aboutsummaryrefslogtreecommitdiff
path: root/target/ppc/mmu-hash64.c
diff options
context:
space:
mode:
authorThomas Huth <thuth@redhat.com>2016-10-11 08:56:52 +0200
committerThomas Huth <thuth@redhat.com>2016-12-20 21:52:12 +0100
commitfcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch)
tree2b450d96b01455df8ed908bf8f26ddc388a03380 /target/ppc/mmu-hash64.c
parent82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff)
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx folders in the root folder of the QEMU source tree. More architectures (e.g. RISC-V, AVR) are likely to be included soon, too, so the main folder of the QEMU sources slowly gets quite overcrowded with the target-xxx folders. To disburden the main folder a little bit, let's move the target-xxx folders into a dedicated target/ folder, so that target-xxx/ simply becomes target/xxx/ instead. Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part] Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part] Acked-by: Michael Walle <michael@walle.cc> [lm32 part] Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part] Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part] Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part] Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part] Acked-by: Richard Henderson <rth@twiddle.net> [alpha part] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part] Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part] Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [cris&microblaze part] Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part] Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target/ppc/mmu-hash64.c')
-rw-r--r--target/ppc/mmu-hash64.c1059
1 files changed, 1059 insertions, 0 deletions
diff --git a/target/ppc/mmu-hash64.c b/target/ppc/mmu-hash64.c
new file mode 100644
index 0000000000..fdb7a787bf
--- /dev/null
+++ b/target/ppc/mmu-hash64.c
@@ -0,0 +1,1059 @@
+/*
+ * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
+ *
+ * Copyright (c) 2003-2007 Jocelyn Mayer
+ * Copyright (c) 2013 David Gibson, IBM Corporation
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "exec/helper-proto.h"
+#include "qemu/error-report.h"
+#include "sysemu/kvm.h"
+#include "kvm_ppc.h"
+#include "mmu-hash64.h"
+#include "exec/log.h"
+
+//#define DEBUG_SLB
+
+#ifdef DEBUG_SLB
+# define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
+#else
+# define LOG_SLB(...) do { } while (0)
+#endif
+
+/*
+ * Used to indicate that a CPU has its hash page table (HPT) managed
+ * within the host kernel
+ */
+#define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1)
+
+/*
+ * SLB handling
+ */
+
+static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
+{
+ CPUPPCState *env = &cpu->env;
+ uint64_t esid_256M, esid_1T;
+ int n;
+
+ LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
+
+ esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
+ esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
+
+ for (n = 0; n < env->slb_nr; n++) {
+ ppc_slb_t *slb = &env->slb[n];
+
+ LOG_SLB("%s: slot %d %016" PRIx64 " %016"
+ PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
+ /* We check for 1T matches on all MMUs here - if the MMU
+ * doesn't have 1T segment support, we will have prevented 1T
+ * entries from being inserted in the slbmte code. */
+ if (((slb->esid == esid_256M) &&
+ ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
+ || ((slb->esid == esid_1T) &&
+ ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
+ return slb;
+ }
+ }
+
+ return NULL;
+}
+
+void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
+{
+ CPUPPCState *env = &cpu->env;
+ int i;
+ uint64_t slbe, slbv;
+
+ cpu_synchronize_state(CPU(cpu));
+
+ cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
+ for (i = 0; i < env->slb_nr; i++) {
+ slbe = env->slb[i].esid;
+ slbv = env->slb[i].vsid;
+ if (slbe == 0 && slbv == 0) {
+ continue;
+ }
+ cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
+ i, slbe, slbv);
+ }
+}
+
+void helper_slbia(CPUPPCState *env)
+{
+ int n;
+
+ /* XXX: Warning: slbia never invalidates the first segment */
+ for (n = 1; n < env->slb_nr; n++) {
+ ppc_slb_t *slb = &env->slb[n];
+
+ if (slb->esid & SLB_ESID_V) {
+ slb->esid &= ~SLB_ESID_V;
+ /* XXX: given the fact that segment size is 256 MB or 1TB,
+ * and we still don't have a tlb_flush_mask(env, n, mask)
+ * in QEMU, we just invalidate all TLBs
+ */
+ env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
+ }
+ }
+}
+
+void helper_slbie(CPUPPCState *env, target_ulong addr)
+{
+ PowerPCCPU *cpu = ppc_env_get_cpu(env);
+ ppc_slb_t *slb;
+
+ slb = slb_lookup(cpu, addr);
+ if (!slb) {
+ return;
+ }
+
+ if (slb->esid & SLB_ESID_V) {
+ slb->esid &= ~SLB_ESID_V;
+
+ /* XXX: given the fact that segment size is 256 MB or 1TB,
+ * and we still don't have a tlb_flush_mask(env, n, mask)
+ * in QEMU, we just invalidate all TLBs
+ */
+ env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
+ }
+}
+
+int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
+ target_ulong esid, target_ulong vsid)
+{
+ CPUPPCState *env = &cpu->env;
+ ppc_slb_t *slb = &env->slb[slot];
+ const struct ppc_one_seg_page_size *sps = NULL;
+ int i;
+
+ if (slot >= env->slb_nr) {
+ return -1; /* Bad slot number */
+ }
+ if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
+ return -1; /* Reserved bits set */
+ }
+ if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
+ return -1; /* Bad segment size */
+ }
+ if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
+ return -1; /* 1T segment on MMU that doesn't support it */
+ }
+
+ for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
+ const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
+
+ if (!sps1->page_shift) {
+ break;
+ }
+
+ if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
+ sps = sps1;
+ break;
+ }
+ }
+
+ if (!sps) {
+ error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
+ " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
+ slot, esid, vsid);
+ return -1;
+ }
+
+ slb->esid = esid;
+ slb->vsid = vsid;
+ slb->sps = sps;
+
+ LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
+ " %016" PRIx64 "\n", __func__, slot, esid, vsid,
+ slb->esid, slb->vsid);
+
+ return 0;
+}
+
+static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
+ target_ulong *rt)
+{
+ CPUPPCState *env = &cpu->env;
+ int slot = rb & 0xfff;
+ ppc_slb_t *slb = &env->slb[slot];
+
+ if (slot >= env->slb_nr) {
+ return -1;
+ }
+
+ *rt = slb->esid;
+ return 0;
+}
+
+static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
+ target_ulong *rt)
+{
+ CPUPPCState *env = &cpu->env;
+ int slot = rb & 0xfff;
+ ppc_slb_t *slb = &env->slb[slot];
+
+ if (slot >= env->slb_nr) {
+ return -1;
+ }
+
+ *rt = slb->vsid;
+ return 0;
+}
+
+static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
+ target_ulong *rt)
+{
+ CPUPPCState *env = &cpu->env;
+ ppc_slb_t *slb;
+
+ if (!msr_is_64bit(env, env->msr)) {
+ rb &= 0xffffffff;
+ }
+ slb = slb_lookup(cpu, rb);
+ if (slb == NULL) {
+ *rt = (target_ulong)-1ul;
+ } else {
+ *rt = slb->vsid;
+ }
+ return 0;
+}
+
+void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
+{
+ PowerPCCPU *cpu = ppc_env_get_cpu(env);
+
+ if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
+ raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+ POWERPC_EXCP_INVAL, GETPC());
+ }
+}
+
+target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
+{
+ PowerPCCPU *cpu = ppc_env_get_cpu(env);
+ target_ulong rt = 0;
+
+ if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
+ raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+ POWERPC_EXCP_INVAL, GETPC());
+ }
+ return rt;
+}
+
+target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
+{
+ PowerPCCPU *cpu = ppc_env_get_cpu(env);
+ target_ulong rt = 0;
+
+ if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
+ raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+ POWERPC_EXCP_INVAL, GETPC());
+ }
+ return rt;
+}
+
+target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
+{
+ PowerPCCPU *cpu = ppc_env_get_cpu(env);
+ target_ulong rt = 0;
+
+ if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
+ raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+ POWERPC_EXCP_INVAL, GETPC());
+ }
+ return rt;
+}
+
+/*
+ * 64-bit hash table MMU handling
+ */
+void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
+ Error **errp)
+{
+ CPUPPCState *env = &cpu->env;
+ target_ulong htabsize = value & SDR_64_HTABSIZE;
+
+ env->spr[SPR_SDR1] = value;
+ if (htabsize > 28) {
+ error_setg(errp,
+ "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
+ htabsize);
+ htabsize = 28;
+ }
+ env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
+ env->htab_base = value & SDR_64_HTABORG;
+}
+
+void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
+ Error **errp)
+{
+ CPUPPCState *env = &cpu->env;
+ Error *local_err = NULL;
+
+ if (hpt) {
+ env->external_htab = hpt;
+ } else {
+ env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
+ }
+ ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
+ &local_err);
+ if (local_err) {
+ error_propagate(errp, local_err);
+ return;
+ }
+
+ /* Not strictly necessary, but makes it clearer that an external
+ * htab is in use when debugging */
+ env->htab_base = -1;
+
+ if (kvm_enabled()) {
+ if (kvmppc_put_books_sregs(cpu) < 0) {
+ error_setg(errp, "Unable to update SDR1 in KVM");
+ }
+ }
+}
+
+static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
+ ppc_slb_t *slb, ppc_hash_pte64_t pte)
+{
+ CPUPPCState *env = &cpu->env;
+ unsigned pp, key;
+ /* Some pp bit combinations have undefined behaviour, so default
+ * to no access in those cases */
+ int prot = 0;
+
+ key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
+ : (slb->vsid & SLB_VSID_KS));
+ pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
+
+ if (key == 0) {
+ switch (pp) {
+ case 0x0:
+ case 0x1:
+ case 0x2:
+ prot = PAGE_READ | PAGE_WRITE;
+ break;
+
+ case 0x3:
+ case 0x6:
+ prot = PAGE_READ;
+ break;
+ }
+ } else {
+ switch (pp) {
+ case 0x0:
+ case 0x6:
+ prot = 0;
+ break;
+
+ case 0x1:
+ case 0x3:
+ prot = PAGE_READ;
+ break;
+
+ case 0x2:
+ prot = PAGE_READ | PAGE_WRITE;
+ break;
+ }
+ }
+
+ /* No execute if either noexec or guarded bits set */
+ if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
+ || (slb->vsid & SLB_VSID_N)) {
+ prot |= PAGE_EXEC;
+ }
+
+ return prot;
+}
+
+static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
+{
+ CPUPPCState *env = &cpu->env;
+ int key, amrbits;
+ int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+
+ /* Only recent MMUs implement Virtual Page Class Key Protection */
+ if (!(env->mmu_model & POWERPC_MMU_AMR)) {
+ return prot;
+ }
+
+ key = HPTE64_R_KEY(pte.pte1);
+ amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
+
+ /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
+ /* env->spr[SPR_AMR]); */
+
+ /*
+ * A store is permitted if the AMR bit is 0. Remove write
+ * protection if it is set.
+ */
+ if (amrbits & 0x2) {
+ prot &= ~PAGE_WRITE;
+ }
+ /*
+ * A load is permitted if the AMR bit is 0. Remove read
+ * protection if it is set.
+ */
+ if (amrbits & 0x1) {
+ prot &= ~PAGE_READ;
+ }
+
+ return prot;
+}
+
+uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
+{
+ uint64_t token = 0;
+ hwaddr pte_offset;
+
+ pte_offset = pte_index * HASH_PTE_SIZE_64;
+ if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
+ /*
+ * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
+ */
+ token = kvmppc_hash64_read_pteg(cpu, pte_index);
+ } else if (cpu->env.external_htab) {
+ /*
+ * HTAB is controlled by QEMU. Just point to the internally
+ * accessible PTEG.
+ */
+ token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
+ } else if (cpu->env.htab_base) {
+ token = cpu->env.htab_base + pte_offset;
+ }
+ return token;
+}
+
+void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
+{
+ if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
+ kvmppc_hash64_free_pteg(token);
+ }
+}
+
+static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
+ uint64_t pte0, uint64_t pte1)
+{
+ int i;
+
+ if (!(pte0 & HPTE64_V_LARGE)) {
+ if (sps->page_shift != 12) {
+ /* 4kiB page in a non 4kiB segment */
+ return 0;
+ }
+ /* Normal 4kiB page */
+ return 12;
+ }
+
+ for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
+ const struct ppc_one_page_size *ps = &sps->enc[i];
+ uint64_t mask;
+
+ if (!ps->page_shift) {
+ break;
+ }
+
+ if (ps->page_shift == 12) {
+ /* L bit is set so this can't be a 4kiB page */
+ continue;
+ }
+
+ mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
+
+ if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
+ return ps->page_shift;
+ }
+ }
+
+ return 0; /* Bad page size encoding */
+}
+
+static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
+ const struct ppc_one_seg_page_size *sps,
+ target_ulong ptem,
+ ppc_hash_pte64_t *pte, unsigned *pshift)
+{
+ CPUPPCState *env = &cpu->env;
+ int i;
+ uint64_t token;
+ target_ulong pte0, pte1;
+ target_ulong pte_index;
+
+ pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
+ token = ppc_hash64_start_access(cpu, pte_index);
+ if (!token) {
+ return -1;
+ }
+ for (i = 0; i < HPTES_PER_GROUP; i++) {
+ pte0 = ppc_hash64_load_hpte0(cpu, token, i);
+ pte1 = ppc_hash64_load_hpte1(cpu, token, i);
+
+ /* This compares V, B, H (secondary) and the AVPN */
+ if (HPTE64_V_COMPARE(pte0, ptem)) {
+ *pshift = hpte_page_shift(sps, pte0, pte1);
+ /*
+ * If there is no match, ignore the PTE, it could simply
+ * be for a different segment size encoding and the
+ * architecture specifies we should not match. Linux will
+ * potentially leave behind PTEs for the wrong base page
+ * size when demoting segments.
+ */
+ if (*pshift == 0) {
+ continue;
+ }
+ /* We don't do anything with pshift yet as qemu TLB only deals
+ * with 4K pages anyway
+ */
+ pte->pte0 = pte0;
+ pte->pte1 = pte1;
+ ppc_hash64_stop_access(cpu, token);
+ return (pte_index + i) * HASH_PTE_SIZE_64;
+ }
+ }
+ ppc_hash64_stop_access(cpu, token);
+ /*
+ * We didn't find a valid entry.
+ */
+ return -1;
+}
+
+static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
+ ppc_slb_t *slb, target_ulong eaddr,
+ ppc_hash_pte64_t *pte, unsigned *pshift)
+{
+ CPUPPCState *env = &cpu->env;
+ hwaddr pte_offset;
+ hwaddr hash;
+ uint64_t vsid, epnmask, epn, ptem;
+ const struct ppc_one_seg_page_size *sps = slb->sps;
+
+ /* The SLB store path should prevent any bad page size encodings
+ * getting in there, so: */
+ assert(sps);
+
+ /* If ISL is set in LPCR we need to clamp the page size to 4K */
+ if (env->spr[SPR_LPCR] & LPCR_ISL) {
+ /* We assume that when using TCG, 4k is first entry of SPS */
+ sps = &env->sps.sps[0];
+ assert(sps->page_shift == 12);
+ }
+
+ epnmask = ~((1ULL << sps->page_shift) - 1);
+
+ if (slb->vsid & SLB_VSID_B) {
+ /* 1TB segment */
+ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
+ epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
+ hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
+ } else {
+ /* 256M segment */
+ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
+ epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
+ hash = vsid ^ (epn >> sps->page_shift);
+ }
+ ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
+ ptem |= HPTE64_V_VALID;
+
+ /* Page address translation */
+ qemu_log_mask(CPU_LOG_MMU,
+ "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
+ " hash " TARGET_FMT_plx "\n",
+ env->htab_base, env->htab_mask, hash);
+
+ /* Primary PTEG lookup */
+ qemu_log_mask(CPU_LOG_MMU,
+ "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
+ " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
+ " hash=" TARGET_FMT_plx "\n",
+ env->htab_base, env->htab_mask, vsid, ptem, hash);
+ pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
+
+ if (pte_offset == -1) {
+ /* Secondary PTEG lookup */
+ ptem |= HPTE64_V_SECONDARY;
+ qemu_log_mask(CPU_LOG_MMU,
+ "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
+ " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
+ " hash=" TARGET_FMT_plx "\n", env->htab_base,
+ env->htab_mask, vsid, ptem, ~hash);
+
+ pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
+ }
+
+ return pte_offset;
+}
+
+unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
+ uint64_t pte0, uint64_t pte1)
+{
+ CPUPPCState *env = &cpu->env;
+ int i;
+
+ if (!(pte0 & HPTE64_V_LARGE)) {
+ return 12;
+ }
+
+ /*
+ * The encodings in env->sps need to be carefully chosen so that
+ * this gives an unambiguous result.
+ */
+ for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
+ const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
+ unsigned shift;
+
+ if (!sps->page_shift) {
+ break;
+ }
+
+ shift = hpte_page_shift(sps, pte0, pte1);
+ if (shift) {
+ return shift;
+ }
+ }
+
+ return 0;
+}
+
+static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
+ uint64_t error_code)
+{
+ bool vpm;
+
+ if (msr_ir) {
+ vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
+ } else {
+ vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
+ }
+ if (vpm && !msr_hv) {
+ cs->exception_index = POWERPC_EXCP_HISI;
+ } else {
+ cs->exception_index = POWERPC_EXCP_ISI;
+ }
+ env->error_code = error_code;
+}
+
+static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
+ uint64_t dsisr)
+{
+ bool vpm;
+
+ if (msr_dr) {
+ vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
+ } else {
+ vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
+ }
+ if (vpm && !msr_hv) {
+ cs->exception_index = POWERPC_EXCP_HDSI;
+ env->spr[SPR_HDAR] = dar;
+ env->spr[SPR_HDSISR] = dsisr;
+ } else {
+ cs->exception_index = POWERPC_EXCP_DSI;
+ env->spr[SPR_DAR] = dar;
+ env->spr[SPR_DSISR] = dsisr;
+ }
+ env->error_code = 0;
+}
+
+
+int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
+ int rwx, int mmu_idx)
+{
+ CPUState *cs = CPU(cpu);
+ CPUPPCState *env = &cpu->env;
+ ppc_slb_t *slb;
+ unsigned apshift;
+ hwaddr pte_offset;
+ ppc_hash_pte64_t pte;
+ int pp_prot, amr_prot, prot;
+ uint64_t new_pte1, dsisr;
+ const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
+ hwaddr raddr;
+
+ assert((rwx == 0) || (rwx == 1) || (rwx == 2));
+
+ /* Note on LPCR usage: 970 uses HID4, but our special variant
+ * of store_spr copies relevant fields into env->spr[SPR_LPCR].
+ * Similarily we filter unimplemented bits when storing into
+ * LPCR depending on the MMU version. This code can thus just
+ * use the LPCR "as-is".
+ */
+
+ /* 1. Handle real mode accesses */
+ if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
+ /* Translation is supposedly "off" */
+ /* In real mode the top 4 effective address bits are (mostly) ignored */
+ raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
+
+ /* In HV mode, add HRMOR if top EA bit is clear */
+ if (msr_hv || !env->has_hv_mode) {
+ if (!(eaddr >> 63)) {
+ raddr |= env->spr[SPR_HRMOR];
+ }
+ } else {
+ /* Otherwise, check VPM for RMA vs VRMA */
+ if (env->spr[SPR_LPCR] & LPCR_VPM0) {
+ slb = &env->vrma_slb;
+ if (slb->sps) {
+ goto skip_slb_search;
+ }
+ /* Not much else to do here */
+ cs->exception_index = POWERPC_EXCP_MCHECK;
+ env->error_code = 0;
+ return 1;
+ } else if (raddr < env->rmls) {
+ /* RMA. Check bounds in RMLS */
+ raddr |= env->spr[SPR_RMOR];
+ } else {
+ /* The access failed, generate the approriate interrupt */
+ if (rwx == 2) {
+ ppc_hash64_set_isi(cs, env, 0x08000000);
+ } else {
+ dsisr = 0x08000000;
+ if (rwx == 1) {
+ dsisr |= 0x02000000;
+ }
+ ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
+ }
+ return 1;
+ }
+ }
+ tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
+ PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
+ TARGET_PAGE_SIZE);
+ return 0;
+ }
+
+ /* 2. Translation is on, so look up the SLB */
+ slb = slb_lookup(cpu, eaddr);
+ if (!slb) {
+ if (rwx == 2) {
+ cs->exception_index = POWERPC_EXCP_ISEG;
+ env->error_code = 0;
+ } else {
+ cs->exception_index = POWERPC_EXCP_DSEG;
+ env->error_code = 0;
+ env->spr[SPR_DAR] = eaddr;
+ }
+ return 1;
+ }
+
+skip_slb_search:
+
+ /* 3. Check for segment level no-execute violation */
+ if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
+ ppc_hash64_set_isi(cs, env, 0x10000000);
+ return 1;
+ }
+
+ /* 4. Locate the PTE in the hash table */
+ pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
+ if (pte_offset == -1) {
+ dsisr = 0x40000000;
+ if (rwx == 2) {
+ ppc_hash64_set_isi(cs, env, dsisr);
+ } else {
+ if (rwx == 1) {
+ dsisr |= 0x02000000;
+ }
+ ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
+ }
+ return 1;
+ }
+ qemu_log_mask(CPU_LOG_MMU,
+ "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
+
+ /* 5. Check access permissions */
+
+ pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
+ amr_prot = ppc_hash64_amr_prot(cpu, pte);
+ prot = pp_prot & amr_prot;
+
+ if ((need_prot[rwx] & ~prot) != 0) {
+ /* Access right violation */
+ qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
+ if (rwx == 2) {
+ ppc_hash64_set_isi(cs, env, 0x08000000);
+ } else {
+ dsisr = 0;
+ if (need_prot[rwx] & ~pp_prot) {
+ dsisr |= 0x08000000;
+ }
+ if (rwx == 1) {
+ dsisr |= 0x02000000;
+ }
+ if (need_prot[rwx] & ~amr_prot) {
+ dsisr |= 0x00200000;
+ }
+ ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
+ }
+ return 1;
+ }
+
+ qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
+
+ /* 6. Update PTE referenced and changed bits if necessary */
+
+ new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
+ if (rwx == 1) {
+ new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
+ } else {
+ /* Treat the page as read-only for now, so that a later write
+ * will pass through this function again to set the C bit */
+ prot &= ~PAGE_WRITE;
+ }
+
+ if (new_pte1 != pte.pte1) {
+ ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
+ pte.pte0, new_pte1);
+ }
+
+ /* 7. Determine the real address from the PTE */
+
+ raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
+
+ tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
+ prot, mmu_idx, 1ULL << apshift);
+
+ return 0;
+}
+
+hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
+{
+ CPUPPCState *env = &cpu->env;
+ ppc_slb_t *slb;
+ hwaddr pte_offset, raddr;
+ ppc_hash_pte64_t pte;
+ unsigned apshift;
+
+ /* Handle real mode */
+ if (msr_dr == 0) {
+ /* In real mode the top 4 effective address bits are ignored */
+ raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
+
+ /* In HV mode, add HRMOR if top EA bit is clear */
+ if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
+ return raddr | env->spr[SPR_HRMOR];
+ }
+
+ /* Otherwise, check VPM for RMA vs VRMA */
+ if (env->spr[SPR_LPCR] & LPCR_VPM0) {
+ slb = &env->vrma_slb;
+ if (!slb->sps) {
+ return -1;
+ }
+ } else if (raddr < env->rmls) {
+ /* RMA. Check bounds in RMLS */
+ return raddr | env->spr[SPR_RMOR];
+ } else {
+ return -1;
+ }
+ } else {
+ slb = slb_lookup(cpu, addr);
+ if (!slb) {
+ return -1;
+ }
+ }
+
+ pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
+ if (pte_offset == -1) {
+ return -1;
+ }
+
+ return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
+ & TARGET_PAGE_MASK;
+}
+
+void ppc_hash64_store_hpte(PowerPCCPU *cpu,
+ target_ulong pte_index,
+ target_ulong pte0, target_ulong pte1)
+{
+ CPUPPCState *env = &cpu->env;
+
+ if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
+ kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
+ return;
+ }
+
+ pte_index *= HASH_PTE_SIZE_64;
+ if (env->external_htab) {
+ stq_p(env->external_htab + pte_index, pte0);
+ stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
+ } else {
+ stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
+ stq_phys(CPU(cpu)->as,
+ env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
+ }
+}
+
+void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
+ target_ulong pte_index,
+ target_ulong pte0, target_ulong pte1)
+{
+ /*
+ * XXX: given the fact that there are too many segments to
+ * invalidate, and we still don't have a tlb_flush_mask(env, n,
+ * mask) in QEMU, we just invalidate all TLBs
+ */
+ cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
+}
+
+void ppc_hash64_update_rmls(CPUPPCState *env)
+{
+ uint64_t lpcr = env->spr[SPR_LPCR];
+
+ /*
+ * This is the full 4 bits encoding of POWER8. Previous
+ * CPUs only support a subset of these but the filtering
+ * is done when writing LPCR
+ */
+ switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
+ case 0x8: /* 32MB */
+ env->rmls = 0x2000000ull;
+ break;
+ case 0x3: /* 64MB */
+ env->rmls = 0x4000000ull;
+ break;
+ case 0x7: /* 128MB */
+ env->rmls = 0x8000000ull;
+ break;
+ case 0x4: /* 256MB */
+ env->rmls = 0x10000000ull;
+ break;
+ case 0x2: /* 1GB */
+ env->rmls = 0x40000000ull;
+ break;
+ case 0x1: /* 16GB */
+ env->rmls = 0x400000000ull;
+ break;
+ default:
+ /* What to do here ??? */
+ env->rmls = 0;
+ }
+}
+
+void ppc_hash64_update_vrma(CPUPPCState *env)
+{
+ const struct ppc_one_seg_page_size *sps = NULL;
+ target_ulong esid, vsid, lpcr;
+ ppc_slb_t *slb = &env->vrma_slb;
+ uint32_t vrmasd;
+ int i;
+
+ /* First clear it */
+ slb->esid = slb->vsid = 0;
+ slb->sps = NULL;
+
+ /* Is VRMA enabled ? */
+ lpcr = env->spr[SPR_LPCR];
+ if (!(lpcr & LPCR_VPM0)) {
+ return;
+ }
+
+ /* Make one up. Mostly ignore the ESID which will not be
+ * needed for translation
+ */
+ vsid = SLB_VSID_VRMA;
+ vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
+ vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
+ esid = SLB_ESID_V;
+
+ for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
+ const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
+
+ if (!sps1->page_shift) {
+ break;
+ }
+
+ if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
+ sps = sps1;
+ break;
+ }
+ }
+
+ if (!sps) {
+ error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
+ " vsid 0x"TARGET_FMT_lx, esid, vsid);
+ return;
+ }
+
+ slb->vsid = vsid;
+ slb->esid = esid;
+ slb->sps = sps;
+}
+
+void helper_store_lpcr(CPUPPCState *env, target_ulong val)
+{
+ uint64_t lpcr = 0;
+
+ /* Filter out bits */
+ switch (env->mmu_model) {
+ case POWERPC_MMU_64B: /* 970 */
+ if (val & 0x40) {
+ lpcr |= LPCR_LPES0;
+ }
+ if (val & 0x8000000000000000ull) {
+ lpcr |= LPCR_LPES1;
+ }
+ if (val & 0x20) {
+ lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
+ }
+ if (val & 0x4000000000000000ull) {
+ lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
+ }
+ if (val & 0x2000000000000000ull) {
+ lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
+ }
+ env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
+
+ /* XXX We could also write LPID from HID4 here
+ * but since we don't tag any translation on it
+ * it doesn't actually matter
+ */
+ /* XXX For proper emulation of 970 we also need
+ * to dig HRMOR out of HID5
+ */
+ break;
+ case POWERPC_MMU_2_03: /* P5p */
+ lpcr = val & (LPCR_RMLS | LPCR_ILE |
+ LPCR_LPES0 | LPCR_LPES1 |
+ LPCR_RMI | LPCR_HDICE);
+ break;
+ case POWERPC_MMU_2_06: /* P7 */
+ lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
+ LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
+ LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
+ LPCR_MER | LPCR_TC |
+ LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
+ break;
+ case POWERPC_MMU_2_07: /* P8 */
+ lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
+ LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
+ LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
+ LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
+ LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
+ break;
+ default:
+ ;
+ }
+ env->spr[SPR_LPCR] = lpcr;
+ ppc_hash64_update_rmls(env);
+ ppc_hash64_update_vrma(env);
+}