diff options
author | Alberto Garcia <berto@igalia.com> | 2020-07-10 18:13:16 +0200 |
---|---|---|
committer | Max Reitz <mreitz@redhat.com> | 2020-08-26 08:49:51 +0200 |
commit | a5d3cfa2dc775e5d99f013703b8508f1d989d588 (patch) | |
tree | d368d77115c471937aeb63a20eca3bf314daca0b /tests/qemu-iotests/271 | |
parent | 7bbb59202a538b12df5840f250899ac3ec39a069 (diff) |
iotests: Add tests for qcow2 images with extended L2 entries
Signed-off-by: Alberto Garcia <berto@igalia.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-Id: <e6dd0429cafe84ca603179c298a8703bddca2904.1594396418.git.berto@igalia.com>
[mreitz: Use env in shebang line]
Signed-off-by: Max Reitz <mreitz@redhat.com>
Diffstat (limited to 'tests/qemu-iotests/271')
-rwxr-xr-x | tests/qemu-iotests/271 | 901 |
1 files changed, 901 insertions, 0 deletions
diff --git a/tests/qemu-iotests/271 b/tests/qemu-iotests/271 new file mode 100755 index 0000000000..e242b28b58 --- /dev/null +++ b/tests/qemu-iotests/271 @@ -0,0 +1,901 @@ +#!/usr/bin/env bash +# +# Test qcow2 images with extended L2 entries +# +# Copyright (C) 2019-2020 Igalia, S.L. +# Author: Alberto Garcia <berto@igalia.com> +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation; either version 2 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see <http://www.gnu.org/licenses/>. +# + +# creator +owner=berto@igalia.com + +seq="$(basename $0)" +echo "QA output created by $seq" + +here="$PWD" +status=1 # failure is the default! + +_cleanup() +{ + _cleanup_test_img + rm -f "$TEST_IMG.raw" +} +trap "_cleanup; exit \$status" 0 1 2 3 15 + +# get standard environment, filters and checks +. ./common.rc +. ./common.filter + +_supported_fmt qcow2 +_supported_proto file nfs +_supported_os Linux +_unsupported_imgopts extended_l2 compat=0.10 cluster_size data_file refcount_bits=1[^0-9] + +l2_offset=$((0x40000)) + +_verify_img() +{ + $QEMU_IMG compare "$TEST_IMG" "$TEST_IMG.raw" | grep -v 'Images are identical' + $QEMU_IMG check "$TEST_IMG" | _filter_qemu_img_check | \ + grep -v 'No errors were found on the image' +} + +# Compare the bitmap of an extended L2 entry against an expected value +_verify_l2_bitmap() +{ + entry_no="$1" # L2 entry number, starting from 0 + expected_alloc="$alloc" # Space-separated list of allocated subcluster indexes + expected_zero="$zero" # Space-separated list of zero subcluster indexes + + offset=$(($l2_offset + $entry_no * 16)) + entry=$(peek_file_be "$TEST_IMG" $offset 8) + offset=$(($offset + 8)) + bitmap=$(peek_file_be "$TEST_IMG" $offset 8) + + expected_bitmap=0 + for bit in $expected_alloc; do + expected_bitmap=$(($expected_bitmap | (1 << $bit))) + done + for bit in $expected_zero; do + expected_bitmap=$(($expected_bitmap | (1 << (32 + $bit)))) + done + printf -v expected_bitmap "%u" $expected_bitmap # Convert to unsigned + + printf "L2 entry #%d: 0x%016x %016x\n" "$entry_no" "$entry" "$bitmap" + if [ "$bitmap" != "$expected_bitmap" ]; then + printf "ERROR: expecting bitmap 0x%016x\n" "$expected_bitmap" + fi +} + +# This should be called as _run_test c=XXX sc=XXX off=XXX len=XXX cmd=XXX +# c: cluster number (0 if unset) +# sc: subcluster number inside cluster @c (0 if unset) +# off: offset inside subcluster @sc, in kilobytes (0 if unset) +# len: request length, passed directly to qemu-io (e.g: 256, 4k, 1M, ...) +# cmd: the command to pass to qemu-io, must be one of +# write -> write +# zero -> write -z +# unmap -> write -z -u +# compress -> write -c +# discard -> discard +_run_test() +{ + unset c sc off len cmd + for var in "$@"; do eval "$var"; done + case "${cmd:-write}" in + zero) + cmd="write -q -z";; + unmap) + cmd="write -q -z -u";; + compress) + pat=$((${pat:-0} + 1)) + cmd="write -q -c -P ${pat}";; + write) + pat=$((${pat:-0} + 1)) + cmd="write -q -P ${pat}";; + discard) + cmd="discard -q";; + *) + echo "Unknown option $cmd" + exit 1;; + esac + c="${c:-0}" + sc="${sc:-0}" + off="${off:-0}" + offset="$(($c * 64 + $sc * 2 + $off))" + [ "$offset" != 0 ] && offset="${offset}k" + cmd="$cmd ${offset} ${len}" + raw_cmd=$(echo $cmd | sed s/-c//) # Raw images don't support -c + echo $cmd | sed 's/-P [0-9][0-9]\?/-P PATTERN/' + $QEMU_IO -c "$cmd" "$TEST_IMG" | _filter_qemu_io + $QEMU_IO -c "$raw_cmd" -f raw "$TEST_IMG.raw" | _filter_qemu_io + _verify_img + _verify_l2_bitmap "$c" +} + +_reset_img() +{ + size="$1" + $QEMU_IMG create -f raw "$TEST_IMG.raw" "$size" | _filter_img_create + if [ "$use_backing_file" = "yes" ]; then + $QEMU_IMG create -f raw "$TEST_IMG.base" "$size" | _filter_img_create + $QEMU_IO -c "write -q -P 0xFF 0 $size" -f raw "$TEST_IMG.base" | _filter_qemu_io + $QEMU_IO -c "write -q -P 0xFF 0 $size" -f raw "$TEST_IMG.raw" | _filter_qemu_io + _make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" "$size" + else + _make_test_img -o extended_l2=on "$size" + fi +} + +############################################################ +############################################################ +############################################################ + +# Test that writing to an image with subclusters produces the expected +# results, in images with and without backing files +for use_backing_file in yes no; do + echo + echo "### Standard write tests (backing file: $use_backing_file) ###" + echo + _reset_img 1M + ### Write subcluster #0 (beginning of subcluster) ### + alloc="0"; zero="" + _run_test sc=0 len=1k + + ### Write subcluster #1 (middle of subcluster) ### + alloc="0 1"; zero="" + _run_test sc=1 off=1 len=512 + + ### Write subcluster #2 (end of subcluster) ### + alloc="0 1 2"; zero="" + _run_test sc=2 off=1 len=1k + + ### Write subcluster #3 (full subcluster) ### + alloc="0 1 2 3"; zero="" + _run_test sc=3 len=2k + + ### Write subclusters #4-6 (full subclusters) ### + alloc="$(seq 0 6)"; zero="" + _run_test sc=4 len=6k + + ### Write subclusters #7-9 (partial subclusters) ### + alloc="$(seq 0 9)"; zero="" + _run_test sc=7 off=1 len=4k + + ### Write subcluster #16 (partial subcluster) ### + alloc="$(seq 0 9) 16"; zero="" + _run_test sc=16 len=1k + + ### Write subcluster #31-#33 (cluster overlap) ### + alloc="$(seq 0 9) 16 31"; zero="" + _run_test sc=31 off=1 len=4k + alloc="0 1" ; zero="" + _verify_l2_bitmap 1 + + ### Zero subcluster #1 + alloc="0 $(seq 2 9) 16 31"; zero="1" + _run_test sc=1 len=2k cmd=zero + + ### Zero cluster #0 + alloc=""; zero="$(seq 0 31)" + _run_test sc=0 len=64k cmd=zero + + ### Fill cluster #0 with data + alloc="$(seq 0 31)"; zero="" + _run_test sc=0 len=64k + + ### Zero and unmap half of cluster #0 (this won't unmap it) + alloc="$(seq 16 31)"; zero="$(seq 0 15)" + _run_test sc=0 len=32k cmd=unmap + + ### Zero and unmap cluster #0 + alloc=""; zero="$(seq 0 31)" + _run_test sc=0 len=64k cmd=unmap + + ### Write subcluster #1 (middle of subcluster) + alloc="1"; zero="0 $(seq 2 31)" + _run_test sc=1 off=1 len=512 + + ### Fill cluster #0 with data + alloc="$(seq 0 31)"; zero="" + _run_test sc=0 len=64k + + ### Discard cluster #0 + alloc=""; zero="$(seq 0 31)" + _run_test sc=0 len=64k cmd=discard + + ### Write compressed data to cluster #0 + alloc=""; zero="" + _run_test sc=0 len=64k cmd=compress + + ### Write subcluster #1 (middle of subcluster) + alloc="$(seq 0 31)"; zero="" + _run_test sc=1 off=1 len=512 +done + +############################################################ +############################################################ +############################################################ + +# calculate_l2_meta() checks if none of the clusters affected by a +# write operation need COW or changes to their L2 metadata and simply +# returns when they don't. This is a test for that optimization. +# Here clusters #0-#3 are overwritten but only #1 and #2 need changes. +echo +echo '### Overwriting several clusters without COW ###' +echo +use_backing_file="no" _reset_img 1M +# Write cluster #0, subclusters #12-#31 +alloc="$(seq 12 31)"; zero="" +_run_test sc=12 len=40k + +# Write cluster #1, subcluster #13 +alloc="13"; zero="" +_run_test c=1 sc=13 len=2k + +# Zeroize cluster #2, subcluster #14 +alloc="14"; zero="" +_run_test c=2 sc=14 len=2k +alloc=""; zero="14" +_run_test c=2 sc=14 len=2k cmd=zero + +# Write cluster #3, subclusters #0-#16 +alloc="$(seq 0 16)"; zero="" +_run_test c=3 sc=0 len=34k + +# Write from cluster #0, subcluster #12 to cluster #3, subcluster #11 +alloc="$(seq 12 31)"; zero="" +_run_test sc=12 len=192k +alloc="$(seq 0 31)"; zero="" +_verify_l2_bitmap 1 +_verify_l2_bitmap 2 + +alloc="$(seq 0 16)"; zero="" +_verify_l2_bitmap 3 + +############################################################ +############################################################ +############################################################ + +# Test different patterns of writing zeroes +for use_backing_file in yes no; do + echo + echo "### Writing zeroes 1: unallocated clusters (backing file: $use_backing_file) ###" + echo + # Note that the image size is not a multiple of the cluster size + _reset_img 2083k + + # Cluster-aligned request from clusters #0 to #2 + alloc=""; zero="$(seq 0 31)" + _run_test c=0 sc=0 len=192k cmd=zero + _verify_l2_bitmap 1 + _verify_l2_bitmap 2 + + # Subcluster-aligned request from clusters #3 to #5 + alloc=""; zero="$(seq 16 31)" + _run_test c=3 sc=16 len=128k cmd=zero + alloc=""; zero="$(seq 0 31)" + _verify_l2_bitmap 4 + alloc=""; zero="$(seq 0 15)" + _verify_l2_bitmap 5 + + # Unaligned request from clusters #6 to #8 + if [ "$use_backing_file" = "yes" ]; then + alloc="15"; zero="$(seq 16 31)" # copy-on-write happening here + else + alloc=""; zero="$(seq 15 31)" + fi + _run_test c=6 sc=15 off=1 len=128k cmd=zero + alloc=""; zero="$(seq 0 31)" + _verify_l2_bitmap 7 + if [ "$use_backing_file" = "yes" ]; then + alloc="15"; zero="$(seq 0 14)" # copy-on-write happening here + else + alloc=""; zero="$(seq 0 15)" + fi + _verify_l2_bitmap 8 + + echo + echo "### Writing zeroes 2: allocated clusters (backing file: $use_backing_file) ###" + echo + alloc="$(seq 0 31)"; zero="" + _run_test c=9 sc=0 len=576k + _verify_l2_bitmap 10 + _verify_l2_bitmap 11 + _verify_l2_bitmap 12 + _verify_l2_bitmap 13 + _verify_l2_bitmap 14 + _verify_l2_bitmap 15 + _verify_l2_bitmap 16 + _verify_l2_bitmap 17 + + # Cluster-aligned request from clusters #9 to #11 + alloc=""; zero="$(seq 0 31)" + _run_test c=9 sc=0 len=192k cmd=zero + _verify_l2_bitmap 10 + _verify_l2_bitmap 11 + + # Subcluster-aligned request from clusters #12 to #14 + alloc="$(seq 0 15)"; zero="$(seq 16 31)" + _run_test c=12 sc=16 len=128k cmd=zero + alloc=""; zero="$(seq 0 31)" + _verify_l2_bitmap 13 + alloc="$(seq 16 31)"; zero="$(seq 0 15)" + _verify_l2_bitmap 14 + + # Unaligned request from clusters #15 to #17 + alloc="$(seq 0 15)"; zero="$(seq 16 31)" + _run_test c=15 sc=15 off=1 len=128k cmd=zero + alloc=""; zero="$(seq 0 31)" + _verify_l2_bitmap 16 + alloc="$(seq 15 31)"; zero="$(seq 0 14)" + _verify_l2_bitmap 17 + + echo + echo "### Writing zeroes 3: compressed clusters (backing file: $use_backing_file) ###" + echo + alloc=""; zero="" + for c in $(seq 18 28); do + _run_test c=$c sc=0 len=64k cmd=compress + done + + # Cluster-aligned request from clusters #18 to #20 + alloc=""; zero="$(seq 0 31)" + _run_test c=18 sc=0 len=192k cmd=zero + _verify_l2_bitmap 19 + _verify_l2_bitmap 20 + + # Subcluster-aligned request from clusters #21 to #23. + # We cannot partially zero a compressed cluster so the code + # returns -ENOTSUP, which means copy-on-write of the compressed + # data and fill the rest with actual zeroes on disk. + # TODO: cluster #22 should use the 'all zeroes' bits. + alloc="$(seq 0 31)"; zero="" + _run_test c=21 sc=16 len=128k cmd=zero + _verify_l2_bitmap 22 + _verify_l2_bitmap 23 + + # Unaligned request from clusters #24 to #26 + # In this case QEMU internally sends a 1k request followed by a + # subcluster-aligned 128k request. The first request decompresses + # cluster #24, but that's not enough to perform the second request + # efficiently because it partially writes to cluster #26 (which is + # compressed) so we hit the same problem as before. + alloc="$(seq 0 31)"; zero="" + _run_test c=24 sc=15 off=1 len=129k cmd=zero + _verify_l2_bitmap 25 + _verify_l2_bitmap 26 + + # Unaligned request from clusters #27 to #29 + # Similar to the previous case, but this time the tail of the + # request does not correspond to a compressed cluster, so it can + # be zeroed efficiently. + # Note that the very last subcluster is partially written, so if + # there's a backing file we need to perform cow. + alloc="$(seq 0 15)"; zero="$(seq 16 31)" + _run_test c=27 sc=15 off=1 len=128k cmd=zero + alloc=""; zero="$(seq 0 31)" + _verify_l2_bitmap 28 + if [ "$use_backing_file" = "yes" ]; then + alloc="15"; zero="$(seq 0 14)" # copy-on-write happening here + else + alloc=""; zero="$(seq 0 15)" + fi + _verify_l2_bitmap 29 + + echo + echo "### Writing zeroes 4: other tests (backing file: $use_backing_file) ###" + echo + # Unaligned request in the middle of cluster #30. + # If there's a backing file we need to allocate and do + # copy-on-write on the partially zeroed subclusters. + # If not we can set the 'all zeroes' bit on them. + if [ "$use_backing_file" = "yes" ]; then + alloc="15 19"; zero="$(seq 16 18)" # copy-on-write happening here + else + alloc=""; zero="$(seq 15 19)" + fi + _run_test c=30 sc=15 off=1 len=8k cmd=zero + + # Fill the last cluster with zeroes, up to the end of the image + # (the image size is not a multiple of the cluster or subcluster size). + alloc=""; zero="$(seq 0 17)" + _run_test c=32 sc=0 len=35k cmd=zero +done + +############################################################ +############################################################ +############################################################ + +# Zero + unmap +for use_backing_file in yes no; do + echo + echo "### Zero + unmap 1: allocated clusters (backing file: $use_backing_file) ###" + echo + # Note that the image size is not a multiple of the cluster size + _reset_img 2083k + alloc="$(seq 0 31)"; zero="" + _run_test c=9 sc=0 len=576k + _verify_l2_bitmap 10 + _verify_l2_bitmap 11 + _verify_l2_bitmap 12 + _verify_l2_bitmap 13 + _verify_l2_bitmap 14 + _verify_l2_bitmap 15 + _verify_l2_bitmap 16 + _verify_l2_bitmap 17 + + # Cluster-aligned request from clusters #9 to #11 + alloc=""; zero="$(seq 0 31)" + _run_test c=9 sc=0 len=192k cmd=unmap + _verify_l2_bitmap 10 + _verify_l2_bitmap 11 + + # Subcluster-aligned request from clusters #12 to #14 + alloc="$(seq 0 15)"; zero="$(seq 16 31)" + _run_test c=12 sc=16 len=128k cmd=unmap + alloc=""; zero="$(seq 0 31)" + _verify_l2_bitmap 13 + alloc="$(seq 16 31)"; zero="$(seq 0 15)" + _verify_l2_bitmap 14 + + # Unaligned request from clusters #15 to #17 + alloc="$(seq 0 15)"; zero="$(seq 16 31)" + _run_test c=15 sc=15 off=1 len=128k cmd=unmap + alloc=""; zero="$(seq 0 31)" + _verify_l2_bitmap 16 + alloc="$(seq 15 31)"; zero="$(seq 0 14)" + _verify_l2_bitmap 17 + + echo + echo "### Zero + unmap 2: compressed clusters (backing file: $use_backing_file) ###" + echo + alloc=""; zero="" + for c in $(seq 18 28); do + _run_test c=$c sc=0 len=64k cmd=compress + done + + # Cluster-aligned request from clusters #18 to #20 + alloc=""; zero="$(seq 0 31)" + _run_test c=18 sc=0 len=192k cmd=unmap + _verify_l2_bitmap 19 + _verify_l2_bitmap 20 + + # Subcluster-aligned request from clusters #21 to #23. + # We cannot partially zero a compressed cluster so the code + # returns -ENOTSUP, which means copy-on-write of the compressed + # data and fill the rest with actual zeroes on disk. + # TODO: cluster #22 should use the 'all zeroes' bits. + alloc="$(seq 0 31)"; zero="" + _run_test c=21 sc=16 len=128k cmd=unmap + _verify_l2_bitmap 22 + _verify_l2_bitmap 23 + + # Unaligned request from clusters #24 to #26 + # In this case QEMU internally sends a 1k request followed by a + # subcluster-aligned 128k request. The first request decompresses + # cluster #24, but that's not enough to perform the second request + # efficiently because it partially writes to cluster #26 (which is + # compressed) so we hit the same problem as before. + alloc="$(seq 0 31)"; zero="" + _run_test c=24 sc=15 off=1 len=129k cmd=unmap + _verify_l2_bitmap 25 + _verify_l2_bitmap 26 + + # Unaligned request from clusters #27 to #29 + # Similar to the previous case, but this time the tail of the + # request does not correspond to a compressed cluster, so it can + # be zeroed efficiently. + # Note that the very last subcluster is partially written, so if + # there's a backing file we need to perform cow. + alloc="$(seq 0 15)"; zero="$(seq 16 31)" + _run_test c=27 sc=15 off=1 len=128k cmd=unmap + alloc=""; zero="$(seq 0 31)" + _verify_l2_bitmap 28 + if [ "$use_backing_file" = "yes" ]; then + alloc="15"; zero="$(seq 0 14)" # copy-on-write happening here + else + alloc=""; zero="$(seq 0 15)" + fi + _verify_l2_bitmap 29 +done + +############################################################ +############################################################ +############################################################ + +# Test qcow2_cluster_discard() with full and normal discards +for use_backing_file in yes no; do + echo + echo "### Discarding clusters with non-zero bitmaps (backing file: $use_backing_file) ###" + echo + if [ "$use_backing_file" = "yes" ]; then + _make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 1M + else + _make_test_img -o extended_l2=on 1M + fi + # Write clusters #0-#2 and then discard them + $QEMU_IO -c 'write -q 0 128k' "$TEST_IMG" + $QEMU_IO -c 'discard -q 0 128k' "$TEST_IMG" + # 'qemu-io discard' doesn't do a full discard, it zeroizes the + # cluster, so both clusters have all zero bits set now + alloc=""; zero="$(seq 0 31)" + _verify_l2_bitmap 0 + _verify_l2_bitmap 1 + # Now mark the 2nd half of the subclusters from cluster #0 as unallocated + poke_file "$TEST_IMG" $(($l2_offset+8)) "\x00\x00" + # Discard cluster #0 again to see how the zero bits have changed + $QEMU_IO -c 'discard -q 0 64k' "$TEST_IMG" + # And do a full discard of cluster #1 by shrinking and growing the image + $QEMU_IMG resize --shrink "$TEST_IMG" 64k + $QEMU_IMG resize "$TEST_IMG" 1M + # A normal discard sets all 'zero' bits only if the image has a + # backing file, otherwise it won't touch them. + if [ "$use_backing_file" = "yes" ]; then + alloc=""; zero="$(seq 0 31)" + else + alloc=""; zero="$(seq 0 15)" + fi + _verify_l2_bitmap 0 + # A full discard should clear the L2 entry completely. However + # when growing an image with a backing file the new clusters are + # zeroized to hide the stale data from the backing file + if [ "$use_backing_file" = "yes" ]; then + alloc=""; zero="$(seq 0 31)" + else + alloc=""; zero="" + fi + _verify_l2_bitmap 1 +done + +############################################################ +############################################################ +############################################################ + +# Test that corrupted L2 entries are detected in both read and write +# operations +for corruption_test_cmd in read write; do + echo + echo "### Corrupted L2 entries - $corruption_test_cmd test (allocated) ###" + echo + echo "# 'cluster is zero' bit set on the standard cluster descriptor" + echo + # We actually don't consider this a corrupted image. + # The 'cluster is zero' bit is unused in extended L2 entries so + # QEMU ignores it. + # TODO: maybe treat the image as corrupted and make qemu-img check fix it? + _make_test_img -o extended_l2=on 1M + $QEMU_IO -c 'write -q -P 0x11 0 2k' "$TEST_IMG" + poke_file "$TEST_IMG" $(($l2_offset+7)) "\x01" + alloc="0"; zero="" + _verify_l2_bitmap 0 + $QEMU_IO -c "$corruption_test_cmd -q -P 0x11 0 1k" "$TEST_IMG" + if [ "$corruption_test_cmd" = "write" ]; then + alloc="0"; zero="" + fi + _verify_l2_bitmap 0 + + echo + echo "# Both 'subcluster is zero' and 'subcluster is allocated' bits set" + echo + _make_test_img -o extended_l2=on 1M + # Write from the middle of cluster #0 to the middle of cluster #2 + $QEMU_IO -c 'write -q 32k 128k' "$TEST_IMG" + # Corrupt the L2 entry from cluster #1 + poke_file_be "$TEST_IMG" $(($l2_offset+24)) 4 1 + alloc="$(seq 0 31)"; zero="0" + _verify_l2_bitmap 1 + $QEMU_IO -c "$corruption_test_cmd 0 192k" "$TEST_IMG" + + echo + echo "### Corrupted L2 entries - $corruption_test_cmd test (unallocated) ###" + echo + echo "# 'cluster is zero' bit set on the standard cluster descriptor" + echo + # We actually don't consider this a corrupted image. + # The 'cluster is zero' bit is unused in extended L2 entries so + # QEMU ignores it. + # TODO: maybe treat the image as corrupted and make qemu-img check fix it? + _make_test_img -o extended_l2=on 1M + # We want to modify the (empty) L2 entry from cluster #0, + # but we write to #4 in order to initialize the L2 table first + $QEMU_IO -c 'write -q 256k 1k' "$TEST_IMG" + poke_file "$TEST_IMG" $(($l2_offset+7)) "\x01" + alloc=""; zero="" + _verify_l2_bitmap 0 + $QEMU_IO -c "$corruption_test_cmd -q 0 1k" "$TEST_IMG" + if [ "$corruption_test_cmd" = "write" ]; then + alloc="0"; zero="" + fi + _verify_l2_bitmap 0 + + echo + echo "# 'subcluster is allocated' bit set" + echo + _make_test_img -o extended_l2=on 1M + # We want to corrupt the (empty) L2 entry from cluster #0, + # but we write to #4 in order to initialize the L2 table first + $QEMU_IO -c 'write -q 256k 1k' "$TEST_IMG" + poke_file "$TEST_IMG" $(($l2_offset+15)) "\x01" + alloc="0"; zero="" + _verify_l2_bitmap 0 + $QEMU_IO -c "$corruption_test_cmd 0 1k" "$TEST_IMG" + + echo + echo "# Both 'subcluster is zero' and 'subcluster is allocated' bits set" + echo + _make_test_img -o extended_l2=on 1M + # We want to corrupt the (empty) L2 entry from cluster #1, + # but we write to #4 in order to initialize the L2 table first + $QEMU_IO -c 'write -q 256k 1k' "$TEST_IMG" + # Corrupt the L2 entry from cluster #1 + poke_file_be "$TEST_IMG" $(($l2_offset+24)) 8 $(((1 << 32) | 1)) + alloc="0"; zero="0" + _verify_l2_bitmap 1 + $QEMU_IO -c "$corruption_test_cmd 0 192k" "$TEST_IMG" + + echo + echo "### Compressed cluster with subcluster bitmap != 0 - $corruption_test_cmd test ###" + echo + # We actually don't consider this a corrupted image. + # The bitmap in compressed clusters is unused so QEMU should just ignore it. + _make_test_img -o extended_l2=on 1M + $QEMU_IO -c 'write -q -P 11 -c 0 64k' "$TEST_IMG" + # Change the L2 bitmap to allocate subcluster #31 and zeroize subcluster #0 + poke_file "$TEST_IMG" $(($l2_offset+11)) "\x01\x80" + alloc="31"; zero="0" + _verify_l2_bitmap 0 + $QEMU_IO -c "$corruption_test_cmd -P 11 0 64k" "$TEST_IMG" | _filter_qemu_io + # Writing allocates a new uncompressed cluster so we get a new bitmap + if [ "$corruption_test_cmd" = "write" ]; then + alloc="$(seq 0 31)"; zero="" + fi + _verify_l2_bitmap 0 +done + +############################################################ +############################################################ +############################################################ + +echo +echo "### Detect and repair unaligned clusters ###" +echo +# Create a backing file and fill it with data +$QEMU_IMG create -f raw "$TEST_IMG.base" 128k | _filter_img_create +$QEMU_IO -c "write -q -P 0xff 0 128k" -f raw "$TEST_IMG.base" | _filter_qemu_io + +echo "# Corrupted L2 entry, allocated subcluster #" +# Create a new image, allocate a cluster and write some data to it +_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" +$QEMU_IO -c 'write -q -P 1 4k 2k' "$TEST_IMG" +# Corrupt the L2 entry by making the offset unaligned +poke_file "$TEST_IMG" "$(($l2_offset+6))" "\x02" +# This cannot be repaired, qemu-img check will fail to fix it +_check_test_img -r all +# Attempting to read the image will still show that it's corrupted +$QEMU_IO -c 'read -q 0 2k' "$TEST_IMG" + +echo "# Corrupted L2 entry, no allocated subclusters #" +# Create a new image, allocate a cluster and zeroize subcluster #2 +_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" +$QEMU_IO -c 'write -q -P 1 4k 2k' "$TEST_IMG" +$QEMU_IO -c 'write -q -z 4k 2k' "$TEST_IMG" +# Corrupt the L2 entry by making the offset unaligned +poke_file "$TEST_IMG" "$(($l2_offset+6))" "\x02" +# This time none of the subclusters are allocated so we can repair the image +_check_test_img -r all +# And the data can be read normally +$QEMU_IO -c 'read -q -P 0xff 0 4k' "$TEST_IMG" +$QEMU_IO -c 'read -q -P 0x00 4k 2k' "$TEST_IMG" +$QEMU_IO -c 'read -q -P 0xff 6k 122k' "$TEST_IMG" + +############################################################ +############################################################ +############################################################ + +echo +echo "### Image creation options ###" +echo +echo "# cluster_size < 16k" +_make_test_img -o extended_l2=on,cluster_size=8k 1M + +echo "# backing file and preallocation=metadata" +# For preallocation with backing files, create a backing file first +$QEMU_IMG create -f raw "$TEST_IMG.base" 1M | _filter_img_create +$QEMU_IO -c "write -q -P 0xff 0 1M" -f raw "$TEST_IMG.base" | _filter_qemu_io + +_make_test_img -o extended_l2=on,preallocation=metadata -F raw -b "$TEST_IMG.base" 512k +$QEMU_IMG resize "$TEST_IMG" 1M +$QEMU_IO -c 'read -P 0xff 0 512k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IO -c 'read -P 0x00 512k 512k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IMG map "$TEST_IMG" | _filter_testdir + +echo "# backing file and preallocation=falloc" +_make_test_img -o extended_l2=on,preallocation=falloc -F raw -b "$TEST_IMG.base" 512k +$QEMU_IMG resize "$TEST_IMG" 1M +$QEMU_IO -c 'read -P 0xff 0 512k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IO -c 'read -P 0x00 512k 512k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IMG map "$TEST_IMG" | _filter_testdir + +echo "# backing file and preallocation=full" +_make_test_img -o extended_l2=on,preallocation=full -F raw -b "$TEST_IMG.base" 512k +$QEMU_IMG resize "$TEST_IMG" 1M +$QEMU_IO -c 'read -P 0xff 0 512k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IO -c 'read -P 0x00 512k 512k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IMG map "$TEST_IMG" | _filter_testdir + +echo +echo "### Image resizing with preallocation and backing files ###" +echo +# In this case the new subclusters must have the 'all zeroes' bit set +echo "# resize --preallocation=metadata" +_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 503k +$QEMU_IMG resize --preallocation=metadata "$TEST_IMG" 1013k +$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io + +# In this case and the next one the new subclusters must be allocated +echo "# resize --preallocation=falloc" +_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 503k +$QEMU_IMG resize --preallocation=falloc "$TEST_IMG" 1013k +$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io + +echo "# resize --preallocation=full" +_make_test_img -o extended_l2=on -F raw -b "$TEST_IMG.base" 503k +$QEMU_IMG resize --preallocation=full "$TEST_IMG" 1013k +$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io + +echo +echo "### Image resizing with preallocation without backing files ###" +echo +# In this case the new subclusters must have the 'all zeroes' bit set +echo "# resize --preallocation=metadata" +_make_test_img -o extended_l2=on 503k +$QEMU_IO -c 'write -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IMG resize --preallocation=metadata "$TEST_IMG" 1013k +$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io + +# In this case and the next one the new subclusters must be allocated +echo "# resize --preallocation=falloc" +_make_test_img -o extended_l2=on 503k +$QEMU_IO -c 'write -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IMG resize --preallocation=falloc "$TEST_IMG" 1013k +$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io + +echo "# resize --preallocation=full" +_make_test_img -o extended_l2=on 503k +$QEMU_IO -c 'write -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IMG resize --preallocation=full "$TEST_IMG" 1013k +$QEMU_IO -c 'read -P 0xff 0 503k' "$TEST_IMG" | _filter_qemu_io +$QEMU_IO -c 'read -P 0x00 503k 510k' "$TEST_IMG" | _filter_qemu_io + +echo +echo "### qemu-img measure ###" +echo +echo "# 512MB, extended_l2=off" # This needs one L2 table +$QEMU_IMG measure --size 512M -O qcow2 -o extended_l2=off +echo "# 512MB, extended_l2=on" # This needs two L2 tables +$QEMU_IMG measure --size 512M -O qcow2 -o extended_l2=on + +echo "# 16K clusters, 64GB, extended_l2=off" # This needs one full L1 table cluster +$QEMU_IMG measure --size 64G -O qcow2 -o cluster_size=16k,extended_l2=off +echo "# 16K clusters, 64GB, extended_l2=on" # This needs two full L2 table clusters +$QEMU_IMG measure --size 64G -O qcow2 -o cluster_size=16k,extended_l2=on + +echo "# 8k clusters" # This should fail +$QEMU_IMG measure --size 1M -O qcow2 -o cluster_size=8k,extended_l2=on + +echo "# 1024 TB" # Maximum allowed size with extended_l2=on and 64K clusters +$QEMU_IMG measure --size 1024T -O qcow2 -o extended_l2=on +echo "# 1025 TB" # This should fail +$QEMU_IMG measure --size 1025T -O qcow2 -o extended_l2=on + +echo +echo "### qemu-img amend ###" +echo +_make_test_img -o extended_l2=on 1M +$QEMU_IMG amend -o extended_l2=off "$TEST_IMG" && echo "Unexpected pass" + +_make_test_img -o extended_l2=off 1M +$QEMU_IMG amend -o extended_l2=on "$TEST_IMG" && echo "Unexpected pass" + +echo +echo "### Test copy-on-write on an image with snapshots ###" +echo +_make_test_img -o extended_l2=on 1M + +# For each cluster from #0 to #9 this loop zeroes subcluster #7 +# and allocates subclusters #13 and #18. +alloc="13 18"; zero="7" +for c in $(seq 0 9); do + $QEMU_IO -c "write -q -z $((64*$c+14))k 2k" \ + -c "write -q -P $((0xd0+$c)) $((64*$c+26))k 2k" \ + -c "write -q -P $((0xe0+$c)) $((64*$c+36))k 2k" "$TEST_IMG" + _verify_l2_bitmap "$c" +done + +# Create a snapshot and set l2_offset to the new L2 table +$QEMU_IMG snapshot -c snap1 "$TEST_IMG" +l2_offset=$((0x110000)) + +# Write different patterns to each one of the clusters +# in order to see how copy-on-write behaves in each case. +$QEMU_IO -c "write -q -P 0xf0 $((64*0+30))k 1k" \ + -c "write -q -P 0xf1 $((64*1+20))k 1k" \ + -c "write -q -P 0xf2 $((64*2+40))k 1k" \ + -c "write -q -P 0xf3 $((64*3+26))k 1k" \ + -c "write -q -P 0xf4 $((64*4+14))k 1k" \ + -c "write -q -P 0xf5 $((64*5+1))k 1k" \ + -c "write -q -z $((64*6+30))k 3k" \ + -c "write -q -z $((64*7+26))k 2k" \ + -c "write -q -z $((64*8+26))k 1k" \ + -c "write -q -z $((64*9+12))k 1k" \ + "$TEST_IMG" +alloc="$(seq 13 18)"; zero="7" _verify_l2_bitmap 0 +alloc="$(seq 10 18)"; zero="7" _verify_l2_bitmap 1 +alloc="$(seq 13 20)"; zero="7" _verify_l2_bitmap 2 +alloc="$(seq 13 18)"; zero="7" _verify_l2_bitmap 3 +alloc="$(seq 7 18)"; zero="" _verify_l2_bitmap 4 +alloc="$(seq 0 18)"; zero="" _verify_l2_bitmap 5 +alloc="13 18"; zero="7 15 16" _verify_l2_bitmap 6 +alloc="18"; zero="7 13" _verify_l2_bitmap 7 +alloc="$(seq 13 18)"; zero="7" _verify_l2_bitmap 8 +alloc="13 18"; zero="6 7" _verify_l2_bitmap 9 + +echo +echo "### Test concurrent requests ###" +echo + +_concurrent_io() +{ +# Allocate three subclusters in the same cluster. +# This works because handle_dependencies() checks whether the requests +# allocate the same cluster, even if the COW regions don't overlap (in +# this case they don't). +cat <<EOF +open -o driver=$IMGFMT blkdebug::$TEST_IMG +break write_aio A +aio_write -P 10 30k 2k +wait_break A +aio_write -P 11 20k 2k +aio_write -P 12 40k 2k +resume A +aio_flush +EOF +} + +_concurrent_verify() +{ +cat <<EOF +open -o driver=$IMGFMT $TEST_IMG +read -q -P 10 30k 2k +read -q -P 11 20k 2k +read -q -P 12 40k 2k +EOF +} + +_make_test_img -o extended_l2=on 1M +_concurrent_io | $QEMU_IO | _filter_qemu_io +_concurrent_verify | $QEMU_IO | _filter_qemu_io + +# success, all done +echo "*** done" +rm -f $seq.full +status=0 |