aboutsummaryrefslogtreecommitdiff
path: root/target/i386/hvf/hvf.c
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2017-10-03 15:33:29 +0200
committerPaolo Bonzini <pbonzini@redhat.com>2017-12-22 15:02:05 +0100
commit69e0a03c3f28f5bd35f54a47cd4996cc14e135ba (patch)
tree5a2a715a6844f03dc2d34eeff7edb537ad441968 /target/i386/hvf/hvf.c
parent3010460fb99776bdf0a8b170555f2ab076382f9c (diff)
i386: hvf: move all hvf files in the same directory
Just call it hvf/, no need for the "utils" suffix. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'target/i386/hvf/hvf.c')
-rw-r--r--target/i386/hvf/hvf.c961
1 files changed, 961 insertions, 0 deletions
diff --git a/target/i386/hvf/hvf.c b/target/i386/hvf/hvf.c
new file mode 100644
index 0000000000..445082c2cb
--- /dev/null
+++ b/target/i386/hvf/hvf.c
@@ -0,0 +1,961 @@
+/* Copyright 2008 IBM Corporation
+ * 2008 Red Hat, Inc.
+ * Copyright 2011 Intel Corporation
+ * Copyright 2016 Veertu, Inc.
+ * Copyright 2017 The Android Open Source Project
+ *
+ * QEMU Hypervisor.framework support
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of version 2 of the GNU General Public
+ * License as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qemu/error-report.h"
+
+#include "sysemu/hvf.h"
+#include "hvf-i386.h"
+#include "vmcs.h"
+#include "vmx.h"
+#include "x86.h"
+#include "x86_descr.h"
+#include "x86_mmu.h"
+#include "x86_decode.h"
+#include "x86_emu.h"
+#include "x86_task.h"
+#include "x86hvf.h"
+
+#include <Hypervisor/hv.h>
+#include <Hypervisor/hv_vmx.h>
+
+#include "exec/address-spaces.h"
+#include "exec/exec-all.h"
+#include "exec/ioport.h"
+#include "hw/i386/apic_internal.h"
+#include "hw/boards.h"
+#include "qemu/main-loop.h"
+#include "strings.h"
+#include "sysemu/accel.h"
+#include "sysemu/sysemu.h"
+#include "target/i386/cpu.h"
+
+pthread_rwlock_t mem_lock = PTHREAD_RWLOCK_INITIALIZER;
+HVFState *hvf_state;
+int hvf_disabled = 1;
+
+static void assert_hvf_ok(hv_return_t ret)
+{
+ if (ret == HV_SUCCESS) {
+ return;
+ }
+
+ switch (ret) {
+ case HV_ERROR:
+ error_report("Error: HV_ERROR\n");
+ break;
+ case HV_BUSY:
+ error_report("Error: HV_BUSY\n");
+ break;
+ case HV_BAD_ARGUMENT:
+ error_report("Error: HV_BAD_ARGUMENT\n");
+ break;
+ case HV_NO_RESOURCES:
+ error_report("Error: HV_NO_RESOURCES\n");
+ break;
+ case HV_NO_DEVICE:
+ error_report("Error: HV_NO_DEVICE\n");
+ break;
+ case HV_UNSUPPORTED:
+ error_report("Error: HV_UNSUPPORTED\n");
+ break;
+ default:
+ error_report("Unknown Error\n");
+ }
+
+ abort();
+}
+
+/* Memory slots */
+hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end)
+{
+ hvf_slot *slot;
+ int x;
+ for (x = 0; x < hvf_state->num_slots; ++x) {
+ slot = &hvf_state->slots[x];
+ if (slot->size && start < (slot->start + slot->size) &&
+ end > slot->start) {
+ return slot;
+ }
+ }
+ return NULL;
+}
+
+struct mac_slot {
+ int present;
+ uint64_t size;
+ uint64_t gpa_start;
+ uint64_t gva;
+};
+
+struct mac_slot mac_slots[32];
+#define ALIGN(x, y) (((x) + (y) - 1) & ~((y) - 1))
+
+static int do_hvf_set_memory(hvf_slot *slot)
+{
+ struct mac_slot *macslot;
+ hv_memory_flags_t flags;
+ hv_return_t ret;
+
+ macslot = &mac_slots[slot->slot_id];
+
+ if (macslot->present) {
+ if (macslot->size != slot->size) {
+ macslot->present = 0;
+ ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
+ assert_hvf_ok(ret);
+ }
+ }
+
+ if (!slot->size) {
+ return 0;
+ }
+
+ flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
+
+ macslot->present = 1;
+ macslot->gpa_start = slot->start;
+ macslot->size = slot->size;
+ ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
+ assert_hvf_ok(ret);
+ return 0;
+}
+
+void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
+{
+ hvf_slot *mem;
+ MemoryRegion *area = section->mr;
+
+ if (!memory_region_is_ram(area)) {
+ return;
+ }
+
+ mem = hvf_find_overlap_slot(
+ section->offset_within_address_space,
+ section->offset_within_address_space + int128_get64(section->size));
+
+ if (mem && add) {
+ if (mem->size == int128_get64(section->size) &&
+ mem->start == section->offset_within_address_space &&
+ mem->mem == (memory_region_get_ram_ptr(area) +
+ section->offset_within_region)) {
+ return; /* Same region was attempted to register, go away. */
+ }
+ }
+
+ /* Region needs to be reset. set the size to 0 and remap it. */
+ if (mem) {
+ mem->size = 0;
+ if (do_hvf_set_memory(mem)) {
+ error_report("Failed to reset overlapping slot\n");
+ abort();
+ }
+ }
+
+ if (!add) {
+ return;
+ }
+
+ /* Now make a new slot. */
+ int x;
+
+ for (x = 0; x < hvf_state->num_slots; ++x) {
+ mem = &hvf_state->slots[x];
+ if (!mem->size) {
+ break;
+ }
+ }
+
+ if (x == hvf_state->num_slots) {
+ error_report("No free slots\n");
+ abort();
+ }
+
+ mem->size = int128_get64(section->size);
+ mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
+ mem->start = section->offset_within_address_space;
+ mem->region = area;
+
+ if (do_hvf_set_memory(mem)) {
+ error_report("Error registering new memory slot\n");
+ abort();
+ }
+}
+
+void vmx_update_tpr(CPUState *cpu)
+{
+ /* TODO: need integrate APIC handling */
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
+ int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
+
+ wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
+ if (irr == -1) {
+ wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
+ } else {
+ wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
+ irr >> 4);
+ }
+}
+
+void update_apic_tpr(CPUState *cpu)
+{
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
+ cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
+}
+
+#define VECTORING_INFO_VECTOR_MASK 0xff
+
+static void hvf_handle_interrupt(CPUState * cpu, int mask)
+{
+ cpu->interrupt_request |= mask;
+ if (!qemu_cpu_is_self(cpu)) {
+ qemu_cpu_kick(cpu);
+ }
+}
+
+void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
+ int direction, int size, int count)
+{
+ int i;
+ uint8_t *ptr = buffer;
+
+ for (i = 0; i < count; i++) {
+ address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
+ ptr, size,
+ direction);
+ ptr += size;
+ }
+}
+
+/* TODO: synchronize vcpu state */
+static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
+{
+ CPUState *cpu_state = cpu;
+ if (cpu_state->vcpu_dirty == 0) {
+ hvf_get_registers(cpu_state);
+ }
+
+ cpu_state->vcpu_dirty = 1;
+}
+
+void hvf_cpu_synchronize_state(CPUState *cpu_state)
+{
+ if (cpu_state->vcpu_dirty == 0) {
+ run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
+ }
+}
+
+static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
+{
+ CPUState *cpu_state = cpu;
+ hvf_put_registers(cpu_state);
+ cpu_state->vcpu_dirty = false;
+}
+
+void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
+{
+ run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
+}
+
+void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
+{
+ CPUState *cpu_state = cpu;
+ hvf_put_registers(cpu_state);
+ cpu_state->vcpu_dirty = false;
+}
+
+void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
+{
+ run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
+}
+
+static bool ept_emulation_fault(hvf_slot *slot, addr_t gpa, uint64_t ept_qual)
+{
+ int read, write;
+
+ /* EPT fault on an instruction fetch doesn't make sense here */
+ if (ept_qual & EPT_VIOLATION_INST_FETCH) {
+ return false;
+ }
+
+ /* EPT fault must be a read fault or a write fault */
+ read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
+ write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
+ if ((read | write) == 0) {
+ return false;
+ }
+
+ if (write && slot) {
+ if (slot->flags & HVF_SLOT_LOG) {
+ memory_region_set_dirty(slot->region, gpa - slot->start, 1);
+ hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
+ HV_MEMORY_READ | HV_MEMORY_WRITE);
+ }
+ }
+
+ /*
+ * The EPT violation must have been caused by accessing a
+ * guest-physical address that is a translation of a guest-linear
+ * address.
+ */
+ if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
+ (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
+ return false;
+ }
+
+ return !slot;
+}
+
+static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
+{
+ hvf_slot *slot;
+
+ slot = hvf_find_overlap_slot(
+ section->offset_within_address_space,
+ section->offset_within_address_space + int128_get64(section->size));
+
+ /* protect region against writes; begin tracking it */
+ if (on) {
+ slot->flags |= HVF_SLOT_LOG;
+ hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
+ HV_MEMORY_READ);
+ /* stop tracking region*/
+ } else {
+ slot->flags &= ~HVF_SLOT_LOG;
+ hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
+ HV_MEMORY_READ | HV_MEMORY_WRITE);
+ }
+}
+
+static void hvf_log_start(MemoryListener *listener,
+ MemoryRegionSection *section, int old, int new)
+{
+ if (old != 0) {
+ return;
+ }
+
+ hvf_set_dirty_tracking(section, 1);
+}
+
+static void hvf_log_stop(MemoryListener *listener,
+ MemoryRegionSection *section, int old, int new)
+{
+ if (new != 0) {
+ return;
+ }
+
+ hvf_set_dirty_tracking(section, 0);
+}
+
+static void hvf_log_sync(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ /*
+ * sync of dirty pages is handled elsewhere; just make sure we keep
+ * tracking the region.
+ */
+ hvf_set_dirty_tracking(section, 1);
+}
+
+static void hvf_region_add(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ hvf_set_phys_mem(section, true);
+}
+
+static void hvf_region_del(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ hvf_set_phys_mem(section, false);
+}
+
+static MemoryListener hvf_memory_listener = {
+ .priority = 10,
+ .region_add = hvf_region_add,
+ .region_del = hvf_region_del,
+ .log_start = hvf_log_start,
+ .log_stop = hvf_log_stop,
+ .log_sync = hvf_log_sync,
+};
+
+void hvf_reset_vcpu(CPUState *cpu) {
+
+ /* TODO: this shouldn't be needed; there is already a call to
+ * cpu_synchronize_all_post_reset in vl.c
+ */
+ wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
+ macvm_set_cr0(cpu->hvf_fd, 0x60000010);
+
+ wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
+ wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
+
+ /* set VMCS guest state fields */
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
+
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
+
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
+
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
+
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
+
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
+
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
+
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
+
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
+
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
+
+ /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
+ wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
+
+ wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
+ wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
+ wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
+ wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
+ wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
+ wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
+ wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
+ wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
+ wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
+ wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
+
+ for (int i = 0; i < 8; i++) {
+ wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
+ }
+
+ hv_vm_sync_tsc(0);
+ cpu->halted = 0;
+ hv_vcpu_invalidate_tlb(cpu->hvf_fd);
+ hv_vcpu_flush(cpu->hvf_fd);
+}
+
+void hvf_vcpu_destroy(CPUState *cpu)
+{
+ hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
+ assert_hvf_ok(ret);
+}
+
+static void dummy_signal(int sig)
+{
+}
+
+int hvf_init_vcpu(CPUState *cpu)
+{
+
+ X86CPU *x86cpu = X86_CPU(cpu);
+ CPUX86State *env = &x86cpu->env;
+ int r;
+
+ /* init cpu signals */
+ sigset_t set;
+ struct sigaction sigact;
+
+ memset(&sigact, 0, sizeof(sigact));
+ sigact.sa_handler = dummy_signal;
+ sigaction(SIG_IPI, &sigact, NULL);
+
+ pthread_sigmask(SIG_BLOCK, NULL, &set);
+ sigdelset(&set, SIG_IPI);
+
+ init_emu();
+ init_decoder();
+
+ hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
+ env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
+
+ r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
+ cpu->vcpu_dirty = 1;
+ assert_hvf_ok(r);
+
+ if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
+ &hvf_state->hvf_caps->vmx_cap_pinbased)) {
+ abort();
+ }
+ if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
+ &hvf_state->hvf_caps->vmx_cap_procbased)) {
+ abort();
+ }
+ if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
+ &hvf_state->hvf_caps->vmx_cap_procbased2)) {
+ abort();
+ }
+ if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
+ &hvf_state->hvf_caps->vmx_cap_entry)) {
+ abort();
+ }
+
+ /* set VMCS control fields */
+ wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
+ cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
+ VMCS_PIN_BASED_CTLS_EXTINT |
+ VMCS_PIN_BASED_CTLS_NMI |
+ VMCS_PIN_BASED_CTLS_VNMI));
+ wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
+ cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
+ VMCS_PRI_PROC_BASED_CTLS_HLT |
+ VMCS_PRI_PROC_BASED_CTLS_MWAIT |
+ VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
+ VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
+ VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
+ wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
+ cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
+ VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
+
+ wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
+ 0));
+ wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
+
+ wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
+
+ hvf_reset_vcpu(cpu);
+
+ x86cpu = X86_CPU(cpu);
+ x86cpu->env.kvm_xsave_buf = qemu_memalign(4096, 4096);
+
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
+ /*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
+ hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
+
+ return 0;
+}
+
+void hvf_disable(int shouldDisable)
+{
+ hvf_disabled = shouldDisable;
+}
+
+static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
+{
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ CPUX86State *env = &x86_cpu->env;
+
+ env->exception_injected = -1;
+ env->interrupt_injected = -1;
+ env->nmi_injected = false;
+ if (idtvec_info & VMCS_IDT_VEC_VALID) {
+ switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
+ case VMCS_IDT_VEC_HWINTR:
+ case VMCS_IDT_VEC_SWINTR:
+ env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
+ break;
+ case VMCS_IDT_VEC_NMI:
+ env->nmi_injected = true;
+ break;
+ case VMCS_IDT_VEC_HWEXCEPTION:
+ case VMCS_IDT_VEC_SWEXCEPTION:
+ env->exception_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
+ break;
+ case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
+ default:
+ abort();
+ }
+ if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
+ (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
+ env->ins_len = ins_len;
+ }
+ if (idtvec_info & VMCS_INTR_DEL_ERRCODE) {
+ env->has_error_code = true;
+ env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
+ }
+ }
+ if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
+ VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
+ env->hflags2 |= HF2_NMI_MASK;
+ } else {
+ env->hflags2 &= ~HF2_NMI_MASK;
+ }
+ if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
+ (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
+ VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
+ env->hflags |= HF_INHIBIT_IRQ_MASK;
+ } else {
+ env->hflags &= ~HF_INHIBIT_IRQ_MASK;
+ }
+}
+
+int hvf_vcpu_exec(CPUState *cpu)
+{
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ CPUX86State *env = &x86_cpu->env;
+ int ret = 0;
+ uint64_t rip = 0;
+
+ cpu->halted = 0;
+
+ if (hvf_process_events(cpu)) {
+ return EXCP_HLT;
+ }
+
+ do {
+ if (cpu->vcpu_dirty) {
+ hvf_put_registers(cpu);
+ cpu->vcpu_dirty = false;
+ }
+
+ if (hvf_inject_interrupts(cpu)) {
+ return EXCP_INTERRUPT;
+ }
+ vmx_update_tpr(cpu);
+
+ qemu_mutex_unlock_iothread();
+ if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
+ qemu_mutex_lock_iothread();
+ return EXCP_HLT;
+ }
+
+ hv_return_t r = hv_vcpu_run(cpu->hvf_fd);
+ assert_hvf_ok(r);
+
+ /* handle VMEXIT */
+ uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
+ uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
+ uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
+ VMCS_EXIT_INSTRUCTION_LENGTH);
+
+ uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
+
+ hvf_store_events(cpu, ins_len, idtvec_info);
+ rip = rreg(cpu->hvf_fd, HV_X86_RIP);
+ RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
+ env->eflags = RFLAGS(env);
+
+ qemu_mutex_lock_iothread();
+
+ update_apic_tpr(cpu);
+ current_cpu = cpu;
+
+ ret = 0;
+ switch (exit_reason) {
+ case EXIT_REASON_HLT: {
+ macvm_set_rip(cpu, rip + ins_len);
+ if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (EFLAGS(env) & IF_MASK))
+ && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
+ !(idtvec_info & VMCS_IDT_VEC_VALID)) {
+ cpu->halted = 1;
+ ret = EXCP_HLT;
+ }
+ ret = EXCP_INTERRUPT;
+ break;
+ }
+ case EXIT_REASON_MWAIT: {
+ ret = EXCP_INTERRUPT;
+ break;
+ }
+ /* Need to check if MMIO or unmmaped fault */
+ case EXIT_REASON_EPT_FAULT:
+ {
+ hvf_slot *slot;
+ addr_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
+
+ if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
+ ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
+ vmx_set_nmi_blocking(cpu);
+ }
+
+ slot = hvf_find_overlap_slot(gpa, gpa);
+ /* mmio */
+ if (ept_emulation_fault(slot, gpa, exit_qual)) {
+ struct x86_decode decode;
+
+ load_regs(cpu);
+ env->hvf_emul->fetch_rip = rip;
+
+ decode_instruction(env, &decode);
+ exec_instruction(env, &decode);
+ store_regs(cpu);
+ break;
+ }
+ break;
+ }
+ case EXIT_REASON_INOUT:
+ {
+ uint32_t in = (exit_qual & 8) != 0;
+ uint32_t size = (exit_qual & 7) + 1;
+ uint32_t string = (exit_qual & 16) != 0;
+ uint32_t port = exit_qual >> 16;
+ /*uint32_t rep = (exit_qual & 0x20) != 0;*/
+
+#if 1
+ if (!string && in) {
+ uint64_t val = 0;
+ load_regs(cpu);
+ hvf_handle_io(env, port, &val, 0, size, 1);
+ if (size == 1) {
+ AL(env) = val;
+ } else if (size == 2) {
+ AX(env) = val;
+ } else if (size == 4) {
+ RAX(env) = (uint32_t)val;
+ } else {
+ VM_PANIC("size");
+ }
+ RIP(env) += ins_len;
+ store_regs(cpu);
+ break;
+ } else if (!string && !in) {
+ RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
+ hvf_handle_io(env, port, &RAX(env), 1, size, 1);
+ macvm_set_rip(cpu, rip + ins_len);
+ break;
+ }
+#endif
+ struct x86_decode decode;
+
+ load_regs(cpu);
+ env->hvf_emul->fetch_rip = rip;
+
+ decode_instruction(env, &decode);
+ VM_PANIC_ON(ins_len != decode.len);
+ exec_instruction(env, &decode);
+ store_regs(cpu);
+
+ break;
+ }
+ case EXIT_REASON_CPUID: {
+ uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
+ uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
+ uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
+ uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
+
+ cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
+
+ wreg(cpu->hvf_fd, HV_X86_RAX, rax);
+ wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
+ wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
+ wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
+
+ macvm_set_rip(cpu, rip + ins_len);
+ break;
+ }
+ case EXIT_REASON_XSETBV: {
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ CPUX86State *env = &x86_cpu->env;
+ uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
+ uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
+ uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
+
+ if (ecx) {
+ macvm_set_rip(cpu, rip + ins_len);
+ break;
+ }
+ env->xcr0 = ((uint64_t)edx << 32) | eax;
+ wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
+ macvm_set_rip(cpu, rip + ins_len);
+ break;
+ }
+ case EXIT_REASON_INTR_WINDOW:
+ vmx_clear_int_window_exiting(cpu);
+ ret = EXCP_INTERRUPT;
+ break;
+ case EXIT_REASON_NMI_WINDOW:
+ vmx_clear_nmi_window_exiting(cpu);
+ ret = EXCP_INTERRUPT;
+ break;
+ case EXIT_REASON_EXT_INTR:
+ /* force exit and allow io handling */
+ ret = EXCP_INTERRUPT;
+ break;
+ case EXIT_REASON_RDMSR:
+ case EXIT_REASON_WRMSR:
+ {
+ load_regs(cpu);
+ if (exit_reason == EXIT_REASON_RDMSR) {
+ simulate_rdmsr(cpu);
+ } else {
+ simulate_wrmsr(cpu);
+ }
+ RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
+ store_regs(cpu);
+ break;
+ }
+ case EXIT_REASON_CR_ACCESS: {
+ int cr;
+ int reg;
+
+ load_regs(cpu);
+ cr = exit_qual & 15;
+ reg = (exit_qual >> 8) & 15;
+
+ switch (cr) {
+ case 0x0: {
+ macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
+ break;
+ }
+ case 4: {
+ macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
+ break;
+ }
+ case 8: {
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ if (exit_qual & 0x10) {
+ RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
+ } else {
+ int tpr = RRX(env, reg);
+ cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
+ ret = EXCP_INTERRUPT;
+ }
+ break;
+ }
+ default:
+ error_report("Unrecognized CR %d\n", cr);
+ abort();
+ }
+ RIP(env) += ins_len;
+ store_regs(cpu);
+ break;
+ }
+ case EXIT_REASON_APIC_ACCESS: { /* TODO */
+ struct x86_decode decode;
+
+ load_regs(cpu);
+ env->hvf_emul->fetch_rip = rip;
+
+ decode_instruction(env, &decode);
+ exec_instruction(env, &decode);
+ store_regs(cpu);
+ break;
+ }
+ case EXIT_REASON_TPR: {
+ ret = 1;
+ break;
+ }
+ case EXIT_REASON_TASK_SWITCH: {
+ uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
+ x68_segment_selector sel = {.sel = exit_qual & 0xffff};
+ vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
+ vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
+ & VMCS_INTR_T_MASK);
+ break;
+ }
+ case EXIT_REASON_TRIPLE_FAULT: {
+ qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
+ ret = EXCP_INTERRUPT;
+ break;
+ }
+ case EXIT_REASON_RDPMC:
+ wreg(cpu->hvf_fd, HV_X86_RAX, 0);
+ wreg(cpu->hvf_fd, HV_X86_RDX, 0);
+ macvm_set_rip(cpu, rip + ins_len);
+ break;
+ case VMX_REASON_VMCALL:
+ env->exception_injected = EXCP0D_GPF;
+ env->has_error_code = true;
+ env->error_code = 0;
+ break;
+ default:
+ error_report("%llx: unhandled exit %llx\n", rip, exit_reason);
+ }
+ } while (ret == 0);
+
+ return ret;
+}
+
+static bool hvf_allowed;
+
+static int hvf_accel_init(MachineState *ms)
+{
+ int x;
+ hv_return_t ret;
+ HVFState *s;
+
+ hvf_disable(0);
+ ret = hv_vm_create(HV_VM_DEFAULT);
+ assert_hvf_ok(ret);
+
+ s = g_new0(HVFState, 1);
+
+ s->num_slots = 32;
+ for (x = 0; x < s->num_slots; ++x) {
+ s->slots[x].size = 0;
+ s->slots[x].slot_id = x;
+ }
+
+ hvf_state = s;
+ cpu_interrupt_handler = hvf_handle_interrupt;
+ memory_listener_register(&hvf_memory_listener, &address_space_memory);
+ return 0;
+}
+
+static void hvf_accel_class_init(ObjectClass *oc, void *data)
+{
+ AccelClass *ac = ACCEL_CLASS(oc);
+ ac->name = "HVF";
+ ac->init_machine = hvf_accel_init;
+ ac->allowed = &hvf_allowed;
+}
+
+static const TypeInfo hvf_accel_type = {
+ .name = TYPE_HVF_ACCEL,
+ .parent = TYPE_ACCEL,
+ .class_init = hvf_accel_class_init,
+};
+
+static void hvf_type_init(void)
+{
+ type_register_static(&hvf_accel_type);
+}
+
+type_init(hvf_type_init);