aboutsummaryrefslogtreecommitdiff
path: root/target/mips/msa_helper.c
diff options
context:
space:
mode:
authorThomas Huth <thuth@redhat.com>2016-10-11 08:56:52 +0200
committerThomas Huth <thuth@redhat.com>2016-12-20 21:52:12 +0100
commitfcf5ef2ab52c621a4617ebbef36bf43b4003f4c0 (patch)
tree2b450d96b01455df8ed908bf8f26ddc388a03380 /target/mips/msa_helper.c
parent82ecffa8c050bf5bbc13329e9b65eac1caa5b55c (diff)
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx folders in the root folder of the QEMU source tree. More architectures (e.g. RISC-V, AVR) are likely to be included soon, too, so the main folder of the QEMU sources slowly gets quite overcrowded with the target-xxx folders. To disburden the main folder a little bit, let's move the target-xxx folders into a dedicated target/ folder, so that target-xxx/ simply becomes target/xxx/ instead. Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part] Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part] Acked-by: Michael Walle <michael@walle.cc> [lm32 part] Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part] Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part] Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part] Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part] Acked-by: Richard Henderson <rth@twiddle.net> [alpha part] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part] Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part] Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [cris&microblaze part] Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part] Signed-off-by: Thomas Huth <thuth@redhat.com>
Diffstat (limited to 'target/mips/msa_helper.c')
-rw-r--r--target/mips/msa_helper.c3453
1 files changed, 3453 insertions, 0 deletions
diff --git a/target/mips/msa_helper.c b/target/mips/msa_helper.c
new file mode 100644
index 0000000000..1fdb0d9792
--- /dev/null
+++ b/target/mips/msa_helper.c
@@ -0,0 +1,3453 @@
+/*
+ * MIPS SIMD Architecture Module Instruction emulation helpers for QEMU.
+ *
+ * Copyright (c) 2014 Imagination Technologies
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "exec/helper-proto.h"
+
+/* Data format min and max values */
+#define DF_BITS(df) (1 << ((df) + 3))
+
+#define DF_MAX_INT(df) (int64_t)((1LL << (DF_BITS(df) - 1)) - 1)
+#define M_MAX_INT(m) (int64_t)((1LL << ((m) - 1)) - 1)
+
+#define DF_MIN_INT(df) (int64_t)(-(1LL << (DF_BITS(df) - 1)))
+#define M_MIN_INT(m) (int64_t)(-(1LL << ((m) - 1)))
+
+#define DF_MAX_UINT(df) (uint64_t)(-1ULL >> (64 - DF_BITS(df)))
+#define M_MAX_UINT(m) (uint64_t)(-1ULL >> (64 - (m)))
+
+#define UNSIGNED(x, df) ((x) & DF_MAX_UINT(df))
+#define SIGNED(x, df) \
+ ((((int64_t)x) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)))
+
+/* Element-by-element access macros */
+#define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
+
+static inline void msa_move_v(wr_t *pwd, wr_t *pws)
+{
+ uint32_t i;
+
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ pwd->d[i] = pws->d[i];
+ }
+}
+
+#define MSA_FN_IMM8(FUNC, DEST, OPERATION) \
+void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws, \
+ uint32_t i8) \
+{ \
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
+ uint32_t i; \
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
+ DEST = OPERATION; \
+ } \
+}
+
+MSA_FN_IMM8(andi_b, pwd->b[i], pws->b[i] & i8)
+MSA_FN_IMM8(ori_b, pwd->b[i], pws->b[i] | i8)
+MSA_FN_IMM8(nori_b, pwd->b[i], ~(pws->b[i] | i8))
+MSA_FN_IMM8(xori_b, pwd->b[i], pws->b[i] ^ i8)
+
+#define BIT_MOVE_IF_NOT_ZERO(dest, arg1, arg2, df) \
+ UNSIGNED(((dest & (~arg2)) | (arg1 & arg2)), df)
+MSA_FN_IMM8(bmnzi_b, pwd->b[i],
+ BIT_MOVE_IF_NOT_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE))
+
+#define BIT_MOVE_IF_ZERO(dest, arg1, arg2, df) \
+ UNSIGNED((dest & arg2) | (arg1 & (~arg2)), df)
+MSA_FN_IMM8(bmzi_b, pwd->b[i],
+ BIT_MOVE_IF_ZERO(pwd->b[i], pws->b[i], i8, DF_BYTE))
+
+#define BIT_SELECT(dest, arg1, arg2, df) \
+ UNSIGNED((arg1 & (~dest)) | (arg2 & dest), df)
+MSA_FN_IMM8(bseli_b, pwd->b[i],
+ BIT_SELECT(pwd->b[i], pws->b[i], i8, DF_BYTE))
+
+#undef MSA_FN_IMM8
+
+#define SHF_POS(i, imm) (((i) & 0xfc) + (((imm) >> (2 * ((i) & 0x03))) & 0x03))
+
+void helper_msa_shf_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t imm)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ switch (df) {
+ case DF_BYTE:
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
+ pwx->b[i] = pws->b[SHF_POS(i, imm)];
+ }
+ break;
+ case DF_HALF:
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
+ pwx->h[i] = pws->h[SHF_POS(i, imm)];
+ }
+ break;
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ pwx->w[i] = pws->w[SHF_POS(i, imm)];
+ }
+ break;
+ default:
+ assert(0);
+ }
+ msa_move_v(pwd, pwx);
+}
+
+#define MSA_FN_VECTOR(FUNC, DEST, OPERATION) \
+void helper_msa_ ## FUNC(CPUMIPSState *env, uint32_t wd, uint32_t ws, \
+ uint32_t wt) \
+{ \
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
+ uint32_t i; \
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
+ DEST = OPERATION; \
+ } \
+}
+
+MSA_FN_VECTOR(and_v, pwd->d[i], pws->d[i] & pwt->d[i])
+MSA_FN_VECTOR(or_v, pwd->d[i], pws->d[i] | pwt->d[i])
+MSA_FN_VECTOR(nor_v, pwd->d[i], ~(pws->d[i] | pwt->d[i]))
+MSA_FN_VECTOR(xor_v, pwd->d[i], pws->d[i] ^ pwt->d[i])
+MSA_FN_VECTOR(bmnz_v, pwd->d[i],
+ BIT_MOVE_IF_NOT_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE))
+MSA_FN_VECTOR(bmz_v, pwd->d[i],
+ BIT_MOVE_IF_ZERO(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE))
+MSA_FN_VECTOR(bsel_v, pwd->d[i],
+ BIT_SELECT(pwd->d[i], pws->d[i], pwt->d[i], DF_DOUBLE))
+#undef BIT_MOVE_IF_NOT_ZERO
+#undef BIT_MOVE_IF_ZERO
+#undef BIT_SELECT
+#undef MSA_FN_VECTOR
+
+static inline int64_t msa_addv_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return arg1 + arg2;
+}
+
+static inline int64_t msa_subv_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return arg1 - arg2;
+}
+
+static inline int64_t msa_ceq_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return arg1 == arg2 ? -1 : 0;
+}
+
+static inline int64_t msa_cle_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return arg1 <= arg2 ? -1 : 0;
+}
+
+static inline int64_t msa_cle_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ return u_arg1 <= u_arg2 ? -1 : 0;
+}
+
+static inline int64_t msa_clt_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return arg1 < arg2 ? -1 : 0;
+}
+
+static inline int64_t msa_clt_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ return u_arg1 < u_arg2 ? -1 : 0;
+}
+
+static inline int64_t msa_max_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return arg1 > arg2 ? arg1 : arg2;
+}
+
+static inline int64_t msa_max_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ return u_arg1 > u_arg2 ? arg1 : arg2;
+}
+
+static inline int64_t msa_min_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return arg1 < arg2 ? arg1 : arg2;
+}
+
+static inline int64_t msa_min_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ return u_arg1 < u_arg2 ? arg1 : arg2;
+}
+
+#define MSA_BINOP_IMM_DF(helper, func) \
+void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, \
+ uint32_t wd, uint32_t ws, int32_t u5) \
+{ \
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
+ uint32_t i; \
+ \
+ switch (df) { \
+ case DF_BYTE: \
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
+ pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5); \
+ } \
+ break; \
+ case DF_HALF: \
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
+ pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5); \
+ } \
+ break; \
+ case DF_WORD: \
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
+ pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5); \
+ } \
+ break; \
+ case DF_DOUBLE: \
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
+ pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5); \
+ } \
+ break; \
+ default: \
+ assert(0); \
+ } \
+}
+
+MSA_BINOP_IMM_DF(addvi, addv)
+MSA_BINOP_IMM_DF(subvi, subv)
+MSA_BINOP_IMM_DF(ceqi, ceq)
+MSA_BINOP_IMM_DF(clei_s, cle_s)
+MSA_BINOP_IMM_DF(clei_u, cle_u)
+MSA_BINOP_IMM_DF(clti_s, clt_s)
+MSA_BINOP_IMM_DF(clti_u, clt_u)
+MSA_BINOP_IMM_DF(maxi_s, max_s)
+MSA_BINOP_IMM_DF(maxi_u, max_u)
+MSA_BINOP_IMM_DF(mini_s, min_s)
+MSA_BINOP_IMM_DF(mini_u, min_u)
+#undef MSA_BINOP_IMM_DF
+
+void helper_msa_ldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ int32_t s10)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ uint32_t i;
+
+ switch (df) {
+ case DF_BYTE:
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
+ pwd->b[i] = (int8_t)s10;
+ }
+ break;
+ case DF_HALF:
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
+ pwd->h[i] = (int16_t)s10;
+ }
+ break;
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ pwd->w[i] = (int32_t)s10;
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ pwd->d[i] = (int64_t)s10;
+ }
+ break;
+ default:
+ assert(0);
+ }
+}
+
+/* Data format bit position and unsigned values */
+#define BIT_POSITION(x, df) ((uint64_t)(x) % DF_BITS(df))
+
+static inline int64_t msa_sll_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int32_t b_arg2 = BIT_POSITION(arg2, df);
+ return arg1 << b_arg2;
+}
+
+static inline int64_t msa_sra_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int32_t b_arg2 = BIT_POSITION(arg2, df);
+ return arg1 >> b_arg2;
+}
+
+static inline int64_t msa_srl_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ int32_t b_arg2 = BIT_POSITION(arg2, df);
+ return u_arg1 >> b_arg2;
+}
+
+static inline int64_t msa_bclr_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int32_t b_arg2 = BIT_POSITION(arg2, df);
+ return UNSIGNED(arg1 & (~(1LL << b_arg2)), df);
+}
+
+static inline int64_t msa_bset_df(uint32_t df, int64_t arg1,
+ int64_t arg2)
+{
+ int32_t b_arg2 = BIT_POSITION(arg2, df);
+ return UNSIGNED(arg1 | (1LL << b_arg2), df);
+}
+
+static inline int64_t msa_bneg_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int32_t b_arg2 = BIT_POSITION(arg2, df);
+ return UNSIGNED(arg1 ^ (1LL << b_arg2), df);
+}
+
+static inline int64_t msa_binsl_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_dest = UNSIGNED(dest, df);
+ int32_t sh_d = BIT_POSITION(arg2, df) + 1;
+ int32_t sh_a = DF_BITS(df) - sh_d;
+ if (sh_d == DF_BITS(df)) {
+ return u_arg1;
+ } else {
+ return UNSIGNED(UNSIGNED(u_dest << sh_d, df) >> sh_d, df) |
+ UNSIGNED(UNSIGNED(u_arg1 >> sh_a, df) << sh_a, df);
+ }
+}
+
+static inline int64_t msa_binsr_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_dest = UNSIGNED(dest, df);
+ int32_t sh_d = BIT_POSITION(arg2, df) + 1;
+ int32_t sh_a = DF_BITS(df) - sh_d;
+ if (sh_d == DF_BITS(df)) {
+ return u_arg1;
+ } else {
+ return UNSIGNED(UNSIGNED(u_dest >> sh_d, df) << sh_d, df) |
+ UNSIGNED(UNSIGNED(u_arg1 << sh_a, df) >> sh_a, df);
+ }
+}
+
+static inline int64_t msa_sat_s_df(uint32_t df, int64_t arg, uint32_t m)
+{
+ return arg < M_MIN_INT(m+1) ? M_MIN_INT(m+1) :
+ arg > M_MAX_INT(m+1) ? M_MAX_INT(m+1) :
+ arg;
+}
+
+static inline int64_t msa_sat_u_df(uint32_t df, int64_t arg, uint32_t m)
+{
+ uint64_t u_arg = UNSIGNED(arg, df);
+ return u_arg < M_MAX_UINT(m+1) ? u_arg :
+ M_MAX_UINT(m+1);
+}
+
+static inline int64_t msa_srar_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int32_t b_arg2 = BIT_POSITION(arg2, df);
+ if (b_arg2 == 0) {
+ return arg1;
+ } else {
+ int64_t r_bit = (arg1 >> (b_arg2 - 1)) & 1;
+ return (arg1 >> b_arg2) + r_bit;
+ }
+}
+
+static inline int64_t msa_srlr_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ int32_t b_arg2 = BIT_POSITION(arg2, df);
+ if (b_arg2 == 0) {
+ return u_arg1;
+ } else {
+ uint64_t r_bit = (u_arg1 >> (b_arg2 - 1)) & 1;
+ return (u_arg1 >> b_arg2) + r_bit;
+ }
+}
+
+#define MSA_BINOP_IMMU_DF(helper, func) \
+void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd, \
+ uint32_t ws, uint32_t u5) \
+{ \
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
+ uint32_t i; \
+ \
+ switch (df) { \
+ case DF_BYTE: \
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
+ pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], u5); \
+ } \
+ break; \
+ case DF_HALF: \
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
+ pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], u5); \
+ } \
+ break; \
+ case DF_WORD: \
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
+ pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], u5); \
+ } \
+ break; \
+ case DF_DOUBLE: \
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
+ pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], u5); \
+ } \
+ break; \
+ default: \
+ assert(0); \
+ } \
+}
+
+MSA_BINOP_IMMU_DF(slli, sll)
+MSA_BINOP_IMMU_DF(srai, sra)
+MSA_BINOP_IMMU_DF(srli, srl)
+MSA_BINOP_IMMU_DF(bclri, bclr)
+MSA_BINOP_IMMU_DF(bseti, bset)
+MSA_BINOP_IMMU_DF(bnegi, bneg)
+MSA_BINOP_IMMU_DF(sat_s, sat_s)
+MSA_BINOP_IMMU_DF(sat_u, sat_u)
+MSA_BINOP_IMMU_DF(srari, srar)
+MSA_BINOP_IMMU_DF(srlri, srlr)
+#undef MSA_BINOP_IMMU_DF
+
+#define MSA_TEROP_IMMU_DF(helper, func) \
+void helper_msa_ ## helper ## _df(CPUMIPSState *env, uint32_t df, \
+ uint32_t wd, uint32_t ws, uint32_t u5) \
+{ \
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
+ uint32_t i; \
+ \
+ switch (df) { \
+ case DF_BYTE: \
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
+ pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i], \
+ u5); \
+ } \
+ break; \
+ case DF_HALF: \
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
+ pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i], \
+ u5); \
+ } \
+ break; \
+ case DF_WORD: \
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
+ pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i], \
+ u5); \
+ } \
+ break; \
+ case DF_DOUBLE: \
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
+ pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i], \
+ u5); \
+ } \
+ break; \
+ default: \
+ assert(0); \
+ } \
+}
+
+MSA_TEROP_IMMU_DF(binsli, binsl)
+MSA_TEROP_IMMU_DF(binsri, binsr)
+#undef MSA_TEROP_IMMU_DF
+
+static inline int64_t msa_max_a_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
+ uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
+ return abs_arg1 > abs_arg2 ? arg1 : arg2;
+}
+
+static inline int64_t msa_min_a_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
+ uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
+ return abs_arg1 < abs_arg2 ? arg1 : arg2;
+}
+
+static inline int64_t msa_add_a_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
+ uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
+ return abs_arg1 + abs_arg2;
+}
+
+static inline int64_t msa_adds_a_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t max_int = (uint64_t)DF_MAX_INT(df);
+ uint64_t abs_arg1 = arg1 >= 0 ? arg1 : -arg1;
+ uint64_t abs_arg2 = arg2 >= 0 ? arg2 : -arg2;
+ if (abs_arg1 > max_int || abs_arg2 > max_int) {
+ return (int64_t)max_int;
+ } else {
+ return (abs_arg1 < max_int - abs_arg2) ? abs_arg1 + abs_arg2 : max_int;
+ }
+}
+
+static inline int64_t msa_adds_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int64_t max_int = DF_MAX_INT(df);
+ int64_t min_int = DF_MIN_INT(df);
+ if (arg1 < 0) {
+ return (min_int - arg1 < arg2) ? arg1 + arg2 : min_int;
+ } else {
+ return (arg2 < max_int - arg1) ? arg1 + arg2 : max_int;
+ }
+}
+
+static inline uint64_t msa_adds_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
+{
+ uint64_t max_uint = DF_MAX_UINT(df);
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ return (u_arg1 < max_uint - u_arg2) ? u_arg1 + u_arg2 : max_uint;
+}
+
+static inline int64_t msa_ave_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ /* signed shift */
+ return (arg1 >> 1) + (arg2 >> 1) + (arg1 & arg2 & 1);
+}
+
+static inline uint64_t msa_ave_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ /* unsigned shift */
+ return (u_arg1 >> 1) + (u_arg2 >> 1) + (u_arg1 & u_arg2 & 1);
+}
+
+static inline int64_t msa_aver_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ /* signed shift */
+ return (arg1 >> 1) + (arg2 >> 1) + ((arg1 | arg2) & 1);
+}
+
+static inline uint64_t msa_aver_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ /* unsigned shift */
+ return (u_arg1 >> 1) + (u_arg2 >> 1) + ((u_arg1 | u_arg2) & 1);
+}
+
+static inline int64_t msa_subs_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int64_t max_int = DF_MAX_INT(df);
+ int64_t min_int = DF_MIN_INT(df);
+ if (arg2 > 0) {
+ return (min_int + arg2 < arg1) ? arg1 - arg2 : min_int;
+ } else {
+ return (arg1 < max_int + arg2) ? arg1 - arg2 : max_int;
+ }
+}
+
+static inline int64_t msa_subs_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ return (u_arg1 > u_arg2) ? u_arg1 - u_arg2 : 0;
+}
+
+static inline int64_t msa_subsus_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t max_uint = DF_MAX_UINT(df);
+ if (arg2 >= 0) {
+ uint64_t u_arg2 = (uint64_t)arg2;
+ return (u_arg1 > u_arg2) ?
+ (int64_t)(u_arg1 - u_arg2) :
+ 0;
+ } else {
+ uint64_t u_arg2 = (uint64_t)(-arg2);
+ return (u_arg1 < max_uint - u_arg2) ?
+ (int64_t)(u_arg1 + u_arg2) :
+ (int64_t)max_uint;
+ }
+}
+
+static inline int64_t msa_subsuu_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ int64_t max_int = DF_MAX_INT(df);
+ int64_t min_int = DF_MIN_INT(df);
+ if (u_arg1 > u_arg2) {
+ return u_arg1 - u_arg2 < (uint64_t)max_int ?
+ (int64_t)(u_arg1 - u_arg2) :
+ max_int;
+ } else {
+ return u_arg2 - u_arg1 < (uint64_t)(-min_int) ?
+ (int64_t)(u_arg1 - u_arg2) :
+ min_int;
+ }
+}
+
+static inline int64_t msa_asub_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ /* signed compare */
+ return (arg1 < arg2) ?
+ (uint64_t)(arg2 - arg1) : (uint64_t)(arg1 - arg2);
+}
+
+static inline uint64_t msa_asub_u_df(uint32_t df, uint64_t arg1, uint64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ /* unsigned compare */
+ return (u_arg1 < u_arg2) ?
+ (uint64_t)(u_arg2 - u_arg1) : (uint64_t)(u_arg1 - u_arg2);
+}
+
+static inline int64_t msa_mulv_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return arg1 * arg2;
+}
+
+static inline int64_t msa_div_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ if (arg1 == DF_MIN_INT(df) && arg2 == -1) {
+ return DF_MIN_INT(df);
+ }
+ return arg2 ? arg1 / arg2 : 0;
+}
+
+static inline int64_t msa_div_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ return u_arg2 ? u_arg1 / u_arg2 : 0;
+}
+
+static inline int64_t msa_mod_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ if (arg1 == DF_MIN_INT(df) && arg2 == -1) {
+ return 0;
+ }
+ return arg2 ? arg1 % arg2 : 0;
+}
+
+static inline int64_t msa_mod_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ uint64_t u_arg1 = UNSIGNED(arg1, df);
+ uint64_t u_arg2 = UNSIGNED(arg2, df);
+ return u_arg2 ? u_arg1 % u_arg2 : 0;
+}
+
+#define SIGNED_EVEN(a, df) \
+ ((((int64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2))
+
+#define UNSIGNED_EVEN(a, df) \
+ ((((uint64_t)(a)) << (64 - DF_BITS(df)/2)) >> (64 - DF_BITS(df)/2))
+
+#define SIGNED_ODD(a, df) \
+ ((((int64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2))
+
+#define UNSIGNED_ODD(a, df) \
+ ((((uint64_t)(a)) << (64 - DF_BITS(df))) >> (64 - DF_BITS(df)/2))
+
+#define SIGNED_EXTRACT(e, o, a, df) \
+ do { \
+ e = SIGNED_EVEN(a, df); \
+ o = SIGNED_ODD(a, df); \
+ } while (0);
+
+#define UNSIGNED_EXTRACT(e, o, a, df) \
+ do { \
+ e = UNSIGNED_EVEN(a, df); \
+ o = UNSIGNED_ODD(a, df); \
+ } while (0);
+
+static inline int64_t msa_dotp_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int64_t even_arg1;
+ int64_t even_arg2;
+ int64_t odd_arg1;
+ int64_t odd_arg2;
+ SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
+ SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
+ return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
+}
+
+static inline int64_t msa_dotp_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int64_t even_arg1;
+ int64_t even_arg2;
+ int64_t odd_arg1;
+ int64_t odd_arg2;
+ UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
+ UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
+ return (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
+}
+
+#define CONCATENATE_AND_SLIDE(s, k) \
+ do { \
+ for (i = 0; i < s; i++) { \
+ v[i] = pws->b[s * k + i]; \
+ v[i + s] = pwd->b[s * k + i]; \
+ } \
+ for (i = 0; i < s; i++) { \
+ pwd->b[s * k + i] = v[i + n]; \
+ } \
+ } while (0)
+
+static inline void msa_sld_df(uint32_t df, wr_t *pwd,
+ wr_t *pws, target_ulong rt)
+{
+ uint32_t n = rt % DF_ELEMENTS(df);
+ uint8_t v[64];
+ uint32_t i, k;
+
+ switch (df) {
+ case DF_BYTE:
+ CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_BYTE), 0);
+ break;
+ case DF_HALF:
+ for (k = 0; k < 2; k++) {
+ CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_HALF), k);
+ }
+ break;
+ case DF_WORD:
+ for (k = 0; k < 4; k++) {
+ CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_WORD), k);
+ }
+ break;
+ case DF_DOUBLE:
+ for (k = 0; k < 8; k++) {
+ CONCATENATE_AND_SLIDE(DF_ELEMENTS(DF_DOUBLE), k);
+ }
+ break;
+ default:
+ assert(0);
+ }
+}
+
+static inline int64_t msa_hadd_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return SIGNED_ODD(arg1, df) + SIGNED_EVEN(arg2, df);
+}
+
+static inline int64_t msa_hadd_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return UNSIGNED_ODD(arg1, df) + UNSIGNED_EVEN(arg2, df);
+}
+
+static inline int64_t msa_hsub_s_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return SIGNED_ODD(arg1, df) - SIGNED_EVEN(arg2, df);
+}
+
+static inline int64_t msa_hsub_u_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ return UNSIGNED_ODD(arg1, df) - UNSIGNED_EVEN(arg2, df);
+}
+
+static inline int64_t msa_mul_q_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int64_t q_min = DF_MIN_INT(df);
+ int64_t q_max = DF_MAX_INT(df);
+
+ if (arg1 == q_min && arg2 == q_min) {
+ return q_max;
+ }
+ return (arg1 * arg2) >> (DF_BITS(df) - 1);
+}
+
+static inline int64_t msa_mulr_q_df(uint32_t df, int64_t arg1, int64_t arg2)
+{
+ int64_t q_min = DF_MIN_INT(df);
+ int64_t q_max = DF_MAX_INT(df);
+ int64_t r_bit = 1 << (DF_BITS(df) - 2);
+
+ if (arg1 == q_min && arg2 == q_min) {
+ return q_max;
+ }
+ return (arg1 * arg2 + r_bit) >> (DF_BITS(df) - 1);
+}
+
+#define MSA_BINOP_DF(func) \
+void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, \
+ uint32_t wd, uint32_t ws, uint32_t wt) \
+{ \
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
+ uint32_t i; \
+ \
+ switch (df) { \
+ case DF_BYTE: \
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
+ pwd->b[i] = msa_ ## func ## _df(df, pws->b[i], pwt->b[i]); \
+ } \
+ break; \
+ case DF_HALF: \
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
+ pwd->h[i] = msa_ ## func ## _df(df, pws->h[i], pwt->h[i]); \
+ } \
+ break; \
+ case DF_WORD: \
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
+ pwd->w[i] = msa_ ## func ## _df(df, pws->w[i], pwt->w[i]); \
+ } \
+ break; \
+ case DF_DOUBLE: \
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
+ pwd->d[i] = msa_ ## func ## _df(df, pws->d[i], pwt->d[i]); \
+ } \
+ break; \
+ default: \
+ assert(0); \
+ } \
+}
+
+MSA_BINOP_DF(sll)
+MSA_BINOP_DF(sra)
+MSA_BINOP_DF(srl)
+MSA_BINOP_DF(bclr)
+MSA_BINOP_DF(bset)
+MSA_BINOP_DF(bneg)
+MSA_BINOP_DF(addv)
+MSA_BINOP_DF(subv)
+MSA_BINOP_DF(max_s)
+MSA_BINOP_DF(max_u)
+MSA_BINOP_DF(min_s)
+MSA_BINOP_DF(min_u)
+MSA_BINOP_DF(max_a)
+MSA_BINOP_DF(min_a)
+MSA_BINOP_DF(ceq)
+MSA_BINOP_DF(clt_s)
+MSA_BINOP_DF(clt_u)
+MSA_BINOP_DF(cle_s)
+MSA_BINOP_DF(cle_u)
+MSA_BINOP_DF(add_a)
+MSA_BINOP_DF(adds_a)
+MSA_BINOP_DF(adds_s)
+MSA_BINOP_DF(adds_u)
+MSA_BINOP_DF(ave_s)
+MSA_BINOP_DF(ave_u)
+MSA_BINOP_DF(aver_s)
+MSA_BINOP_DF(aver_u)
+MSA_BINOP_DF(subs_s)
+MSA_BINOP_DF(subs_u)
+MSA_BINOP_DF(subsus_u)
+MSA_BINOP_DF(subsuu_s)
+MSA_BINOP_DF(asub_s)
+MSA_BINOP_DF(asub_u)
+MSA_BINOP_DF(mulv)
+MSA_BINOP_DF(div_s)
+MSA_BINOP_DF(div_u)
+MSA_BINOP_DF(mod_s)
+MSA_BINOP_DF(mod_u)
+MSA_BINOP_DF(dotp_s)
+MSA_BINOP_DF(dotp_u)
+MSA_BINOP_DF(srar)
+MSA_BINOP_DF(srlr)
+MSA_BINOP_DF(hadd_s)
+MSA_BINOP_DF(hadd_u)
+MSA_BINOP_DF(hsub_s)
+MSA_BINOP_DF(hsub_u)
+
+MSA_BINOP_DF(mul_q)
+MSA_BINOP_DF(mulr_q)
+#undef MSA_BINOP_DF
+
+void helper_msa_sld_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t rt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+
+ msa_sld_df(df, pwd, pws, env->active_tc.gpr[rt]);
+}
+
+static inline int64_t msa_maddv_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ return dest + arg1 * arg2;
+}
+
+static inline int64_t msa_msubv_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ return dest - arg1 * arg2;
+}
+
+static inline int64_t msa_dpadd_s_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ int64_t even_arg1;
+ int64_t even_arg2;
+ int64_t odd_arg1;
+ int64_t odd_arg2;
+ SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
+ SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
+ return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
+}
+
+static inline int64_t msa_dpadd_u_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ int64_t even_arg1;
+ int64_t even_arg2;
+ int64_t odd_arg1;
+ int64_t odd_arg2;
+ UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
+ UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
+ return dest + (even_arg1 * even_arg2) + (odd_arg1 * odd_arg2);
+}
+
+static inline int64_t msa_dpsub_s_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ int64_t even_arg1;
+ int64_t even_arg2;
+ int64_t odd_arg1;
+ int64_t odd_arg2;
+ SIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
+ SIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
+ return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2));
+}
+
+static inline int64_t msa_dpsub_u_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ int64_t even_arg1;
+ int64_t even_arg2;
+ int64_t odd_arg1;
+ int64_t odd_arg2;
+ UNSIGNED_EXTRACT(even_arg1, odd_arg1, arg1, df);
+ UNSIGNED_EXTRACT(even_arg2, odd_arg2, arg2, df);
+ return dest - ((even_arg1 * even_arg2) + (odd_arg1 * odd_arg2));
+}
+
+static inline int64_t msa_madd_q_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ int64_t q_prod, q_ret;
+
+ int64_t q_max = DF_MAX_INT(df);
+ int64_t q_min = DF_MIN_INT(df);
+
+ q_prod = arg1 * arg2;
+ q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod) >> (DF_BITS(df) - 1);
+
+ return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
+}
+
+static inline int64_t msa_msub_q_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ int64_t q_prod, q_ret;
+
+ int64_t q_max = DF_MAX_INT(df);
+ int64_t q_min = DF_MIN_INT(df);
+
+ q_prod = arg1 * arg2;
+ q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod) >> (DF_BITS(df) - 1);
+
+ return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
+}
+
+static inline int64_t msa_maddr_q_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ int64_t q_prod, q_ret;
+
+ int64_t q_max = DF_MAX_INT(df);
+ int64_t q_min = DF_MIN_INT(df);
+ int64_t r_bit = 1 << (DF_BITS(df) - 2);
+
+ q_prod = arg1 * arg2;
+ q_ret = ((dest << (DF_BITS(df) - 1)) + q_prod + r_bit) >> (DF_BITS(df) - 1);
+
+ return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
+}
+
+static inline int64_t msa_msubr_q_df(uint32_t df, int64_t dest, int64_t arg1,
+ int64_t arg2)
+{
+ int64_t q_prod, q_ret;
+
+ int64_t q_max = DF_MAX_INT(df);
+ int64_t q_min = DF_MIN_INT(df);
+ int64_t r_bit = 1 << (DF_BITS(df) - 2);
+
+ q_prod = arg1 * arg2;
+ q_ret = ((dest << (DF_BITS(df) - 1)) - q_prod + r_bit) >> (DF_BITS(df) - 1);
+
+ return (q_ret < q_min) ? q_min : (q_max < q_ret) ? q_max : q_ret;
+}
+
+#define MSA_TEROP_DF(func) \
+void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, uint32_t wd, \
+ uint32_t ws, uint32_t wt) \
+{ \
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
+ uint32_t i; \
+ \
+ switch (df) { \
+ case DF_BYTE: \
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
+ pwd->b[i] = msa_ ## func ## _df(df, pwd->b[i], pws->b[i], \
+ pwt->b[i]); \
+ } \
+ break; \
+ case DF_HALF: \
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
+ pwd->h[i] = msa_ ## func ## _df(df, pwd->h[i], pws->h[i], \
+ pwt->h[i]); \
+ } \
+ break; \
+ case DF_WORD: \
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
+ pwd->w[i] = msa_ ## func ## _df(df, pwd->w[i], pws->w[i], \
+ pwt->w[i]); \
+ } \
+ break; \
+ case DF_DOUBLE: \
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
+ pwd->d[i] = msa_ ## func ## _df(df, pwd->d[i], pws->d[i], \
+ pwt->d[i]); \
+ } \
+ break; \
+ default: \
+ assert(0); \
+ } \
+}
+
+MSA_TEROP_DF(maddv)
+MSA_TEROP_DF(msubv)
+MSA_TEROP_DF(dpadd_s)
+MSA_TEROP_DF(dpadd_u)
+MSA_TEROP_DF(dpsub_s)
+MSA_TEROP_DF(dpsub_u)
+MSA_TEROP_DF(binsl)
+MSA_TEROP_DF(binsr)
+MSA_TEROP_DF(madd_q)
+MSA_TEROP_DF(msub_q)
+MSA_TEROP_DF(maddr_q)
+MSA_TEROP_DF(msubr_q)
+#undef MSA_TEROP_DF
+
+static inline void msa_splat_df(uint32_t df, wr_t *pwd,
+ wr_t *pws, target_ulong rt)
+{
+ uint32_t n = rt % DF_ELEMENTS(df);
+ uint32_t i;
+
+ switch (df) {
+ case DF_BYTE:
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
+ pwd->b[i] = pws->b[n];
+ }
+ break;
+ case DF_HALF:
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
+ pwd->h[i] = pws->h[n];
+ }
+ break;
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ pwd->w[i] = pws->w[n];
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ pwd->d[i] = pws->d[n];
+ }
+ break;
+ default:
+ assert(0);
+ }
+}
+
+void helper_msa_splat_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t rt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+
+ msa_splat_df(df, pwd, pws, env->active_tc.gpr[rt]);
+}
+
+#define MSA_DO_B MSA_DO(b)
+#define MSA_DO_H MSA_DO(h)
+#define MSA_DO_W MSA_DO(w)
+#define MSA_DO_D MSA_DO(d)
+
+#define MSA_LOOP_B MSA_LOOP(B)
+#define MSA_LOOP_H MSA_LOOP(H)
+#define MSA_LOOP_W MSA_LOOP(W)
+#define MSA_LOOP_D MSA_LOOP(D)
+
+#define MSA_LOOP_COND_B MSA_LOOP_COND(DF_BYTE)
+#define MSA_LOOP_COND_H MSA_LOOP_COND(DF_HALF)
+#define MSA_LOOP_COND_W MSA_LOOP_COND(DF_WORD)
+#define MSA_LOOP_COND_D MSA_LOOP_COND(DF_DOUBLE)
+
+#define MSA_LOOP(DF) \
+ for (i = 0; i < (MSA_LOOP_COND_ ## DF) ; i++) { \
+ MSA_DO_ ## DF \
+ }
+
+#define MSA_FN_DF(FUNC) \
+void helper_msa_##FUNC(CPUMIPSState *env, uint32_t df, uint32_t wd, \
+ uint32_t ws, uint32_t wt) \
+{ \
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr); \
+ wr_t wx, *pwx = &wx; \
+ uint32_t i; \
+ switch (df) { \
+ case DF_BYTE: \
+ MSA_LOOP_B \
+ break; \
+ case DF_HALF: \
+ MSA_LOOP_H \
+ break; \
+ case DF_WORD: \
+ MSA_LOOP_W \
+ break; \
+ case DF_DOUBLE: \
+ MSA_LOOP_D \
+ break; \
+ default: \
+ assert(0); \
+ } \
+ msa_move_v(pwd, pwx); \
+}
+
+#define MSA_LOOP_COND(DF) \
+ (DF_ELEMENTS(DF) / 2)
+
+#define Rb(pwr, i) (pwr->b[i])
+#define Lb(pwr, i) (pwr->b[i + DF_ELEMENTS(DF_BYTE)/2])
+#define Rh(pwr, i) (pwr->h[i])
+#define Lh(pwr, i) (pwr->h[i + DF_ELEMENTS(DF_HALF)/2])
+#define Rw(pwr, i) (pwr->w[i])
+#define Lw(pwr, i) (pwr->w[i + DF_ELEMENTS(DF_WORD)/2])
+#define Rd(pwr, i) (pwr->d[i])
+#define Ld(pwr, i) (pwr->d[i + DF_ELEMENTS(DF_DOUBLE)/2])
+
+#define MSA_DO(DF) \
+ do { \
+ R##DF(pwx, i) = pwt->DF[2*i]; \
+ L##DF(pwx, i) = pws->DF[2*i]; \
+ } while (0);
+MSA_FN_DF(pckev_df)
+#undef MSA_DO
+
+#define MSA_DO(DF) \
+ do { \
+ R##DF(pwx, i) = pwt->DF[2*i+1]; \
+ L##DF(pwx, i) = pws->DF[2*i+1]; \
+ } while (0);
+MSA_FN_DF(pckod_df)
+#undef MSA_DO
+
+#define MSA_DO(DF) \
+ do { \
+ pwx->DF[2*i] = L##DF(pwt, i); \
+ pwx->DF[2*i+1] = L##DF(pws, i); \
+ } while (0);
+MSA_FN_DF(ilvl_df)
+#undef MSA_DO
+
+#define MSA_DO(DF) \
+ do { \
+ pwx->DF[2*i] = R##DF(pwt, i); \
+ pwx->DF[2*i+1] = R##DF(pws, i); \
+ } while (0);
+MSA_FN_DF(ilvr_df)
+#undef MSA_DO
+
+#define MSA_DO(DF) \
+ do { \
+ pwx->DF[2*i] = pwt->DF[2*i]; \
+ pwx->DF[2*i+1] = pws->DF[2*i]; \
+ } while (0);
+MSA_FN_DF(ilvev_df)
+#undef MSA_DO
+
+#define MSA_DO(DF) \
+ do { \
+ pwx->DF[2*i] = pwt->DF[2*i+1]; \
+ pwx->DF[2*i+1] = pws->DF[2*i+1]; \
+ } while (0);
+MSA_FN_DF(ilvod_df)
+#undef MSA_DO
+#undef MSA_LOOP_COND
+
+#define MSA_LOOP_COND(DF) \
+ (DF_ELEMENTS(DF))
+
+#define MSA_DO(DF) \
+ do { \
+ uint32_t n = DF_ELEMENTS(df); \
+ uint32_t k = (pwd->DF[i] & 0x3f) % (2 * n); \
+ pwx->DF[i] = \
+ (pwd->DF[i] & 0xc0) ? 0 : k < n ? pwt->DF[k] : pws->DF[k - n]; \
+ } while (0);
+MSA_FN_DF(vshf_df)
+#undef MSA_DO
+#undef MSA_LOOP_COND
+#undef MSA_FN_DF
+
+void helper_msa_sldi_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t n)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+
+ msa_sld_df(df, pwd, pws, n);
+}
+
+void helper_msa_splati_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t n)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+
+ msa_splat_df(df, pwd, pws, n);
+}
+
+void helper_msa_copy_s_df(CPUMIPSState *env, uint32_t df, uint32_t rd,
+ uint32_t ws, uint32_t n)
+{
+ n %= DF_ELEMENTS(df);
+
+ switch (df) {
+ case DF_BYTE:
+ env->active_tc.gpr[rd] = (int8_t)env->active_fpu.fpr[ws].wr.b[n];
+ break;
+ case DF_HALF:
+ env->active_tc.gpr[rd] = (int16_t)env->active_fpu.fpr[ws].wr.h[n];
+ break;
+ case DF_WORD:
+ env->active_tc.gpr[rd] = (int32_t)env->active_fpu.fpr[ws].wr.w[n];
+ break;
+#ifdef TARGET_MIPS64
+ case DF_DOUBLE:
+ env->active_tc.gpr[rd] = (int64_t)env->active_fpu.fpr[ws].wr.d[n];
+ break;
+#endif
+ default:
+ assert(0);
+ }
+}
+
+void helper_msa_copy_u_df(CPUMIPSState *env, uint32_t df, uint32_t rd,
+ uint32_t ws, uint32_t n)
+{
+ n %= DF_ELEMENTS(df);
+
+ switch (df) {
+ case DF_BYTE:
+ env->active_tc.gpr[rd] = (uint8_t)env->active_fpu.fpr[ws].wr.b[n];
+ break;
+ case DF_HALF:
+ env->active_tc.gpr[rd] = (uint16_t)env->active_fpu.fpr[ws].wr.h[n];
+ break;
+ case DF_WORD:
+ env->active_tc.gpr[rd] = (uint32_t)env->active_fpu.fpr[ws].wr.w[n];
+ break;
+#ifdef TARGET_MIPS64
+ case DF_DOUBLE:
+ env->active_tc.gpr[rd] = (uint64_t)env->active_fpu.fpr[ws].wr.d[n];
+ break;
+#endif
+ default:
+ assert(0);
+ }
+}
+
+void helper_msa_insert_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t rs_num, uint32_t n)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ target_ulong rs = env->active_tc.gpr[rs_num];
+
+ switch (df) {
+ case DF_BYTE:
+ pwd->b[n] = (int8_t)rs;
+ break;
+ case DF_HALF:
+ pwd->h[n] = (int16_t)rs;
+ break;
+ case DF_WORD:
+ pwd->w[n] = (int32_t)rs;
+ break;
+ case DF_DOUBLE:
+ pwd->d[n] = (int64_t)rs;
+ break;
+ default:
+ assert(0);
+ }
+}
+
+void helper_msa_insve_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t n)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+
+ switch (df) {
+ case DF_BYTE:
+ pwd->b[n] = (int8_t)pws->b[0];
+ break;
+ case DF_HALF:
+ pwd->h[n] = (int16_t)pws->h[0];
+ break;
+ case DF_WORD:
+ pwd->w[n] = (int32_t)pws->w[0];
+ break;
+ case DF_DOUBLE:
+ pwd->d[n] = (int64_t)pws->d[0];
+ break;
+ default:
+ assert(0);
+ }
+}
+
+void helper_msa_ctcmsa(CPUMIPSState *env, target_ulong elm, uint32_t cd)
+{
+ switch (cd) {
+ case 0:
+ break;
+ case 1:
+ env->active_tc.msacsr = (int32_t)elm & MSACSR_MASK;
+ restore_msa_fp_status(env);
+ /* check exception */
+ if ((GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED)
+ & GET_FP_CAUSE(env->active_tc.msacsr)) {
+ do_raise_exception(env, EXCP_MSAFPE, GETPC());
+ }
+ break;
+ }
+}
+
+target_ulong helper_msa_cfcmsa(CPUMIPSState *env, uint32_t cs)
+{
+ switch (cs) {
+ case 0:
+ return env->msair;
+ case 1:
+ return env->active_tc.msacsr & MSACSR_MASK;
+ }
+ return 0;
+}
+
+void helper_msa_move_v(CPUMIPSState *env, uint32_t wd, uint32_t ws)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+
+ msa_move_v(pwd, pws);
+}
+
+static inline int64_t msa_pcnt_df(uint32_t df, int64_t arg)
+{
+ uint64_t x;
+
+ x = UNSIGNED(arg, df);
+
+ x = (x & 0x5555555555555555ULL) + ((x >> 1) & 0x5555555555555555ULL);
+ x = (x & 0x3333333333333333ULL) + ((x >> 2) & 0x3333333333333333ULL);
+ x = (x & 0x0F0F0F0F0F0F0F0FULL) + ((x >> 4) & 0x0F0F0F0F0F0F0F0FULL);
+ x = (x & 0x00FF00FF00FF00FFULL) + ((x >> 8) & 0x00FF00FF00FF00FFULL);
+ x = (x & 0x0000FFFF0000FFFFULL) + ((x >> 16) & 0x0000FFFF0000FFFFULL);
+ x = (x & 0x00000000FFFFFFFFULL) + ((x >> 32));
+
+ return x;
+}
+
+static inline int64_t msa_nlzc_df(uint32_t df, int64_t arg)
+{
+ uint64_t x, y;
+ int n, c;
+
+ x = UNSIGNED(arg, df);
+ n = DF_BITS(df);
+ c = DF_BITS(df) / 2;
+
+ do {
+ y = x >> c;
+ if (y != 0) {
+ n = n - c;
+ x = y;
+ }
+ c = c >> 1;
+ } while (c != 0);
+
+ return n - x;
+}
+
+static inline int64_t msa_nloc_df(uint32_t df, int64_t arg)
+{
+ return msa_nlzc_df(df, UNSIGNED((~arg), df));
+}
+
+void helper_msa_fill_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t rs)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ uint32_t i;
+
+ switch (df) {
+ case DF_BYTE:
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) {
+ pwd->b[i] = (int8_t)env->active_tc.gpr[rs];
+ }
+ break;
+ case DF_HALF:
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) {
+ pwd->h[i] = (int16_t)env->active_tc.gpr[rs];
+ }
+ break;
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ pwd->w[i] = (int32_t)env->active_tc.gpr[rs];
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ pwd->d[i] = (int64_t)env->active_tc.gpr[rs];
+ }
+ break;
+ default:
+ assert(0);
+ }
+}
+
+#define MSA_UNOP_DF(func) \
+void helper_msa_ ## func ## _df(CPUMIPSState *env, uint32_t df, \
+ uint32_t wd, uint32_t ws) \
+{ \
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr); \
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr); \
+ uint32_t i; \
+ \
+ switch (df) { \
+ case DF_BYTE: \
+ for (i = 0; i < DF_ELEMENTS(DF_BYTE); i++) { \
+ pwd->b[i] = msa_ ## func ## _df(df, pws->b[i]); \
+ } \
+ break; \
+ case DF_HALF: \
+ for (i = 0; i < DF_ELEMENTS(DF_HALF); i++) { \
+ pwd->h[i] = msa_ ## func ## _df(df, pws->h[i]); \
+ } \
+ break; \
+ case DF_WORD: \
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) { \
+ pwd->w[i] = msa_ ## func ## _df(df, pws->w[i]); \
+ } \
+ break; \
+ case DF_DOUBLE: \
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) { \
+ pwd->d[i] = msa_ ## func ## _df(df, pws->d[i]); \
+ } \
+ break; \
+ default: \
+ assert(0); \
+ } \
+}
+
+MSA_UNOP_DF(nlzc)
+MSA_UNOP_DF(nloc)
+MSA_UNOP_DF(pcnt)
+#undef MSA_UNOP_DF
+
+#define FLOAT_ONE32 make_float32(0x3f8 << 20)
+#define FLOAT_ONE64 make_float64(0x3ffULL << 52)
+
+#define FLOAT_SNAN16(s) (float16_default_nan(s) ^ 0x0220)
+ /* 0x7c20 */
+#define FLOAT_SNAN32(s) (float32_default_nan(s) ^ 0x00400020)
+ /* 0x7f800020 */
+#define FLOAT_SNAN64(s) (float64_default_nan(s) ^ 0x0008000000000020ULL)
+ /* 0x7ff0000000000020 */
+
+static inline void clear_msacsr_cause(CPUMIPSState *env)
+{
+ SET_FP_CAUSE(env->active_tc.msacsr, 0);
+}
+
+static inline void check_msacsr_cause(CPUMIPSState *env, uintptr_t retaddr)
+{
+ if ((GET_FP_CAUSE(env->active_tc.msacsr) &
+ (GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED)) == 0) {
+ UPDATE_FP_FLAGS(env->active_tc.msacsr,
+ GET_FP_CAUSE(env->active_tc.msacsr));
+ } else {
+ do_raise_exception(env, EXCP_MSAFPE, retaddr);
+ }
+}
+
+/* Flush-to-zero use cases for update_msacsr() */
+#define CLEAR_FS_UNDERFLOW 1
+#define CLEAR_IS_INEXACT 2
+#define RECIPROCAL_INEXACT 4
+
+static inline int update_msacsr(CPUMIPSState *env, int action, int denormal)
+{
+ int ieee_ex;
+
+ int c;
+ int cause;
+ int enable;
+
+ ieee_ex = get_float_exception_flags(&env->active_tc.msa_fp_status);
+
+ /* QEMU softfloat does not signal all underflow cases */
+ if (denormal) {
+ ieee_ex |= float_flag_underflow;
+ }
+
+ c = ieee_ex_to_mips(ieee_ex);
+ enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED;
+
+ /* Set Inexact (I) when flushing inputs to zero */
+ if ((ieee_ex & float_flag_input_denormal) &&
+ (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) {
+ if (action & CLEAR_IS_INEXACT) {
+ c &= ~FP_INEXACT;
+ } else {
+ c |= FP_INEXACT;
+ }
+ }
+
+ /* Set Inexact (I) and Underflow (U) when flushing outputs to zero */
+ if ((ieee_ex & float_flag_output_denormal) &&
+ (env->active_tc.msacsr & MSACSR_FS_MASK) != 0) {
+ c |= FP_INEXACT;
+ if (action & CLEAR_FS_UNDERFLOW) {
+ c &= ~FP_UNDERFLOW;
+ } else {
+ c |= FP_UNDERFLOW;
+ }
+ }
+
+ /* Set Inexact (I) when Overflow (O) is not enabled */
+ if ((c & FP_OVERFLOW) != 0 && (enable & FP_OVERFLOW) == 0) {
+ c |= FP_INEXACT;
+ }
+
+ /* Clear Exact Underflow when Underflow (U) is not enabled */
+ if ((c & FP_UNDERFLOW) != 0 && (enable & FP_UNDERFLOW) == 0 &&
+ (c & FP_INEXACT) == 0) {
+ c &= ~FP_UNDERFLOW;
+ }
+
+ /* Reciprocal operations set only Inexact when valid and not
+ divide by zero */
+ if ((action & RECIPROCAL_INEXACT) &&
+ (c & (FP_INVALID | FP_DIV0)) == 0) {
+ c = FP_INEXACT;
+ }
+
+ cause = c & enable; /* all current enabled exceptions */
+
+ if (cause == 0) {
+ /* No enabled exception, update the MSACSR Cause
+ with all current exceptions */
+ SET_FP_CAUSE(env->active_tc.msacsr,
+ (GET_FP_CAUSE(env->active_tc.msacsr) | c));
+ } else {
+ /* Current exceptions are enabled */
+ if ((env->active_tc.msacsr & MSACSR_NX_MASK) == 0) {
+ /* Exception(s) will trap, update MSACSR Cause
+ with all enabled exceptions */
+ SET_FP_CAUSE(env->active_tc.msacsr,
+ (GET_FP_CAUSE(env->active_tc.msacsr) | c));
+ }
+ }
+
+ return c;
+}
+
+static inline int get_enabled_exceptions(const CPUMIPSState *env, int c)
+{
+ int enable = GET_FP_ENABLE(env->active_tc.msacsr) | FP_UNIMPLEMENTED;
+ return c & enable;
+}
+
+static inline float16 float16_from_float32(int32_t a, flag ieee,
+ float_status *status)
+{
+ float16 f_val;
+
+ f_val = float32_to_float16((float32)a, ieee, status);
+ f_val = float16_maybe_silence_nan(f_val, status);
+
+ return a < 0 ? (f_val | (1 << 15)) : f_val;
+}
+
+static inline float32 float32_from_float64(int64_t a, float_status *status)
+{
+ float32 f_val;
+
+ f_val = float64_to_float32((float64)a, status);
+ f_val = float32_maybe_silence_nan(f_val, status);
+
+ return a < 0 ? (f_val | (1 << 31)) : f_val;
+}
+
+static inline float32 float32_from_float16(int16_t a, flag ieee,
+ float_status *status)
+{
+ float32 f_val;
+
+ f_val = float16_to_float32((float16)a, ieee, status);
+ f_val = float32_maybe_silence_nan(f_val, status);
+
+ return a < 0 ? (f_val | (1 << 31)) : f_val;
+}
+
+static inline float64 float64_from_float32(int32_t a, float_status *status)
+{
+ float64 f_val;
+
+ f_val = float32_to_float64((float64)a, status);
+ f_val = float64_maybe_silence_nan(f_val, status);
+
+ return a < 0 ? (f_val | (1ULL << 63)) : f_val;
+}
+
+static inline float32 float32_from_q16(int16_t a, float_status *status)
+{
+ float32 f_val;
+
+ /* conversion as integer and scaling */
+ f_val = int32_to_float32(a, status);
+ f_val = float32_scalbn(f_val, -15, status);
+
+ return f_val;
+}
+
+static inline float64 float64_from_q32(int32_t a, float_status *status)
+{
+ float64 f_val;
+
+ /* conversion as integer and scaling */
+ f_val = int32_to_float64(a, status);
+ f_val = float64_scalbn(f_val, -31, status);
+
+ return f_val;
+}
+
+static inline int16_t float32_to_q16(float32 a, float_status *status)
+{
+ int32_t q_val;
+ int32_t q_min = 0xffff8000;
+ int32_t q_max = 0x00007fff;
+
+ int ieee_ex;
+
+ if (float32_is_any_nan(a)) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+
+ /* scaling */
+ a = float32_scalbn(a, 15, status);
+
+ ieee_ex = get_float_exception_flags(status);
+ set_float_exception_flags(ieee_ex & (~float_flag_underflow)
+ , status);
+
+ if (ieee_ex & float_flag_overflow) {
+ float_raise(float_flag_inexact, status);
+ return (int32_t)a < 0 ? q_min : q_max;
+ }
+
+ /* conversion to int */
+ q_val = float32_to_int32(a, status);
+
+ ieee_ex = get_float_exception_flags(status);
+ set_float_exception_flags(ieee_ex & (~float_flag_underflow)
+ , status);
+
+ if (ieee_ex & float_flag_invalid) {
+ set_float_exception_flags(ieee_ex & (~float_flag_invalid)
+ , status);
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ return (int32_t)a < 0 ? q_min : q_max;
+ }
+
+ if (q_val < q_min) {
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ return (int16_t)q_min;
+ }
+
+ if (q_max < q_val) {
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ return (int16_t)q_max;
+ }
+
+ return (int16_t)q_val;
+}
+
+static inline int32_t float64_to_q32(float64 a, float_status *status)
+{
+ int64_t q_val;
+ int64_t q_min = 0xffffffff80000000LL;
+ int64_t q_max = 0x000000007fffffffLL;
+
+ int ieee_ex;
+
+ if (float64_is_any_nan(a)) {
+ float_raise(float_flag_invalid, status);
+ return 0;
+ }
+
+ /* scaling */
+ a = float64_scalbn(a, 31, status);
+
+ ieee_ex = get_float_exception_flags(status);
+ set_float_exception_flags(ieee_ex & (~float_flag_underflow)
+ , status);
+
+ if (ieee_ex & float_flag_overflow) {
+ float_raise(float_flag_inexact, status);
+ return (int64_t)a < 0 ? q_min : q_max;
+ }
+
+ /* conversion to integer */
+ q_val = float64_to_int64(a, status);
+
+ ieee_ex = get_float_exception_flags(status);
+ set_float_exception_flags(ieee_ex & (~float_flag_underflow)
+ , status);
+
+ if (ieee_ex & float_flag_invalid) {
+ set_float_exception_flags(ieee_ex & (~float_flag_invalid)
+ , status);
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ return (int64_t)a < 0 ? q_min : q_max;
+ }
+
+ if (q_val < q_min) {
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ return (int32_t)q_min;
+ }
+
+ if (q_max < q_val) {
+ float_raise(float_flag_overflow | float_flag_inexact, status);
+ return (int32_t)q_max;
+ }
+
+ return (int32_t)q_val;
+}
+
+#define MSA_FLOAT_COND(DEST, OP, ARG1, ARG2, BITS, QUIET) \
+ do { \
+ float_status *status = &env->active_tc.msa_fp_status; \
+ int c; \
+ int64_t cond; \
+ set_float_exception_flags(0, status); \
+ if (!QUIET) { \
+ cond = float ## BITS ## _ ## OP(ARG1, ARG2, status); \
+ } else { \
+ cond = float ## BITS ## _ ## OP ## _quiet(ARG1, ARG2, status); \
+ } \
+ DEST = cond ? M_MAX_UINT(BITS) : 0; \
+ c = update_msacsr(env, CLEAR_IS_INEXACT, 0); \
+ \
+ if (get_enabled_exceptions(env, c)) { \
+ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
+ } \
+ } while (0)
+
+#define MSA_FLOAT_AF(DEST, ARG1, ARG2, BITS, QUIET) \
+ do { \
+ MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET); \
+ if ((DEST & M_MAX_UINT(BITS)) == M_MAX_UINT(BITS)) { \
+ DEST = 0; \
+ } \
+ } while (0)
+
+#define MSA_FLOAT_UEQ(DEST, ARG1, ARG2, BITS, QUIET) \
+ do { \
+ MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
+ if (DEST == 0) { \
+ MSA_FLOAT_COND(DEST, eq, ARG1, ARG2, BITS, QUIET); \
+ } \
+ } while (0)
+
+#define MSA_FLOAT_NE(DEST, ARG1, ARG2, BITS, QUIET) \
+ do { \
+ MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \
+ if (DEST == 0) { \
+ MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET); \
+ } \
+ } while (0)
+
+#define MSA_FLOAT_UNE(DEST, ARG1, ARG2, BITS, QUIET) \
+ do { \
+ MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
+ if (DEST == 0) { \
+ MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \
+ if (DEST == 0) { \
+ MSA_FLOAT_COND(DEST, lt, ARG2, ARG1, BITS, QUIET); \
+ } \
+ } \
+ } while (0)
+
+#define MSA_FLOAT_ULE(DEST, ARG1, ARG2, BITS, QUIET) \
+ do { \
+ MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
+ if (DEST == 0) { \
+ MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET); \
+ } \
+ } while (0)
+
+#define MSA_FLOAT_ULT(DEST, ARG1, ARG2, BITS, QUIET) \
+ do { \
+ MSA_FLOAT_COND(DEST, unordered, ARG1, ARG2, BITS, QUIET); \
+ if (DEST == 0) { \
+ MSA_FLOAT_COND(DEST, lt, ARG1, ARG2, BITS, QUIET); \
+ } \
+ } while (0)
+
+#define MSA_FLOAT_OR(DEST, ARG1, ARG2, BITS, QUIET) \
+ do { \
+ MSA_FLOAT_COND(DEST, le, ARG1, ARG2, BITS, QUIET); \
+ if (DEST == 0) { \
+ MSA_FLOAT_COND(DEST, le, ARG2, ARG1, BITS, QUIET); \
+ } \
+ } while (0)
+
+static inline void compare_af(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_AF(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_AF(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_un(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_COND(pwx->w[i], unordered, pws->w[i], pwt->w[i], 32,
+ quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_COND(pwx->d[i], unordered, pws->d[i], pwt->d[i], 64,
+ quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_eq(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_COND(pwx->w[i], eq, pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_COND(pwx->d[i], eq, pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_ueq(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UEQ(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UEQ(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_lt(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_COND(pwx->w[i], lt, pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_COND(pwx->d[i], lt, pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_ult(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_ULT(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_ULT(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_le(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_COND(pwx->w[i], le, pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_COND(pwx->d[i], le, pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_ule(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_ULE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_ULE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_or(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_OR(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_OR(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_une(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+static inline void compare_ne(CPUMIPSState *env, wr_t *pwd, wr_t *pws,
+ wr_t *pwt, uint32_t df, int quiet,
+ uintptr_t retaddr)
+{
+ wr_t wx, *pwx = &wx;
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_NE(pwx->w[i], pws->w[i], pwt->w[i], 32, quiet);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_NE(pwx->d[i], pws->d[i], pwt->d[i], 64, quiet);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, retaddr);
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fcaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_af(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fcun_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_un(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fceq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_eq(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fcueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_ueq(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fclt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_lt(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fcult_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_ult(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fcle_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_le(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fcule_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_ule(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fsaf_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_af(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fsun_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_un(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fseq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_eq(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fsueq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_ueq(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fslt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_lt(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fsult_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_ult(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fsle_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_le(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fsule_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_ule(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fcor_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_or(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fcune_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_une(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fcne_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_ne(env, pwd, pws, pwt, df, 1, GETPC());
+}
+
+void helper_msa_fsor_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_or(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fsune_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_une(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+void helper_msa_fsne_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ compare_ne(env, pwd, pws, pwt, df, 0, GETPC());
+}
+
+#define float16_is_zero(ARG) 0
+#define float16_is_zero_or_denormal(ARG) 0
+
+#define IS_DENORMAL(ARG, BITS) \
+ (!float ## BITS ## _is_zero(ARG) \
+ && float ## BITS ## _is_zero_or_denormal(ARG))
+
+#define MSA_FLOAT_BINOP(DEST, OP, ARG1, ARG2, BITS) \
+ do { \
+ float_status *status = &env->active_tc.msa_fp_status; \
+ int c; \
+ \
+ set_float_exception_flags(0, status); \
+ DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status); \
+ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
+ \
+ if (get_enabled_exceptions(env, c)) { \
+ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
+ } \
+ } while (0)
+
+void helper_msa_fadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_BINOP(pwx->w[i], add, pws->w[i], pwt->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_BINOP(pwx->d[i], add, pws->d[i], pwt->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_BINOP(pwx->w[i], sub, pws->w[i], pwt->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_BINOP(pwx->d[i], sub, pws->d[i], pwt->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fmul_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_BINOP(pwx->w[i], mul, pws->w[i], pwt->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_BINOP(pwx->d[i], mul, pws->d[i], pwt->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fdiv_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_BINOP(pwx->w[i], div, pws->w[i], pwt->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_BINOP(pwx->d[i], div, pws->d[i], pwt->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+#define MSA_FLOAT_MULADD(DEST, ARG1, ARG2, ARG3, NEGATE, BITS) \
+ do { \
+ float_status *status = &env->active_tc.msa_fp_status; \
+ int c; \
+ \
+ set_float_exception_flags(0, status); \
+ DEST = float ## BITS ## _muladd(ARG2, ARG3, ARG1, NEGATE, status); \
+ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
+ \
+ if (get_enabled_exceptions(env, c)) { \
+ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
+ } \
+ } while (0)
+
+void helper_msa_fmadd_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i],
+ pws->w[i], pwt->w[i], 0, 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i],
+ pws->d[i], pwt->d[i], 0, 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fmsub_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_MULADD(pwx->w[i], pwd->w[i],
+ pws->w[i], pwt->w[i],
+ float_muladd_negate_product, 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_MULADD(pwx->d[i], pwd->d[i],
+ pws->d[i], pwt->d[i],
+ float_muladd_negate_product, 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fexp2_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_BINOP(pwx->w[i], scalbn, pws->w[i],
+ pwt->w[i] > 0x200 ? 0x200 :
+ pwt->w[i] < -0x200 ? -0x200 : pwt->w[i],
+ 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_BINOP(pwx->d[i], scalbn, pws->d[i],
+ pwt->d[i] > 0x1000 ? 0x1000 :
+ pwt->d[i] < -0x1000 ? -0x1000 : pwt->d[i],
+ 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+#define MSA_FLOAT_UNOP(DEST, OP, ARG, BITS) \
+ do { \
+ float_status *status = &env->active_tc.msa_fp_status; \
+ int c; \
+ \
+ set_float_exception_flags(0, status); \
+ DEST = float ## BITS ## _ ## OP(ARG, status); \
+ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
+ \
+ if (get_enabled_exceptions(env, c)) { \
+ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
+ } \
+ } while (0)
+
+void helper_msa_fexdo_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ /* Half precision floats come in two formats: standard
+ IEEE and "ARM" format. The latter gains extra exponent
+ range by omitting the NaN/Inf encodings. */
+ flag ieee = 1;
+
+ MSA_FLOAT_BINOP(Lh(pwx, i), from_float32, pws->w[i], ieee, 16);
+ MSA_FLOAT_BINOP(Rh(pwx, i), from_float32, pwt->w[i], ieee, 16);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP(Lw(pwx, i), from_float64, pws->d[i], 32);
+ MSA_FLOAT_UNOP(Rw(pwx, i), from_float64, pwt->d[i], 32);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+ msa_move_v(pwd, pwx);
+}
+
+#define MSA_FLOAT_UNOP_XD(DEST, OP, ARG, BITS, XBITS) \
+ do { \
+ float_status *status = &env->active_tc.msa_fp_status; \
+ int c; \
+ \
+ set_float_exception_flags(0, status); \
+ DEST = float ## BITS ## _ ## OP(ARG, status); \
+ c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \
+ \
+ if (get_enabled_exceptions(env, c)) { \
+ DEST = ((FLOAT_SNAN ## XBITS(status) >> 6) << 6) | c; \
+ } \
+ } while (0)
+
+void helper_msa_ftq_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP_XD(Lh(pwx, i), to_q16, pws->w[i], 32, 16);
+ MSA_FLOAT_UNOP_XD(Rh(pwx, i), to_q16, pwt->w[i], 32, 16);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP_XD(Lw(pwx, i), to_q32, pws->d[i], 64, 32);
+ MSA_FLOAT_UNOP_XD(Rw(pwx, i), to_q32, pwt->d[i], 64, 32);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+#define NUMBER_QNAN_PAIR(ARG1, ARG2, BITS, STATUS) \
+ !float ## BITS ## _is_any_nan(ARG1) \
+ && float ## BITS ## _is_quiet_nan(ARG2, STATUS)
+
+#define MSA_FLOAT_MAXOP(DEST, OP, ARG1, ARG2, BITS) \
+ do { \
+ float_status *status = &env->active_tc.msa_fp_status; \
+ int c; \
+ \
+ set_float_exception_flags(0, status); \
+ DEST = float ## BITS ## _ ## OP(ARG1, ARG2, status); \
+ c = update_msacsr(env, 0, 0); \
+ \
+ if (get_enabled_exceptions(env, c)) { \
+ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
+ } \
+ } while (0)
+
+#define FMAXMIN_A(F, G, X, _S, _T, BITS, STATUS) \
+ do { \
+ uint## BITS ##_t S = _S, T = _T; \
+ uint## BITS ##_t as, at, xs, xt, xd; \
+ if (NUMBER_QNAN_PAIR(S, T, BITS, STATUS)) { \
+ T = S; \
+ } \
+ else if (NUMBER_QNAN_PAIR(T, S, BITS, STATUS)) { \
+ S = T; \
+ } \
+ as = float## BITS ##_abs(S); \
+ at = float## BITS ##_abs(T); \
+ MSA_FLOAT_MAXOP(xs, F, S, T, BITS); \
+ MSA_FLOAT_MAXOP(xt, G, S, T, BITS); \
+ MSA_FLOAT_MAXOP(xd, F, as, at, BITS); \
+ X = (as == at || xd == float## BITS ##_abs(xs)) ? xs : xt; \
+ } while (0)
+
+void helper_msa_fmin_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ float_status *status = &env->active_tc.msa_fp_status;
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) {
+ MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pws->w[i], 32);
+ } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) {
+ MSA_FLOAT_MAXOP(pwx->w[i], min, pwt->w[i], pwt->w[i], 32);
+ } else {
+ MSA_FLOAT_MAXOP(pwx->w[i], min, pws->w[i], pwt->w[i], 32);
+ }
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) {
+ MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pws->d[i], 64);
+ } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) {
+ MSA_FLOAT_MAXOP(pwx->d[i], min, pwt->d[i], pwt->d[i], 64);
+ } else {
+ MSA_FLOAT_MAXOP(pwx->d[i], min, pws->d[i], pwt->d[i], 64);
+ }
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fmin_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ float_status *status = &env->active_tc.msa_fp_status;
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ FMAXMIN_A(min, max, pwx->w[i], pws->w[i], pwt->w[i], 32, status);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ FMAXMIN_A(min, max, pwx->d[i], pws->d[i], pwt->d[i], 64, status);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fmax_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ float_status *status = &env->active_tc.msa_fp_status;
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ if (NUMBER_QNAN_PAIR(pws->w[i], pwt->w[i], 32, status)) {
+ MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pws->w[i], 32);
+ } else if (NUMBER_QNAN_PAIR(pwt->w[i], pws->w[i], 32, status)) {
+ MSA_FLOAT_MAXOP(pwx->w[i], max, pwt->w[i], pwt->w[i], 32);
+ } else {
+ MSA_FLOAT_MAXOP(pwx->w[i], max, pws->w[i], pwt->w[i], 32);
+ }
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ if (NUMBER_QNAN_PAIR(pws->d[i], pwt->d[i], 64, status)) {
+ MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pws->d[i], 64);
+ } else if (NUMBER_QNAN_PAIR(pwt->d[i], pws->d[i], 64, status)) {
+ MSA_FLOAT_MAXOP(pwx->d[i], max, pwt->d[i], pwt->d[i], 64);
+ } else {
+ MSA_FLOAT_MAXOP(pwx->d[i], max, pws->d[i], pwt->d[i], 64);
+ }
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fmax_a_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws, uint32_t wt)
+{
+ float_status *status = &env->active_tc.msa_fp_status;
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ wr_t *pwt = &(env->active_fpu.fpr[wt].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ FMAXMIN_A(max, min, pwx->w[i], pws->w[i], pwt->w[i], 32, status);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ FMAXMIN_A(max, min, pwx->d[i], pws->d[i], pwt->d[i], 64, status);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fclass_df(CPUMIPSState *env, uint32_t df,
+ uint32_t wd, uint32_t ws)
+{
+ float_status* status = &env->active_tc.msa_fp_status;
+
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ if (df == DF_WORD) {
+ pwd->w[0] = float_class_s(pws->w[0], status);
+ pwd->w[1] = float_class_s(pws->w[1], status);
+ pwd->w[2] = float_class_s(pws->w[2], status);
+ pwd->w[3] = float_class_s(pws->w[3], status);
+ } else {
+ pwd->d[0] = float_class_d(pws->d[0], status);
+ pwd->d[1] = float_class_d(pws->d[1], status);
+ }
+}
+
+#define MSA_FLOAT_UNOP0(DEST, OP, ARG, BITS) \
+ do { \
+ float_status *status = &env->active_tc.msa_fp_status; \
+ int c; \
+ \
+ set_float_exception_flags(0, status); \
+ DEST = float ## BITS ## _ ## OP(ARG, status); \
+ c = update_msacsr(env, CLEAR_FS_UNDERFLOW, 0); \
+ \
+ if (get_enabled_exceptions(env, c)) { \
+ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
+ } else if (float ## BITS ## _is_any_nan(ARG)) { \
+ DEST = 0; \
+ } \
+ } while (0)
+
+void helper_msa_ftrunc_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP0(pwx->w[i], to_int32_round_to_zero, pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP0(pwx->d[i], to_int64_round_to_zero, pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_ftrunc_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP0(pwx->w[i], to_uint32_round_to_zero, pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP0(pwx->d[i], to_uint64_round_to_zero, pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP(pwx->w[i], sqrt, pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP(pwx->d[i], sqrt, pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+#define MSA_FLOAT_RECIPROCAL(DEST, ARG, BITS) \
+ do { \
+ float_status *status = &env->active_tc.msa_fp_status; \
+ int c; \
+ \
+ set_float_exception_flags(0, status); \
+ DEST = float ## BITS ## _ ## div(FLOAT_ONE ## BITS, ARG, status); \
+ c = update_msacsr(env, float ## BITS ## _is_infinity(ARG) || \
+ float ## BITS ## _is_quiet_nan(DEST, status) ? \
+ 0 : RECIPROCAL_INEXACT, \
+ IS_DENORMAL(DEST, BITS)); \
+ \
+ if (get_enabled_exceptions(env, c)) { \
+ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
+ } \
+ } while (0)
+
+void helper_msa_frsqrt_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_RECIPROCAL(pwx->w[i], float32_sqrt(pws->w[i],
+ &env->active_tc.msa_fp_status), 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_RECIPROCAL(pwx->d[i], float64_sqrt(pws->d[i],
+ &env->active_tc.msa_fp_status), 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_frcp_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_RECIPROCAL(pwx->w[i], pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_RECIPROCAL(pwx->d[i], pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_frint_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP(pwx->w[i], round_to_int, pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP(pwx->d[i], round_to_int, pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+#define MSA_FLOAT_LOGB(DEST, ARG, BITS) \
+ do { \
+ float_status *status = &env->active_tc.msa_fp_status; \
+ int c; \
+ \
+ set_float_exception_flags(0, status); \
+ set_float_rounding_mode(float_round_down, status); \
+ DEST = float ## BITS ## _ ## log2(ARG, status); \
+ DEST = float ## BITS ## _ ## round_to_int(DEST, status); \
+ set_float_rounding_mode(ieee_rm[(env->active_tc.msacsr & \
+ MSACSR_RM_MASK) >> MSACSR_RM], \
+ status); \
+ \
+ set_float_exception_flags(get_float_exception_flags(status) & \
+ (~float_flag_inexact), \
+ status); \
+ \
+ c = update_msacsr(env, 0, IS_DENORMAL(DEST, BITS)); \
+ \
+ if (get_enabled_exceptions(env, c)) { \
+ DEST = ((FLOAT_SNAN ## BITS(status) >> 6) << 6) | c; \
+ } \
+ } while (0)
+
+void helper_msa_flog2_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_LOGB(pwx->w[i], pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_LOGB(pwx->d[i], pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fexupl_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ /* Half precision floats come in two formats: standard
+ IEEE and "ARM" format. The latter gains extra exponent
+ range by omitting the NaN/Inf encodings. */
+ flag ieee = 1;
+
+ MSA_FLOAT_BINOP(pwx->w[i], from_float16, Lh(pws, i), ieee, 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP(pwx->d[i], from_float32, Lw(pws, i), 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_fexupr_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ /* Half precision floats come in two formats: standard
+ IEEE and "ARM" format. The latter gains extra exponent
+ range by omitting the NaN/Inf encodings. */
+ flag ieee = 1;
+
+ MSA_FLOAT_BINOP(pwx->w[i], from_float16, Rh(pws, i), ieee, 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP(pwx->d[i], from_float32, Rw(pws, i), 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_ffql_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP(pwx->w[i], from_q16, Lh(pws, i), 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP(pwx->d[i], from_q32, Lw(pws, i), 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_ffqr_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP(pwx->w[i], from_q16, Rh(pws, i), 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP(pwx->d[i], from_q32, Rw(pws, i), 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_ftint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP0(pwx->w[i], to_int32, pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP0(pwx->d[i], to_int64, pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_ftint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP0(pwx->w[i], to_uint32, pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP0(pwx->d[i], to_uint64, pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+#define float32_from_int32 int32_to_float32
+#define float32_from_uint32 uint32_to_float32
+
+#define float64_from_int64 int64_to_float64
+#define float64_from_uint64 uint64_to_float64
+
+void helper_msa_ffint_s_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP(pwx->w[i], from_int32, pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP(pwx->d[i], from_int64, pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}
+
+void helper_msa_ffint_u_df(CPUMIPSState *env, uint32_t df, uint32_t wd,
+ uint32_t ws)
+{
+ wr_t wx, *pwx = &wx;
+ wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
+ wr_t *pws = &(env->active_fpu.fpr[ws].wr);
+ uint32_t i;
+
+ clear_msacsr_cause(env);
+
+ switch (df) {
+ case DF_WORD:
+ for (i = 0; i < DF_ELEMENTS(DF_WORD); i++) {
+ MSA_FLOAT_UNOP(pwx->w[i], from_uint32, pws->w[i], 32);
+ }
+ break;
+ case DF_DOUBLE:
+ for (i = 0; i < DF_ELEMENTS(DF_DOUBLE); i++) {
+ MSA_FLOAT_UNOP(pwx->d[i], from_uint64, pws->d[i], 64);
+ }
+ break;
+ default:
+ assert(0);
+ }
+
+ check_msacsr_cause(env, GETPC());
+
+ msa_move_v(pwd, pwx);
+}