aboutsummaryrefslogtreecommitdiff
path: root/target
diff options
context:
space:
mode:
authorRichard Henderson <richard.henderson@linaro.org>2018-10-08 14:55:03 +0100
committerPeter Maydell <peter.maydell@linaro.org>2018-10-08 14:55:03 +0100
commit9123aeb6fcb14e0955ebe4e2a613802cfa0503ea (patch)
tree2c4e57d8ff73408771f5d5e6cb8cb751b2aeff0c /target
parent2a99ab2b3545133961de034df27e24f4c22e3707 (diff)
target/arm: Rewrite helper_sve_ld1*_r using pages
Uses tlb_vaddr_to_host for correct operation with softmmu. Optimize for accesses within a single page or pair of pages. Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20181005175350.30752-8-richard.henderson@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'target')
-rw-r--r--target/arm/sve_helper.c735
1 files changed, 571 insertions, 164 deletions
diff --git a/target/arm/sve_helper.c b/target/arm/sve_helper.c
index 0f98097253..d628978431 100644
--- a/target/arm/sve_helper.c
+++ b/target/arm/sve_helper.c
@@ -1688,6 +1688,47 @@ static void swap_memmove(void *vd, void *vs, size_t n)
}
}
+/* Similarly for memset of 0. */
+static void swap_memzero(void *vd, size_t n)
+{
+ uintptr_t d = (uintptr_t)vd;
+ uintptr_t o = (d | n) & 7;
+ size_t i;
+
+ /* Usually, the first bit of a predicate is set, so N is 0. */
+ if (likely(n == 0)) {
+ return;
+ }
+
+#ifndef HOST_WORDS_BIGENDIAN
+ o = 0;
+#endif
+ switch (o) {
+ case 0:
+ memset(vd, 0, n);
+ break;
+
+ case 4:
+ for (i = 0; i < n; i += 4) {
+ *(uint32_t *)H1_4(d + i) = 0;
+ }
+ break;
+
+ case 2:
+ case 6:
+ for (i = 0; i < n; i += 2) {
+ *(uint16_t *)H1_2(d + i) = 0;
+ }
+ break;
+
+ default:
+ for (i = 0; i < n; i++) {
+ *(uint8_t *)H1(d + i) = 0;
+ }
+ break;
+ }
+}
+
void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t opr_sz = simd_oprsz(desc);
@@ -3927,31 +3968,322 @@ void HELPER(sve_fcmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
/*
* Load contiguous data, protected by a governing predicate.
*/
-#define DO_LD1(NAME, FN, TYPEE, TYPEM, H) \
-static void do_##NAME(CPUARMState *env, void *vd, void *vg, \
- target_ulong addr, intptr_t oprsz, \
- uintptr_t ra) \
-{ \
- intptr_t i = 0; \
- do { \
- uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
- do { \
- TYPEM m = 0; \
- if (pg & 1) { \
- m = FN(env, addr, ra); \
- } \
- *(TYPEE *)(vd + H(i)) = m; \
- i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
- addr += sizeof(TYPEM); \
- } while (i & 15); \
- } while (i < oprsz); \
-} \
-void HELPER(NAME)(CPUARMState *env, void *vg, \
- target_ulong addr, uint32_t desc) \
-{ \
- do_##NAME(env, &env->vfp.zregs[simd_data(desc)], vg, \
- addr, simd_oprsz(desc), GETPC()); \
+
+/*
+ * Load elements into @vd, controlled by @vg, from @host + @mem_ofs.
+ * Memory is valid through @host + @mem_max. The register element
+ * indicies are inferred from @mem_ofs, as modified by the types for
+ * which the helper is built. Return the @mem_ofs of the first element
+ * not loaded (which is @mem_max if they are all loaded).
+ *
+ * For softmmu, we have fully validated the guest page. For user-only,
+ * we cannot fully validate without taking the mmap lock, but since we
+ * know the access is within one host page, if any access is valid they
+ * all must be valid. However, when @vg is all false, it may be that
+ * no access is valid.
+ */
+typedef intptr_t sve_ld1_host_fn(void *vd, void *vg, void *host,
+ intptr_t mem_ofs, intptr_t mem_max);
+
+/*
+ * Load one element into @vd + @reg_off from (@env, @vaddr, @ra).
+ * The controlling predicate is known to be true.
+ */
+typedef void sve_ld1_tlb_fn(CPUARMState *env, void *vd, intptr_t reg_off,
+ target_ulong vaddr, int mmu_idx, uintptr_t ra);
+
+/*
+ * Generate the above primitives.
+ */
+
+#define DO_LD_HOST(NAME, H, TYPEE, TYPEM, HOST) \
+static intptr_t sve_##NAME##_host(void *vd, void *vg, void *host, \
+ intptr_t mem_off, const intptr_t mem_max) \
+{ \
+ intptr_t reg_off = mem_off * (sizeof(TYPEE) / sizeof(TYPEM)); \
+ uint64_t *pg = vg; \
+ while (mem_off + sizeof(TYPEM) <= mem_max) { \
+ TYPEM val = 0; \
+ if (likely((pg[reg_off >> 6] >> (reg_off & 63)) & 1)) { \
+ val = HOST(host + mem_off); \
+ } \
+ *(TYPEE *)(vd + H(reg_off)) = val; \
+ mem_off += sizeof(TYPEM), reg_off += sizeof(TYPEE); \
+ } \
+ return mem_off; \
+}
+
+#ifdef CONFIG_SOFTMMU
+#define DO_LD_TLB(NAME, H, TYPEE, TYPEM, HOST, MOEND, TLB) \
+static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
+ target_ulong addr, int mmu_idx, uintptr_t ra) \
+{ \
+ TCGMemOpIdx oi = make_memop_idx(ctz32(sizeof(TYPEM)) | MOEND, mmu_idx); \
+ TYPEM val = TLB(env, addr, oi, ra); \
+ *(TYPEE *)(vd + H(reg_off)) = val; \
}
+#else
+#define DO_LD_TLB(NAME, H, TYPEE, TYPEM, HOST, MOEND, TLB) \
+static void sve_##NAME##_tlb(CPUARMState *env, void *vd, intptr_t reg_off, \
+ target_ulong addr, int mmu_idx, uintptr_t ra) \
+{ \
+ TYPEM val = HOST(g2h(addr)); \
+ *(TYPEE *)(vd + H(reg_off)) = val; \
+}
+#endif
+
+#define DO_LD_PRIM_1(NAME, H, TE, TM) \
+ DO_LD_HOST(NAME, H, TE, TM, ldub_p) \
+ DO_LD_TLB(NAME, H, TE, TM, ldub_p, 0, helper_ret_ldub_mmu)
+
+DO_LD_PRIM_1(ld1bb, H1, uint8_t, uint8_t)
+DO_LD_PRIM_1(ld1bhu, H1_2, uint16_t, uint8_t)
+DO_LD_PRIM_1(ld1bhs, H1_2, uint16_t, int8_t)
+DO_LD_PRIM_1(ld1bsu, H1_4, uint32_t, uint8_t)
+DO_LD_PRIM_1(ld1bss, H1_4, uint32_t, int8_t)
+DO_LD_PRIM_1(ld1bdu, , uint64_t, uint8_t)
+DO_LD_PRIM_1(ld1bds, , uint64_t, int8_t)
+
+#define DO_LD_PRIM_2(NAME, end, MOEND, H, TE, TM, PH, PT) \
+ DO_LD_HOST(NAME##_##end, H, TE, TM, PH##_##end##_p) \
+ DO_LD_TLB(NAME##_##end, H, TE, TM, PH##_##end##_p, \
+ MOEND, helper_##end##_##PT##_mmu)
+
+DO_LD_PRIM_2(ld1hh, le, MO_LE, H1_2, uint16_t, uint16_t, lduw, lduw)
+DO_LD_PRIM_2(ld1hsu, le, MO_LE, H1_4, uint32_t, uint16_t, lduw, lduw)
+DO_LD_PRIM_2(ld1hss, le, MO_LE, H1_4, uint32_t, int16_t, lduw, lduw)
+DO_LD_PRIM_2(ld1hdu, le, MO_LE, , uint64_t, uint16_t, lduw, lduw)
+DO_LD_PRIM_2(ld1hds, le, MO_LE, , uint64_t, int16_t, lduw, lduw)
+
+DO_LD_PRIM_2(ld1ss, le, MO_LE, H1_4, uint32_t, uint32_t, ldl, ldul)
+DO_LD_PRIM_2(ld1sdu, le, MO_LE, , uint64_t, uint32_t, ldl, ldul)
+DO_LD_PRIM_2(ld1sds, le, MO_LE, , uint64_t, int32_t, ldl, ldul)
+
+DO_LD_PRIM_2(ld1dd, le, MO_LE, , uint64_t, uint64_t, ldq, ldq)
+
+DO_LD_PRIM_2(ld1hh, be, MO_BE, H1_2, uint16_t, uint16_t, lduw, lduw)
+DO_LD_PRIM_2(ld1hsu, be, MO_BE, H1_4, uint32_t, uint16_t, lduw, lduw)
+DO_LD_PRIM_2(ld1hss, be, MO_BE, H1_4, uint32_t, int16_t, lduw, lduw)
+DO_LD_PRIM_2(ld1hdu, be, MO_BE, , uint64_t, uint16_t, lduw, lduw)
+DO_LD_PRIM_2(ld1hds, be, MO_BE, , uint64_t, int16_t, lduw, lduw)
+
+DO_LD_PRIM_2(ld1ss, be, MO_BE, H1_4, uint32_t, uint32_t, ldl, ldul)
+DO_LD_PRIM_2(ld1sdu, be, MO_BE, , uint64_t, uint32_t, ldl, ldul)
+DO_LD_PRIM_2(ld1sds, be, MO_BE, , uint64_t, int32_t, ldl, ldul)
+
+DO_LD_PRIM_2(ld1dd, be, MO_BE, , uint64_t, uint64_t, ldq, ldq)
+
+#undef DO_LD_TLB
+#undef DO_LD_HOST
+#undef DO_LD_PRIM_1
+#undef DO_LD_PRIM_2
+
+/*
+ * Skip through a sequence of inactive elements in the guarding predicate @vg,
+ * beginning at @reg_off bounded by @reg_max. Return the offset of the active
+ * element >= @reg_off, or @reg_max if there were no active elements at all.
+ */
+static intptr_t find_next_active(uint64_t *vg, intptr_t reg_off,
+ intptr_t reg_max, int esz)
+{
+ uint64_t pg_mask = pred_esz_masks[esz];
+ uint64_t pg = (vg[reg_off >> 6] & pg_mask) >> (reg_off & 63);
+
+ /* In normal usage, the first element is active. */
+ if (likely(pg & 1)) {
+ return reg_off;
+ }
+
+ if (pg == 0) {
+ reg_off &= -64;
+ do {
+ reg_off += 64;
+ if (unlikely(reg_off >= reg_max)) {
+ /* The entire predicate was false. */
+ return reg_max;
+ }
+ pg = vg[reg_off >> 6] & pg_mask;
+ } while (pg == 0);
+ }
+ reg_off += ctz64(pg);
+
+ /* We should never see an out of range predicate bit set. */
+ tcg_debug_assert(reg_off < reg_max);
+ return reg_off;
+}
+
+/*
+ * Return the maximum offset <= @mem_max which is still within the page
+ * referenced by @base + @mem_off.
+ */
+static intptr_t max_for_page(target_ulong base, intptr_t mem_off,
+ intptr_t mem_max)
+{
+ target_ulong addr = base + mem_off;
+ intptr_t split = -(intptr_t)(addr | TARGET_PAGE_MASK);
+ return MIN(split, mem_max - mem_off) + mem_off;
+}
+
+static inline void set_helper_retaddr(uintptr_t ra)
+{
+#ifdef CONFIG_USER_ONLY
+ helper_retaddr = ra;
+#endif
+}
+
+/*
+ * The result of tlb_vaddr_to_host for user-only is just g2h(x),
+ * which is always non-null. Elide the useless test.
+ */
+static inline bool test_host_page(void *host)
+{
+#ifdef CONFIG_USER_ONLY
+ return true;
+#else
+ return likely(host != NULL);
+#endif
+}
+
+/*
+ * Common helper for all contiguous one-register predicated loads.
+ */
+static void sve_ld1_r(CPUARMState *env, void *vg, const target_ulong addr,
+ uint32_t desc, const uintptr_t retaddr,
+ const int esz, const int msz,
+ sve_ld1_host_fn *host_fn,
+ sve_ld1_tlb_fn *tlb_fn)
+{
+ void *vd = &env->vfp.zregs[simd_data(desc)];
+ const int diffsz = esz - msz;
+ const intptr_t reg_max = simd_oprsz(desc);
+ const intptr_t mem_max = reg_max >> diffsz;
+ const int mmu_idx = cpu_mmu_index(env, false);
+ ARMVectorReg scratch;
+ void *host;
+ intptr_t split, reg_off, mem_off;
+
+ /* Find the first active element. */
+ reg_off = find_next_active(vg, 0, reg_max, esz);
+ if (unlikely(reg_off == reg_max)) {
+ /* The entire predicate was false; no load occurs. */
+ memset(vd, 0, reg_max);
+ return;
+ }
+ mem_off = reg_off >> diffsz;
+ set_helper_retaddr(retaddr);
+
+ /*
+ * If the (remaining) load is entirely within a single page, then:
+ * For softmmu, and the tlb hits, then no faults will occur;
+ * For user-only, either the first load will fault or none will.
+ * We can thus perform the load directly to the destination and
+ * Vd will be unmodified on any exception path.
+ */
+ split = max_for_page(addr, mem_off, mem_max);
+ if (likely(split == mem_max)) {
+ host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx);
+ if (test_host_page(host)) {
+ mem_off = host_fn(vd, vg, host - mem_off, mem_off, mem_max);
+ tcg_debug_assert(mem_off == mem_max);
+ set_helper_retaddr(0);
+ /* After having taken any fault, zero leading inactive elements. */
+ swap_memzero(vd, reg_off);
+ return;
+ }
+ }
+
+ /*
+ * Perform the predicated read into a temporary, thus ensuring
+ * if the load of the last element faults, Vd is not modified.
+ */
+#ifdef CONFIG_USER_ONLY
+ swap_memzero(&scratch, reg_off);
+ host_fn(&scratch, vg, g2h(addr), mem_off, mem_max);
+#else
+ memset(&scratch, 0, reg_max);
+ goto start;
+ while (1) {
+ reg_off = find_next_active(vg, reg_off, reg_max, esz);
+ if (reg_off >= reg_max) {
+ break;
+ }
+ mem_off = reg_off >> diffsz;
+ split = max_for_page(addr, mem_off, mem_max);
+
+ start:
+ if (split - mem_off >= (1 << msz)) {
+ /* At least one whole element on this page. */
+ host = tlb_vaddr_to_host(env, addr + mem_off,
+ MMU_DATA_LOAD, mmu_idx);
+ if (host) {
+ mem_off = host_fn(&scratch, vg, host - mem_off,
+ mem_off, split);
+ reg_off = mem_off << diffsz;
+ continue;
+ }
+ }
+
+ /*
+ * Perform one normal read. This may fault, longjmping out to the
+ * main loop in order to raise an exception. It may succeed, and
+ * as a side-effect load the TLB entry for the next round. Finally,
+ * in the extremely unlikely case we're performing this operation
+ * on I/O memory, it may succeed but not bring in the TLB entry.
+ * But even then we have still made forward progress.
+ */
+ tlb_fn(env, &scratch, reg_off, addr + mem_off, mmu_idx, retaddr);
+ reg_off += 1 << esz;
+ }
+#endif
+
+ set_helper_retaddr(0);
+ memcpy(vd, &scratch, reg_max);
+}
+
+#define DO_LD1_1(NAME, ESZ) \
+void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg, \
+ target_ulong addr, uint32_t desc) \
+{ \
+ sve_ld1_r(env, vg, addr, desc, GETPC(), ESZ, 0, \
+ sve_##NAME##_host, sve_##NAME##_tlb); \
+}
+
+/* TODO: Propagate the endian check back to the translator. */
+#define DO_LD1_2(NAME, ESZ, MSZ) \
+void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg, \
+ target_ulong addr, uint32_t desc) \
+{ \
+ if (arm_cpu_data_is_big_endian(env)) { \
+ sve_ld1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \
+ sve_##NAME##_be_host, sve_##NAME##_be_tlb); \
+ } else { \
+ sve_ld1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \
+ sve_##NAME##_le_host, sve_##NAME##_le_tlb); \
+ } \
+}
+
+DO_LD1_1(ld1bb, 0)
+DO_LD1_1(ld1bhu, 1)
+DO_LD1_1(ld1bhs, 1)
+DO_LD1_1(ld1bsu, 2)
+DO_LD1_1(ld1bss, 2)
+DO_LD1_1(ld1bdu, 3)
+DO_LD1_1(ld1bds, 3)
+
+DO_LD1_2(ld1hh, 1, 1)
+DO_LD1_2(ld1hsu, 2, 1)
+DO_LD1_2(ld1hss, 2, 1)
+DO_LD1_2(ld1hdu, 3, 1)
+DO_LD1_2(ld1hds, 3, 1)
+
+DO_LD1_2(ld1ss, 2, 2)
+DO_LD1_2(ld1sdu, 3, 2)
+DO_LD1_2(ld1sds, 3, 2)
+
+DO_LD1_2(ld1dd, 3, 3)
+
+#undef DO_LD1_1
+#undef DO_LD1_2
#define DO_LD2(NAME, FN, TYPEE, TYPEM, H) \
void HELPER(NAME)(CPUARMState *env, void *vg, \
@@ -4037,52 +4369,40 @@ void HELPER(NAME)(CPUARMState *env, void *vg, \
} \
}
-DO_LD1(sve_ld1bhu_r, cpu_ldub_data_ra, uint16_t, uint8_t, H1_2)
-DO_LD1(sve_ld1bhs_r, cpu_ldsb_data_ra, uint16_t, int8_t, H1_2)
-DO_LD1(sve_ld1bsu_r, cpu_ldub_data_ra, uint32_t, uint8_t, H1_4)
-DO_LD1(sve_ld1bss_r, cpu_ldsb_data_ra, uint32_t, int8_t, H1_4)
-DO_LD1(sve_ld1bdu_r, cpu_ldub_data_ra, uint64_t, uint8_t, )
-DO_LD1(sve_ld1bds_r, cpu_ldsb_data_ra, uint64_t, int8_t, )
-
-DO_LD1(sve_ld1hsu_r, cpu_lduw_data_ra, uint32_t, uint16_t, H1_4)
-DO_LD1(sve_ld1hss_r, cpu_ldsw_data_ra, uint32_t, int16_t, H1_4)
-DO_LD1(sve_ld1hdu_r, cpu_lduw_data_ra, uint64_t, uint16_t, )
-DO_LD1(sve_ld1hds_r, cpu_ldsw_data_ra, uint64_t, int16_t, )
-
-DO_LD1(sve_ld1sdu_r, cpu_ldl_data_ra, uint64_t, uint32_t, )
-DO_LD1(sve_ld1sds_r, cpu_ldl_data_ra, uint64_t, int32_t, )
-
-DO_LD1(sve_ld1bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
DO_LD2(sve_ld2bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
DO_LD3(sve_ld3bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
DO_LD4(sve_ld4bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
-DO_LD1(sve_ld1hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
DO_LD2(sve_ld2hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
DO_LD3(sve_ld3hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
DO_LD4(sve_ld4hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
-DO_LD1(sve_ld1ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
DO_LD2(sve_ld2ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
DO_LD3(sve_ld3ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
DO_LD4(sve_ld4ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
-DO_LD1(sve_ld1dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
DO_LD2(sve_ld2dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
DO_LD3(sve_ld3dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
DO_LD4(sve_ld4dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
-#undef DO_LD1
#undef DO_LD2
#undef DO_LD3
#undef DO_LD4
/*
* Load contiguous data, first-fault and no-fault.
+ *
+ * For user-only, one could argue that we should hold the mmap_lock during
+ * the operation so that there is no race between page_check_range and the
+ * load operation. However, unmapping pages out from under a running thread
+ * is extraordinarily unlikely. This theoretical race condition also affects
+ * linux-user/ in its get_user/put_user macros.
+ *
+ * TODO: Construct some helpers, written in assembly, that interact with
+ * handle_cpu_signal to produce memory ops which can properly report errors
+ * without racing.
*/
-#ifdef CONFIG_USER_ONLY
-
/* Fault on byte I. All bits in FFR from I are cleared. The vector
* result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE
* option, which leaves subsequent data unchanged.
@@ -4100,139 +4420,226 @@ static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz)
}
}
-/* Hold the mmap lock during the operation so that there is no race
- * between page_check_range and the load operation. We expect the
- * usual case to have no faults at all, so we check the whole range
- * first and if successful defer to the normal load operation.
- *
- * TODO: Change mmap_lock to a rwlock so that multiple readers
- * can run simultaneously. This will probably help other uses
- * within QEMU as well.
+/*
+ * Common helper for all contiguous first-fault loads.
+ */
+static void sve_ldff1_r(CPUARMState *env, void *vg, const target_ulong addr,
+ uint32_t desc, const uintptr_t retaddr,
+ const int esz, const int msz,
+ sve_ld1_host_fn *host_fn,
+ sve_ld1_tlb_fn *tlb_fn)
+{
+ void *vd = &env->vfp.zregs[simd_data(desc)];
+ const int diffsz = esz - msz;
+ const intptr_t reg_max = simd_oprsz(desc);
+ const intptr_t mem_max = reg_max >> diffsz;
+ const int mmu_idx = cpu_mmu_index(env, false);
+ intptr_t split, reg_off, mem_off;
+ void *host;
+
+ /* Skip to the first active element. */
+ reg_off = find_next_active(vg, 0, reg_max, esz);
+ if (unlikely(reg_off == reg_max)) {
+ /* The entire predicate was false; no load occurs. */
+ memset(vd, 0, reg_max);
+ return;
+ }
+ mem_off = reg_off >> diffsz;
+ set_helper_retaddr(retaddr);
+
+ /*
+ * If the (remaining) load is entirely within a single page, then:
+ * For softmmu, and the tlb hits, then no faults will occur;
+ * For user-only, either the first load will fault or none will.
+ * We can thus perform the load directly to the destination and
+ * Vd will be unmodified on any exception path.
+ */
+ split = max_for_page(addr, mem_off, mem_max);
+ if (likely(split == mem_max)) {
+ host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx);
+ if (test_host_page(host)) {
+ mem_off = host_fn(vd, vg, host - mem_off, mem_off, mem_max);
+ tcg_debug_assert(mem_off == mem_max);
+ set_helper_retaddr(0);
+ /* After any fault, zero any leading inactive elements. */
+ swap_memzero(vd, reg_off);
+ return;
+ }
+ }
+
+#ifdef CONFIG_USER_ONLY
+ /*
+ * The page(s) containing this first element at ADDR+MEM_OFF must
+ * be valid. Considering that this first element may be misaligned
+ * and cross a page boundary itself, take the rest of the page from
+ * the last byte of the element.
+ */
+ split = max_for_page(addr, mem_off + (1 << msz) - 1, mem_max);
+ mem_off = host_fn(vd, vg, g2h(addr), mem_off, split);
+
+ /* After any fault, zero any leading inactive elements. */
+ swap_memzero(vd, reg_off);
+ reg_off = mem_off << diffsz;
+#else
+ /*
+ * Perform one normal read, which will fault or not.
+ * But it is likely to bring the page into the tlb.
+ */
+ tlb_fn(env, vd, reg_off, addr + mem_off, mmu_idx, retaddr);
+
+ /* After any fault, zero any leading predicated false elts. */
+ swap_memzero(vd, reg_off);
+ mem_off += 1 << msz;
+ reg_off += 1 << esz;
+
+ /* Try again to read the balance of the page. */
+ split = max_for_page(addr, mem_off - 1, mem_max);
+ if (split >= (1 << msz)) {
+ host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx);
+ if (host) {
+ mem_off = host_fn(vd, vg, host - mem_off, mem_off, split);
+ reg_off = mem_off << diffsz;
+ }
+ }
+#endif
+
+ set_helper_retaddr(0);
+ record_fault(env, reg_off, reg_max);
+}
+
+/*
+ * Common helper for all contiguous no-fault loads.
*/
-#define DO_LDFF1(PART, FN, TYPEE, TYPEM, H) \
-static void do_sve_ldff1##PART(CPUARMState *env, void *vd, void *vg, \
- target_ulong addr, intptr_t oprsz, \
- bool first, uintptr_t ra) \
+static void sve_ldnf1_r(CPUARMState *env, void *vg, const target_ulong addr,
+ uint32_t desc, const int esz, const int msz,
+ sve_ld1_host_fn *host_fn)
+{
+ void *vd = &env->vfp.zregs[simd_data(desc)];
+ const int diffsz = esz - msz;
+ const intptr_t reg_max = simd_oprsz(desc);
+ const intptr_t mem_max = reg_max >> diffsz;
+ const int mmu_idx = cpu_mmu_index(env, false);
+ intptr_t split, reg_off, mem_off;
+ void *host;
+
+#ifdef CONFIG_USER_ONLY
+ host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD, mmu_idx);
+ if (likely(page_check_range(addr, mem_max, PAGE_READ) == 0)) {
+ /* The entire operation is valid and will not fault. */
+ host_fn(vd, vg, host, 0, mem_max);
+ return;
+ }
+#endif
+
+ /* There will be no fault, so we may modify in advance. */
+ memset(vd, 0, reg_max);
+
+ /* Skip to the first active element. */
+ reg_off = find_next_active(vg, 0, reg_max, esz);
+ if (unlikely(reg_off == reg_max)) {
+ /* The entire predicate was false; no load occurs. */
+ return;
+ }
+ mem_off = reg_off >> diffsz;
+
+#ifdef CONFIG_USER_ONLY
+ if (page_check_range(addr + mem_off, 1 << msz, PAGE_READ) == 0) {
+ /* At least one load is valid; take the rest of the page. */
+ split = max_for_page(addr, mem_off + (1 << msz) - 1, mem_max);
+ mem_off = host_fn(vd, vg, host, mem_off, split);
+ reg_off = mem_off << diffsz;
+ }
+#else
+ /*
+ * If the address is not in the TLB, we have no way to bring the
+ * entry into the TLB without also risking a fault. Note that
+ * the corollary is that we never load from an address not in RAM.
+ *
+ * This last is out of spec, in a weird corner case.
+ * Per the MemNF/MemSingleNF pseudocode, a NF load from Device memory
+ * must not actually hit the bus -- it returns UNKNOWN data instead.
+ * But if you map non-RAM with Normal memory attributes and do a NF
+ * load then it should access the bus. (Nobody ought actually do this
+ * in the real world, obviously.)
+ *
+ * Then there are the annoying special cases with watchpoints...
+ *
+ * TODO: Add a form of tlb_fill that does not raise an exception,
+ * with a form of tlb_vaddr_to_host and a set of loads to match.
+ * The non_fault_vaddr_to_host would handle everything, usually,
+ * and the loads would handle the iomem path for watchpoints.
+ */
+ host = tlb_vaddr_to_host(env, addr + mem_off, MMU_DATA_LOAD, mmu_idx);
+ split = max_for_page(addr, mem_off, mem_max);
+ if (host && split >= (1 << msz)) {
+ mem_off = host_fn(vd, vg, host - mem_off, mem_off, split);
+ reg_off = mem_off << diffsz;
+ }
+#endif
+
+ record_fault(env, reg_off, reg_max);
+}
+
+#define DO_LDFF1_LDNF1_1(PART, ESZ) \
+void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg, \
+ target_ulong addr, uint32_t desc) \
{ \
- intptr_t i = 0; \
- do { \
- uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
- do { \
- TYPEM m = 0; \
- if (pg & 1) { \
- if (!first && \
- unlikely(page_check_range(addr, sizeof(TYPEM), \
- PAGE_READ))) { \
- record_fault(env, i, oprsz); \
- return; \
- } \
- m = FN(env, addr, ra); \
- first = false; \
- } \
- *(TYPEE *)(vd + H(i)) = m; \
- i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
- addr += sizeof(TYPEM); \
- } while (i & 15); \
- } while (i < oprsz); \
+ sve_ldff1_r(env, vg, addr, desc, GETPC(), ESZ, 0, \
+ sve_ld1##PART##_host, sve_ld1##PART##_tlb); \
} \
-void HELPER(sve_ldff1##PART)(CPUARMState *env, void *vg, \
- target_ulong addr, uint32_t desc) \
+void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg, \
+ target_ulong addr, uint32_t desc) \
{ \
- intptr_t oprsz = simd_oprsz(desc); \
- unsigned rd = simd_data(desc); \
- void *vd = &env->vfp.zregs[rd]; \
- mmap_lock(); \
- if (likely(page_check_range(addr, oprsz, PAGE_READ) == 0)) { \
- do_sve_ld1##PART(env, vd, vg, addr, oprsz, GETPC()); \
- } else { \
- do_sve_ldff1##PART(env, vd, vg, addr, oprsz, true, GETPC()); \
- } \
- mmap_unlock(); \
+ sve_ldnf1_r(env, vg, addr, desc, ESZ, 0, sve_ld1##PART##_host); \
}
-/* No-fault loads are like first-fault loads without the
- * first faulting special case.
- */
-#define DO_LDNF1(PART) \
-void HELPER(sve_ldnf1##PART)(CPUARMState *env, void *vg, \
- target_ulong addr, uint32_t desc) \
+/* TODO: Propagate the endian check back to the translator. */
+#define DO_LDFF1_LDNF1_2(PART, ESZ, MSZ) \
+void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg, \
+ target_ulong addr, uint32_t desc) \
{ \
- intptr_t oprsz = simd_oprsz(desc); \
- unsigned rd = simd_data(desc); \
- void *vd = &env->vfp.zregs[rd]; \
- mmap_lock(); \
- if (likely(page_check_range(addr, oprsz, PAGE_READ) == 0)) { \
- do_sve_ld1##PART(env, vd, vg, addr, oprsz, GETPC()); \
+ if (arm_cpu_data_is_big_endian(env)) { \
+ sve_ldff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \
+ sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
} else { \
- do_sve_ldff1##PART(env, vd, vg, addr, oprsz, false, GETPC()); \
+ sve_ldff1_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, \
+ sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
+ } \
+} \
+void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg, \
+ target_ulong addr, uint32_t desc) \
+{ \
+ if (arm_cpu_data_is_big_endian(env)) { \
+ sve_ldnf1_r(env, vg, addr, desc, ESZ, MSZ, \
+ sve_ld1##PART##_be_host); \
+ } else { \
+ sve_ldnf1_r(env, vg, addr, desc, ESZ, MSZ, \
+ sve_ld1##PART##_le_host); \
} \
- mmap_unlock(); \
}
-#else
+DO_LDFF1_LDNF1_1(bb, 0)
+DO_LDFF1_LDNF1_1(bhu, 1)
+DO_LDFF1_LDNF1_1(bhs, 1)
+DO_LDFF1_LDNF1_1(bsu, 2)
+DO_LDFF1_LDNF1_1(bss, 2)
+DO_LDFF1_LDNF1_1(bdu, 3)
+DO_LDFF1_LDNF1_1(bds, 3)
-/* TODO: System mode is not yet supported.
- * This would probably use tlb_vaddr_to_host.
- */
-#define DO_LDFF1(PART, FN, TYPEE, TYPEM, H) \
-void HELPER(sve_ldff1##PART)(CPUARMState *env, void *vg, \
- target_ulong addr, uint32_t desc) \
-{ \
- g_assert_not_reached(); \
-}
+DO_LDFF1_LDNF1_2(hh, 1, 1)
+DO_LDFF1_LDNF1_2(hsu, 2, 1)
+DO_LDFF1_LDNF1_2(hss, 2, 1)
+DO_LDFF1_LDNF1_2(hdu, 3, 1)
+DO_LDFF1_LDNF1_2(hds, 3, 1)
-#define DO_LDNF1(PART) \
-void HELPER(sve_ldnf1##PART)(CPUARMState *env, void *vg, \
- target_ulong addr, uint32_t desc) \
-{ \
- g_assert_not_reached(); \
-}
+DO_LDFF1_LDNF1_2(ss, 2, 2)
+DO_LDFF1_LDNF1_2(sdu, 3, 2)
+DO_LDFF1_LDNF1_2(sds, 3, 2)
-#endif
+DO_LDFF1_LDNF1_2(dd, 3, 3)
-DO_LDFF1(bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
-DO_LDFF1(bhu_r, cpu_ldub_data_ra, uint16_t, uint8_t, H1_2)
-DO_LDFF1(bhs_r, cpu_ldsb_data_ra, uint16_t, int8_t, H1_2)
-DO_LDFF1(bsu_r, cpu_ldub_data_ra, uint32_t, uint8_t, H1_4)
-DO_LDFF1(bss_r, cpu_ldsb_data_ra, uint32_t, int8_t, H1_4)
-DO_LDFF1(bdu_r, cpu_ldub_data_ra, uint64_t, uint8_t, )
-DO_LDFF1(bds_r, cpu_ldsb_data_ra, uint64_t, int8_t, )
-
-DO_LDFF1(hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
-DO_LDFF1(hsu_r, cpu_lduw_data_ra, uint32_t, uint16_t, H1_4)
-DO_LDFF1(hss_r, cpu_ldsw_data_ra, uint32_t, int8_t, H1_4)
-DO_LDFF1(hdu_r, cpu_lduw_data_ra, uint64_t, uint16_t, )
-DO_LDFF1(hds_r, cpu_ldsw_data_ra, uint64_t, int16_t, )
-
-DO_LDFF1(ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
-DO_LDFF1(sdu_r, cpu_ldl_data_ra, uint64_t, uint32_t, )
-DO_LDFF1(sds_r, cpu_ldl_data_ra, uint64_t, int32_t, )
-
-DO_LDFF1(dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
-
-#undef DO_LDFF1
-
-DO_LDNF1(bb_r)
-DO_LDNF1(bhu_r)
-DO_LDNF1(bhs_r)
-DO_LDNF1(bsu_r)
-DO_LDNF1(bss_r)
-DO_LDNF1(bdu_r)
-DO_LDNF1(bds_r)
-
-DO_LDNF1(hh_r)
-DO_LDNF1(hsu_r)
-DO_LDNF1(hss_r)
-DO_LDNF1(hdu_r)
-DO_LDNF1(hds_r)
-
-DO_LDNF1(ss_r)
-DO_LDNF1(sdu_r)
-DO_LDNF1(sds_r)
-
-DO_LDNF1(dd_r)
-
-#undef DO_LDNF1
+#undef DO_LDFF1_LDNF1_1
+#undef DO_LDFF1_LDNF1_2
/*
* Store contiguous data, protected by a governing predicate.