - */ - s->sr |= GPT_SR_ROV; - s->waiting_rov = 0; - s->cnt = 0; - imx_timerg_reload(s, s->ocr1); - } else { - /* Must have got a cnt==ocr1 timeout. */ - s->sr |= GPT_SR_OF1; - s->cnt = s->ocr1; - s->waiting_rov = 1; - imx_timerg_reload(s, TIMER_MAX); - } - imx_timerg_update(s); - return; - } + s->sr |= s->next_int; + s->next_int = 0; + + imx_gpt_compute_next_timeout(s, true); + + imx_gpt_update_int(s); - s->sr |= GPT_SR_OF1; - imx_timerg_update(s); + if (s->freq && (s->cr & GPT_CR_EN)) { + ptimer_run(s->timer, 1); + } } -static const MemoryRegionOps imx_timerg_ops = { - .read = imx_timerg_read, - .write = imx_timerg_write, +static const MemoryRegionOps imx_gpt_ops = { + .read = imx_gpt_read, + .write = imx_gpt_write, .endianness = DEVICE_NATIVE_ENDIAN, }; -static int imx_timerg_init(SysBusDevice *dev) +static void imx_gpt_realize(DeviceState *dev, Error **errp) { - IMXTimerGState *s = FROM_SYSBUS(IMXTimerGState, dev); + IMXGPTState *s = IMX_GPT(dev); + SysBusDevice *sbd = SYS_BUS_DEVICE(dev); QEMUBH *bh; - sysbus_init_irq(dev, &s->irq); - memory_region_init_io(&s->iomem, &imx_timerg_ops, - s, "imxg-timer", + sysbus_init_irq(sbd, &s->irq); + memory_region_init_io(&s->iomem, &imx_gpt_ops, s, TYPE_IMX_GPT, 0x00001000); - sysbus_init_mmio(dev, &s->iomem); + sysbus_init_mmio(sbd, &s->iomem); - bh = qemu_bh_new(imx_timerg_timeout, s); + bh = qemu_bh_new(imx_gpt_timeout, s); s->timer = ptimer_init(bh); - - /* Hard reset resets extra bits in CR */ - s->cr = 0; - return 0; } -void imx_timerg_create(const hwaddr addr, - qemu_irq irq, - DeviceState *ccm) +void imx_timerg_create(const hwaddr addr, qemu_irq irq, DeviceState *ccm) { - IMXTimerGState *pp; + IMXGPTState *pp; DeviceState *dev; - dev = sysbus_create_simple("imx_timerg", addr, irq); - pp = container_of(dev, IMXTimerGState, busdev.qdev); + dev = sysbus_create_simple(TYPE_IMX_GPT, addr, irq); + pp = IMX_GPT(dev); pp->ccm = ccm; } -static void imx_timerg_class_init(ObjectClass *klass, void *data) +static void imx_gpt_class_init(ObjectClass *klass, void *data) { - DeviceClass *dc = DEVICE_CLASS(klass); - SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); - k->init = imx_timerg_init; - dc->vmsd = &vmstate_imx_timerg; - dc->reset = imx_timerg_reset; + DeviceClass *dc = DEVICE_CLASS(klass); + + dc->realize = imx_gpt_realize; + dc->reset = imx_gpt_reset; + dc->vmsd = &vmstate_imx_timer_gpt; dc->desc = "i.MX general timer"; } -static const TypeInfo imx_timerg_info = { - .name = "imx_timerg", +static const TypeInfo imx_gpt_info = { + .name = TYPE_IMX_GPT, .parent = TYPE_SYS_BUS_DEVICE, - .instance_size = sizeof(IMXTimerGState), - .class_init = imx_timerg_class_init, + .instance_size = sizeof(IMXGPTState), + .class_init = imx_gpt_class_init, }; -static void imx_timer_register_types(void) +static void imx_gpt_register_types(void) { - type_register_static(&imx_timerg_info); + type_register_static(&imx_gpt_info); } -type_init(imx_timer_register_types) +type_init(imx_gpt_register_types) |