diff options
author | Thomas Huth <thuth@redhat.com> | 2016-10-11 08:56:52 +0200 |
---|---|---|
committer | Thomas Huth <thuth@redhat.com> | 2016-12-20 21:52:12 +0100 |
commit | fcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch) | |
tree | 2b450d96b01455df8ed908bf8f26ddc388a03380 /target/ppc/mmu-hash64.c | |
parent | 82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff) |
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target/ppc/mmu-hash64.c')
-rw-r--r-- | target/ppc/mmu-hash64.c | 1059 |
1 files changed, 1059 insertions, 0 deletions
diff --git a/target/ppc/mmu-hash64.c b/target/ppc/mmu-hash64.c new file mode 100644 index 0000000000..fdb7a787bf --- /dev/null +++ b/target/ppc/mmu-hash64.c @@ -0,0 +1,1059 @@ +/* + * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU. + * + * Copyright (c) 2003-2007 Jocelyn Mayer + * Copyright (c) 2013 David Gibson, IBM Corporation + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#include "qemu/osdep.h" +#include "qapi/error.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "exec/helper-proto.h" +#include "qemu/error-report.h" +#include "sysemu/kvm.h" +#include "kvm_ppc.h" +#include "mmu-hash64.h" +#include "exec/log.h" + +//#define DEBUG_SLB + +#ifdef DEBUG_SLB +# define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__) +#else +# define LOG_SLB(...) do { } while (0) +#endif + +/* + * Used to indicate that a CPU has its hash page table (HPT) managed + * within the host kernel + */ +#define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1) + +/* + * SLB handling + */ + +static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr) +{ + CPUPPCState *env = &cpu->env; + uint64_t esid_256M, esid_1T; + int n; + + LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); + + esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; + esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; + + for (n = 0; n < env->slb_nr; n++) { + ppc_slb_t *slb = &env->slb[n]; + + LOG_SLB("%s: slot %d %016" PRIx64 " %016" + PRIx64 "\n", __func__, n, slb->esid, slb->vsid); + /* We check for 1T matches on all MMUs here - if the MMU + * doesn't have 1T segment support, we will have prevented 1T + * entries from being inserted in the slbmte code. */ + if (((slb->esid == esid_256M) && + ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) + || ((slb->esid == esid_1T) && + ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { + return slb; + } + } + + return NULL; +} + +void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu) +{ + CPUPPCState *env = &cpu->env; + int i; + uint64_t slbe, slbv; + + cpu_synchronize_state(CPU(cpu)); + + cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n"); + for (i = 0; i < env->slb_nr; i++) { + slbe = env->slb[i].esid; + slbv = env->slb[i].vsid; + if (slbe == 0 && slbv == 0) { + continue; + } + cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", + i, slbe, slbv); + } +} + +void helper_slbia(CPUPPCState *env) +{ + int n; + + /* XXX: Warning: slbia never invalidates the first segment */ + for (n = 1; n < env->slb_nr; n++) { + ppc_slb_t *slb = &env->slb[n]; + + if (slb->esid & SLB_ESID_V) { + slb->esid &= ~SLB_ESID_V; + /* XXX: given the fact that segment size is 256 MB or 1TB, + * and we still don't have a tlb_flush_mask(env, n, mask) + * in QEMU, we just invalidate all TLBs + */ + env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; + } + } +} + +void helper_slbie(CPUPPCState *env, target_ulong addr) +{ + PowerPCCPU *cpu = ppc_env_get_cpu(env); + ppc_slb_t *slb; + + slb = slb_lookup(cpu, addr); + if (!slb) { + return; + } + + if (slb->esid & SLB_ESID_V) { + slb->esid &= ~SLB_ESID_V; + + /* XXX: given the fact that segment size is 256 MB or 1TB, + * and we still don't have a tlb_flush_mask(env, n, mask) + * in QEMU, we just invalidate all TLBs + */ + env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; + } +} + +int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot, + target_ulong esid, target_ulong vsid) +{ + CPUPPCState *env = &cpu->env; + ppc_slb_t *slb = &env->slb[slot]; + const struct ppc_one_seg_page_size *sps = NULL; + int i; + + if (slot >= env->slb_nr) { + return -1; /* Bad slot number */ + } + if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) { + return -1; /* Reserved bits set */ + } + if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) { + return -1; /* Bad segment size */ + } + if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) { + return -1; /* 1T segment on MMU that doesn't support it */ + } + + for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { + const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i]; + + if (!sps1->page_shift) { + break; + } + + if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { + sps = sps1; + break; + } + } + + if (!sps) { + error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu + " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx, + slot, esid, vsid); + return -1; + } + + slb->esid = esid; + slb->vsid = vsid; + slb->sps = sps; + + LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64 + " %016" PRIx64 "\n", __func__, slot, esid, vsid, + slb->esid, slb->vsid); + + return 0; +} + +static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb, + target_ulong *rt) +{ + CPUPPCState *env = &cpu->env; + int slot = rb & 0xfff; + ppc_slb_t *slb = &env->slb[slot]; + + if (slot >= env->slb_nr) { + return -1; + } + + *rt = slb->esid; + return 0; +} + +static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb, + target_ulong *rt) +{ + CPUPPCState *env = &cpu->env; + int slot = rb & 0xfff; + ppc_slb_t *slb = &env->slb[slot]; + + if (slot >= env->slb_nr) { + return -1; + } + + *rt = slb->vsid; + return 0; +} + +static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb, + target_ulong *rt) +{ + CPUPPCState *env = &cpu->env; + ppc_slb_t *slb; + + if (!msr_is_64bit(env, env->msr)) { + rb &= 0xffffffff; + } + slb = slb_lookup(cpu, rb); + if (slb == NULL) { + *rt = (target_ulong)-1ul; + } else { + *rt = slb->vsid; + } + return 0; +} + +void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) +{ + PowerPCCPU *cpu = ppc_env_get_cpu(env); + + if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) { + raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, + POWERPC_EXCP_INVAL, GETPC()); + } +} + +target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb) +{ + PowerPCCPU *cpu = ppc_env_get_cpu(env); + target_ulong rt = 0; + + if (ppc_load_slb_esid(cpu, rb, &rt) < 0) { + raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, + POWERPC_EXCP_INVAL, GETPC()); + } + return rt; +} + +target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb) +{ + PowerPCCPU *cpu = ppc_env_get_cpu(env); + target_ulong rt = 0; + + if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) { + raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, + POWERPC_EXCP_INVAL, GETPC()); + } + return rt; +} + +target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb) +{ + PowerPCCPU *cpu = ppc_env_get_cpu(env); + target_ulong rt = 0; + + if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) { + raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, + POWERPC_EXCP_INVAL, GETPC()); + } + return rt; +} + +/* + * 64-bit hash table MMU handling + */ +void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value, + Error **errp) +{ + CPUPPCState *env = &cpu->env; + target_ulong htabsize = value & SDR_64_HTABSIZE; + + env->spr[SPR_SDR1] = value; + if (htabsize > 28) { + error_setg(errp, + "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1", + htabsize); + htabsize = 28; + } + env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1; + env->htab_base = value & SDR_64_HTABORG; +} + +void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift, + Error **errp) +{ + CPUPPCState *env = &cpu->env; + Error *local_err = NULL; + + if (hpt) { + env->external_htab = hpt; + } else { + env->external_htab = MMU_HASH64_KVM_MANAGED_HPT; + } + ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18), + &local_err); + if (local_err) { + error_propagate(errp, local_err); + return; + } + + /* Not strictly necessary, but makes it clearer that an external + * htab is in use when debugging */ + env->htab_base = -1; + + if (kvm_enabled()) { + if (kvmppc_put_books_sregs(cpu) < 0) { + error_setg(errp, "Unable to update SDR1 in KVM"); + } + } +} + +static int ppc_hash64_pte_prot(PowerPCCPU *cpu, + ppc_slb_t *slb, ppc_hash_pte64_t pte) +{ + CPUPPCState *env = &cpu->env; + unsigned pp, key; + /* Some pp bit combinations have undefined behaviour, so default + * to no access in those cases */ + int prot = 0; + + key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP) + : (slb->vsid & SLB_VSID_KS)); + pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61); + + if (key == 0) { + switch (pp) { + case 0x0: + case 0x1: + case 0x2: + prot = PAGE_READ | PAGE_WRITE; + break; + + case 0x3: + case 0x6: + prot = PAGE_READ; + break; + } + } else { + switch (pp) { + case 0x0: + case 0x6: + prot = 0; + break; + + case 0x1: + case 0x3: + prot = PAGE_READ; + break; + + case 0x2: + prot = PAGE_READ | PAGE_WRITE; + break; + } + } + + /* No execute if either noexec or guarded bits set */ + if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) + || (slb->vsid & SLB_VSID_N)) { + prot |= PAGE_EXEC; + } + + return prot; +} + +static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte) +{ + CPUPPCState *env = &cpu->env; + int key, amrbits; + int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; + + /* Only recent MMUs implement Virtual Page Class Key Protection */ + if (!(env->mmu_model & POWERPC_MMU_AMR)) { + return prot; + } + + key = HPTE64_R_KEY(pte.pte1); + amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3; + + /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */ + /* env->spr[SPR_AMR]); */ + + /* + * A store is permitted if the AMR bit is 0. Remove write + * protection if it is set. + */ + if (amrbits & 0x2) { + prot &= ~PAGE_WRITE; + } + /* + * A load is permitted if the AMR bit is 0. Remove read + * protection if it is set. + */ + if (amrbits & 0x1) { + prot &= ~PAGE_READ; + } + + return prot; +} + +uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index) +{ + uint64_t token = 0; + hwaddr pte_offset; + + pte_offset = pte_index * HASH_PTE_SIZE_64; + if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) { + /* + * HTAB is controlled by KVM. Fetch the PTEG into a new buffer. + */ + token = kvmppc_hash64_read_pteg(cpu, pte_index); + } else if (cpu->env.external_htab) { + /* + * HTAB is controlled by QEMU. Just point to the internally + * accessible PTEG. + */ + token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset; + } else if (cpu->env.htab_base) { + token = cpu->env.htab_base + pte_offset; + } + return token; +} + +void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token) +{ + if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) { + kvmppc_hash64_free_pteg(token); + } +} + +static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps, + uint64_t pte0, uint64_t pte1) +{ + int i; + + if (!(pte0 & HPTE64_V_LARGE)) { + if (sps->page_shift != 12) { + /* 4kiB page in a non 4kiB segment */ + return 0; + } + /* Normal 4kiB page */ + return 12; + } + + for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { + const struct ppc_one_page_size *ps = &sps->enc[i]; + uint64_t mask; + + if (!ps->page_shift) { + break; + } + + if (ps->page_shift == 12) { + /* L bit is set so this can't be a 4kiB page */ + continue; + } + + mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN; + + if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) { + return ps->page_shift; + } + } + + return 0; /* Bad page size encoding */ +} + +static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash, + const struct ppc_one_seg_page_size *sps, + target_ulong ptem, + ppc_hash_pte64_t *pte, unsigned *pshift) +{ + CPUPPCState *env = &cpu->env; + int i; + uint64_t token; + target_ulong pte0, pte1; + target_ulong pte_index; + + pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP; + token = ppc_hash64_start_access(cpu, pte_index); + if (!token) { + return -1; + } + for (i = 0; i < HPTES_PER_GROUP; i++) { + pte0 = ppc_hash64_load_hpte0(cpu, token, i); + pte1 = ppc_hash64_load_hpte1(cpu, token, i); + + /* This compares V, B, H (secondary) and the AVPN */ + if (HPTE64_V_COMPARE(pte0, ptem)) { + *pshift = hpte_page_shift(sps, pte0, pte1); + /* + * If there is no match, ignore the PTE, it could simply + * be for a different segment size encoding and the + * architecture specifies we should not match. Linux will + * potentially leave behind PTEs for the wrong base page + * size when demoting segments. + */ + if (*pshift == 0) { + continue; + } + /* We don't do anything with pshift yet as qemu TLB only deals + * with 4K pages anyway + */ + pte->pte0 = pte0; + pte->pte1 = pte1; + ppc_hash64_stop_access(cpu, token); + return (pte_index + i) * HASH_PTE_SIZE_64; + } + } + ppc_hash64_stop_access(cpu, token); + /* + * We didn't find a valid entry. + */ + return -1; +} + +static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu, + ppc_slb_t *slb, target_ulong eaddr, + ppc_hash_pte64_t *pte, unsigned *pshift) +{ + CPUPPCState *env = &cpu->env; + hwaddr pte_offset; + hwaddr hash; + uint64_t vsid, epnmask, epn, ptem; + const struct ppc_one_seg_page_size *sps = slb->sps; + + /* The SLB store path should prevent any bad page size encodings + * getting in there, so: */ + assert(sps); + + /* If ISL is set in LPCR we need to clamp the page size to 4K */ + if (env->spr[SPR_LPCR] & LPCR_ISL) { + /* We assume that when using TCG, 4k is first entry of SPS */ + sps = &env->sps.sps[0]; + assert(sps->page_shift == 12); + } + + epnmask = ~((1ULL << sps->page_shift) - 1); + + if (slb->vsid & SLB_VSID_B) { + /* 1TB segment */ + vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; + epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask; + hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift); + } else { + /* 256M segment */ + vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; + epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask; + hash = vsid ^ (epn >> sps->page_shift); + } + ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN); + ptem |= HPTE64_V_VALID; + + /* Page address translation */ + qemu_log_mask(CPU_LOG_MMU, + "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx + " hash " TARGET_FMT_plx "\n", + env->htab_base, env->htab_mask, hash); + + /* Primary PTEG lookup */ + qemu_log_mask(CPU_LOG_MMU, + "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx + " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx + " hash=" TARGET_FMT_plx "\n", + env->htab_base, env->htab_mask, vsid, ptem, hash); + pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift); + + if (pte_offset == -1) { + /* Secondary PTEG lookup */ + ptem |= HPTE64_V_SECONDARY; + qemu_log_mask(CPU_LOG_MMU, + "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx + " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx + " hash=" TARGET_FMT_plx "\n", env->htab_base, + env->htab_mask, vsid, ptem, ~hash); + + pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift); + } + + return pte_offset; +} + +unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu, + uint64_t pte0, uint64_t pte1) +{ + CPUPPCState *env = &cpu->env; + int i; + + if (!(pte0 & HPTE64_V_LARGE)) { + return 12; + } + + /* + * The encodings in env->sps need to be carefully chosen so that + * this gives an unambiguous result. + */ + for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { + const struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; + unsigned shift; + + if (!sps->page_shift) { + break; + } + + shift = hpte_page_shift(sps, pte0, pte1); + if (shift) { + return shift; + } + } + + return 0; +} + +static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env, + uint64_t error_code) +{ + bool vpm; + + if (msr_ir) { + vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); + } else { + vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0); + } + if (vpm && !msr_hv) { + cs->exception_index = POWERPC_EXCP_HISI; + } else { + cs->exception_index = POWERPC_EXCP_ISI; + } + env->error_code = error_code; +} + +static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar, + uint64_t dsisr) +{ + bool vpm; + + if (msr_dr) { + vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); + } else { + vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0); + } + if (vpm && !msr_hv) { + cs->exception_index = POWERPC_EXCP_HDSI; + env->spr[SPR_HDAR] = dar; + env->spr[SPR_HDSISR] = dsisr; + } else { + cs->exception_index = POWERPC_EXCP_DSI; + env->spr[SPR_DAR] = dar; + env->spr[SPR_DSISR] = dsisr; + } + env->error_code = 0; +} + + +int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, + int rwx, int mmu_idx) +{ + CPUState *cs = CPU(cpu); + CPUPPCState *env = &cpu->env; + ppc_slb_t *slb; + unsigned apshift; + hwaddr pte_offset; + ppc_hash_pte64_t pte; + int pp_prot, amr_prot, prot; + uint64_t new_pte1, dsisr; + const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC}; + hwaddr raddr; + + assert((rwx == 0) || (rwx == 1) || (rwx == 2)); + + /* Note on LPCR usage: 970 uses HID4, but our special variant + * of store_spr copies relevant fields into env->spr[SPR_LPCR]. + * Similarily we filter unimplemented bits when storing into + * LPCR depending on the MMU version. This code can thus just + * use the LPCR "as-is". + */ + + /* 1. Handle real mode accesses */ + if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) { + /* Translation is supposedly "off" */ + /* In real mode the top 4 effective address bits are (mostly) ignored */ + raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; + + /* In HV mode, add HRMOR if top EA bit is clear */ + if (msr_hv || !env->has_hv_mode) { + if (!(eaddr >> 63)) { + raddr |= env->spr[SPR_HRMOR]; + } + } else { + /* Otherwise, check VPM for RMA vs VRMA */ + if (env->spr[SPR_LPCR] & LPCR_VPM0) { + slb = &env->vrma_slb; + if (slb->sps) { + goto skip_slb_search; + } + /* Not much else to do here */ + cs->exception_index = POWERPC_EXCP_MCHECK; + env->error_code = 0; + return 1; + } else if (raddr < env->rmls) { + /* RMA. Check bounds in RMLS */ + raddr |= env->spr[SPR_RMOR]; + } else { + /* The access failed, generate the approriate interrupt */ + if (rwx == 2) { + ppc_hash64_set_isi(cs, env, 0x08000000); + } else { + dsisr = 0x08000000; + if (rwx == 1) { + dsisr |= 0x02000000; + } + ppc_hash64_set_dsi(cs, env, eaddr, dsisr); + } + return 1; + } + } + tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, + PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx, + TARGET_PAGE_SIZE); + return 0; + } + + /* 2. Translation is on, so look up the SLB */ + slb = slb_lookup(cpu, eaddr); + if (!slb) { + if (rwx == 2) { + cs->exception_index = POWERPC_EXCP_ISEG; + env->error_code = 0; + } else { + cs->exception_index = POWERPC_EXCP_DSEG; + env->error_code = 0; + env->spr[SPR_DAR] = eaddr; + } + return 1; + } + +skip_slb_search: + + /* 3. Check for segment level no-execute violation */ + if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) { + ppc_hash64_set_isi(cs, env, 0x10000000); + return 1; + } + + /* 4. Locate the PTE in the hash table */ + pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift); + if (pte_offset == -1) { + dsisr = 0x40000000; + if (rwx == 2) { + ppc_hash64_set_isi(cs, env, dsisr); + } else { + if (rwx == 1) { + dsisr |= 0x02000000; + } + ppc_hash64_set_dsi(cs, env, eaddr, dsisr); + } + return 1; + } + qemu_log_mask(CPU_LOG_MMU, + "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset); + + /* 5. Check access permissions */ + + pp_prot = ppc_hash64_pte_prot(cpu, slb, pte); + amr_prot = ppc_hash64_amr_prot(cpu, pte); + prot = pp_prot & amr_prot; + + if ((need_prot[rwx] & ~prot) != 0) { + /* Access right violation */ + qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n"); + if (rwx == 2) { + ppc_hash64_set_isi(cs, env, 0x08000000); + } else { + dsisr = 0; + if (need_prot[rwx] & ~pp_prot) { + dsisr |= 0x08000000; + } + if (rwx == 1) { + dsisr |= 0x02000000; + } + if (need_prot[rwx] & ~amr_prot) { + dsisr |= 0x00200000; + } + ppc_hash64_set_dsi(cs, env, eaddr, dsisr); + } + return 1; + } + + qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n"); + + /* 6. Update PTE referenced and changed bits if necessary */ + + new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */ + if (rwx == 1) { + new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */ + } else { + /* Treat the page as read-only for now, so that a later write + * will pass through this function again to set the C bit */ + prot &= ~PAGE_WRITE; + } + + if (new_pte1 != pte.pte1) { + ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64, + pte.pte0, new_pte1); + } + + /* 7. Determine the real address from the PTE */ + + raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr); + + tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, + prot, mmu_idx, 1ULL << apshift); + + return 0; +} + +hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr) +{ + CPUPPCState *env = &cpu->env; + ppc_slb_t *slb; + hwaddr pte_offset, raddr; + ppc_hash_pte64_t pte; + unsigned apshift; + + /* Handle real mode */ + if (msr_dr == 0) { + /* In real mode the top 4 effective address bits are ignored */ + raddr = addr & 0x0FFFFFFFFFFFFFFFULL; + + /* In HV mode, add HRMOR if top EA bit is clear */ + if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) { + return raddr | env->spr[SPR_HRMOR]; + } + + /* Otherwise, check VPM for RMA vs VRMA */ + if (env->spr[SPR_LPCR] & LPCR_VPM0) { + slb = &env->vrma_slb; + if (!slb->sps) { + return -1; + } + } else if (raddr < env->rmls) { + /* RMA. Check bounds in RMLS */ + return raddr | env->spr[SPR_RMOR]; + } else { + return -1; + } + } else { + slb = slb_lookup(cpu, addr); + if (!slb) { + return -1; + } + } + + pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift); + if (pte_offset == -1) { + return -1; + } + + return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr) + & TARGET_PAGE_MASK; +} + +void ppc_hash64_store_hpte(PowerPCCPU *cpu, + target_ulong pte_index, + target_ulong pte0, target_ulong pte1) +{ + CPUPPCState *env = &cpu->env; + + if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) { + kvmppc_hash64_write_pte(env, pte_index, pte0, pte1); + return; + } + + pte_index *= HASH_PTE_SIZE_64; + if (env->external_htab) { + stq_p(env->external_htab + pte_index, pte0); + stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1); + } else { + stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0); + stq_phys(CPU(cpu)->as, + env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1); + } +} + +void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, + target_ulong pte_index, + target_ulong pte0, target_ulong pte1) +{ + /* + * XXX: given the fact that there are too many segments to + * invalidate, and we still don't have a tlb_flush_mask(env, n, + * mask) in QEMU, we just invalidate all TLBs + */ + cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH; +} + +void ppc_hash64_update_rmls(CPUPPCState *env) +{ + uint64_t lpcr = env->spr[SPR_LPCR]; + + /* + * This is the full 4 bits encoding of POWER8. Previous + * CPUs only support a subset of these but the filtering + * is done when writing LPCR + */ + switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) { + case 0x8: /* 32MB */ + env->rmls = 0x2000000ull; + break; + case 0x3: /* 64MB */ + env->rmls = 0x4000000ull; + break; + case 0x7: /* 128MB */ + env->rmls = 0x8000000ull; + break; + case 0x4: /* 256MB */ + env->rmls = 0x10000000ull; + break; + case 0x2: /* 1GB */ + env->rmls = 0x40000000ull; + break; + case 0x1: /* 16GB */ + env->rmls = 0x400000000ull; + break; + default: + /* What to do here ??? */ + env->rmls = 0; + } +} + +void ppc_hash64_update_vrma(CPUPPCState *env) +{ + const struct ppc_one_seg_page_size *sps = NULL; + target_ulong esid, vsid, lpcr; + ppc_slb_t *slb = &env->vrma_slb; + uint32_t vrmasd; + int i; + + /* First clear it */ + slb->esid = slb->vsid = 0; + slb->sps = NULL; + + /* Is VRMA enabled ? */ + lpcr = env->spr[SPR_LPCR]; + if (!(lpcr & LPCR_VPM0)) { + return; + } + + /* Make one up. Mostly ignore the ESID which will not be + * needed for translation + */ + vsid = SLB_VSID_VRMA; + vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT; + vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP); + esid = SLB_ESID_V; + + for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { + const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i]; + + if (!sps1->page_shift) { + break; + } + + if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { + sps = sps1; + break; + } + } + + if (!sps) { + error_report("Bad page size encoding esid 0x"TARGET_FMT_lx + " vsid 0x"TARGET_FMT_lx, esid, vsid); + return; + } + + slb->vsid = vsid; + slb->esid = esid; + slb->sps = sps; +} + +void helper_store_lpcr(CPUPPCState *env, target_ulong val) +{ + uint64_t lpcr = 0; + + /* Filter out bits */ + switch (env->mmu_model) { + case POWERPC_MMU_64B: /* 970 */ + if (val & 0x40) { + lpcr |= LPCR_LPES0; + } + if (val & 0x8000000000000000ull) { + lpcr |= LPCR_LPES1; + } + if (val & 0x20) { + lpcr |= (0x4ull << LPCR_RMLS_SHIFT); + } + if (val & 0x4000000000000000ull) { + lpcr |= (0x2ull << LPCR_RMLS_SHIFT); + } + if (val & 0x2000000000000000ull) { + lpcr |= (0x1ull << LPCR_RMLS_SHIFT); + } + env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26; + + /* XXX We could also write LPID from HID4 here + * but since we don't tag any translation on it + * it doesn't actually matter + */ + /* XXX For proper emulation of 970 we also need + * to dig HRMOR out of HID5 + */ + break; + case POWERPC_MMU_2_03: /* P5p */ + lpcr = val & (LPCR_RMLS | LPCR_ILE | + LPCR_LPES0 | LPCR_LPES1 | + LPCR_RMI | LPCR_HDICE); + break; + case POWERPC_MMU_2_06: /* P7 */ + lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD | + LPCR_VRMASD | LPCR_RMLS | LPCR_ILE | + LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 | + LPCR_MER | LPCR_TC | + LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE); + break; + case POWERPC_MMU_2_07: /* P8 */ + lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV | + LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE | + LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 | + LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 | + LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE); + break; + default: + ; + } + env->spr[SPR_LPCR] = lpcr; + ppc_hash64_update_rmls(env); + ppc_hash64_update_vrma(env); +} |