aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--docs/system/riscv/microchip-icicle-kit.rst30
-rw-r--r--hw/riscv/microchip_pfsoc.c81
2 files changed, 103 insertions, 8 deletions
diff --git a/docs/system/riscv/microchip-icicle-kit.rst b/docs/system/riscv/microchip-icicle-kit.rst
index e803131763..54ced661e3 100644
--- a/docs/system/riscv/microchip-icicle-kit.rst
+++ b/docs/system/riscv/microchip-icicle-kit.rst
@@ -31,17 +31,37 @@ Boot options
The ``microchip-icicle-kit`` machine can start using the standard -bios
functionality for loading its BIOS image, aka Hart Software Services (HSS_).
-HSS loads the second stage bootloader U-Boot from an SD card. It does not
-support direct kernel loading via the -kernel option. One has to load kernel
-from U-Boot.
+HSS loads the second stage bootloader U-Boot from an SD card. Then a kernel
+can be loaded from U-Boot. It also supports direct kernel booting via the
+-kernel option along with the device tree blob via -dtb. When direct kernel
+boot is used, the OpenSBI fw_dynamic BIOS image is used to boot a payload
+like U-Boot or OS kernel directly.
+
+The user provided DTB should have the following requirements:
+
+* The /cpus node should contain at least one subnode for E51 and the number
+ of subnodes should match QEMU's ``-smp`` option
+* The /memory reg size should match QEMU’s selected ram_size via ``-m``
+* Should contain a node for the CLINT device with a compatible string
+ "riscv,clint0"
+
+QEMU follows below truth table to select which payload to execute:
+
+===== ========== =======
+-bios -kernel payload
+===== ========== =======
+ N N HSS
+ Y don't care HSS
+ N Y kernel
+===== ========== =======
The memory is set to 1537 MiB by default which is the minimum required high
memory size by HSS. A sanity check on ram size is performed in the machine
init routine to prompt user to increase the RAM size to > 1537 MiB when less
than 1537 MiB ram is detected.
-Boot the machine
-----------------
+Running HSS
+-----------
HSS 2020.12 release is tested at the time of writing. To build an HSS image
that can be booted by the ``microchip-icicle-kit`` machine, type the following
diff --git a/hw/riscv/microchip_pfsoc.c b/hw/riscv/microchip_pfsoc.c
index 6cbd17ebf2..eb8e79e0a1 100644
--- a/hw/riscv/microchip_pfsoc.c
+++ b/hw/riscv/microchip_pfsoc.c
@@ -51,6 +51,7 @@
#include "hw/riscv/microchip_pfsoc.h"
#include "hw/intc/sifive_clint.h"
#include "hw/intc/sifive_plic.h"
+#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
/*
@@ -460,6 +461,12 @@ static void microchip_icicle_kit_machine_init(MachineState *machine)
MemoryRegion *mem_high = g_new(MemoryRegion, 1);
MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
uint64_t mem_high_size;
+ hwaddr firmware_load_addr;
+ const char *firmware_name;
+ bool kernel_as_payload = false;
+ target_ulong firmware_end_addr, kernel_start_addr;
+ uint64_t kernel_entry;
+ uint32_t fdt_load_addr;
DriveInfo *dinfo = drive_get_next(IF_SD);
/* Sanity check on RAM size */
@@ -504,9 +511,6 @@ static void microchip_icicle_kit_machine_init(MachineState *machine)
memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
mem_high_alias);
- /* Load the firmware */
- riscv_find_and_load_firmware(machine, BIOS_FILENAME, RESET_VECTOR, NULL);
-
/* Attach an SD card */
if (dinfo) {
CadenceSDHCIState *sdhci = &(s->soc.sdhci);
@@ -516,6 +520,77 @@ static void microchip_icicle_kit_machine_init(MachineState *machine)
&error_fatal);
qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
}
+
+ /*
+ * We follow the following table to select which payload we execute.
+ *
+ * -bios | -kernel | payload
+ * -------+------------+--------
+ * N | N | HSS
+ * Y | don't care | HSS
+ * N | Y | kernel
+ *
+ * This ensures backwards compatibility with how we used to expose -bios
+ * to users but allows them to run through direct kernel booting as well.
+ *
+ * When -kernel is used for direct boot, -dtb must be present to provide
+ * a valid device tree for the board, as we don't generate device tree.
+ */
+
+ if (machine->kernel_filename && machine->dtb) {
+ int fdt_size;
+ machine->fdt = load_device_tree(machine->dtb, &fdt_size);
+ if (!machine->fdt) {
+ error_report("load_device_tree() failed");
+ exit(1);
+ }
+
+ firmware_name = RISCV64_BIOS_BIN;
+ firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
+ kernel_as_payload = true;
+ }
+
+ if (!kernel_as_payload) {
+ firmware_name = BIOS_FILENAME;
+ firmware_load_addr = RESET_VECTOR;
+ }
+
+ /* Load the firmware */
+ firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
+ firmware_load_addr, NULL);
+
+ if (kernel_as_payload) {
+ kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
+ firmware_end_addr);
+
+ kernel_entry = riscv_load_kernel(machine->kernel_filename,
+ kernel_start_addr, NULL);
+
+ if (machine->initrd_filename) {
+ hwaddr start;
+ hwaddr end = riscv_load_initrd(machine->initrd_filename,
+ machine->ram_size, kernel_entry,
+ &start);
+ qemu_fdt_setprop_cell(machine->fdt, "/chosen",
+ "linux,initrd-start", start);
+ qemu_fdt_setprop_cell(machine->fdt, "/chosen",
+ "linux,initrd-end", end);
+ }
+
+ if (machine->kernel_cmdline) {
+ qemu_fdt_setprop_string(machine->fdt, "/chosen",
+ "bootargs", machine->kernel_cmdline);
+ }
+
+ /* Compute the fdt load address in dram */
+ fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
+ machine->ram_size, machine->fdt);
+ /* Load the reset vector */
+ riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
+ memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
+ memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
+ kernel_entry, fdt_load_addr, machine->fdt);
+ }
}
static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)