diff options
author | Paolo Bonzini <pbonzini@redhat.com> | 2023-03-02 11:22:50 +0100 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2023-03-07 12:38:40 +0100 |
commit | 6c5df4b48f0c52a61342ecb307a43f4c2a3565c4 (patch) | |
tree | 6dfae8f603c1bc92750018169117180a4488bf61 /util | |
parent | 9586a1329f5dce6c1d7f4de53cf0536644d7e593 (diff) |
qemu-thread-win32: cleanup, fix, document QemuEvent
QemuEvent is currently broken on ARM due to missing memory barriers
after qatomic_*(). Apart from adding the memory barrier, a closer look
reveals some unpaired memory barriers that are not really needed and
complicated the functions unnecessarily. Also, it is relying on
a memory barrier in ResetEvent(); the barrier _ought_ to be there
but there is really no documentation about it, so make it explicit.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'util')
-rw-r--r-- | util/qemu-thread-win32.c | 82 |
1 files changed, 56 insertions, 26 deletions
diff --git a/util/qemu-thread-win32.c b/util/qemu-thread-win32.c index 69db254ac7..a7fe3cc345 100644 --- a/util/qemu-thread-win32.c +++ b/util/qemu-thread-win32.c @@ -272,12 +272,20 @@ void qemu_event_destroy(QemuEvent *ev) void qemu_event_set(QemuEvent *ev) { assert(ev->initialized); - /* qemu_event_set has release semantics, but because it *loads* + + /* + * Pairs with both qemu_event_reset() and qemu_event_wait(). + * + * qemu_event_set has release semantics, but because it *loads* * ev->value we need a full memory barrier here. */ smp_mb(); if (qatomic_read(&ev->value) != EV_SET) { - if (qatomic_xchg(&ev->value, EV_SET) == EV_BUSY) { + int old = qatomic_xchg(&ev->value, EV_SET); + + /* Pairs with memory barrier after ResetEvent. */ + smp_mb__after_rmw(); + if (old == EV_BUSY) { /* There were waiters, wake them up. */ SetEvent(ev->event); } @@ -286,17 +294,19 @@ void qemu_event_set(QemuEvent *ev) void qemu_event_reset(QemuEvent *ev) { - unsigned value; - assert(ev->initialized); - value = qatomic_read(&ev->value); - smp_mb_acquire(); - if (value == EV_SET) { - /* If there was a concurrent reset (or even reset+wait), - * do nothing. Otherwise change EV_SET->EV_FREE. - */ - qatomic_or(&ev->value, EV_FREE); - } + + /* + * If there was a concurrent reset (or even reset+wait), + * do nothing. Otherwise change EV_SET->EV_FREE. + */ + qatomic_or(&ev->value, EV_FREE); + + /* + * Order reset before checking the condition in the caller. + * Pairs with the first memory barrier in qemu_event_set(). + */ + smp_mb__after_rmw(); } void qemu_event_wait(QemuEvent *ev) @@ -304,29 +314,49 @@ void qemu_event_wait(QemuEvent *ev) unsigned value; assert(ev->initialized); - value = qatomic_read(&ev->value); - smp_mb_acquire(); + + /* + * qemu_event_wait must synchronize with qemu_event_set even if it does + * not go down the slow path, so this load-acquire is needed that + * synchronizes with the first memory barrier in qemu_event_set(). + * + * If we do go down the slow path, there is no requirement at all: we + * might miss a qemu_event_set() here but ultimately the memory barrier in + * qemu_futex_wait() will ensure the check is done correctly. + */ + value = qatomic_load_acquire(&ev->value); if (value != EV_SET) { if (value == EV_FREE) { - /* qemu_event_set is not yet going to call SetEvent, but we are - * going to do another check for EV_SET below when setting EV_BUSY. - * At that point it is safe to call WaitForSingleObject. + /* + * Here the underlying kernel event is reset, but qemu_event_set is + * not yet going to call SetEvent. However, there will be another + * check for EV_SET below when setting EV_BUSY. At that point it + * is safe to call WaitForSingleObject. */ ResetEvent(ev->event); - /* Tell qemu_event_set that there are waiters. No need to retry - * because there cannot be a concurrent busy->free transition. - * After the CAS, the event will be either set or busy. + /* + * It is not clear whether ResetEvent provides this barrier; kernel + * APIs (KeResetEvent/KeClearEvent) do not. Better safe than sorry! + */ + smp_mb(); + + /* + * Leave the event reset and tell qemu_event_set that there are + * waiters. No need to retry, because there cannot be a concurrent + * busy->free transition. After the CAS, the event will be either + * set or busy. */ if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) { - value = EV_SET; - } else { - value = EV_BUSY; + return; } } - if (value == EV_BUSY) { - WaitForSingleObject(ev->event, INFINITE); - } + + /* + * ev->value is now EV_BUSY. Since we didn't observe EV_SET, + * qemu_event_set() must observe EV_BUSY and call SetEvent(). + */ + WaitForSingleObject(ev->event, INFINITE); } } |