aboutsummaryrefslogtreecommitdiff
path: root/target/i386/tcg/fpu_helper.c
diff options
context:
space:
mode:
authorClaudio Fontana <cfontana@suse.de>2020-12-12 16:55:12 +0100
committerEduardo Habkost <ehabkost@redhat.com>2020-12-16 14:06:53 -0500
commit1b248f147ea692c1a3d0ff18245a1b02df8b1502 (patch)
tree131a82ed4fd33d708132ea66ea8b0f292e04934b /target/i386/tcg/fpu_helper.c
parentdbe59a199118653241d95896fc724a50580d7e38 (diff)
i386: move TCG accel files into tcg/
Signed-off-by: Claudio Fontana <cfontana@suse.de> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> [claudio: moved cc_helper_template.h to tcg/ too] Signed-off-by: Claudio Fontana <cfontana@suse.de> Message-Id: <20201212155530.23098-6-cfontana@suse.de> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Diffstat (limited to 'target/i386/tcg/fpu_helper.c')
-rw-r--r--target/i386/tcg/fpu_helper.c3042
1 files changed, 3042 insertions, 0 deletions
diff --git a/target/i386/tcg/fpu_helper.c b/target/i386/tcg/fpu_helper.c
new file mode 100644
index 0000000000..03b35443a6
--- /dev/null
+++ b/target/i386/tcg/fpu_helper.c
@@ -0,0 +1,3042 @@
+/*
+ * x86 FPU, MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI helpers
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include <math.h>
+#include "cpu.h"
+#include "exec/helper-proto.h"
+#include "qemu/host-utils.h"
+#include "exec/exec-all.h"
+#include "exec/cpu_ldst.h"
+#include "fpu/softfloat.h"
+#include "fpu/softfloat-macros.h"
+
+#ifdef CONFIG_SOFTMMU
+#include "hw/irq.h"
+#endif
+
+#define FPU_RC_MASK 0xc00
+#define FPU_RC_NEAR 0x000
+#define FPU_RC_DOWN 0x400
+#define FPU_RC_UP 0x800
+#define FPU_RC_CHOP 0xc00
+
+#define MAXTAN 9223372036854775808.0
+
+/* the following deal with x86 long double-precision numbers */
+#define MAXEXPD 0x7fff
+#define EXPBIAS 16383
+#define EXPD(fp) (fp.l.upper & 0x7fff)
+#define SIGND(fp) ((fp.l.upper) & 0x8000)
+#define MANTD(fp) (fp.l.lower)
+#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
+
+#define FPUS_IE (1 << 0)
+#define FPUS_DE (1 << 1)
+#define FPUS_ZE (1 << 2)
+#define FPUS_OE (1 << 3)
+#define FPUS_UE (1 << 4)
+#define FPUS_PE (1 << 5)
+#define FPUS_SF (1 << 6)
+#define FPUS_SE (1 << 7)
+#define FPUS_B (1 << 15)
+
+#define FPUC_EM 0x3f
+
+#define floatx80_lg2 make_floatx80(0x3ffd, 0x9a209a84fbcff799LL)
+#define floatx80_lg2_d make_floatx80(0x3ffd, 0x9a209a84fbcff798LL)
+#define floatx80_l2e make_floatx80(0x3fff, 0xb8aa3b295c17f0bcLL)
+#define floatx80_l2e_d make_floatx80(0x3fff, 0xb8aa3b295c17f0bbLL)
+#define floatx80_l2t make_floatx80(0x4000, 0xd49a784bcd1b8afeLL)
+#define floatx80_l2t_u make_floatx80(0x4000, 0xd49a784bcd1b8affLL)
+#define floatx80_ln2_d make_floatx80(0x3ffe, 0xb17217f7d1cf79abLL)
+#define floatx80_pi_d make_floatx80(0x4000, 0xc90fdaa22168c234LL)
+
+#if !defined(CONFIG_USER_ONLY)
+static qemu_irq ferr_irq;
+
+void x86_register_ferr_irq(qemu_irq irq)
+{
+ ferr_irq = irq;
+}
+
+static void cpu_clear_ignne(void)
+{
+ CPUX86State *env = &X86_CPU(first_cpu)->env;
+ env->hflags2 &= ~HF2_IGNNE_MASK;
+}
+
+void cpu_set_ignne(void)
+{
+ CPUX86State *env = &X86_CPU(first_cpu)->env;
+ env->hflags2 |= HF2_IGNNE_MASK;
+ /*
+ * We get here in response to a write to port F0h. The chipset should
+ * deassert FP_IRQ and FERR# instead should stay signaled until FPSW_SE is
+ * cleared, because FERR# and FP_IRQ are two separate pins on real
+ * hardware. However, we don't model FERR# as a qemu_irq, so we just
+ * do directly what the chipset would do, i.e. deassert FP_IRQ.
+ */
+ qemu_irq_lower(ferr_irq);
+}
+#endif
+
+
+static inline void fpush(CPUX86State *env)
+{
+ env->fpstt = (env->fpstt - 1) & 7;
+ env->fptags[env->fpstt] = 0; /* validate stack entry */
+}
+
+static inline void fpop(CPUX86State *env)
+{
+ env->fptags[env->fpstt] = 1; /* invalidate stack entry */
+ env->fpstt = (env->fpstt + 1) & 7;
+}
+
+static inline floatx80 helper_fldt(CPUX86State *env, target_ulong ptr,
+ uintptr_t retaddr)
+{
+ CPU_LDoubleU temp;
+
+ temp.l.lower = cpu_ldq_data_ra(env, ptr, retaddr);
+ temp.l.upper = cpu_lduw_data_ra(env, ptr + 8, retaddr);
+ return temp.d;
+}
+
+static inline void helper_fstt(CPUX86State *env, floatx80 f, target_ulong ptr,
+ uintptr_t retaddr)
+{
+ CPU_LDoubleU temp;
+
+ temp.d = f;
+ cpu_stq_data_ra(env, ptr, temp.l.lower, retaddr);
+ cpu_stw_data_ra(env, ptr + 8, temp.l.upper, retaddr);
+}
+
+/* x87 FPU helpers */
+
+static inline double floatx80_to_double(CPUX86State *env, floatx80 a)
+{
+ union {
+ float64 f64;
+ double d;
+ } u;
+
+ u.f64 = floatx80_to_float64(a, &env->fp_status);
+ return u.d;
+}
+
+static inline floatx80 double_to_floatx80(CPUX86State *env, double a)
+{
+ union {
+ float64 f64;
+ double d;
+ } u;
+
+ u.d = a;
+ return float64_to_floatx80(u.f64, &env->fp_status);
+}
+
+static void fpu_set_exception(CPUX86State *env, int mask)
+{
+ env->fpus |= mask;
+ if (env->fpus & (~env->fpuc & FPUC_EM)) {
+ env->fpus |= FPUS_SE | FPUS_B;
+ }
+}
+
+static inline uint8_t save_exception_flags(CPUX86State *env)
+{
+ uint8_t old_flags = get_float_exception_flags(&env->fp_status);
+ set_float_exception_flags(0, &env->fp_status);
+ return old_flags;
+}
+
+static void merge_exception_flags(CPUX86State *env, uint8_t old_flags)
+{
+ uint8_t new_flags = get_float_exception_flags(&env->fp_status);
+ float_raise(old_flags, &env->fp_status);
+ fpu_set_exception(env,
+ ((new_flags & float_flag_invalid ? FPUS_IE : 0) |
+ (new_flags & float_flag_divbyzero ? FPUS_ZE : 0) |
+ (new_flags & float_flag_overflow ? FPUS_OE : 0) |
+ (new_flags & float_flag_underflow ? FPUS_UE : 0) |
+ (new_flags & float_flag_inexact ? FPUS_PE : 0) |
+ (new_flags & float_flag_input_denormal ? FPUS_DE : 0)));
+}
+
+static inline floatx80 helper_fdiv(CPUX86State *env, floatx80 a, floatx80 b)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ floatx80 ret = floatx80_div(a, b, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+ return ret;
+}
+
+static void fpu_raise_exception(CPUX86State *env, uintptr_t retaddr)
+{
+ if (env->cr[0] & CR0_NE_MASK) {
+ raise_exception_ra(env, EXCP10_COPR, retaddr);
+ }
+#if !defined(CONFIG_USER_ONLY)
+ else if (ferr_irq && !(env->hflags2 & HF2_IGNNE_MASK)) {
+ qemu_irq_raise(ferr_irq);
+ }
+#endif
+}
+
+void helper_flds_FT0(CPUX86State *env, uint32_t val)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ union {
+ float32 f;
+ uint32_t i;
+ } u;
+
+ u.i = val;
+ FT0 = float32_to_floatx80(u.f, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fldl_FT0(CPUX86State *env, uint64_t val)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ union {
+ float64 f;
+ uint64_t i;
+ } u;
+
+ u.i = val;
+ FT0 = float64_to_floatx80(u.f, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fildl_FT0(CPUX86State *env, int32_t val)
+{
+ FT0 = int32_to_floatx80(val, &env->fp_status);
+}
+
+void helper_flds_ST0(CPUX86State *env, uint32_t val)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int new_fpstt;
+ union {
+ float32 f;
+ uint32_t i;
+ } u;
+
+ new_fpstt = (env->fpstt - 1) & 7;
+ u.i = val;
+ env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status);
+ env->fpstt = new_fpstt;
+ env->fptags[new_fpstt] = 0; /* validate stack entry */
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fldl_ST0(CPUX86State *env, uint64_t val)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int new_fpstt;
+ union {
+ float64 f;
+ uint64_t i;
+ } u;
+
+ new_fpstt = (env->fpstt - 1) & 7;
+ u.i = val;
+ env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status);
+ env->fpstt = new_fpstt;
+ env->fptags[new_fpstt] = 0; /* validate stack entry */
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fildl_ST0(CPUX86State *env, int32_t val)
+{
+ int new_fpstt;
+
+ new_fpstt = (env->fpstt - 1) & 7;
+ env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status);
+ env->fpstt = new_fpstt;
+ env->fptags[new_fpstt] = 0; /* validate stack entry */
+}
+
+void helper_fildll_ST0(CPUX86State *env, int64_t val)
+{
+ int new_fpstt;
+
+ new_fpstt = (env->fpstt - 1) & 7;
+ env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status);
+ env->fpstt = new_fpstt;
+ env->fptags[new_fpstt] = 0; /* validate stack entry */
+}
+
+uint32_t helper_fsts_ST0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ union {
+ float32 f;
+ uint32_t i;
+ } u;
+
+ u.f = floatx80_to_float32(ST0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+ return u.i;
+}
+
+uint64_t helper_fstl_ST0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ union {
+ float64 f;
+ uint64_t i;
+ } u;
+
+ u.f = floatx80_to_float64(ST0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+ return u.i;
+}
+
+int32_t helper_fist_ST0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int32_t val;
+
+ val = floatx80_to_int32(ST0, &env->fp_status);
+ if (val != (int16_t)val) {
+ set_float_exception_flags(float_flag_invalid, &env->fp_status);
+ val = -32768;
+ }
+ merge_exception_flags(env, old_flags);
+ return val;
+}
+
+int32_t helper_fistl_ST0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int32_t val;
+
+ val = floatx80_to_int32(ST0, &env->fp_status);
+ if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
+ val = 0x80000000;
+ }
+ merge_exception_flags(env, old_flags);
+ return val;
+}
+
+int64_t helper_fistll_ST0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int64_t val;
+
+ val = floatx80_to_int64(ST0, &env->fp_status);
+ if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
+ val = 0x8000000000000000ULL;
+ }
+ merge_exception_flags(env, old_flags);
+ return val;
+}
+
+int32_t helper_fistt_ST0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int32_t val;
+
+ val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
+ if (val != (int16_t)val) {
+ set_float_exception_flags(float_flag_invalid, &env->fp_status);
+ val = -32768;
+ }
+ merge_exception_flags(env, old_flags);
+ return val;
+}
+
+int32_t helper_fisttl_ST0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int32_t val;
+
+ val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
+ if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
+ val = 0x80000000;
+ }
+ merge_exception_flags(env, old_flags);
+ return val;
+}
+
+int64_t helper_fisttll_ST0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int64_t val;
+
+ val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status);
+ if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
+ val = 0x8000000000000000ULL;
+ }
+ merge_exception_flags(env, old_flags);
+ return val;
+}
+
+void helper_fldt_ST0(CPUX86State *env, target_ulong ptr)
+{
+ int new_fpstt;
+
+ new_fpstt = (env->fpstt - 1) & 7;
+ env->fpregs[new_fpstt].d = helper_fldt(env, ptr, GETPC());
+ env->fpstt = new_fpstt;
+ env->fptags[new_fpstt] = 0; /* validate stack entry */
+}
+
+void helper_fstt_ST0(CPUX86State *env, target_ulong ptr)
+{
+ helper_fstt(env, ST0, ptr, GETPC());
+}
+
+void helper_fpush(CPUX86State *env)
+{
+ fpush(env);
+}
+
+void helper_fpop(CPUX86State *env)
+{
+ fpop(env);
+}
+
+void helper_fdecstp(CPUX86State *env)
+{
+ env->fpstt = (env->fpstt - 1) & 7;
+ env->fpus &= ~0x4700;
+}
+
+void helper_fincstp(CPUX86State *env)
+{
+ env->fpstt = (env->fpstt + 1) & 7;
+ env->fpus &= ~0x4700;
+}
+
+/* FPU move */
+
+void helper_ffree_STN(CPUX86State *env, int st_index)
+{
+ env->fptags[(env->fpstt + st_index) & 7] = 1;
+}
+
+void helper_fmov_ST0_FT0(CPUX86State *env)
+{
+ ST0 = FT0;
+}
+
+void helper_fmov_FT0_STN(CPUX86State *env, int st_index)
+{
+ FT0 = ST(st_index);
+}
+
+void helper_fmov_ST0_STN(CPUX86State *env, int st_index)
+{
+ ST0 = ST(st_index);
+}
+
+void helper_fmov_STN_ST0(CPUX86State *env, int st_index)
+{
+ ST(st_index) = ST0;
+}
+
+void helper_fxchg_ST0_STN(CPUX86State *env, int st_index)
+{
+ floatx80 tmp;
+
+ tmp = ST(st_index);
+ ST(st_index) = ST0;
+ ST0 = tmp;
+}
+
+/* FPU operations */
+
+static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};
+
+void helper_fcom_ST0_FT0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ FloatRelation ret;
+
+ ret = floatx80_compare(ST0, FT0, &env->fp_status);
+ env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fucom_ST0_FT0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ FloatRelation ret;
+
+ ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
+ env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
+ merge_exception_flags(env, old_flags);
+}
+
+static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
+
+void helper_fcomi_ST0_FT0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int eflags;
+ FloatRelation ret;
+
+ ret = floatx80_compare(ST0, FT0, &env->fp_status);
+ eflags = cpu_cc_compute_all(env, CC_OP);
+ eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
+ CC_SRC = eflags;
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fucomi_ST0_FT0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int eflags;
+ FloatRelation ret;
+
+ ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
+ eflags = cpu_cc_compute_all(env, CC_OP);
+ eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
+ CC_SRC = eflags;
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fadd_ST0_FT0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ ST0 = floatx80_add(ST0, FT0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fmul_ST0_FT0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ ST0 = floatx80_mul(ST0, FT0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fsub_ST0_FT0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ ST0 = floatx80_sub(ST0, FT0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fsubr_ST0_FT0(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ ST0 = floatx80_sub(FT0, ST0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fdiv_ST0_FT0(CPUX86State *env)
+{
+ ST0 = helper_fdiv(env, ST0, FT0);
+}
+
+void helper_fdivr_ST0_FT0(CPUX86State *env)
+{
+ ST0 = helper_fdiv(env, FT0, ST0);
+}
+
+/* fp operations between STN and ST0 */
+
+void helper_fadd_STN_ST0(CPUX86State *env, int st_index)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fmul_STN_ST0(CPUX86State *env, int st_index)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fsub_STN_ST0(CPUX86State *env, int st_index)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fsubr_STN_ST0(CPUX86State *env, int st_index)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fdiv_STN_ST0(CPUX86State *env, int st_index)
+{
+ floatx80 *p;
+
+ p = &ST(st_index);
+ *p = helper_fdiv(env, *p, ST0);
+}
+
+void helper_fdivr_STN_ST0(CPUX86State *env, int st_index)
+{
+ floatx80 *p;
+
+ p = &ST(st_index);
+ *p = helper_fdiv(env, ST0, *p);
+}
+
+/* misc FPU operations */
+void helper_fchs_ST0(CPUX86State *env)
+{
+ ST0 = floatx80_chs(ST0);
+}
+
+void helper_fabs_ST0(CPUX86State *env)
+{
+ ST0 = floatx80_abs(ST0);
+}
+
+void helper_fld1_ST0(CPUX86State *env)
+{
+ ST0 = floatx80_one;
+}
+
+void helper_fldl2t_ST0(CPUX86State *env)
+{
+ switch (env->fpuc & FPU_RC_MASK) {
+ case FPU_RC_UP:
+ ST0 = floatx80_l2t_u;
+ break;
+ default:
+ ST0 = floatx80_l2t;
+ break;
+ }
+}
+
+void helper_fldl2e_ST0(CPUX86State *env)
+{
+ switch (env->fpuc & FPU_RC_MASK) {
+ case FPU_RC_DOWN:
+ case FPU_RC_CHOP:
+ ST0 = floatx80_l2e_d;
+ break;
+ default:
+ ST0 = floatx80_l2e;
+ break;
+ }
+}
+
+void helper_fldpi_ST0(CPUX86State *env)
+{
+ switch (env->fpuc & FPU_RC_MASK) {
+ case FPU_RC_DOWN:
+ case FPU_RC_CHOP:
+ ST0 = floatx80_pi_d;
+ break;
+ default:
+ ST0 = floatx80_pi;
+ break;
+ }
+}
+
+void helper_fldlg2_ST0(CPUX86State *env)
+{
+ switch (env->fpuc & FPU_RC_MASK) {
+ case FPU_RC_DOWN:
+ case FPU_RC_CHOP:
+ ST0 = floatx80_lg2_d;
+ break;
+ default:
+ ST0 = floatx80_lg2;
+ break;
+ }
+}
+
+void helper_fldln2_ST0(CPUX86State *env)
+{
+ switch (env->fpuc & FPU_RC_MASK) {
+ case FPU_RC_DOWN:
+ case FPU_RC_CHOP:
+ ST0 = floatx80_ln2_d;
+ break;
+ default:
+ ST0 = floatx80_ln2;
+ break;
+ }
+}
+
+void helper_fldz_ST0(CPUX86State *env)
+{
+ ST0 = floatx80_zero;
+}
+
+void helper_fldz_FT0(CPUX86State *env)
+{
+ FT0 = floatx80_zero;
+}
+
+uint32_t helper_fnstsw(CPUX86State *env)
+{
+ return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
+}
+
+uint32_t helper_fnstcw(CPUX86State *env)
+{
+ return env->fpuc;
+}
+
+void update_fp_status(CPUX86State *env)
+{
+ int rnd_type;
+
+ /* set rounding mode */
+ switch (env->fpuc & FPU_RC_MASK) {
+ default:
+ case FPU_RC_NEAR:
+ rnd_type = float_round_nearest_even;
+ break;
+ case FPU_RC_DOWN:
+ rnd_type = float_round_down;
+ break;
+ case FPU_RC_UP:
+ rnd_type = float_round_up;
+ break;
+ case FPU_RC_CHOP:
+ rnd_type = float_round_to_zero;
+ break;
+ }
+ set_float_rounding_mode(rnd_type, &env->fp_status);
+ switch ((env->fpuc >> 8) & 3) {
+ case 0:
+ rnd_type = 32;
+ break;
+ case 2:
+ rnd_type = 64;
+ break;
+ case 3:
+ default:
+ rnd_type = 80;
+ break;
+ }
+ set_floatx80_rounding_precision(rnd_type, &env->fp_status);
+}
+
+void helper_fldcw(CPUX86State *env, uint32_t val)
+{
+ cpu_set_fpuc(env, val);
+}
+
+void helper_fclex(CPUX86State *env)
+{
+ env->fpus &= 0x7f00;
+}
+
+void helper_fwait(CPUX86State *env)
+{
+ if (env->fpus & FPUS_SE) {
+ fpu_raise_exception(env, GETPC());
+ }
+}
+
+void helper_fninit(CPUX86State *env)
+{
+ env->fpus = 0;
+ env->fpstt = 0;
+ cpu_set_fpuc(env, 0x37f);
+ env->fptags[0] = 1;
+ env->fptags[1] = 1;
+ env->fptags[2] = 1;
+ env->fptags[3] = 1;
+ env->fptags[4] = 1;
+ env->fptags[5] = 1;
+ env->fptags[6] = 1;
+ env->fptags[7] = 1;
+}
+
+/* BCD ops */
+
+void helper_fbld_ST0(CPUX86State *env, target_ulong ptr)
+{
+ floatx80 tmp;
+ uint64_t val;
+ unsigned int v;
+ int i;
+
+ val = 0;
+ for (i = 8; i >= 0; i--) {
+ v = cpu_ldub_data_ra(env, ptr + i, GETPC());
+ val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
+ }
+ tmp = int64_to_floatx80(val, &env->fp_status);
+ if (cpu_ldub_data_ra(env, ptr + 9, GETPC()) & 0x80) {
+ tmp = floatx80_chs(tmp);
+ }
+ fpush(env);
+ ST0 = tmp;
+}
+
+void helper_fbst_ST0(CPUX86State *env, target_ulong ptr)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ int v;
+ target_ulong mem_ref, mem_end;
+ int64_t val;
+ CPU_LDoubleU temp;
+
+ temp.d = ST0;
+
+ val = floatx80_to_int64(ST0, &env->fp_status);
+ mem_ref = ptr;
+ if (val >= 1000000000000000000LL || val <= -1000000000000000000LL) {
+ set_float_exception_flags(float_flag_invalid, &env->fp_status);
+ while (mem_ref < ptr + 7) {
+ cpu_stb_data_ra(env, mem_ref++, 0, GETPC());
+ }
+ cpu_stb_data_ra(env, mem_ref++, 0xc0, GETPC());
+ cpu_stb_data_ra(env, mem_ref++, 0xff, GETPC());
+ cpu_stb_data_ra(env, mem_ref++, 0xff, GETPC());
+ merge_exception_flags(env, old_flags);
+ return;
+ }
+ mem_end = mem_ref + 9;
+ if (SIGND(temp)) {
+ cpu_stb_data_ra(env, mem_end, 0x80, GETPC());
+ val = -val;
+ } else {
+ cpu_stb_data_ra(env, mem_end, 0x00, GETPC());
+ }
+ while (mem_ref < mem_end) {
+ if (val == 0) {
+ break;
+ }
+ v = val % 100;
+ val = val / 100;
+ v = ((v / 10) << 4) | (v % 10);
+ cpu_stb_data_ra(env, mem_ref++, v, GETPC());
+ }
+ while (mem_ref < mem_end) {
+ cpu_stb_data_ra(env, mem_ref++, 0, GETPC());
+ }
+ merge_exception_flags(env, old_flags);
+}
+
+/* 128-bit significand of log(2). */
+#define ln2_sig_high 0xb17217f7d1cf79abULL
+#define ln2_sig_low 0xc9e3b39803f2f6afULL
+
+/*
+ * Polynomial coefficients for an approximation to (2^x - 1) / x, on
+ * the interval [-1/64, 1/64].
+ */
+#define f2xm1_coeff_0 make_floatx80(0x3ffe, 0xb17217f7d1cf79acULL)
+#define f2xm1_coeff_0_low make_floatx80(0xbfbc, 0xd87edabf495b3762ULL)
+#define f2xm1_coeff_1 make_floatx80(0x3ffc, 0xf5fdeffc162c7543ULL)
+#define f2xm1_coeff_2 make_floatx80(0x3ffa, 0xe35846b82505fcc7ULL)
+#define f2xm1_coeff_3 make_floatx80(0x3ff8, 0x9d955b7dd273b899ULL)
+#define f2xm1_coeff_4 make_floatx80(0x3ff5, 0xaec3ff3c4ef4ac0cULL)
+#define f2xm1_coeff_5 make_floatx80(0x3ff2, 0xa184897c3a7f0de9ULL)
+#define f2xm1_coeff_6 make_floatx80(0x3fee, 0xffe634d0ec30d504ULL)
+#define f2xm1_coeff_7 make_floatx80(0x3feb, 0xb160111d2db515e4ULL)
+
+struct f2xm1_data {
+ /*
+ * A value very close to a multiple of 1/32, such that 2^t and 2^t - 1
+ * are very close to exact floatx80 values.
+ */
+ floatx80 t;
+ /* The value of 2^t. */
+ floatx80 exp2;
+ /* The value of 2^t - 1. */
+ floatx80 exp2m1;
+};
+
+static const struct f2xm1_data f2xm1_table[65] = {
+ { make_floatx80_init(0xbfff, 0x8000000000000000ULL),
+ make_floatx80_init(0x3ffe, 0x8000000000000000ULL),
+ make_floatx80_init(0xbffe, 0x8000000000000000ULL) },
+ { make_floatx80_init(0xbffe, 0xf800000000002e7eULL),
+ make_floatx80_init(0x3ffe, 0x82cd8698ac2b9160ULL),
+ make_floatx80_init(0xbffd, 0xfa64f2cea7a8dd40ULL) },
+ { make_floatx80_init(0xbffe, 0xefffffffffffe960ULL),
+ make_floatx80_init(0x3ffe, 0x85aac367cc488345ULL),
+ make_floatx80_init(0xbffd, 0xf4aa7930676ef976ULL) },
+ { make_floatx80_init(0xbffe, 0xe800000000006f10ULL),
+ make_floatx80_init(0x3ffe, 0x88980e8092da5c14ULL),
+ make_floatx80_init(0xbffd, 0xeecfe2feda4b47d8ULL) },
+ { make_floatx80_init(0xbffe, 0xe000000000008a45ULL),
+ make_floatx80_init(0x3ffe, 0x8b95c1e3ea8ba2a5ULL),
+ make_floatx80_init(0xbffd, 0xe8d47c382ae8bab6ULL) },
+ { make_floatx80_init(0xbffe, 0xd7ffffffffff8a9eULL),
+ make_floatx80_init(0x3ffe, 0x8ea4398b45cd8116ULL),
+ make_floatx80_init(0xbffd, 0xe2b78ce97464fdd4ULL) },
+ { make_floatx80_init(0xbffe, 0xd0000000000019a0ULL),
+ make_floatx80_init(0x3ffe, 0x91c3d373ab11b919ULL),
+ make_floatx80_init(0xbffd, 0xdc785918a9dc8dceULL) },
+ { make_floatx80_init(0xbffe, 0xc7ffffffffff14dfULL),
+ make_floatx80_init(0x3ffe, 0x94f4efa8fef76836ULL),
+ make_floatx80_init(0xbffd, 0xd61620ae02112f94ULL) },
+ { make_floatx80_init(0xbffe, 0xc000000000006530ULL),
+ make_floatx80_init(0x3ffe, 0x9837f0518db87fbbULL),
+ make_floatx80_init(0xbffd, 0xcf901f5ce48f008aULL) },
+ { make_floatx80_init(0xbffe, 0xb7ffffffffff1723ULL),
+ make_floatx80_init(0x3ffe, 0x9b8d39b9d54eb74cULL),
+ make_floatx80_init(0xbffd, 0xc8e58c8c55629168ULL) },
+ { make_floatx80_init(0xbffe, 0xb00000000000b5e1ULL),
+ make_floatx80_init(0x3ffe, 0x9ef5326091a0c366ULL),
+ make_floatx80_init(0xbffd, 0xc2159b3edcbe7934ULL) },
+ { make_floatx80_init(0xbffe, 0xa800000000006f8aULL),
+ make_floatx80_init(0x3ffe, 0xa27043030c49370aULL),
+ make_floatx80_init(0xbffd, 0xbb1f79f9e76d91ecULL) },
+ { make_floatx80_init(0xbffe, 0x9fffffffffff816aULL),
+ make_floatx80_init(0x3ffe, 0xa5fed6a9b15171cfULL),
+ make_floatx80_init(0xbffd, 0xb40252ac9d5d1c62ULL) },
+ { make_floatx80_init(0xbffe, 0x97ffffffffffb621ULL),
+ make_floatx80_init(0x3ffe, 0xa9a15ab4ea7c30e6ULL),
+ make_floatx80_init(0xbffd, 0xacbd4a962b079e34ULL) },
+ { make_floatx80_init(0xbffe, 0x8fffffffffff162bULL),
+ make_floatx80_init(0x3ffe, 0xad583eea42a1b886ULL),
+ make_floatx80_init(0xbffd, 0xa54f822b7abc8ef4ULL) },
+ { make_floatx80_init(0xbffe, 0x87ffffffffff4d34ULL),
+ make_floatx80_init(0x3ffe, 0xb123f581d2ac7b51ULL),
+ make_floatx80_init(0xbffd, 0x9db814fc5aa7095eULL) },
+ { make_floatx80_init(0xbffe, 0x800000000000227dULL),
+ make_floatx80_init(0x3ffe, 0xb504f333f9de539dULL),
+ make_floatx80_init(0xbffd, 0x95f619980c4358c6ULL) },
+ { make_floatx80_init(0xbffd, 0xefffffffffff3978ULL),
+ make_floatx80_init(0x3ffe, 0xb8fbaf4762fbd0a1ULL),
+ make_floatx80_init(0xbffd, 0x8e08a1713a085ebeULL) },
+ { make_floatx80_init(0xbffd, 0xe00000000000df81ULL),
+ make_floatx80_init(0x3ffe, 0xbd08a39f580bfd8cULL),
+ make_floatx80_init(0xbffd, 0x85eeb8c14fe804e8ULL) },
+ { make_floatx80_init(0xbffd, 0xd00000000000bccfULL),
+ make_floatx80_init(0x3ffe, 0xc12c4cca667062f6ULL),
+ make_floatx80_init(0xbffc, 0xfb4eccd6663e7428ULL) },
+ { make_floatx80_init(0xbffd, 0xc00000000000eff0ULL),
+ make_floatx80_init(0x3ffe, 0xc5672a1155069abeULL),
+ make_floatx80_init(0xbffc, 0xea6357baabe59508ULL) },
+ { make_floatx80_init(0xbffd, 0xb000000000000fe6ULL),
+ make_floatx80_init(0x3ffe, 0xc9b9bd866e2f234bULL),
+ make_floatx80_init(0xbffc, 0xd91909e6474372d4ULL) },
+ { make_floatx80_init(0xbffd, 0x9fffffffffff2172ULL),
+ make_floatx80_init(0x3ffe, 0xce248c151f84bf00ULL),
+ make_floatx80_init(0xbffc, 0xc76dcfab81ed0400ULL) },
+ { make_floatx80_init(0xbffd, 0x8fffffffffffafffULL),
+ make_floatx80_init(0x3ffe, 0xd2a81d91f12afb2bULL),
+ make_floatx80_init(0xbffc, 0xb55f89b83b541354ULL) },
+ { make_floatx80_init(0xbffc, 0xffffffffffff81a3ULL),
+ make_floatx80_init(0x3ffe, 0xd744fccad69d7d5eULL),
+ make_floatx80_init(0xbffc, 0xa2ec0cd4a58a0a88ULL) },
+ { make_floatx80_init(0xbffc, 0xdfffffffffff1568ULL),
+ make_floatx80_init(0x3ffe, 0xdbfbb797daf25a44ULL),
+ make_floatx80_init(0xbffc, 0x901121a0943696f0ULL) },
+ { make_floatx80_init(0xbffc, 0xbfffffffffff68daULL),
+ make_floatx80_init(0x3ffe, 0xe0ccdeec2a94f811ULL),
+ make_floatx80_init(0xbffb, 0xf999089eab583f78ULL) },
+ { make_floatx80_init(0xbffc, 0x9fffffffffff4690ULL),
+ make_floatx80_init(0x3ffe, 0xe5b906e77c83657eULL),
+ make_floatx80_init(0xbffb, 0xd237c8c41be4d410ULL) },
+ { make_floatx80_init(0xbffb, 0xffffffffffff8aeeULL),
+ make_floatx80_init(0x3ffe, 0xeac0c6e7dd24427cULL),
+ make_floatx80_init(0xbffb, 0xa9f9c8c116ddec20ULL) },
+ { make_floatx80_init(0xbffb, 0xbfffffffffff2d18ULL),
+ make_floatx80_init(0x3ffe, 0xefe4b99bdcdb06ebULL),
+ make_floatx80_init(0xbffb, 0x80da33211927c8a8ULL) },
+ { make_floatx80_init(0xbffa, 0xffffffffffff8ccbULL),
+ make_floatx80_init(0x3ffe, 0xf5257d152486d0f4ULL),
+ make_floatx80_init(0xbffa, 0xada82eadb792f0c0ULL) },
+ { make_floatx80_init(0xbff9, 0xffffffffffff11feULL),
+ make_floatx80_init(0x3ffe, 0xfa83b2db722a0846ULL),
+ make_floatx80_init(0xbff9, 0xaf89a491babef740ULL) },
+ { floatx80_zero_init,
+ make_floatx80_init(0x3fff, 0x8000000000000000ULL),
+ floatx80_zero_init },
+ { make_floatx80_init(0x3ff9, 0xffffffffffff2680ULL),
+ make_floatx80_init(0x3fff, 0x82cd8698ac2b9f6fULL),
+ make_floatx80_init(0x3ff9, 0xb361a62b0ae7dbc0ULL) },
+ { make_floatx80_init(0x3ffb, 0x800000000000b500ULL),
+ make_floatx80_init(0x3fff, 0x85aac367cc488345ULL),
+ make_floatx80_init(0x3ffa, 0xb5586cf9891068a0ULL) },
+ { make_floatx80_init(0x3ffb, 0xbfffffffffff4b67ULL),
+ make_floatx80_init(0x3fff, 0x88980e8092da7cceULL),
+ make_floatx80_init(0x3ffb, 0x8980e8092da7cce0ULL) },
+ { make_floatx80_init(0x3ffb, 0xffffffffffffff57ULL),
+ make_floatx80_init(0x3fff, 0x8b95c1e3ea8bd6dfULL),
+ make_floatx80_init(0x3ffb, 0xb95c1e3ea8bd6df0ULL) },
+ { make_floatx80_init(0x3ffc, 0x9fffffffffff811fULL),
+ make_floatx80_init(0x3fff, 0x8ea4398b45cd4780ULL),
+ make_floatx80_init(0x3ffb, 0xea4398b45cd47800ULL) },
+ { make_floatx80_init(0x3ffc, 0xbfffffffffff9980ULL),
+ make_floatx80_init(0x3fff, 0x91c3d373ab11b919ULL),
+ make_floatx80_init(0x3ffc, 0x8e1e9b9d588dc8c8ULL) },
+ { make_floatx80_init(0x3ffc, 0xdffffffffffff631ULL),
+ make_floatx80_init(0x3fff, 0x94f4efa8fef70864ULL),
+ make_floatx80_init(0x3ffc, 0xa7a77d47f7b84320ULL) },
+ { make_floatx80_init(0x3ffc, 0xffffffffffff2499ULL),
+ make_floatx80_init(0x3fff, 0x9837f0518db892d4ULL),
+ make_floatx80_init(0x3ffc, 0xc1bf828c6dc496a0ULL) },
+ { make_floatx80_init(0x3ffd, 0x8fffffffffff80fbULL),
+ make_floatx80_init(0x3fff, 0x9b8d39b9d54e3a79ULL),
+ make_floatx80_init(0x3ffc, 0xdc69cdceaa71d3c8ULL) },
+ { make_floatx80_init(0x3ffd, 0x9fffffffffffbc23ULL),
+ make_floatx80_init(0x3fff, 0x9ef5326091a10313ULL),
+ make_floatx80_init(0x3ffc, 0xf7a993048d081898ULL) },
+ { make_floatx80_init(0x3ffd, 0xafffffffffff20ecULL),
+ make_floatx80_init(0x3fff, 0xa27043030c49370aULL),
+ make_floatx80_init(0x3ffd, 0x89c10c0c3124dc28ULL) },
+ { make_floatx80_init(0x3ffd, 0xc00000000000fd2cULL),
+ make_floatx80_init(0x3fff, 0xa5fed6a9b15171cfULL),
+ make_floatx80_init(0x3ffd, 0x97fb5aa6c545c73cULL) },
+ { make_floatx80_init(0x3ffd, 0xd0000000000093beULL),
+ make_floatx80_init(0x3fff, 0xa9a15ab4ea7c30e6ULL),
+ make_floatx80_init(0x3ffd, 0xa6856ad3a9f0c398ULL) },
+ { make_floatx80_init(0x3ffd, 0xe00000000000c2aeULL),
+ make_floatx80_init(0x3fff, 0xad583eea42a17876ULL),
+ make_floatx80_init(0x3ffd, 0xb560fba90a85e1d8ULL) },
+ { make_floatx80_init(0x3ffd, 0xefffffffffff1e3fULL),
+ make_floatx80_init(0x3fff, 0xb123f581d2abef6cULL),
+ make_floatx80_init(0x3ffd, 0xc48fd6074aafbdb0ULL) },
+ { make_floatx80_init(0x3ffd, 0xffffffffffff1c23ULL),
+ make_floatx80_init(0x3fff, 0xb504f333f9de2cadULL),
+ make_floatx80_init(0x3ffd, 0xd413cccfe778b2b4ULL) },
+ { make_floatx80_init(0x3ffe, 0x8800000000006344ULL),
+ make_floatx80_init(0x3fff, 0xb8fbaf4762fbd0a1ULL),
+ make_floatx80_init(0x3ffd, 0xe3eebd1d8bef4284ULL) },
+ { make_floatx80_init(0x3ffe, 0x9000000000005d67ULL),
+ make_floatx80_init(0x3fff, 0xbd08a39f580c668dULL),
+ make_floatx80_init(0x3ffd, 0xf4228e7d60319a34ULL) },
+ { make_floatx80_init(0x3ffe, 0x9800000000009127ULL),
+ make_floatx80_init(0x3fff, 0xc12c4cca6670e042ULL),
+ make_floatx80_init(0x3ffe, 0x82589994cce1c084ULL) },
+ { make_floatx80_init(0x3ffe, 0x9fffffffffff06f9ULL),
+ make_floatx80_init(0x3fff, 0xc5672a11550655c3ULL),
+ make_floatx80_init(0x3ffe, 0x8ace5422aa0cab86ULL) },
+ { make_floatx80_init(0x3ffe, 0xa7fffffffffff80dULL),
+ make_floatx80_init(0x3fff, 0xc9b9bd866e2f234bULL),
+ make_floatx80_init(0x3ffe, 0x93737b0cdc5e4696ULL) },
+ { make_floatx80_init(0x3ffe, 0xafffffffffff1470ULL),
+ make_floatx80_init(0x3fff, 0xce248c151f83fd69ULL),
+ make_floatx80_init(0x3ffe, 0x9c49182a3f07fad2ULL) },
+ { make_floatx80_init(0x3ffe, 0xb800000000000e0aULL),
+ make_floatx80_init(0x3fff, 0xd2a81d91f12aec5cULL),
+ make_floatx80_init(0x3ffe, 0xa5503b23e255d8b8ULL) },
+ { make_floatx80_init(0x3ffe, 0xc00000000000b7faULL),
+ make_floatx80_init(0x3fff, 0xd744fccad69dd630ULL),
+ make_floatx80_init(0x3ffe, 0xae89f995ad3bac60ULL) },
+ { make_floatx80_init(0x3ffe, 0xc800000000003aa6ULL),
+ make_floatx80_init(0x3fff, 0xdbfbb797daf25a44ULL),
+ make_floatx80_init(0x3ffe, 0xb7f76f2fb5e4b488ULL) },
+ { make_floatx80_init(0x3ffe, 0xd00000000000a6aeULL),
+ make_floatx80_init(0x3fff, 0xe0ccdeec2a954685ULL),
+ make_floatx80_init(0x3ffe, 0xc199bdd8552a8d0aULL) },
+ { make_floatx80_init(0x3ffe, 0xd800000000004165ULL),
+ make_floatx80_init(0x3fff, 0xe5b906e77c837155ULL),
+ make_floatx80_init(0x3ffe, 0xcb720dcef906e2aaULL) },
+ { make_floatx80_init(0x3ffe, 0xe00000000000582cULL),
+ make_floatx80_init(0x3fff, 0xeac0c6e7dd24713aULL),
+ make_floatx80_init(0x3ffe, 0xd5818dcfba48e274ULL) },
+ { make_floatx80_init(0x3ffe, 0xe800000000001a5dULL),
+ make_floatx80_init(0x3fff, 0xefe4b99bdcdb06ebULL),
+ make_floatx80_init(0x3ffe, 0xdfc97337b9b60dd6ULL) },
+ { make_floatx80_init(0x3ffe, 0xefffffffffffc1efULL),
+ make_floatx80_init(0x3fff, 0xf5257d152486a2faULL),
+ make_floatx80_init(0x3ffe, 0xea4afa2a490d45f4ULL) },
+ { make_floatx80_init(0x3ffe, 0xf800000000001069ULL),
+ make_floatx80_init(0x3fff, 0xfa83b2db722a0e5cULL),
+ make_floatx80_init(0x3ffe, 0xf50765b6e4541cb8ULL) },
+ { make_floatx80_init(0x3fff, 0x8000000000000000ULL),
+ make_floatx80_init(0x4000, 0x8000000000000000ULL),
+ make_floatx80_init(0x3fff, 0x8000000000000000ULL) },
+};
+
+void helper_f2xm1(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t sig = extractFloatx80Frac(ST0);
+ int32_t exp = extractFloatx80Exp(ST0);
+ bool sign = extractFloatx80Sign(ST0);
+
+ if (floatx80_invalid_encoding(ST0)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST0)) {
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_silence_nan(ST0, &env->fp_status);
+ }
+ } else if (exp > 0x3fff ||
+ (exp == 0x3fff && sig != (0x8000000000000000ULL))) {
+ /* Out of range for the instruction, treat as invalid. */
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ } else if (exp == 0x3fff) {
+ /* Argument 1 or -1, exact result 1 or -0.5. */
+ if (sign) {
+ ST0 = make_floatx80(0xbffe, 0x8000000000000000ULL);
+ }
+ } else if (exp < 0x3fb0) {
+ if (!floatx80_is_zero(ST0)) {
+ /*
+ * Multiplying the argument by an extra-precision version
+ * of log(2) is sufficiently precise. Zero arguments are
+ * returned unchanged.
+ */
+ uint64_t sig0, sig1, sig2;
+ if (exp == 0) {
+ normalizeFloatx80Subnormal(sig, &exp, &sig);
+ }
+ mul128By64To192(ln2_sig_high, ln2_sig_low, sig, &sig0, &sig1,
+ &sig2);
+ /* This result is inexact. */
+ sig1 |= 1;
+ ST0 = normalizeRoundAndPackFloatx80(80, sign, exp, sig0, sig1,
+ &env->fp_status);
+ }
+ } else {
+ floatx80 tmp, y, accum;
+ bool asign, bsign;
+ int32_t n, aexp, bexp;
+ uint64_t asig0, asig1, asig2, bsig0, bsig1;
+ FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.float_rounding_mode = float_round_nearest_even;
+ env->fp_status.floatx80_rounding_precision = 80;
+
+ /* Find the nearest multiple of 1/32 to the argument. */
+ tmp = floatx80_scalbn(ST0, 5, &env->fp_status);
+ n = 32 + floatx80_to_int32(tmp, &env->fp_status);
+ y = floatx80_sub(ST0, f2xm1_table[n].t, &env->fp_status);
+
+ if (floatx80_is_zero(y)) {
+ /*
+ * Use the value of 2^t - 1 from the table, to avoid
+ * needing to special-case zero as a result of
+ * multiplication below.
+ */
+ ST0 = f2xm1_table[n].t;
+ set_float_exception_flags(float_flag_inexact, &env->fp_status);
+ env->fp_status.float_rounding_mode = save_mode;
+ } else {
+ /*
+ * Compute the lower parts of a polynomial expansion for
+ * (2^y - 1) / y.
+ */
+ accum = floatx80_mul(f2xm1_coeff_7, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_6, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_5, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_4, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_3, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_2, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_1, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_0_low, accum, &env->fp_status);
+
+ /*
+ * The full polynomial expansion is f2xm1_coeff_0 + accum
+ * (where accum has much lower magnitude, and so, in
+ * particular, carry out of the addition is not possible).
+ * (This expansion is only accurate to about 70 bits, not
+ * 128 bits.)
+ */
+ aexp = extractFloatx80Exp(f2xm1_coeff_0);
+ asign = extractFloatx80Sign(f2xm1_coeff_0);
+ shift128RightJamming(extractFloatx80Frac(accum), 0,
+ aexp - extractFloatx80Exp(accum),
+ &asig0, &asig1);
+ bsig0 = extractFloatx80Frac(f2xm1_coeff_0);
+ bsig1 = 0;
+ if (asign == extractFloatx80Sign(accum)) {
+ add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ } else {
+ sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ }
+ /* And thus compute an approximation to 2^y - 1. */
+ mul128By64To192(asig0, asig1, extractFloatx80Frac(y),
+ &asig0, &asig1, &asig2);
+ aexp += extractFloatx80Exp(y) - 0x3ffe;
+ asign ^= extractFloatx80Sign(y);
+ if (n != 32) {
+ /*
+ * Multiply this by the precomputed value of 2^t and
+ * add that of 2^t - 1.
+ */
+ mul128By64To192(asig0, asig1,
+ extractFloatx80Frac(f2xm1_table[n].exp2),
+ &asig0, &asig1, &asig2);
+ aexp += extractFloatx80Exp(f2xm1_table[n].exp2) - 0x3ffe;
+ bexp = extractFloatx80Exp(f2xm1_table[n].exp2m1);
+ bsig0 = extractFloatx80Frac(f2xm1_table[n].exp2m1);
+ bsig1 = 0;
+ if (bexp < aexp) {
+ shift128RightJamming(bsig0, bsig1, aexp - bexp,
+ &bsig0, &bsig1);
+ } else if (aexp < bexp) {
+ shift128RightJamming(asig0, asig1, bexp - aexp,
+ &asig0, &asig1);
+ aexp = bexp;
+ }
+ /* The sign of 2^t - 1 is always that of the result. */
+ bsign = extractFloatx80Sign(f2xm1_table[n].exp2m1);
+ if (asign == bsign) {
+ /* Avoid possible carry out of the addition. */
+ shift128RightJamming(asig0, asig1, 1,
+ &asig0, &asig1);
+ shift128RightJamming(bsig0, bsig1, 1,
+ &bsig0, &bsig1);
+ ++aexp;
+ add128(asig0, asig1, bsig0, bsig1, &asig0, &asig1);
+ } else {
+ sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ asign = bsign;
+ }
+ }
+ env->fp_status.float_rounding_mode = save_mode;
+ /* This result is inexact. */
+ asig1 |= 1;
+ ST0 = normalizeRoundAndPackFloatx80(80, asign, aexp, asig0, asig1,
+ &env->fp_status);
+ }
+
+ env->fp_status.floatx80_rounding_precision = save_prec;
+ }
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fptan(CPUX86State *env)
+{
+ double fptemp = floatx80_to_double(env, ST0);
+
+ if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
+ env->fpus |= 0x400;
+ } else {
+ fptemp = tan(fptemp);
+ ST0 = double_to_floatx80(env, fptemp);
+ fpush(env);
+ ST0 = floatx80_one;
+ env->fpus &= ~0x400; /* C2 <-- 0 */
+ /* the above code is for |arg| < 2**52 only */
+ }
+}
+
+/* Values of pi/4, pi/2, 3pi/4 and pi, with 128-bit precision. */
+#define pi_4_exp 0x3ffe
+#define pi_4_sig_high 0xc90fdaa22168c234ULL
+#define pi_4_sig_low 0xc4c6628b80dc1cd1ULL
+#define pi_2_exp 0x3fff
+#define pi_2_sig_high 0xc90fdaa22168c234ULL
+#define pi_2_sig_low 0xc4c6628b80dc1cd1ULL
+#define pi_34_exp 0x4000
+#define pi_34_sig_high 0x96cbe3f9990e91a7ULL
+#define pi_34_sig_low 0x9394c9e8a0a5159dULL
+#define pi_exp 0x4000
+#define pi_sig_high 0xc90fdaa22168c234ULL
+#define pi_sig_low 0xc4c6628b80dc1cd1ULL
+
+/*
+ * Polynomial coefficients for an approximation to atan(x), with only
+ * odd powers of x used, for x in the interval [-1/16, 1/16]. (Unlike
+ * for some other approximations, no low part is needed for the first
+ * coefficient here to achieve a sufficiently accurate result, because
+ * the coefficient in this minimax approximation is very close to
+ * exactly 1.)
+ */
+#define fpatan_coeff_0 make_floatx80(0x3fff, 0x8000000000000000ULL)
+#define fpatan_coeff_1 make_floatx80(0xbffd, 0xaaaaaaaaaaaaaa43ULL)
+#define fpatan_coeff_2 make_floatx80(0x3ffc, 0xccccccccccbfe4f8ULL)
+#define fpatan_coeff_3 make_floatx80(0xbffc, 0x92492491fbab2e66ULL)
+#define fpatan_coeff_4 make_floatx80(0x3ffb, 0xe38e372881ea1e0bULL)
+#define fpatan_coeff_5 make_floatx80(0xbffb, 0xba2c0104bbdd0615ULL)
+#define fpatan_coeff_6 make_floatx80(0x3ffb, 0x9baf7ebf898b42efULL)
+
+struct fpatan_data {
+ /* High and low parts of atan(x). */
+ floatx80 atan_high, atan_low;
+};
+
+static const struct fpatan_data fpatan_table[9] = {
+ { floatx80_zero_init,
+ floatx80_zero_init },
+ { make_floatx80_init(0x3ffb, 0xfeadd4d5617b6e33ULL),
+ make_floatx80_init(0xbfb9, 0xdda19d8305ddc420ULL) },
+ { make_floatx80_init(0x3ffc, 0xfadbafc96406eb15ULL),
+ make_floatx80_init(0x3fbb, 0xdb8f3debef442fccULL) },
+ { make_floatx80_init(0x3ffd, 0xb7b0ca0f26f78474ULL),
+ make_floatx80_init(0xbfbc, 0xeab9bdba460376faULL) },
+ { make_floatx80_init(0x3ffd, 0xed63382b0dda7b45ULL),
+ make_floatx80_init(0x3fbc, 0xdfc88bd978751a06ULL) },
+ { make_floatx80_init(0x3ffe, 0x8f005d5ef7f59f9bULL),
+ make_floatx80_init(0x3fbd, 0xb906bc2ccb886e90ULL) },
+ { make_floatx80_init(0x3ffe, 0xa4bc7d1934f70924ULL),
+ make_floatx80_init(0x3fbb, 0xcd43f9522bed64f8ULL) },
+ { make_floatx80_init(0x3ffe, 0xb8053e2bc2319e74ULL),
+ make_floatx80_init(0xbfbc, 0xd3496ab7bd6eef0cULL) },
+ { make_floatx80_init(0x3ffe, 0xc90fdaa22168c235ULL),
+ make_floatx80_init(0xbfbc, 0xece675d1fc8f8cbcULL) },
+};
+
+void helper_fpatan(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t arg0_sig = extractFloatx80Frac(ST0);
+ int32_t arg0_exp = extractFloatx80Exp(ST0);
+ bool arg0_sign = extractFloatx80Sign(ST0);
+ uint64_t arg1_sig = extractFloatx80Frac(ST1);
+ int32_t arg1_exp = extractFloatx80Exp(ST1);
+ bool arg1_sign = extractFloatx80Sign(ST1);
+
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST0, &env->fp_status);
+ } else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST1, &env->fp_status);
+ } else if (floatx80_invalid_encoding(ST0) ||
+ floatx80_invalid_encoding(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST0)) {
+ ST1 = ST0;
+ } else if (floatx80_is_any_nan(ST1)) {
+ /* Pass this NaN through. */
+ } else if (floatx80_is_zero(ST1) && !arg0_sign) {
+ /* Pass this zero through. */
+ } else if (((floatx80_is_infinity(ST0) && !floatx80_is_infinity(ST1)) ||
+ arg0_exp - arg1_exp >= 80) &&
+ !arg0_sign) {
+ /*
+ * Dividing ST1 by ST0 gives the correct result up to
+ * rounding, and avoids spurious underflow exceptions that
+ * might result from passing some small values through the
+ * polynomial approximation, but if a finite nonzero result of
+ * division is exact, the result of fpatan is still inexact
+ * (and underflowing where appropriate).
+ */
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.floatx80_rounding_precision = 80;
+ ST1 = floatx80_div(ST1, ST0, &env->fp_status);
+ env->fp_status.floatx80_rounding_precision = save_prec;
+ if (!floatx80_is_zero(ST1) &&
+ !(get_float_exception_flags(&env->fp_status) &
+ float_flag_inexact)) {
+ /*
+ * The mathematical result is very slightly closer to zero
+ * than this exact result. Round a value with the
+ * significand adjusted accordingly to get the correct
+ * exceptions, and possibly an adjusted result depending
+ * on the rounding mode.
+ */
+ uint64_t sig = extractFloatx80Frac(ST1);
+ int32_t exp = extractFloatx80Exp(ST1);
+ bool sign = extractFloatx80Sign(ST1);
+ if (exp == 0) {
+ normalizeFloatx80Subnormal(sig, &exp, &sig);
+ }
+ ST1 = normalizeRoundAndPackFloatx80(80, sign, exp, sig - 1,
+ -1, &env->fp_status);
+ }
+ } else {
+ /* The result is inexact. */
+ bool rsign = arg1_sign;
+ int32_t rexp;
+ uint64_t rsig0, rsig1;
+ if (floatx80_is_zero(ST1)) {
+ /*
+ * ST0 is negative. The result is pi with the sign of
+ * ST1.
+ */
+ rexp = pi_exp;
+ rsig0 = pi_sig_high;
+ rsig1 = pi_sig_low;
+ } else if (floatx80_is_infinity(ST1)) {
+ if (floatx80_is_infinity(ST0)) {
+ if (arg0_sign) {
+ rexp = pi_34_exp;
+ rsig0 = pi_34_sig_high;
+ rsig1 = pi_34_sig_low;
+ } else {
+ rexp = pi_4_exp;
+ rsig0 = pi_4_sig_high;
+ rsig1 = pi_4_sig_low;
+ }
+ } else {
+ rexp = pi_2_exp;
+ rsig0 = pi_2_sig_high;
+ rsig1 = pi_2_sig_low;
+ }
+ } else if (floatx80_is_zero(ST0) || arg1_exp - arg0_exp >= 80) {
+ rexp = pi_2_exp;
+ rsig0 = pi_2_sig_high;
+ rsig1 = pi_2_sig_low;
+ } else if (floatx80_is_infinity(ST0) || arg0_exp - arg1_exp >= 80) {
+ /* ST0 is negative. */
+ rexp = pi_exp;
+ rsig0 = pi_sig_high;
+ rsig1 = pi_sig_low;
+ } else {
+ /*
+ * ST0 and ST1 are finite, nonzero and with exponents not
+ * too far apart.
+ */
+ int32_t adj_exp, num_exp, den_exp, xexp, yexp, n, texp, zexp, aexp;
+ int32_t azexp, axexp;
+ bool adj_sub, ysign, zsign;
+ uint64_t adj_sig0, adj_sig1, num_sig, den_sig, xsig0, xsig1;
+ uint64_t msig0, msig1, msig2, remsig0, remsig1, remsig2;
+ uint64_t ysig0, ysig1, tsig, zsig0, zsig1, asig0, asig1;
+ uint64_t azsig0, azsig1;
+ uint64_t azsig2, azsig3, axsig0, axsig1;
+ floatx80 x8;
+ FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.float_rounding_mode = float_round_nearest_even;
+ env->fp_status.floatx80_rounding_precision = 80;
+
+ if (arg0_exp == 0) {
+ normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
+ }
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ if (arg0_exp > arg1_exp ||
+ (arg0_exp == arg1_exp && arg0_sig >= arg1_sig)) {
+ /* Work with abs(ST1) / abs(ST0). */
+ num_exp = arg1_exp;
+ num_sig = arg1_sig;
+ den_exp = arg0_exp;
+ den_sig = arg0_sig;
+ if (arg0_sign) {
+ /* The result is subtracted from pi. */
+ adj_exp = pi_exp;
+ adj_sig0 = pi_sig_high;
+ adj_sig1 = pi_sig_low;
+ adj_sub = true;
+ } else {
+ /* The result is used as-is. */
+ adj_exp = 0;
+ adj_sig0 = 0;
+ adj_sig1 = 0;
+ adj_sub = false;
+ }
+ } else {
+ /* Work with abs(ST0) / abs(ST1). */
+ num_exp = arg0_exp;
+ num_sig = arg0_sig;
+ den_exp = arg1_exp;
+ den_sig = arg1_sig;
+ /* The result is added to or subtracted from pi/2. */
+ adj_exp = pi_2_exp;
+ adj_sig0 = pi_2_sig_high;
+ adj_sig1 = pi_2_sig_low;
+ adj_sub = !arg0_sign;
+ }
+
+ /*
+ * Compute x = num/den, where 0 < x <= 1 and x is not too
+ * small.
+ */
+ xexp = num_exp - den_exp + 0x3ffe;
+ remsig0 = num_sig;
+ remsig1 = 0;
+ if (den_sig <= remsig0) {
+ shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1);
+ ++xexp;
+ }
+ xsig0 = estimateDiv128To64(remsig0, remsig1, den_sig);
+ mul64To128(den_sig, xsig0, &msig0, &msig1);
+ sub128(remsig0, remsig1, msig0, msig1, &remsig0, &remsig1);
+ while ((int64_t) remsig0 < 0) {
+ --xsig0;
+ add128(remsig0, remsig1, 0, den_sig, &remsig0, &remsig1);
+ }
+ xsig1 = estimateDiv128To64(remsig1, 0, den_sig);
+ /*
+ * No need to correct any estimation error in xsig1; even
+ * with such error, it is accurate enough.
+ */
+
+ /*
+ * Split x as x = t + y, where t = n/8 is the nearest
+ * multiple of 1/8 to x.
+ */
+ x8 = normalizeRoundAndPackFloatx80(80, false, xexp + 3, xsig0,
+ xsig1, &env->fp_status);
+ n = floatx80_to_int32(x8, &env->fp_status);
+ if (n == 0) {
+ ysign = false;
+ yexp = xexp;
+ ysig0 = xsig0;
+ ysig1 = xsig1;
+ texp = 0;
+ tsig = 0;
+ } else {
+ int shift = clz32(n) + 32;
+ texp = 0x403b - shift;
+ tsig = n;
+ tsig <<= shift;
+ if (texp == xexp) {
+ sub128(xsig0, xsig1, tsig, 0, &ysig0, &ysig1);
+ if ((int64_t) ysig0 >= 0) {
+ ysign = false;
+ if (ysig0 == 0) {
+ if (ysig1 == 0) {
+ yexp = 0;
+ } else {
+ shift = clz64(ysig1) + 64;
+ yexp = xexp - shift;
+ shift128Left(ysig0, ysig1, shift,
+ &ysig0, &ysig1);
+ }
+ } else {
+ shift = clz64(ysig0);
+ yexp = xexp - shift;
+ shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
+ }
+ } else {
+ ysign = true;
+ sub128(0, 0, ysig0, ysig1, &ysig0, &ysig1);
+ if (ysig0 == 0) {
+ shift = clz64(ysig1) + 64;
+ } else {
+ shift = clz64(ysig0);
+ }
+ yexp = xexp - shift;
+ shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
+ }
+ } else {
+ /*
+ * t's exponent must be greater than x's because t
+ * is positive and the nearest multiple of 1/8 to
+ * x, and if x has a greater exponent, the power
+ * of 2 with that exponent is also a multiple of
+ * 1/8.
+ */
+ uint64_t usig0, usig1;
+ shift128RightJamming(xsig0, xsig1, texp - xexp,
+ &usig0, &usig1);
+ ysign = true;
+ sub128(tsig, 0, usig0, usig1, &ysig0, &ysig1);
+ if (ysig0 == 0) {
+ shift = clz64(ysig1) + 64;
+ } else {
+ shift = clz64(ysig0);
+ }
+ yexp = texp - shift;
+ shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
+ }
+ }
+
+ /*
+ * Compute z = y/(1+tx), so arctan(x) = arctan(t) +
+ * arctan(z).
+ */
+ zsign = ysign;
+ if (texp == 0 || yexp == 0) {
+ zexp = yexp;
+ zsig0 = ysig0;
+ zsig1 = ysig1;
+ } else {
+ /*
+ * t <= 1, x <= 1 and if both are 1 then y is 0, so tx < 1.
+ */
+ int32_t dexp = texp + xexp - 0x3ffe;
+ uint64_t dsig0, dsig1, dsig2;
+ mul128By64To192(xsig0, xsig1, tsig, &dsig0, &dsig1, &dsig2);
+ /*
+ * dexp <= 0x3fff (and if equal, dsig0 has a leading 0
+ * bit). Add 1 to produce the denominator 1+tx.
+ */
+ shift128RightJamming(dsig0, dsig1, 0x3fff - dexp,
+ &dsig0, &dsig1);
+ dsig0 |= 0x8000000000000000ULL;
+ zexp = yexp - 1;
+ remsig0 = ysig0;
+ remsig1 = ysig1;
+ remsig2 = 0;
+ if (dsig0 <= remsig0) {
+ shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1);
+ ++zexp;
+ }
+ zsig0 = estimateDiv128To64(remsig0, remsig1, dsig0);
+ mul128By64To192(dsig0, dsig1, zsig0, &msig0, &msig1, &msig2);
+ sub192(remsig0, remsig1, remsig2, msig0, msig1, msig2,
+ &remsig0, &remsig1, &remsig2);
+ while ((int64_t) remsig0 < 0) {
+ --zsig0;
+ add192(remsig0, remsig1, remsig2, 0, dsig0, dsig1,
+ &remsig0, &remsig1, &remsig2);
+ }
+ zsig1 = estimateDiv128To64(remsig1, remsig2, dsig0);
+ /* No need to correct any estimation error in zsig1. */
+ }
+
+ if (zexp == 0) {
+ azexp = 0;
+ azsig0 = 0;
+ azsig1 = 0;
+ } else {
+ floatx80 z2, accum;
+ uint64_t z2sig0, z2sig1, z2sig2, z2sig3;
+ /* Compute z^2. */
+ mul128To256(zsig0, zsig1, zsig0, zsig1,
+ &z2sig0, &z2sig1, &z2sig2, &z2sig3);
+ z2 = normalizeRoundAndPackFloatx80(80, false,
+ zexp + zexp - 0x3ffe,
+ z2sig0, z2sig1,
+ &env->fp_status);
+
+ /* Compute the lower parts of the polynomial expansion. */
+ accum = floatx80_mul(fpatan_coeff_6, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_5, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_4, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_3, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_2, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+ accum = floatx80_add(fpatan_coeff_1, accum, &env->fp_status);
+ accum = floatx80_mul(accum, z2, &env->fp_status);
+
+ /*
+ * The full polynomial expansion is z*(fpatan_coeff_0 + accum).
+ * fpatan_coeff_0 is 1, and accum is negative and much smaller.
+ */
+ aexp = extractFloatx80Exp(fpatan_coeff_0);
+ shift128RightJamming(extractFloatx80Frac(accum), 0,
+ aexp - extractFloatx80Exp(accum),
+ &asig0, &asig1);
+ sub128(extractFloatx80Frac(fpatan_coeff_0), 0, asig0, asig1,
+ &asig0, &asig1);
+ /* Multiply by z to compute arctan(z). */
+ azexp = aexp + zexp - 0x3ffe;
+ mul128To256(asig0, asig1, zsig0, zsig1, &azsig0, &azsig1,
+ &azsig2, &azsig3);
+ }
+
+ /* Add arctan(t) (positive or zero) and arctan(z) (sign zsign). */
+ if (texp == 0) {
+ /* z is positive. */
+ axexp = azexp;
+ axsig0 = azsig0;
+ axsig1 = azsig1;
+ } else {
+ bool low_sign = extractFloatx80Sign(fpatan_table[n].atan_low);
+ int32_t low_exp = extractFloatx80Exp(fpatan_table[n].atan_low);
+ uint64_t low_sig0 =
+ extractFloatx80Frac(fpatan_table[n].atan_low);
+ uint64_t low_sig1 = 0;
+ axexp = extractFloatx80Exp(fpatan_table[n].atan_high);
+ axsig0 = extractFloatx80Frac(fpatan_table[n].atan_high);
+ axsig1 = 0;
+ shift128RightJamming(low_sig0, low_sig1, axexp - low_exp,
+ &low_sig0, &low_sig1);
+ if (low_sign) {
+ sub128(axsig0, axsig1, low_sig0, low_sig1,
+ &axsig0, &axsig1);
+ } else {
+ add128(axsig0, axsig1, low_sig0, low_sig1,
+ &axsig0, &axsig1);
+ }
+ if (azexp >= axexp) {
+ shift128RightJamming(axsig0, axsig1, azexp - axexp + 1,
+ &axsig0, &axsig1);
+ axexp = azexp + 1;
+ shift128RightJamming(azsig0, azsig1, 1,
+ &azsig0, &azsig1);
+ } else {
+ shift128RightJamming(axsig0, axsig1, 1,
+ &axsig0, &axsig1);
+ shift128RightJamming(azsig0, azsig1, axexp - azexp + 1,
+ &azsig0, &azsig1);
+ ++axexp;
+ }
+ if (zsign) {
+ sub128(axsig0, axsig1, azsig0, azsig1,
+ &axsig0, &axsig1);
+ } else {
+ add128(axsig0, axsig1, azsig0, azsig1,
+ &axsig0, &axsig1);
+ }
+ }
+
+ if (adj_exp == 0) {
+ rexp = axexp;
+ rsig0 = axsig0;
+ rsig1 = axsig1;
+ } else {
+ /*
+ * Add or subtract arctan(x) (exponent axexp,
+ * significand axsig0 and axsig1, positive, not
+ * necessarily normalized) to the number given by
+ * adj_exp, adj_sig0 and adj_sig1, according to
+ * adj_sub.
+ */
+ if (adj_exp >= axexp) {
+ shift128RightJamming(axsig0, axsig1, adj_exp - axexp + 1,
+ &axsig0, &axsig1);
+ rexp = adj_exp + 1;
+ shift128RightJamming(adj_sig0, adj_sig1, 1,
+ &adj_sig0, &adj_sig1);
+ } else {
+ shift128RightJamming(axsig0, axsig1, 1,
+ &axsig0, &axsig1);
+ shift128RightJamming(adj_sig0, adj_sig1,
+ axexp - adj_exp + 1,
+ &adj_sig0, &adj_sig1);
+ rexp = axexp + 1;
+ }
+ if (adj_sub) {
+ sub128(adj_sig0, adj_sig1, axsig0, axsig1,
+ &rsig0, &rsig1);
+ } else {
+ add128(adj_sig0, adj_sig1, axsig0, axsig1,
+ &rsig0, &rsig1);
+ }
+ }
+
+ env->fp_status.float_rounding_mode = save_mode;
+ env->fp_status.floatx80_rounding_precision = save_prec;
+ }
+ /* This result is inexact. */
+ rsig1 |= 1;
+ ST1 = normalizeRoundAndPackFloatx80(80, rsign, rexp,
+ rsig0, rsig1, &env->fp_status);
+ }
+
+ fpop(env);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fxtract(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ CPU_LDoubleU temp;
+
+ temp.d = ST0;
+
+ if (floatx80_is_zero(ST0)) {
+ /* Easy way to generate -inf and raising division by 0 exception */
+ ST0 = floatx80_div(floatx80_chs(floatx80_one), floatx80_zero,
+ &env->fp_status);
+ fpush(env);
+ ST0 = temp.d;
+ } else if (floatx80_invalid_encoding(ST0)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ fpush(env);
+ ST0 = ST1;
+ } else if (floatx80_is_any_nan(ST0)) {
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_silence_nan(ST0, &env->fp_status);
+ }
+ fpush(env);
+ ST0 = ST1;
+ } else if (floatx80_is_infinity(ST0)) {
+ fpush(env);
+ ST0 = ST1;
+ ST1 = floatx80_infinity;
+ } else {
+ int expdif;
+
+ if (EXPD(temp) == 0) {
+ int shift = clz64(temp.l.lower);
+ temp.l.lower <<= shift;
+ expdif = 1 - EXPBIAS - shift;
+ float_raise(float_flag_input_denormal, &env->fp_status);
+ } else {
+ expdif = EXPD(temp) - EXPBIAS;
+ }
+ /* DP exponent bias */
+ ST0 = int32_to_floatx80(expdif, &env->fp_status);
+ fpush(env);
+ BIASEXPONENT(temp);
+ ST0 = temp.d;
+ }
+ merge_exception_flags(env, old_flags);
+}
+
+static void helper_fprem_common(CPUX86State *env, bool mod)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t quotient;
+ CPU_LDoubleU temp0, temp1;
+ int exp0, exp1, expdiff;
+
+ temp0.d = ST0;
+ temp1.d = ST1;
+ exp0 = EXPD(temp0);
+ exp1 = EXPD(temp1);
+
+ env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
+ if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) ||
+ exp0 == 0x7fff || exp1 == 0x7fff ||
+ floatx80_invalid_encoding(ST0) || floatx80_invalid_encoding(ST1)) {
+ ST0 = floatx80_modrem(ST0, ST1, mod, &quotient, &env->fp_status);
+ } else {
+ if (exp0 == 0) {
+ exp0 = 1 - clz64(temp0.l.lower);
+ }
+ if (exp1 == 0) {
+ exp1 = 1 - clz64(temp1.l.lower);
+ }
+ expdiff = exp0 - exp1;
+ if (expdiff < 64) {
+ ST0 = floatx80_modrem(ST0, ST1, mod, &quotient, &env->fp_status);
+ env->fpus |= (quotient & 0x4) << (8 - 2); /* (C0) <-- q2 */
+ env->fpus |= (quotient & 0x2) << (14 - 1); /* (C3) <-- q1 */
+ env->fpus |= (quotient & 0x1) << (9 - 0); /* (C1) <-- q0 */
+ } else {
+ /*
+ * Partial remainder. This choice of how many bits to
+ * process at once is specified in AMD instruction set
+ * manuals, and empirically is followed by Intel
+ * processors as well; it ensures that the final remainder
+ * operation in a loop does produce the correct low three
+ * bits of the quotient. AMD manuals specify that the
+ * flags other than C2 are cleared, and empirically Intel
+ * processors clear them as well.
+ */
+ int n = 32 + (expdiff % 32);
+ temp1.d = floatx80_scalbn(temp1.d, expdiff - n, &env->fp_status);
+ ST0 = floatx80_mod(ST0, temp1.d, &env->fp_status);
+ env->fpus |= 0x400; /* C2 <-- 1 */
+ }
+ }
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fprem1(CPUX86State *env)
+{
+ helper_fprem_common(env, false);
+}
+
+void helper_fprem(CPUX86State *env)
+{
+ helper_fprem_common(env, true);
+}
+
+/* 128-bit significand of log2(e). */
+#define log2_e_sig_high 0xb8aa3b295c17f0bbULL
+#define log2_e_sig_low 0xbe87fed0691d3e89ULL
+
+/*
+ * Polynomial coefficients for an approximation to log2((1+x)/(1-x)),
+ * with only odd powers of x used, for x in the interval [2*sqrt(2)-3,
+ * 3-2*sqrt(2)], which corresponds to logarithms of numbers in the
+ * interval [sqrt(2)/2, sqrt(2)].
+ */
+#define fyl2x_coeff_0 make_floatx80(0x4000, 0xb8aa3b295c17f0bcULL)
+#define fyl2x_coeff_0_low make_floatx80(0xbfbf, 0x834972fe2d7bab1bULL)
+#define fyl2x_coeff_1 make_floatx80(0x3ffe, 0xf6384ee1d01febb8ULL)
+#define fyl2x_coeff_2 make_floatx80(0x3ffe, 0x93bb62877cdfa2e3ULL)
+#define fyl2x_coeff_3 make_floatx80(0x3ffd, 0xd30bb153d808f269ULL)
+#define fyl2x_coeff_4 make_floatx80(0x3ffd, 0xa42589eaf451499eULL)
+#define fyl2x_coeff_5 make_floatx80(0x3ffd, 0x864d42c0f8f17517ULL)
+#define fyl2x_coeff_6 make_floatx80(0x3ffc, 0xe3476578adf26272ULL)
+#define fyl2x_coeff_7 make_floatx80(0x3ffc, 0xc506c5f874e6d80fULL)
+#define fyl2x_coeff_8 make_floatx80(0x3ffc, 0xac5cf50cc57d6372ULL)
+#define fyl2x_coeff_9 make_floatx80(0x3ffc, 0xb1ed0066d971a103ULL)
+
+/*
+ * Compute an approximation of log2(1+arg), where 1+arg is in the
+ * interval [sqrt(2)/2, sqrt(2)]. It is assumed that when this
+ * function is called, rounding precision is set to 80 and the
+ * round-to-nearest mode is in effect. arg must not be exactly zero,
+ * and must not be so close to zero that underflow might occur.
+ */
+static void helper_fyl2x_common(CPUX86State *env, floatx80 arg, int32_t *exp,
+ uint64_t *sig0, uint64_t *sig1)
+{
+ uint64_t arg0_sig = extractFloatx80Frac(arg);
+ int32_t arg0_exp = extractFloatx80Exp(arg);
+ bool arg0_sign = extractFloatx80Sign(arg);
+ bool asign;
+ int32_t dexp, texp, aexp;
+ uint64_t dsig0, dsig1, tsig0, tsig1, rsig0, rsig1, rsig2;
+ uint64_t msig0, msig1, msig2, t2sig0, t2sig1, t2sig2, t2sig3;
+ uint64_t asig0, asig1, asig2, asig3, bsig0, bsig1;
+ floatx80 t2, accum;
+
+ /*
+ * Compute an approximation of arg/(2+arg), with extra precision,
+ * as the argument to a polynomial approximation. The extra
+ * precision is only needed for the first term of the
+ * approximation, with subsequent terms being significantly
+ * smaller; the approximation only uses odd exponents, and the
+ * square of arg/(2+arg) is at most 17-12*sqrt(2) = 0.029....
+ */
+ if (arg0_sign) {
+ dexp = 0x3fff;
+ shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1);
+ sub128(0, 0, dsig0, dsig1, &dsig0, &dsig1);
+ } else {
+ dexp = 0x4000;
+ shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1);
+ dsig0 |= 0x8000000000000000ULL;
+ }
+ texp = arg0_exp - dexp + 0x3ffe;
+ rsig0 = arg0_sig;
+ rsig1 = 0;
+ rsig2 = 0;
+ if (dsig0 <= rsig0) {
+ shift128Right(rsig0, rsig1, 1, &rsig0, &rsig1);
+ ++texp;
+ }
+ tsig0 = estimateDiv128To64(rsig0, rsig1, dsig0);
+ mul128By64To192(dsig0, dsig1, tsig0, &msig0, &msig1, &msig2);
+ sub192(rsig0, rsig1, rsig2, msig0, msig1, msig2,
+ &rsig0, &rsig1, &rsig2);
+ while ((int64_t) rsig0 < 0) {
+ --tsig0;
+ add192(rsig0, rsig1, rsig2, 0, dsig0, dsig1,
+ &rsig0, &rsig1, &rsig2);
+ }
+ tsig1 = estimateDiv128To64(rsig1, rsig2, dsig0);
+ /*
+ * No need to correct any estimation error in tsig1; even with
+ * such error, it is accurate enough. Now compute the square of
+ * that approximation.
+ */
+ mul128To256(tsig0, tsig1, tsig0, tsig1,
+ &t2sig0, &t2sig1, &t2sig2, &t2sig3);
+ t2 = normalizeRoundAndPackFloatx80(80, false, texp + texp - 0x3ffe,
+ t2sig0, t2sig1, &env->fp_status);
+
+ /* Compute the lower parts of the polynomial expansion. */
+ accum = floatx80_mul(fyl2x_coeff_9, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_8, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_7, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_6, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_5, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_4, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_3, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_2, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_1, accum, &env->fp_status);
+ accum = floatx80_mul(accum, t2, &env->fp_status);
+ accum = floatx80_add(fyl2x_coeff_0_low, accum, &env->fp_status);
+
+ /*
+ * The full polynomial expansion is fyl2x_coeff_0 + accum (where
+ * accum has much lower magnitude, and so, in particular, carry
+ * out of the addition is not possible), multiplied by t. (This
+ * expansion is only accurate to about 70 bits, not 128 bits.)
+ */
+ aexp = extractFloatx80Exp(fyl2x_coeff_0);
+ asign = extractFloatx80Sign(fyl2x_coeff_0);
+ shift128RightJamming(extractFloatx80Frac(accum), 0,
+ aexp - extractFloatx80Exp(accum),
+ &asig0, &asig1);
+ bsig0 = extractFloatx80Frac(fyl2x_coeff_0);
+ bsig1 = 0;
+ if (asign == extractFloatx80Sign(accum)) {
+ add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ } else {
+ sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ }
+ /* Multiply by t to compute the required result. */
+ mul128To256(asig0, asig1, tsig0, tsig1,
+ &asig0, &asig1, &asig2, &asig3);
+ aexp += texp - 0x3ffe;
+ *exp = aexp;
+ *sig0 = asig0;
+ *sig1 = asig1;
+}
+
+void helper_fyl2xp1(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t arg0_sig = extractFloatx80Frac(ST0);
+ int32_t arg0_exp = extractFloatx80Exp(ST0);
+ bool arg0_sign = extractFloatx80Sign(ST0);
+ uint64_t arg1_sig = extractFloatx80Frac(ST1);
+ int32_t arg1_exp = extractFloatx80Exp(ST1);
+ bool arg1_sign = extractFloatx80Sign(ST1);
+
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST0, &env->fp_status);
+ } else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST1, &env->fp_status);
+ } else if (floatx80_invalid_encoding(ST0) ||
+ floatx80_invalid_encoding(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST0)) {
+ ST1 = ST0;
+ } else if (floatx80_is_any_nan(ST1)) {
+ /* Pass this NaN through. */
+ } else if (arg0_exp > 0x3ffd ||
+ (arg0_exp == 0x3ffd && arg0_sig > (arg0_sign ?
+ 0x95f619980c4336f7ULL :
+ 0xd413cccfe7799211ULL))) {
+ /*
+ * Out of range for the instruction (ST0 must have absolute
+ * value less than 1 - sqrt(2)/2 = 0.292..., according to
+ * Intel manuals; AMD manuals allow a range from sqrt(2)/2 - 1
+ * to sqrt(2) - 1, which we allow here), treat as invalid.
+ */
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) ||
+ arg1_exp == 0x7fff) {
+ /*
+ * One argument is zero, or multiplying by infinity; correct
+ * result is exact and can be obtained by multiplying the
+ * arguments.
+ */
+ ST1 = floatx80_mul(ST0, ST1, &env->fp_status);
+ } else if (arg0_exp < 0x3fb0) {
+ /*
+ * Multiplying both arguments and an extra-precision version
+ * of log2(e) is sufficiently precise.
+ */
+ uint64_t sig0, sig1, sig2;
+ int32_t exp;
+ if (arg0_exp == 0) {
+ normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
+ }
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ mul128By64To192(log2_e_sig_high, log2_e_sig_low, arg0_sig,
+ &sig0, &sig1, &sig2);
+ exp = arg0_exp + 1;
+ mul128By64To192(sig0, sig1, arg1_sig, &sig0, &sig1, &sig2);
+ exp += arg1_exp - 0x3ffe;
+ /* This result is inexact. */
+ sig1 |= 1;
+ ST1 = normalizeRoundAndPackFloatx80(80, arg0_sign ^ arg1_sign, exp,
+ sig0, sig1, &env->fp_status);
+ } else {
+ int32_t aexp;
+ uint64_t asig0, asig1, asig2;
+ FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.float_rounding_mode = float_round_nearest_even;
+ env->fp_status.floatx80_rounding_precision = 80;
+
+ helper_fyl2x_common(env, ST0, &aexp, &asig0, &asig1);
+ /*
+ * Multiply by the second argument to compute the required
+ * result.
+ */
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2);
+ aexp += arg1_exp - 0x3ffe;
+ /* This result is inexact. */
+ asig1 |= 1;
+ env->fp_status.float_rounding_mode = save_mode;
+ ST1 = normalizeRoundAndPackFloatx80(80, arg0_sign ^ arg1_sign, aexp,
+ asig0, asig1, &env->fp_status);
+ env->fp_status.floatx80_rounding_precision = save_prec;
+ }
+ fpop(env);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fyl2x(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t arg0_sig = extractFloatx80Frac(ST0);
+ int32_t arg0_exp = extractFloatx80Exp(ST0);
+ bool arg0_sign = extractFloatx80Sign(ST0);
+ uint64_t arg1_sig = extractFloatx80Frac(ST1);
+ int32_t arg1_exp = extractFloatx80Exp(ST1);
+ bool arg1_sign = extractFloatx80Sign(ST1);
+
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST0, &env->fp_status);
+ } else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_silence_nan(ST1, &env->fp_status);
+ } else if (floatx80_invalid_encoding(ST0) ||
+ floatx80_invalid_encoding(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST0)) {
+ ST1 = ST0;
+ } else if (floatx80_is_any_nan(ST1)) {
+ /* Pass this NaN through. */
+ } else if (arg0_sign && !floatx80_is_zero(ST0)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_infinity(ST1)) {
+ FloatRelation cmp = floatx80_compare(ST0, floatx80_one,
+ &env->fp_status);
+ switch (cmp) {
+ case float_relation_less:
+ ST1 = floatx80_chs(ST1);
+ break;
+ case float_relation_greater:
+ /* Result is infinity of the same sign as ST1. */
+ break;
+ default:
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ break;
+ }
+ } else if (floatx80_is_infinity(ST0)) {
+ if (floatx80_is_zero(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else if (arg1_sign) {
+ ST1 = floatx80_chs(ST0);
+ } else {
+ ST1 = ST0;
+ }
+ } else if (floatx80_is_zero(ST0)) {
+ if (floatx80_is_zero(ST1)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST1 = floatx80_default_nan(&env->fp_status);
+ } else {
+ /* Result is infinity with opposite sign to ST1. */
+ float_raise(float_flag_divbyzero, &env->fp_status);
+ ST1 = make_floatx80(arg1_sign ? 0x7fff : 0xffff,
+ 0x8000000000000000ULL);
+ }
+ } else if (floatx80_is_zero(ST1)) {
+ if (floatx80_lt(ST0, floatx80_one, &env->fp_status)) {
+ ST1 = floatx80_chs(ST1);
+ }
+ /* Otherwise, ST1 is already the correct result. */
+ } else if (floatx80_eq(ST0, floatx80_one, &env->fp_status)) {
+ if (arg1_sign) {
+ ST1 = floatx80_chs(floatx80_zero);
+ } else {
+ ST1 = floatx80_zero;
+ }
+ } else {
+ int32_t int_exp;
+ floatx80 arg0_m1;
+ FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.float_rounding_mode = float_round_nearest_even;
+ env->fp_status.floatx80_rounding_precision = 80;
+
+ if (arg0_exp == 0) {
+ normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
+ }
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ int_exp = arg0_exp - 0x3fff;
+ if (arg0_sig > 0xb504f333f9de6484ULL) {
+ ++int_exp;
+ }
+ arg0_m1 = floatx80_sub(floatx80_scalbn(ST0, -int_exp,
+ &env->fp_status),
+ floatx80_one, &env->fp_status);
+ if (floatx80_is_zero(arg0_m1)) {
+ /* Exact power of 2; multiply by ST1. */
+ env->fp_status.float_rounding_mode = save_mode;
+ ST1 = floatx80_mul(int32_to_floatx80(int_exp, &env->fp_status),
+ ST1, &env->fp_status);
+ } else {
+ bool asign = extractFloatx80Sign(arg0_m1);
+ int32_t aexp;
+ uint64_t asig0, asig1, asig2;
+ helper_fyl2x_common(env, arg0_m1, &aexp, &asig0, &asig1);
+ if (int_exp != 0) {
+ bool isign = (int_exp < 0);
+ int32_t iexp;
+ uint64_t isig;
+ int shift;
+ int_exp = isign ? -int_exp : int_exp;
+ shift = clz32(int_exp) + 32;
+ isig = int_exp;
+ isig <<= shift;
+ iexp = 0x403e - shift;
+ shift128RightJamming(asig0, asig1, iexp - aexp,
+ &asig0, &asig1);
+ if (asign == isign) {
+ add128(isig, 0, asig0, asig1, &asig0, &asig1);
+ } else {
+ sub128(isig, 0, asig0, asig1, &asig0, &asig1);
+ }
+ aexp = iexp;
+ asign = isign;
+ }
+ /*
+ * Multiply by the second argument to compute the required
+ * result.
+ */
+ if (arg1_exp == 0) {
+ normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
+ }
+ mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2);
+ aexp += arg1_exp - 0x3ffe;
+ /* This result is inexact. */
+ asig1 |= 1;
+ env->fp_status.float_rounding_mode = save_mode;
+ ST1 = normalizeRoundAndPackFloatx80(80, asign ^ arg1_sign, aexp,
+ asig0, asig1, &env->fp_status);
+ }
+
+ env->fp_status.floatx80_rounding_precision = save_prec;
+ }
+ fpop(env);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fsqrt(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ if (floatx80_is_neg(ST0)) {
+ env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
+ env->fpus |= 0x400;
+ }
+ ST0 = floatx80_sqrt(ST0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fsincos(CPUX86State *env)
+{
+ double fptemp = floatx80_to_double(env, ST0);
+
+ if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
+ env->fpus |= 0x400;
+ } else {
+ ST0 = double_to_floatx80(env, sin(fptemp));
+ fpush(env);
+ ST0 = double_to_floatx80(env, cos(fptemp));
+ env->fpus &= ~0x400; /* C2 <-- 0 */
+ /* the above code is for |arg| < 2**63 only */
+ }
+}
+
+void helper_frndint(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ ST0 = floatx80_round_to_int(ST0, &env->fp_status);
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fscale(CPUX86State *env)
+{
+ uint8_t old_flags = save_exception_flags(env);
+ if (floatx80_invalid_encoding(ST1) || floatx80_invalid_encoding(ST0)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST1)) {
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ }
+ ST0 = ST1;
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_silence_nan(ST0, &env->fp_status);
+ }
+ } else if (floatx80_is_infinity(ST1) &&
+ !floatx80_invalid_encoding(ST0) &&
+ !floatx80_is_any_nan(ST0)) {
+ if (floatx80_is_neg(ST1)) {
+ if (floatx80_is_infinity(ST0)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ } else {
+ ST0 = (floatx80_is_neg(ST0) ?
+ floatx80_chs(floatx80_zero) :
+ floatx80_zero);
+ }
+ } else {
+ if (floatx80_is_zero(ST0)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ } else {
+ ST0 = (floatx80_is_neg(ST0) ?
+ floatx80_chs(floatx80_infinity) :
+ floatx80_infinity);
+ }
+ }
+ } else {
+ int n;
+ signed char save = env->fp_status.floatx80_rounding_precision;
+ uint8_t save_flags = get_float_exception_flags(&env->fp_status);
+ set_float_exception_flags(0, &env->fp_status);
+ n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status);
+ set_float_exception_flags(save_flags, &env->fp_status);
+ env->fp_status.floatx80_rounding_precision = 80;
+ ST0 = floatx80_scalbn(ST0, n, &env->fp_status);
+ env->fp_status.floatx80_rounding_precision = save;
+ }
+ merge_exception_flags(env, old_flags);
+}
+
+void helper_fsin(CPUX86State *env)
+{
+ double fptemp = floatx80_to_double(env, ST0);
+
+ if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
+ env->fpus |= 0x400;
+ } else {
+ ST0 = double_to_floatx80(env, sin(fptemp));
+ env->fpus &= ~0x400; /* C2 <-- 0 */
+ /* the above code is for |arg| < 2**53 only */
+ }
+}
+
+void helper_fcos(CPUX86State *env)
+{
+ double fptemp = floatx80_to_double(env, ST0);
+
+ if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
+ env->fpus |= 0x400;
+ } else {
+ ST0 = double_to_floatx80(env, cos(fptemp));
+ env->fpus &= ~0x400; /* C2 <-- 0 */
+ /* the above code is for |arg| < 2**63 only */
+ }
+}
+
+void helper_fxam_ST0(CPUX86State *env)
+{
+ CPU_LDoubleU temp;
+ int expdif;
+
+ temp.d = ST0;
+
+ env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
+ if (SIGND(temp)) {
+ env->fpus |= 0x200; /* C1 <-- 1 */
+ }
+
+ if (env->fptags[env->fpstt]) {
+ env->fpus |= 0x4100; /* Empty */
+ return;
+ }
+
+ expdif = EXPD(temp);
+ if (expdif == MAXEXPD) {
+ if (MANTD(temp) == 0x8000000000000000ULL) {
+ env->fpus |= 0x500; /* Infinity */
+ } else if (MANTD(temp) & 0x8000000000000000ULL) {
+ env->fpus |= 0x100; /* NaN */
+ }
+ } else if (expdif == 0) {
+ if (MANTD(temp) == 0) {
+ env->fpus |= 0x4000; /* Zero */
+ } else {
+ env->fpus |= 0x4400; /* Denormal */
+ }
+ } else if (MANTD(temp) & 0x8000000000000000ULL) {
+ env->fpus |= 0x400;
+ }
+}
+
+static void do_fstenv(CPUX86State *env, target_ulong ptr, int data32,
+ uintptr_t retaddr)
+{
+ int fpus, fptag, exp, i;
+ uint64_t mant;
+ CPU_LDoubleU tmp;
+
+ fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
+ fptag = 0;
+ for (i = 7; i >= 0; i--) {
+ fptag <<= 2;
+ if (env->fptags[i]) {
+ fptag |= 3;
+ } else {
+ tmp.d = env->fpregs[i].d;
+ exp = EXPD(tmp);
+ mant = MANTD(tmp);
+ if (exp == 0 && mant == 0) {
+ /* zero */
+ fptag |= 1;
+ } else if (exp == 0 || exp == MAXEXPD
+ || (mant & (1LL << 63)) == 0) {
+ /* NaNs, infinity, denormal */
+ fptag |= 2;
+ }
+ }
+ }
+ if (data32) {
+ /* 32 bit */
+ cpu_stl_data_ra(env, ptr, env->fpuc, retaddr);
+ cpu_stl_data_ra(env, ptr + 4, fpus, retaddr);
+ cpu_stl_data_ra(env, ptr + 8, fptag, retaddr);
+ cpu_stl_data_ra(env, ptr + 12, 0, retaddr); /* fpip */
+ cpu_stl_data_ra(env, ptr + 16, 0, retaddr); /* fpcs */
+ cpu_stl_data_ra(env, ptr + 20, 0, retaddr); /* fpoo */
+ cpu_stl_data_ra(env, ptr + 24, 0, retaddr); /* fpos */
+ } else {
+ /* 16 bit */
+ cpu_stw_data_ra(env, ptr, env->fpuc, retaddr);
+ cpu_stw_data_ra(env, ptr + 2, fpus, retaddr);
+ cpu_stw_data_ra(env, ptr + 4, fptag, retaddr);
+ cpu_stw_data_ra(env, ptr + 6, 0, retaddr);
+ cpu_stw_data_ra(env, ptr + 8, 0, retaddr);
+ cpu_stw_data_ra(env, ptr + 10, 0, retaddr);
+ cpu_stw_data_ra(env, ptr + 12, 0, retaddr);
+ }
+}
+
+void helper_fstenv(CPUX86State *env, target_ulong ptr, int data32)
+{
+ do_fstenv(env, ptr, data32, GETPC());
+}
+
+static void cpu_set_fpus(CPUX86State *env, uint16_t fpus)
+{
+ env->fpstt = (fpus >> 11) & 7;
+ env->fpus = fpus & ~0x3800 & ~FPUS_B;
+ env->fpus |= env->fpus & FPUS_SE ? FPUS_B : 0;
+#if !defined(CONFIG_USER_ONLY)
+ if (!(env->fpus & FPUS_SE)) {
+ /*
+ * Here the processor deasserts FERR#; in response, the chipset deasserts
+ * IGNNE#.
+ */
+ cpu_clear_ignne();
+ }
+#endif
+}
+
+static void do_fldenv(CPUX86State *env, target_ulong ptr, int data32,
+ uintptr_t retaddr)
+{
+ int i, fpus, fptag;
+
+ if (data32) {
+ cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr));
+ fpus = cpu_lduw_data_ra(env, ptr + 4, retaddr);
+ fptag = cpu_lduw_data_ra(env, ptr + 8, retaddr);
+ } else {
+ cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr));
+ fpus = cpu_lduw_data_ra(env, ptr + 2, retaddr);
+ fptag = cpu_lduw_data_ra(env, ptr + 4, retaddr);
+ }
+ cpu_set_fpus(env, fpus);
+ for (i = 0; i < 8; i++) {
+ env->fptags[i] = ((fptag & 3) == 3);
+ fptag >>= 2;
+ }
+}
+
+void helper_fldenv(CPUX86State *env, target_ulong ptr, int data32)
+{
+ do_fldenv(env, ptr, data32, GETPC());
+}
+
+void helper_fsave(CPUX86State *env, target_ulong ptr, int data32)
+{
+ floatx80 tmp;
+ int i;
+
+ do_fstenv(env, ptr, data32, GETPC());
+
+ ptr += (14 << data32);
+ for (i = 0; i < 8; i++) {
+ tmp = ST(i);
+ helper_fstt(env, tmp, ptr, GETPC());
+ ptr += 10;
+ }
+
+ /* fninit */
+ env->fpus = 0;
+ env->fpstt = 0;
+ cpu_set_fpuc(env, 0x37f);
+ env->fptags[0] = 1;
+ env->fptags[1] = 1;
+ env->fptags[2] = 1;
+ env->fptags[3] = 1;
+ env->fptags[4] = 1;
+ env->fptags[5] = 1;
+ env->fptags[6] = 1;
+ env->fptags[7] = 1;
+}
+
+void helper_frstor(CPUX86State *env, target_ulong ptr, int data32)
+{
+ floatx80 tmp;
+ int i;
+
+ do_fldenv(env, ptr, data32, GETPC());
+ ptr += (14 << data32);
+
+ for (i = 0; i < 8; i++) {
+ tmp = helper_fldt(env, ptr, GETPC());
+ ST(i) = tmp;
+ ptr += 10;
+ }
+}
+
+#if defined(CONFIG_USER_ONLY)
+void cpu_x86_fsave(CPUX86State *env, target_ulong ptr, int data32)
+{
+ helper_fsave(env, ptr, data32);
+}
+
+void cpu_x86_frstor(CPUX86State *env, target_ulong ptr, int data32)
+{
+ helper_frstor(env, ptr, data32);
+}
+#endif
+
+#define XO(X) offsetof(X86XSaveArea, X)
+
+static void do_xsave_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ int fpus, fptag, i;
+ target_ulong addr;
+
+ fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
+ fptag = 0;
+ for (i = 0; i < 8; i++) {
+ fptag |= (env->fptags[i] << i);
+ }
+
+ cpu_stw_data_ra(env, ptr + XO(legacy.fcw), env->fpuc, ra);
+ cpu_stw_data_ra(env, ptr + XO(legacy.fsw), fpus, ra);
+ cpu_stw_data_ra(env, ptr + XO(legacy.ftw), fptag ^ 0xff, ra);
+
+ /* In 32-bit mode this is eip, sel, dp, sel.
+ In 64-bit mode this is rip, rdp.
+ But in either case we don't write actual data, just zeros. */
+ cpu_stq_data_ra(env, ptr + XO(legacy.fpip), 0, ra); /* eip+sel; rip */
+ cpu_stq_data_ra(env, ptr + XO(legacy.fpdp), 0, ra); /* edp+sel; rdp */
+
+ addr = ptr + XO(legacy.fpregs);
+ for (i = 0; i < 8; i++) {
+ floatx80 tmp = ST(i);
+ helper_fstt(env, tmp, addr, ra);
+ addr += 16;
+ }
+}
+
+static void do_xsave_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ update_mxcsr_from_sse_status(env);
+ cpu_stl_data_ra(env, ptr + XO(legacy.mxcsr), env->mxcsr, ra);
+ cpu_stl_data_ra(env, ptr + XO(legacy.mxcsr_mask), 0x0000ffff, ra);
+}
+
+static void do_xsave_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ int i, nb_xmm_regs;
+ target_ulong addr;
+
+ if (env->hflags & HF_CS64_MASK) {
+ nb_xmm_regs = 16;
+ } else {
+ nb_xmm_regs = 8;
+ }
+
+ addr = ptr + XO(legacy.xmm_regs);
+ for (i = 0; i < nb_xmm_regs; i++) {
+ cpu_stq_data_ra(env, addr, env->xmm_regs[i].ZMM_Q(0), ra);
+ cpu_stq_data_ra(env, addr + 8, env->xmm_regs[i].ZMM_Q(1), ra);
+ addr += 16;
+ }
+}
+
+static void do_xsave_bndregs(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ target_ulong addr = ptr + offsetof(XSaveBNDREG, bnd_regs);
+ int i;
+
+ for (i = 0; i < 4; i++, addr += 16) {
+ cpu_stq_data_ra(env, addr, env->bnd_regs[i].lb, ra);
+ cpu_stq_data_ra(env, addr + 8, env->bnd_regs[i].ub, ra);
+ }
+}
+
+static void do_xsave_bndcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ cpu_stq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.cfgu),
+ env->bndcs_regs.cfgu, ra);
+ cpu_stq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.sts),
+ env->bndcs_regs.sts, ra);
+}
+
+static void do_xsave_pkru(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ cpu_stq_data_ra(env, ptr, env->pkru, ra);
+}
+
+void helper_fxsave(CPUX86State *env, target_ulong ptr)
+{
+ uintptr_t ra = GETPC();
+
+ /* The operand must be 16 byte aligned */
+ if (ptr & 0xf) {
+ raise_exception_ra(env, EXCP0D_GPF, ra);
+ }
+
+ do_xsave_fpu(env, ptr, ra);
+
+ if (env->cr[4] & CR4_OSFXSR_MASK) {
+ do_xsave_mxcsr(env, ptr, ra);
+ /* Fast FXSAVE leaves out the XMM registers */
+ if (!(env->efer & MSR_EFER_FFXSR)
+ || (env->hflags & HF_CPL_MASK)
+ || !(env->hflags & HF_LMA_MASK)) {
+ do_xsave_sse(env, ptr, ra);
+ }
+ }
+}
+
+static uint64_t get_xinuse(CPUX86State *env)
+{
+ uint64_t inuse = -1;
+
+ /* For the most part, we don't track XINUSE. We could calculate it
+ here for all components, but it's probably less work to simply
+ indicate in use. That said, the state of BNDREGS is important
+ enough to track in HFLAGS, so we might as well use that here. */
+ if ((env->hflags & HF_MPX_IU_MASK) == 0) {
+ inuse &= ~XSTATE_BNDREGS_MASK;
+ }
+ return inuse;
+}
+
+static void do_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm,
+ uint64_t inuse, uint64_t opt, uintptr_t ra)
+{
+ uint64_t old_bv, new_bv;
+
+ /* The OS must have enabled XSAVE. */
+ if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
+ raise_exception_ra(env, EXCP06_ILLOP, ra);
+ }
+
+ /* The operand must be 64 byte aligned. */
+ if (ptr & 63) {
+ raise_exception_ra(env, EXCP0D_GPF, ra);
+ }
+
+ /* Never save anything not enabled by XCR0. */
+ rfbm &= env->xcr0;
+ opt &= rfbm;
+
+ if (opt & XSTATE_FP_MASK) {
+ do_xsave_fpu(env, ptr, ra);
+ }
+ if (rfbm & XSTATE_SSE_MASK) {
+ /* Note that saving MXCSR is not suppressed by XSAVEOPT. */
+ do_xsave_mxcsr(env, ptr, ra);
+ }
+ if (opt & XSTATE_SSE_MASK) {
+ do_xsave_sse(env, ptr, ra);
+ }
+ if (opt & XSTATE_BNDREGS_MASK) {
+ do_xsave_bndregs(env, ptr + XO(bndreg_state), ra);
+ }
+ if (opt & XSTATE_BNDCSR_MASK) {
+ do_xsave_bndcsr(env, ptr + XO(bndcsr_state), ra);
+ }
+ if (opt & XSTATE_PKRU_MASK) {
+ do_xsave_pkru(env, ptr + XO(pkru_state), ra);
+ }
+
+ /* Update the XSTATE_BV field. */
+ old_bv = cpu_ldq_data_ra(env, ptr + XO(header.xstate_bv), ra);
+ new_bv = (old_bv & ~rfbm) | (inuse & rfbm);
+ cpu_stq_data_ra(env, ptr + XO(header.xstate_bv), new_bv, ra);
+}
+
+void helper_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
+{
+ do_xsave(env, ptr, rfbm, get_xinuse(env), -1, GETPC());
+}
+
+void helper_xsaveopt(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
+{
+ uint64_t inuse = get_xinuse(env);
+ do_xsave(env, ptr, rfbm, inuse, inuse, GETPC());
+}
+
+static void do_xrstor_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ int i, fpuc, fpus, fptag;
+ target_ulong addr;
+
+ fpuc = cpu_lduw_data_ra(env, ptr + XO(legacy.fcw), ra);
+ fpus = cpu_lduw_data_ra(env, ptr + XO(legacy.fsw), ra);
+ fptag = cpu_lduw_data_ra(env, ptr + XO(legacy.ftw), ra);
+ cpu_set_fpuc(env, fpuc);
+ cpu_set_fpus(env, fpus);
+ fptag ^= 0xff;
+ for (i = 0; i < 8; i++) {
+ env->fptags[i] = ((fptag >> i) & 1);
+ }
+
+ addr = ptr + XO(legacy.fpregs);
+ for (i = 0; i < 8; i++) {
+ floatx80 tmp = helper_fldt(env, addr, ra);
+ ST(i) = tmp;
+ addr += 16;
+ }
+}
+
+static void do_xrstor_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ cpu_set_mxcsr(env, cpu_ldl_data_ra(env, ptr + XO(legacy.mxcsr), ra));
+}
+
+static void do_xrstor_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ int i, nb_xmm_regs;
+ target_ulong addr;
+
+ if (env->hflags & HF_CS64_MASK) {
+ nb_xmm_regs = 16;
+ } else {
+ nb_xmm_regs = 8;
+ }
+
+ addr = ptr + XO(legacy.xmm_regs);
+ for (i = 0; i < nb_xmm_regs; i++) {
+ env->xmm_regs[i].ZMM_Q(0) = cpu_ldq_data_ra(env, addr, ra);
+ env->xmm_regs[i].ZMM_Q(1) = cpu_ldq_data_ra(env, addr + 8, ra);
+ addr += 16;
+ }
+}
+
+static void do_xrstor_bndregs(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ target_ulong addr = ptr + offsetof(XSaveBNDREG, bnd_regs);
+ int i;
+
+ for (i = 0; i < 4; i++, addr += 16) {
+ env->bnd_regs[i].lb = cpu_ldq_data_ra(env, addr, ra);
+ env->bnd_regs[i].ub = cpu_ldq_data_ra(env, addr + 8, ra);
+ }
+}
+
+static void do_xrstor_bndcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ /* FIXME: Extend highest implemented bit of linear address. */
+ env->bndcs_regs.cfgu
+ = cpu_ldq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.cfgu), ra);
+ env->bndcs_regs.sts
+ = cpu_ldq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.sts), ra);
+}
+
+static void do_xrstor_pkru(CPUX86State *env, target_ulong ptr, uintptr_t ra)
+{
+ env->pkru = cpu_ldq_data_ra(env, ptr, ra);
+}
+
+void helper_fxrstor(CPUX86State *env, target_ulong ptr)
+{
+ uintptr_t ra = GETPC();
+
+ /* The operand must be 16 byte aligned */
+ if (ptr & 0xf) {
+ raise_exception_ra(env, EXCP0D_GPF, ra);
+ }
+
+ do_xrstor_fpu(env, ptr, ra);
+
+ if (env->cr[4] & CR4_OSFXSR_MASK) {
+ do_xrstor_mxcsr(env, ptr, ra);
+ /* Fast FXRSTOR leaves out the XMM registers */
+ if (!(env->efer & MSR_EFER_FFXSR)
+ || (env->hflags & HF_CPL_MASK)
+ || !(env->hflags & HF_LMA_MASK)) {
+ do_xrstor_sse(env, ptr, ra);
+ }
+ }
+}
+
+#if defined(CONFIG_USER_ONLY)
+void cpu_x86_fxsave(CPUX86State *env, target_ulong ptr)
+{
+ helper_fxsave(env, ptr);
+}
+
+void cpu_x86_fxrstor(CPUX86State *env, target_ulong ptr)
+{
+ helper_fxrstor(env, ptr);
+}
+#endif
+
+void helper_xrstor(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
+{
+ uintptr_t ra = GETPC();
+ uint64_t xstate_bv, xcomp_bv, reserve0;
+
+ rfbm &= env->xcr0;
+
+ /* The OS must have enabled XSAVE. */
+ if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
+ raise_exception_ra(env, EXCP06_ILLOP, ra);
+ }
+
+ /* The operand must be 64 byte aligned. */
+ if (ptr & 63) {
+ raise_exception_ra(env, EXCP0D_GPF, ra);
+ }
+
+ xstate_bv = cpu_ldq_data_ra(env, ptr + XO(header.xstate_bv), ra);
+
+ if ((int64_t)xstate_bv < 0) {
+ /* FIXME: Compact form. */
+ raise_exception_ra(env, EXCP0D_GPF, ra);
+ }
+
+ /* Standard form. */
+
+ /* The XSTATE_BV field must not set bits not present in XCR0. */
+ if (xstate_bv & ~env->xcr0) {
+ raise_exception_ra(env, EXCP0D_GPF, ra);
+ }
+
+ /* The XCOMP_BV field must be zero. Note that, as of the April 2016
+ revision, the description of the XSAVE Header (Vol 1, Sec 13.4.2)
+ describes only XCOMP_BV, but the description of the standard form
+ of XRSTOR (Vol 1, Sec 13.8.1) checks bytes 23:8 for zero, which
+ includes the next 64-bit field. */
+ xcomp_bv = cpu_ldq_data_ra(env, ptr + XO(header.xcomp_bv), ra);
+ reserve0 = cpu_ldq_data_ra(env, ptr + XO(header.reserve0), ra);
+ if (xcomp_bv || reserve0) {
+ raise_exception_ra(env, EXCP0D_GPF, ra);
+ }
+
+ if (rfbm & XSTATE_FP_MASK) {
+ if (xstate_bv & XSTATE_FP_MASK) {
+ do_xrstor_fpu(env, ptr, ra);
+ } else {
+ helper_fninit(env);
+ memset(env->fpregs, 0, sizeof(env->fpregs));
+ }
+ }
+ if (rfbm & XSTATE_SSE_MASK) {
+ /* Note that the standard form of XRSTOR loads MXCSR from memory
+ whether or not the XSTATE_BV bit is set. */
+ do_xrstor_mxcsr(env, ptr, ra);
+ if (xstate_bv & XSTATE_SSE_MASK) {
+ do_xrstor_sse(env, ptr, ra);
+ } else {
+ /* ??? When AVX is implemented, we may have to be more
+ selective in the clearing. */
+ memset(env->xmm_regs, 0, sizeof(env->xmm_regs));
+ }
+ }
+ if (rfbm & XSTATE_BNDREGS_MASK) {
+ if (xstate_bv & XSTATE_BNDREGS_MASK) {
+ do_xrstor_bndregs(env, ptr + XO(bndreg_state), ra);
+ env->hflags |= HF_MPX_IU_MASK;
+ } else {
+ memset(env->bnd_regs, 0, sizeof(env->bnd_regs));
+ env->hflags &= ~HF_MPX_IU_MASK;
+ }
+ }
+ if (rfbm & XSTATE_BNDCSR_MASK) {
+ if (xstate_bv & XSTATE_BNDCSR_MASK) {
+ do_xrstor_bndcsr(env, ptr + XO(bndcsr_state), ra);
+ } else {
+ memset(&env->bndcs_regs, 0, sizeof(env->bndcs_regs));
+ }
+ cpu_sync_bndcs_hflags(env);
+ }
+ if (rfbm & XSTATE_PKRU_MASK) {
+ uint64_t old_pkru = env->pkru;
+ if (xstate_bv & XSTATE_PKRU_MASK) {
+ do_xrstor_pkru(env, ptr + XO(pkru_state), ra);
+ } else {
+ env->pkru = 0;
+ }
+ if (env->pkru != old_pkru) {
+ CPUState *cs = env_cpu(env);
+ tlb_flush(cs);
+ }
+ }
+}
+
+#undef XO
+
+uint64_t helper_xgetbv(CPUX86State *env, uint32_t ecx)
+{
+ /* The OS must have enabled XSAVE. */
+ if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
+ raise_exception_ra(env, EXCP06_ILLOP, GETPC());
+ }
+
+ switch (ecx) {
+ case 0:
+ return env->xcr0;
+ case 1:
+ if (env->features[FEAT_XSAVE] & CPUID_XSAVE_XGETBV1) {
+ return env->xcr0 & get_xinuse(env);
+ }
+ break;
+ }
+ raise_exception_ra(env, EXCP0D_GPF, GETPC());
+}
+
+void helper_xsetbv(CPUX86State *env, uint32_t ecx, uint64_t mask)
+{
+ uint32_t dummy, ena_lo, ena_hi;
+ uint64_t ena;
+
+ /* The OS must have enabled XSAVE. */
+ if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
+ raise_exception_ra(env, EXCP06_ILLOP, GETPC());
+ }
+
+ /* Only XCR0 is defined at present; the FPU may not be disabled. */
+ if (ecx != 0 || (mask & XSTATE_FP_MASK) == 0) {
+ goto do_gpf;
+ }
+
+ /* Disallow enabling unimplemented features. */
+ cpu_x86_cpuid(env, 0x0d, 0, &ena_lo, &dummy, &dummy, &ena_hi);
+ ena = ((uint64_t)ena_hi << 32) | ena_lo;
+ if (mask & ~ena) {
+ goto do_gpf;
+ }
+
+ /* Disallow enabling only half of MPX. */
+ if ((mask ^ (mask * (XSTATE_BNDCSR_MASK / XSTATE_BNDREGS_MASK)))
+ & XSTATE_BNDCSR_MASK) {
+ goto do_gpf;
+ }
+
+ env->xcr0 = mask;
+ cpu_sync_bndcs_hflags(env);
+ return;
+
+ do_gpf:
+ raise_exception_ra(env, EXCP0D_GPF, GETPC());
+}
+
+/* MMX/SSE */
+/* XXX: optimize by storing fptt and fptags in the static cpu state */
+
+#define SSE_DAZ 0x0040
+#define SSE_RC_MASK 0x6000
+#define SSE_RC_NEAR 0x0000
+#define SSE_RC_DOWN 0x2000
+#define SSE_RC_UP 0x4000
+#define SSE_RC_CHOP 0x6000
+#define SSE_FZ 0x8000
+
+void update_mxcsr_status(CPUX86State *env)
+{
+ uint32_t mxcsr = env->mxcsr;
+ int rnd_type;
+
+ /* set rounding mode */
+ switch (mxcsr & SSE_RC_MASK) {
+ default:
+ case SSE_RC_NEAR:
+ rnd_type = float_round_nearest_even;
+ break;
+ case SSE_RC_DOWN:
+ rnd_type = float_round_down;
+ break;
+ case SSE_RC_UP:
+ rnd_type = float_round_up;
+ break;
+ case SSE_RC_CHOP:
+ rnd_type = float_round_to_zero;
+ break;
+ }
+ set_float_rounding_mode(rnd_type, &env->sse_status);
+
+ /* Set exception flags. */
+ set_float_exception_flags((mxcsr & FPUS_IE ? float_flag_invalid : 0) |
+ (mxcsr & FPUS_ZE ? float_flag_divbyzero : 0) |
+ (mxcsr & FPUS_OE ? float_flag_overflow : 0) |
+ (mxcsr & FPUS_UE ? float_flag_underflow : 0) |
+ (mxcsr & FPUS_PE ? float_flag_inexact : 0),
+ &env->sse_status);
+
+ /* set denormals are zero */
+ set_flush_inputs_to_zero((mxcsr & SSE_DAZ) ? 1 : 0, &env->sse_status);
+
+ /* set flush to zero */
+ set_flush_to_zero((mxcsr & SSE_FZ) ? 1 : 0, &env->sse_status);
+}
+
+void update_mxcsr_from_sse_status(CPUX86State *env)
+{
+ if (tcg_enabled()) {
+ uint8_t flags = get_float_exception_flags(&env->sse_status);
+ /*
+ * The MXCSR denormal flag has opposite semantics to
+ * float_flag_input_denormal (the softfloat code sets that flag
+ * only when flushing input denormals to zero, but SSE sets it
+ * only when not flushing them to zero), so is not converted
+ * here.
+ */
+ env->mxcsr |= ((flags & float_flag_invalid ? FPUS_IE : 0) |
+ (flags & float_flag_divbyzero ? FPUS_ZE : 0) |
+ (flags & float_flag_overflow ? FPUS_OE : 0) |
+ (flags & float_flag_underflow ? FPUS_UE : 0) |
+ (flags & float_flag_inexact ? FPUS_PE : 0) |
+ (flags & float_flag_output_denormal ? FPUS_UE | FPUS_PE :
+ 0));
+ }
+}
+
+void helper_update_mxcsr(CPUX86State *env)
+{
+ update_mxcsr_from_sse_status(env);
+}
+
+void helper_ldmxcsr(CPUX86State *env, uint32_t val)
+{
+ cpu_set_mxcsr(env, val);
+}
+
+void helper_enter_mmx(CPUX86State *env)
+{
+ env->fpstt = 0;
+ *(uint32_t *)(env->fptags) = 0;
+ *(uint32_t *)(env->fptags + 4) = 0;
+}
+
+void helper_emms(CPUX86State *env)
+{
+ /* set to empty state */
+ *(uint32_t *)(env->fptags) = 0x01010101;
+ *(uint32_t *)(env->fptags + 4) = 0x01010101;
+}
+
+/* XXX: suppress */
+void helper_movq(CPUX86State *env, void *d, void *s)
+{
+ *(uint64_t *)d = *(uint64_t *)s;
+}
+
+#define SHIFT 0
+#include "ops_sse.h"
+
+#define SHIFT 1
+#include "ops_sse.h"