aboutsummaryrefslogtreecommitdiff
path: root/tests/rtc-test.c
diff options
context:
space:
mode:
authorThomas Huth <thuth@redhat.com>2019-09-09 12:04:01 +0200
committerThomas Huth <thuth@redhat.com>2020-01-12 11:42:41 +0100
commit1e8a1fae7464ef79c9e50aa0f807d2c511be3c8e (patch)
tree80d1a4f0454b9a75c09461e69f969213350540ea /tests/rtc-test.c
parent10ae5b303a0de07f0659a2c90d9c1266b3908b97 (diff)
test: Move qtests to a separate directory
The tests directory itself is pretty overcrowded, and it's hard to see which test belongs to which test subsystem (unit, qtest, ...). Let's move the qtests to a separate folder for more clarity. Message-Id: <20191218103059.11729-6-thuth@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'tests/rtc-test.c')
-rw-r--r--tests/rtc-test.c720
1 files changed, 0 insertions, 720 deletions
diff --git a/tests/rtc-test.c b/tests/rtc-test.c
deleted file mode 100644
index c7af34f6b1..0000000000
--- a/tests/rtc-test.c
+++ /dev/null
@@ -1,720 +0,0 @@
-/*
- * QTest testcase for the MC146818 real-time clock
- *
- * Copyright IBM, Corp. 2012
- *
- * Authors:
- * Anthony Liguori <aliguori@us.ibm.com>
- *
- * This work is licensed under the terms of the GNU GPL, version 2 or later.
- * See the COPYING file in the top-level directory.
- *
- */
-
-#include "qemu/osdep.h"
-
-#include "libqtest-single.h"
-#include "qemu/timer.h"
-#include "hw/rtc/mc146818rtc.h"
-#include "hw/rtc/mc146818rtc_regs.h"
-
-#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
-
-static uint8_t base = 0x70;
-
-static int bcd2dec(int value)
-{
- return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
-}
-
-static uint8_t cmos_read(uint8_t reg)
-{
- outb(base + 0, reg);
- return inb(base + 1);
-}
-
-static void cmos_write(uint8_t reg, uint8_t val)
-{
- outb(base + 0, reg);
- outb(base + 1, val);
-}
-
-static int tm_cmp(struct tm *lhs, struct tm *rhs)
-{
- time_t a, b;
- struct tm d1, d2;
-
- memcpy(&d1, lhs, sizeof(d1));
- memcpy(&d2, rhs, sizeof(d2));
-
- a = mktime(&d1);
- b = mktime(&d2);
-
- if (a < b) {
- return -1;
- } else if (a > b) {
- return 1;
- }
-
- return 0;
-}
-
-#if 0
-static void print_tm(struct tm *tm)
-{
- printf("%04d-%02d-%02d %02d:%02d:%02d\n",
- tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
- tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff);
-}
-#endif
-
-static void cmos_get_date_time(struct tm *date)
-{
- int base_year = 2000, hour_offset;
- int sec, min, hour, mday, mon, year;
- time_t ts;
- struct tm dummy;
-
- sec = cmos_read(RTC_SECONDS);
- min = cmos_read(RTC_MINUTES);
- hour = cmos_read(RTC_HOURS);
- mday = cmos_read(RTC_DAY_OF_MONTH);
- mon = cmos_read(RTC_MONTH);
- year = cmos_read(RTC_YEAR);
-
- if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
- sec = bcd2dec(sec);
- min = bcd2dec(min);
- hour = bcd2dec(hour);
- mday = bcd2dec(mday);
- mon = bcd2dec(mon);
- year = bcd2dec(year);
- hour_offset = 80;
- } else {
- hour_offset = 0x80;
- }
-
- if ((cmos_read(0x0B) & REG_B_24H) == 0) {
- if (hour >= hour_offset) {
- hour -= hour_offset;
- hour += 12;
- }
- }
-
- ts = time(NULL);
- localtime_r(&ts, &dummy);
-
- date->tm_isdst = dummy.tm_isdst;
- date->tm_sec = sec;
- date->tm_min = min;
- date->tm_hour = hour;
- date->tm_mday = mday;
- date->tm_mon = mon - 1;
- date->tm_year = base_year + year - 1900;
-#ifndef __sun__
- date->tm_gmtoff = 0;
-#endif
-
- ts = mktime(date);
-}
-
-static void check_time(int wiggle)
-{
- struct tm start, date[4], end;
- struct tm *datep;
- time_t ts;
-
- /*
- * This check assumes a few things. First, we cannot guarantee that we get
- * a consistent reading from the wall clock because we may hit an edge of
- * the clock while reading. To work around this, we read four clock readings
- * such that at least two of them should match. We need to assume that one
- * reading is corrupt so we need four readings to ensure that we have at
- * least two consecutive identical readings
- *
- * It's also possible that we'll cross an edge reading the host clock so
- * simply check to make sure that the clock reading is within the period of
- * when we expect it to be.
- */
-
- ts = time(NULL);
- gmtime_r(&ts, &start);
-
- cmos_get_date_time(&date[0]);
- cmos_get_date_time(&date[1]);
- cmos_get_date_time(&date[2]);
- cmos_get_date_time(&date[3]);
-
- ts = time(NULL);
- gmtime_r(&ts, &end);
-
- if (tm_cmp(&date[0], &date[1]) == 0) {
- datep = &date[0];
- } else if (tm_cmp(&date[1], &date[2]) == 0) {
- datep = &date[1];
- } else if (tm_cmp(&date[2], &date[3]) == 0) {
- datep = &date[2];
- } else {
- g_assert_not_reached();
- }
-
- if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) {
- long t, s;
-
- start.tm_isdst = datep->tm_isdst;
-
- t = (long)mktime(datep);
- s = (long)mktime(&start);
- if (t < s) {
- g_test_message("RTC is %ld second(s) behind wall-clock", (s - t));
- } else {
- g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s));
- }
-
- g_assert_cmpint(ABS(t - s), <=, wiggle);
- }
-}
-
-static int wiggle = 2;
-
-static void set_year_20xx(void)
-{
- /* Set BCD mode */
- cmos_write(RTC_REG_B, REG_B_24H);
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_YEAR, 0x11);
- cmos_write(RTC_CENTURY, 0x20);
- cmos_write(RTC_MONTH, 0x02);
- cmos_write(RTC_DAY_OF_MONTH, 0x02);
- cmos_write(RTC_HOURS, 0x02);
- cmos_write(RTC_MINUTES, 0x04);
- cmos_write(RTC_SECONDS, 0x58);
- cmos_write(RTC_REG_A, 0x26);
-
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
- g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
-
- if (sizeof(time_t) == 4) {
- return;
- }
-
- /* Set a date in 2080 to ensure there is no year-2038 overflow. */
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_YEAR, 0x80);
- cmos_write(RTC_REG_A, 0x26);
-
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
- g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
-
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_YEAR, 0x11);
- cmos_write(RTC_REG_A, 0x26);
-
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
- g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
-}
-
-static void set_year_1980(void)
-{
- /* Set BCD mode */
- cmos_write(RTC_REG_B, REG_B_24H);
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_YEAR, 0x80);
- cmos_write(RTC_CENTURY, 0x19);
- cmos_write(RTC_MONTH, 0x02);
- cmos_write(RTC_DAY_OF_MONTH, 0x02);
- cmos_write(RTC_HOURS, 0x02);
- cmos_write(RTC_MINUTES, 0x04);
- cmos_write(RTC_SECONDS, 0x58);
- cmos_write(RTC_REG_A, 0x26);
-
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
- g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
-}
-
-static void bcd_check_time(void)
-{
- /* Set BCD mode */
- cmos_write(RTC_REG_B, REG_B_24H);
- check_time(wiggle);
-}
-
-static void dec_check_time(void)
-{
- /* Set DEC mode */
- cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
- check_time(wiggle);
-}
-
-static void alarm_time(void)
-{
- struct tm now;
- time_t ts;
- int i;
-
- ts = time(NULL);
- gmtime_r(&ts, &now);
-
- /* set DEC mode */
- cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
-
- g_assert(!get_irq(RTC_ISA_IRQ));
- cmos_read(RTC_REG_C);
-
- now.tm_sec = (now.tm_sec + 2) % 60;
- cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
- cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
- cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
-
- for (i = 0; i < 2 + wiggle; i++) {
- if (get_irq(RTC_ISA_IRQ)) {
- break;
- }
-
- clock_step(1000000000);
- }
-
- g_assert(get_irq(RTC_ISA_IRQ));
- g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
- g_assert(cmos_read(RTC_REG_C) == 0);
-}
-
-static void set_time_regs(int h, int m, int s)
-{
- cmos_write(RTC_HOURS, h);
- cmos_write(RTC_MINUTES, m);
- cmos_write(RTC_SECONDS, s);
-}
-
-static void set_time(int mode, int h, int m, int s)
-{
- cmos_write(RTC_REG_B, mode);
- cmos_write(RTC_REG_A, 0x76);
- set_time_regs(h, m, s);
- cmos_write(RTC_REG_A, 0x26);
-}
-
-static void set_datetime_bcd(int h, int min, int s, int d, int m, int y)
-{
- cmos_write(RTC_HOURS, h);
- cmos_write(RTC_MINUTES, min);
- cmos_write(RTC_SECONDS, s);
- cmos_write(RTC_YEAR, y & 0xFF);
- cmos_write(RTC_CENTURY, y >> 8);
- cmos_write(RTC_MONTH, m);
- cmos_write(RTC_DAY_OF_MONTH, d);
-}
-
-static void set_datetime_dec(int h, int min, int s, int d, int m, int y)
-{
- cmos_write(RTC_HOURS, h);
- cmos_write(RTC_MINUTES, min);
- cmos_write(RTC_SECONDS, s);
- cmos_write(RTC_YEAR, y % 100);
- cmos_write(RTC_CENTURY, y / 100);
- cmos_write(RTC_MONTH, m);
- cmos_write(RTC_DAY_OF_MONTH, d);
-}
-
-static void set_datetime(int mode, int h, int min, int s, int d, int m, int y)
-{
- cmos_write(RTC_REG_B, mode);
-
- cmos_write(RTC_REG_A, 0x76);
- if (mode & REG_B_DM) {
- set_datetime_dec(h, min, s, d, m, y);
- } else {
- set_datetime_bcd(h, min, s, d, m, y);
- }
- cmos_write(RTC_REG_A, 0x26);
-}
-
-#define assert_time(h, m, s) \
- do { \
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
- g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
- } while(0)
-
-#define assert_datetime_bcd(h, min, s, d, m, y) \
- do { \
- g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
- g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
- g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
- g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
- g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
- g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
- g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
- } while(0)
-
-static void basic_12h_bcd(void)
-{
- /* set BCD 12 hour mode */
- set_time(0, 0x81, 0x59, 0x00);
- clock_step(1000000000LL);
- assert_time(0x81, 0x59, 0x01);
- clock_step(59000000000LL);
- assert_time(0x82, 0x00, 0x00);
-
- /* test BCD wraparound */
- set_time(0, 0x09, 0x59, 0x59);
- clock_step(60000000000LL);
- assert_time(0x10, 0x00, 0x59);
-
- /* 12 AM -> 1 AM */
- set_time(0, 0x12, 0x59, 0x59);
- clock_step(1000000000LL);
- assert_time(0x01, 0x00, 0x00);
-
- /* 12 PM -> 1 PM */
- set_time(0, 0x92, 0x59, 0x59);
- clock_step(1000000000LL);
- assert_time(0x81, 0x00, 0x00);
-
- /* 11 AM -> 12 PM */
- set_time(0, 0x11, 0x59, 0x59);
- clock_step(1000000000LL);
- assert_time(0x92, 0x00, 0x00);
- /* TODO: test day wraparound */
-
- /* 11 PM -> 12 AM */
- set_time(0, 0x91, 0x59, 0x59);
- clock_step(1000000000LL);
- assert_time(0x12, 0x00, 0x00);
- /* TODO: test day wraparound */
-}
-
-static void basic_12h_dec(void)
-{
- /* set decimal 12 hour mode */
- set_time(REG_B_DM, 0x81, 59, 0);
- clock_step(1000000000LL);
- assert_time(0x81, 59, 1);
- clock_step(59000000000LL);
- assert_time(0x82, 0, 0);
-
- /* 12 PM -> 1 PM */
- set_time(REG_B_DM, 0x8c, 59, 59);
- clock_step(1000000000LL);
- assert_time(0x81, 0, 0);
-
- /* 12 AM -> 1 AM */
- set_time(REG_B_DM, 0x0c, 59, 59);
- clock_step(1000000000LL);
- assert_time(0x01, 0, 0);
-
- /* 11 AM -> 12 PM */
- set_time(REG_B_DM, 0x0b, 59, 59);
- clock_step(1000000000LL);
- assert_time(0x8c, 0, 0);
-
- /* 11 PM -> 12 AM */
- set_time(REG_B_DM, 0x8b, 59, 59);
- clock_step(1000000000LL);
- assert_time(0x0c, 0, 0);
- /* TODO: test day wraparound */
-}
-
-static void basic_24h_bcd(void)
-{
- /* set BCD 24 hour mode */
- set_time(REG_B_24H, 0x09, 0x59, 0x00);
- clock_step(1000000000LL);
- assert_time(0x09, 0x59, 0x01);
- clock_step(59000000000LL);
- assert_time(0x10, 0x00, 0x00);
-
- /* test BCD wraparound */
- set_time(REG_B_24H, 0x09, 0x59, 0x00);
- clock_step(60000000000LL);
- assert_time(0x10, 0x00, 0x00);
-
- /* TODO: test day wraparound */
- set_time(REG_B_24H, 0x23, 0x59, 0x00);
- clock_step(60000000000LL);
- assert_time(0x00, 0x00, 0x00);
-}
-
-static void basic_24h_dec(void)
-{
- /* set decimal 24 hour mode */
- set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
- clock_step(1000000000LL);
- assert_time(9, 59, 1);
- clock_step(59000000000LL);
- assert_time(10, 0, 0);
-
- /* test BCD wraparound */
- set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
- clock_step(60000000000LL);
- assert_time(10, 0, 0);
-
- /* TODO: test day wraparound */
- set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
- clock_step(60000000000LL);
- assert_time(0, 0, 0);
-}
-
-static void am_pm_alarm(void)
-{
- cmos_write(RTC_MINUTES_ALARM, 0xC0);
- cmos_write(RTC_SECONDS_ALARM, 0xC0);
-
- /* set BCD 12 hour mode */
- cmos_write(RTC_REG_B, 0);
-
- /* Set time and alarm hour. */
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_HOURS_ALARM, 0x82);
- cmos_write(RTC_HOURS, 0x81);
- cmos_write(RTC_MINUTES, 0x59);
- cmos_write(RTC_SECONDS, 0x00);
- cmos_read(RTC_REG_C);
- cmos_write(RTC_REG_A, 0x26);
-
- /* Check that alarm triggers when AM/PM is set. */
- clock_step(60000000000LL);
- g_assert(cmos_read(RTC_HOURS) == 0x82);
- g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
-
- /*
- * Each of the following two tests takes over 60 seconds due to the time
- * needed to report the PIT interrupts. Unfortunately, our PIT device
- * model keeps counting even when GATE=0, so we cannot simply disable
- * it in main().
- */
- if (g_test_quick()) {
- return;
- }
-
- /* set DEC 12 hour mode */
- cmos_write(RTC_REG_B, REG_B_DM);
-
- /* Set time and alarm hour. */
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_HOURS_ALARM, 0x82);
- cmos_write(RTC_HOURS, 3);
- cmos_write(RTC_MINUTES, 0);
- cmos_write(RTC_SECONDS, 0);
- cmos_read(RTC_REG_C);
- cmos_write(RTC_REG_A, 0x26);
-
- /* Check that alarm triggers. */
- clock_step(3600 * 11 * 1000000000LL);
- g_assert(cmos_read(RTC_HOURS) == 0x82);
- g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
-
- /* Same as above, with inverted HOURS and HOURS_ALARM. */
- cmos_write(RTC_REG_A, 0x76);
- cmos_write(RTC_HOURS_ALARM, 2);
- cmos_write(RTC_HOURS, 3);
- cmos_write(RTC_MINUTES, 0);
- cmos_write(RTC_SECONDS, 0);
- cmos_read(RTC_REG_C);
- cmos_write(RTC_REG_A, 0x26);
-
- /* Check that alarm does not trigger if hours differ only by AM/PM. */
- clock_step(3600 * 11 * 1000000000LL);
- g_assert(cmos_read(RTC_HOURS) == 0x82);
- g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
-}
-
-/* success if no crash or abort */
-static void fuzz_registers(void)
-{
- unsigned int i;
-
- for (i = 0; i < 1000; i++) {
- uint8_t reg, val;
-
- reg = (uint8_t)g_test_rand_int_range(0, 16);
- val = (uint8_t)g_test_rand_int_range(0, 256);
-
- cmos_write(reg, val);
- cmos_read(reg);
- }
-}
-
-static void register_b_set_flag(void)
-{
- if (cmos_read(RTC_REG_A) & REG_A_UIP) {
- clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5);
- }
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
-
- /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
- cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
-
- set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
-
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
-
- /* Since SET flag is still enabled, time does not advance. */
- clock_step(1000000000LL);
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
-
- /* Disable SET flag in Register B */
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
-
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
-
- /* Since SET flag is disabled, the clock now advances. */
- clock_step(1000000000LL);
- assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
-}
-
-static void divider_reset(void)
-{
- /* Enable binary-coded decimal (BCD) mode in Register B*/
- cmos_write(RTC_REG_B, REG_B_24H);
-
- /* Enter divider reset */
- cmos_write(RTC_REG_A, 0x76);
- set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
-
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
-
- /* Since divider reset flag is still enabled, these are equality checks. */
- clock_step(1000000000LL);
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
-
- /* The first update ends 500 ms after divider reset */
- cmos_write(RTC_REG_A, 0x26);
- clock_step(500000000LL - UIP_HOLD_LENGTH - 1);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
- assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
-
- clock_step(1);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
- clock_step(UIP_HOLD_LENGTH);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
-
- assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
-}
-
-static void uip_stuck(void)
-{
- set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
-
- /* The first update ends 500 ms after divider reset */
- (void)cmos_read(RTC_REG_C);
- clock_step(500000000LL);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
- assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
-
- /* UF is now set. */
- cmos_write(RTC_HOURS_ALARM, 0x02);
- cmos_write(RTC_MINUTES_ALARM, 0xC0);
- cmos_write(RTC_SECONDS_ALARM, 0xC0);
-
- /* Because the alarm will fire soon, reading register A will latch UIP. */
- clock_step(1000000000LL - UIP_HOLD_LENGTH / 2);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
-
- /* Move the alarm far away. This must not cause UIP to remain stuck! */
- cmos_write(RTC_HOURS_ALARM, 0x03);
- clock_step(UIP_HOLD_LENGTH);
- g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
-}
-
-#define RTC_PERIOD_CODE1 13 /* 8 Hz */
-#define RTC_PERIOD_CODE2 15 /* 2 Hz */
-
-#define RTC_PERIOD_TEST_NR 50
-
-static uint64_t wait_periodic_interrupt(uint64_t real_time)
-{
- while (!get_irq(RTC_ISA_IRQ)) {
- real_time = clock_step_next();
- }
-
- g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0);
- return real_time;
-}
-
-static void periodic_timer(void)
-{
- int i;
- uint64_t period_clocks, period_time, start_time, real_time;
-
- /* disable all interrupts. */
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) &
- ~(REG_B_PIE | REG_B_AIE | REG_B_UIE));
- cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
- /* enable periodic interrupt after properly configure the period. */
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE);
-
- start_time = real_time = clock_step_next();
-
- for (i = 0; i < RTC_PERIOD_TEST_NR; i++) {
- cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
- real_time = wait_periodic_interrupt(real_time);
- cmos_write(RTC_REG_A, RTC_PERIOD_CODE2);
- real_time = wait_periodic_interrupt(real_time);
- }
-
- period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) +
- periodic_period_to_clock(RTC_PERIOD_CODE2);
- period_clocks *= RTC_PERIOD_TEST_NR;
- period_time = periodic_clock_to_ns(period_clocks);
-
- real_time -= start_time;
- g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=,
- NANOSECONDS_PER_SECOND * 0.5);
-}
-
-int main(int argc, char **argv)
-{
- QTestState *s = NULL;
- int ret;
-
- g_test_init(&argc, &argv, NULL);
-
- s = qtest_start("-rtc clock=vm");
- qtest_irq_intercept_in(s, "ioapic");
-
- qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
- qtest_add_func("/rtc/check-time/dec", dec_check_time);
- qtest_add_func("/rtc/alarm/interrupt", alarm_time);
- qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
- qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
- qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
- qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
- qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
- qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
- qtest_add_func("/rtc/set-year/1980", set_year_1980);
- qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag);
- qtest_add_func("/rtc/update/divider-reset", divider_reset);
- qtest_add_func("/rtc/update/uip-stuck", uip_stuck);
- qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
- qtest_add_func("/rtc/periodic/interrupt", periodic_timer);
-
- ret = g_test_run();
-
- if (s) {
- qtest_quit(s);
- }
-
- return ret;
-}