diff options
author | Fabiano Rosas <farosas@suse.de> | 2023-02-17 17:11:29 -0300 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2023-02-27 13:27:04 +0000 |
commit | f0984d4040c328d1c021ae6680479cbbe13c485b (patch) | |
tree | 96d3b38a11fe7dc6ba19c24e47f06f48eb0cb8e5 /target/arm/tcg/translate.c | |
parent | 2059ec754f9040a6a9f62a9abfeb76a9d8655e11 (diff) |
target/arm: move translate modules to tcg/
Introduce the target/arm/tcg directory. Its purpose is to hold the TCG
code that is selected by CONFIG_TCG.
Signed-off-by: Claudio Fontana <cfontana@suse.de>
Signed-off-by: Fabiano Rosas <farosas@suse.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'target/arm/tcg/translate.c')
-rw-r--r-- | target/arm/tcg/translate.c | 9990 |
1 files changed, 9990 insertions, 0 deletions
diff --git a/target/arm/tcg/translate.c b/target/arm/tcg/translate.c new file mode 100644 index 0000000000..c23a3462bf --- /dev/null +++ b/target/arm/tcg/translate.c @@ -0,0 +1,9990 @@ +/* + * ARM translation + * + * Copyright (c) 2003 Fabrice Bellard + * Copyright (c) 2005-2007 CodeSourcery + * Copyright (c) 2007 OpenedHand, Ltd. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ +#include "qemu/osdep.h" + +#include "cpu.h" +#include "internals.h" +#include "disas/disas.h" +#include "exec/exec-all.h" +#include "tcg/tcg-op.h" +#include "tcg/tcg-op-gvec.h" +#include "qemu/log.h" +#include "qemu/bitops.h" +#include "arm_ldst.h" +#include "semihosting/semihost.h" +#include "exec/helper-proto.h" +#include "exec/helper-gen.h" +#include "exec/log.h" +#include "cpregs.h" + + +#define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T) +#define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5) +/* currently all emulated v5 cores are also v5TE, so don't bother */ +#define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5) +#define ENABLE_ARCH_5J dc_isar_feature(aa32_jazelle, s) +#define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6) +#define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K) +#define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2) +#define ENABLE_ARCH_7 arm_dc_feature(s, ARM_FEATURE_V7) +#define ENABLE_ARCH_8 arm_dc_feature(s, ARM_FEATURE_V8) + +#include "translate.h" +#include "translate-a32.h" + +/* These are TCG temporaries used only by the legacy iwMMXt decoder */ +static TCGv_i64 cpu_V0, cpu_V1, cpu_M0; +/* These are TCG globals which alias CPUARMState fields */ +static TCGv_i32 cpu_R[16]; +TCGv_i32 cpu_CF, cpu_NF, cpu_VF, cpu_ZF; +TCGv_i64 cpu_exclusive_addr; +TCGv_i64 cpu_exclusive_val; + +#include "exec/gen-icount.h" + +static const char * const regnames[] = + { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" }; + + +/* initialize TCG globals. */ +void arm_translate_init(void) +{ + int i; + + for (i = 0; i < 16; i++) { + cpu_R[i] = tcg_global_mem_new_i32(cpu_env, + offsetof(CPUARMState, regs[i]), + regnames[i]); + } + cpu_CF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, CF), "CF"); + cpu_NF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, NF), "NF"); + cpu_VF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, VF), "VF"); + cpu_ZF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, ZF), "ZF"); + + cpu_exclusive_addr = tcg_global_mem_new_i64(cpu_env, + offsetof(CPUARMState, exclusive_addr), "exclusive_addr"); + cpu_exclusive_val = tcg_global_mem_new_i64(cpu_env, + offsetof(CPUARMState, exclusive_val), "exclusive_val"); + + a64_translate_init(); +} + +uint64_t asimd_imm_const(uint32_t imm, int cmode, int op) +{ + /* Expand the encoded constant as per AdvSIMDExpandImm pseudocode */ + switch (cmode) { + case 0: case 1: + /* no-op */ + break; + case 2: case 3: + imm <<= 8; + break; + case 4: case 5: + imm <<= 16; + break; + case 6: case 7: + imm <<= 24; + break; + case 8: case 9: + imm |= imm << 16; + break; + case 10: case 11: + imm = (imm << 8) | (imm << 24); + break; + case 12: + imm = (imm << 8) | 0xff; + break; + case 13: + imm = (imm << 16) | 0xffff; + break; + case 14: + if (op) { + /* + * This and cmode == 15 op == 1 are the only cases where + * the top and bottom 32 bits of the encoded constant differ. + */ + uint64_t imm64 = 0; + int n; + + for (n = 0; n < 8; n++) { + if (imm & (1 << n)) { + imm64 |= (0xffULL << (n * 8)); + } + } + return imm64; + } + imm |= (imm << 8) | (imm << 16) | (imm << 24); + break; + case 15: + if (op) { + /* Reserved encoding for AArch32; valid for AArch64 */ + uint64_t imm64 = (uint64_t)(imm & 0x3f) << 48; + if (imm & 0x80) { + imm64 |= 0x8000000000000000ULL; + } + if (imm & 0x40) { + imm64 |= 0x3fc0000000000000ULL; + } else { + imm64 |= 0x4000000000000000ULL; + } + return imm64; + } + imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19) + | ((imm & 0x40) ? (0x1f << 25) : (1 << 30)); + break; + } + if (op) { + imm = ~imm; + } + return dup_const(MO_32, imm); +} + +/* Generate a label used for skipping this instruction */ +void arm_gen_condlabel(DisasContext *s) +{ + if (!s->condjmp) { + s->condlabel = gen_disas_label(s); + s->condjmp = 1; + } +} + +/* Flags for the disas_set_da_iss info argument: + * lower bits hold the Rt register number, higher bits are flags. + */ +typedef enum ISSInfo { + ISSNone = 0, + ISSRegMask = 0x1f, + ISSInvalid = (1 << 5), + ISSIsAcqRel = (1 << 6), + ISSIsWrite = (1 << 7), + ISSIs16Bit = (1 << 8), +} ISSInfo; + +/* + * Store var into env + offset to a member with size bytes. + * Free var after use. + */ +void store_cpu_offset(TCGv_i32 var, int offset, int size) +{ + switch (size) { + case 1: + tcg_gen_st8_i32(var, cpu_env, offset); + break; + case 4: + tcg_gen_st_i32(var, cpu_env, offset); + break; + default: + g_assert_not_reached(); + } + tcg_temp_free_i32(var); +} + +/* Save the syndrome information for a Data Abort */ +static void disas_set_da_iss(DisasContext *s, MemOp memop, ISSInfo issinfo) +{ + uint32_t syn; + int sas = memop & MO_SIZE; + bool sse = memop & MO_SIGN; + bool is_acqrel = issinfo & ISSIsAcqRel; + bool is_write = issinfo & ISSIsWrite; + bool is_16bit = issinfo & ISSIs16Bit; + int srt = issinfo & ISSRegMask; + + if (issinfo & ISSInvalid) { + /* Some callsites want to conditionally provide ISS info, + * eg "only if this was not a writeback" + */ + return; + } + + if (srt == 15) { + /* For AArch32, insns where the src/dest is R15 never generate + * ISS information. Catching that here saves checking at all + * the call sites. + */ + return; + } + + syn = syn_data_abort_with_iss(0, sas, sse, srt, 0, is_acqrel, + 0, 0, 0, is_write, 0, is_16bit); + disas_set_insn_syndrome(s, syn); +} + +static inline int get_a32_user_mem_index(DisasContext *s) +{ + /* Return the core mmu_idx to use for A32/T32 "unprivileged load/store" + * insns: + * if PL2, UNPREDICTABLE (we choose to implement as if PL0) + * otherwise, access as if at PL0. + */ + switch (s->mmu_idx) { + case ARMMMUIdx_E3: + case ARMMMUIdx_E2: /* this one is UNPREDICTABLE */ + case ARMMMUIdx_E10_0: + case ARMMMUIdx_E10_1: + case ARMMMUIdx_E10_1_PAN: + return arm_to_core_mmu_idx(ARMMMUIdx_E10_0); + case ARMMMUIdx_MUser: + case ARMMMUIdx_MPriv: + return arm_to_core_mmu_idx(ARMMMUIdx_MUser); + case ARMMMUIdx_MUserNegPri: + case ARMMMUIdx_MPrivNegPri: + return arm_to_core_mmu_idx(ARMMMUIdx_MUserNegPri); + case ARMMMUIdx_MSUser: + case ARMMMUIdx_MSPriv: + return arm_to_core_mmu_idx(ARMMMUIdx_MSUser); + case ARMMMUIdx_MSUserNegPri: + case ARMMMUIdx_MSPrivNegPri: + return arm_to_core_mmu_idx(ARMMMUIdx_MSUserNegPri); + default: + g_assert_not_reached(); + } +} + +/* The pc_curr difference for an architectural jump. */ +static target_long jmp_diff(DisasContext *s, target_long diff) +{ + return diff + (s->thumb ? 4 : 8); +} + +static void gen_pc_plus_diff(DisasContext *s, TCGv_i32 var, target_long diff) +{ + assert(s->pc_save != -1); + if (TARGET_TB_PCREL) { + tcg_gen_addi_i32(var, cpu_R[15], (s->pc_curr - s->pc_save) + diff); + } else { + tcg_gen_movi_i32(var, s->pc_curr + diff); + } +} + +/* Set a variable to the value of a CPU register. */ +void load_reg_var(DisasContext *s, TCGv_i32 var, int reg) +{ + if (reg == 15) { + gen_pc_plus_diff(s, var, jmp_diff(s, 0)); + } else { + tcg_gen_mov_i32(var, cpu_R[reg]); + } +} + +/* + * Create a new temp, REG + OFS, except PC is ALIGN(PC, 4). + * This is used for load/store for which use of PC implies (literal), + * or ADD that implies ADR. + */ +TCGv_i32 add_reg_for_lit(DisasContext *s, int reg, int ofs) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + + if (reg == 15) { + /* + * This address is computed from an aligned PC: + * subtract off the low bits. + */ + gen_pc_plus_diff(s, tmp, jmp_diff(s, ofs - (s->pc_curr & 3))); + } else { + tcg_gen_addi_i32(tmp, cpu_R[reg], ofs); + } + return tmp; +} + +/* Set a CPU register. The source must be a temporary and will be + marked as dead. */ +void store_reg(DisasContext *s, int reg, TCGv_i32 var) +{ + if (reg == 15) { + /* In Thumb mode, we must ignore bit 0. + * In ARM mode, for ARMv4 and ARMv5, it is UNPREDICTABLE if bits [1:0] + * are not 0b00, but for ARMv6 and above, we must ignore bits [1:0]. + * We choose to ignore [1:0] in ARM mode for all architecture versions. + */ + tcg_gen_andi_i32(var, var, s->thumb ? ~1 : ~3); + s->base.is_jmp = DISAS_JUMP; + s->pc_save = -1; + } else if (reg == 13 && arm_dc_feature(s, ARM_FEATURE_M)) { + /* For M-profile SP bits [1:0] are always zero */ + tcg_gen_andi_i32(var, var, ~3); + } + tcg_gen_mov_i32(cpu_R[reg], var); + tcg_temp_free_i32(var); +} + +/* + * Variant of store_reg which applies v8M stack-limit checks before updating + * SP. If the check fails this will result in an exception being taken. + * We disable the stack checks for CONFIG_USER_ONLY because we have + * no idea what the stack limits should be in that case. + * If stack checking is not being done this just acts like store_reg(). + */ +static void store_sp_checked(DisasContext *s, TCGv_i32 var) +{ +#ifndef CONFIG_USER_ONLY + if (s->v8m_stackcheck) { + gen_helper_v8m_stackcheck(cpu_env, var); + } +#endif + store_reg(s, 13, var); +} + +/* Value extensions. */ +#define gen_uxtb(var) tcg_gen_ext8u_i32(var, var) +#define gen_uxth(var) tcg_gen_ext16u_i32(var, var) +#define gen_sxtb(var) tcg_gen_ext8s_i32(var, var) +#define gen_sxth(var) tcg_gen_ext16s_i32(var, var) + +#define gen_sxtb16(var) gen_helper_sxtb16(var, var) +#define gen_uxtb16(var) gen_helper_uxtb16(var, var) + +void gen_set_cpsr(TCGv_i32 var, uint32_t mask) +{ + gen_helper_cpsr_write(cpu_env, var, tcg_constant_i32(mask)); +} + +static void gen_rebuild_hflags(DisasContext *s, bool new_el) +{ + bool m_profile = arm_dc_feature(s, ARM_FEATURE_M); + + if (new_el) { + if (m_profile) { + gen_helper_rebuild_hflags_m32_newel(cpu_env); + } else { + gen_helper_rebuild_hflags_a32_newel(cpu_env); + } + } else { + TCGv_i32 tcg_el = tcg_constant_i32(s->current_el); + if (m_profile) { + gen_helper_rebuild_hflags_m32(cpu_env, tcg_el); + } else { + gen_helper_rebuild_hflags_a32(cpu_env, tcg_el); + } + } +} + +static void gen_exception_internal(int excp) +{ + assert(excp_is_internal(excp)); + gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp)); +} + +static void gen_singlestep_exception(DisasContext *s) +{ + /* We just completed step of an insn. Move from Active-not-pending + * to Active-pending, and then also take the swstep exception. + * This corresponds to making the (IMPDEF) choice to prioritize + * swstep exceptions over asynchronous exceptions taken to an exception + * level where debug is disabled. This choice has the advantage that + * we do not need to maintain internal state corresponding to the + * ISV/EX syndrome bits between completion of the step and generation + * of the exception, and our syndrome information is always correct. + */ + gen_ss_advance(s); + gen_swstep_exception(s, 1, s->is_ldex); + s->base.is_jmp = DISAS_NORETURN; +} + +void clear_eci_state(DisasContext *s) +{ + /* + * Clear any ECI/ICI state: used when a load multiple/store + * multiple insn executes. + */ + if (s->eci) { + store_cpu_field_constant(0, condexec_bits); + s->eci = 0; + } +} + +static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b) +{ + TCGv_i32 tmp1 = tcg_temp_new_i32(); + TCGv_i32 tmp2 = tcg_temp_new_i32(); + tcg_gen_ext16s_i32(tmp1, a); + tcg_gen_ext16s_i32(tmp2, b); + tcg_gen_mul_i32(tmp1, tmp1, tmp2); + tcg_temp_free_i32(tmp2); + tcg_gen_sari_i32(a, a, 16); + tcg_gen_sari_i32(b, b, 16); + tcg_gen_mul_i32(b, b, a); + tcg_gen_mov_i32(a, tmp1); + tcg_temp_free_i32(tmp1); +} + +/* Byteswap each halfword. */ +void gen_rev16(TCGv_i32 dest, TCGv_i32 var) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + TCGv_i32 mask = tcg_constant_i32(0x00ff00ff); + tcg_gen_shri_i32(tmp, var, 8); + tcg_gen_and_i32(tmp, tmp, mask); + tcg_gen_and_i32(var, var, mask); + tcg_gen_shli_i32(var, var, 8); + tcg_gen_or_i32(dest, var, tmp); + tcg_temp_free_i32(tmp); +} + +/* Byteswap low halfword and sign extend. */ +static void gen_revsh(TCGv_i32 dest, TCGv_i32 var) +{ + tcg_gen_bswap16_i32(var, var, TCG_BSWAP_OS); +} + +/* Dual 16-bit add. Result placed in t0 and t1 is marked as dead. + tmp = (t0 ^ t1) & 0x8000; + t0 &= ~0x8000; + t1 &= ~0x8000; + t0 = (t0 + t1) ^ tmp; + */ + +static void gen_add16(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + tcg_gen_xor_i32(tmp, t0, t1); + tcg_gen_andi_i32(tmp, tmp, 0x8000); + tcg_gen_andi_i32(t0, t0, ~0x8000); + tcg_gen_andi_i32(t1, t1, ~0x8000); + tcg_gen_add_i32(t0, t0, t1); + tcg_gen_xor_i32(dest, t0, tmp); + tcg_temp_free_i32(tmp); +} + +/* Set N and Z flags from var. */ +static inline void gen_logic_CC(TCGv_i32 var) +{ + tcg_gen_mov_i32(cpu_NF, var); + tcg_gen_mov_i32(cpu_ZF, var); +} + +/* dest = T0 + T1 + CF. */ +static void gen_add_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) +{ + tcg_gen_add_i32(dest, t0, t1); + tcg_gen_add_i32(dest, dest, cpu_CF); +} + +/* dest = T0 - T1 + CF - 1. */ +static void gen_sub_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) +{ + tcg_gen_sub_i32(dest, t0, t1); + tcg_gen_add_i32(dest, dest, cpu_CF); + tcg_gen_subi_i32(dest, dest, 1); +} + +/* dest = T0 + T1. Compute C, N, V and Z flags */ +static void gen_add_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, 0); + tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, t1, tmp); + tcg_gen_mov_i32(cpu_ZF, cpu_NF); + tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); + tcg_gen_xor_i32(tmp, t0, t1); + tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); + tcg_temp_free_i32(tmp); + tcg_gen_mov_i32(dest, cpu_NF); +} + +/* dest = T0 + T1 + CF. Compute C, N, V and Z flags */ +static void gen_adc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + if (TCG_TARGET_HAS_add2_i32) { + tcg_gen_movi_i32(tmp, 0); + tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, cpu_CF, tmp); + tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1, tmp); + } else { + TCGv_i64 q0 = tcg_temp_new_i64(); + TCGv_i64 q1 = tcg_temp_new_i64(); + tcg_gen_extu_i32_i64(q0, t0); + tcg_gen_extu_i32_i64(q1, t1); + tcg_gen_add_i64(q0, q0, q1); + tcg_gen_extu_i32_i64(q1, cpu_CF); + tcg_gen_add_i64(q0, q0, q1); + tcg_gen_extr_i64_i32(cpu_NF, cpu_CF, q0); + tcg_temp_free_i64(q0); + tcg_temp_free_i64(q1); + } + tcg_gen_mov_i32(cpu_ZF, cpu_NF); + tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); + tcg_gen_xor_i32(tmp, t0, t1); + tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); + tcg_temp_free_i32(tmp); + tcg_gen_mov_i32(dest, cpu_NF); +} + +/* dest = T0 - T1. Compute C, N, V and Z flags */ +static void gen_sub_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) +{ + TCGv_i32 tmp; + tcg_gen_sub_i32(cpu_NF, t0, t1); + tcg_gen_mov_i32(cpu_ZF, cpu_NF); + tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0, t1); + tcg_gen_xor_i32(cpu_VF, cpu_NF, t0); + tmp = tcg_temp_new_i32(); + tcg_gen_xor_i32(tmp, t0, t1); + tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); + tcg_temp_free_i32(tmp); + tcg_gen_mov_i32(dest, cpu_NF); +} + +/* dest = T0 + ~T1 + CF. Compute C, N, V and Z flags */ +static void gen_sbc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + tcg_gen_not_i32(tmp, t1); + gen_adc_CC(dest, t0, tmp); + tcg_temp_free_i32(tmp); +} + +#define GEN_SHIFT(name) \ +static void gen_##name(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) \ +{ \ + TCGv_i32 tmpd = tcg_temp_new_i32(); \ + TCGv_i32 tmp1 = tcg_temp_new_i32(); \ + TCGv_i32 zero = tcg_constant_i32(0); \ + tcg_gen_andi_i32(tmp1, t1, 0x1f); \ + tcg_gen_##name##_i32(tmpd, t0, tmp1); \ + tcg_gen_andi_i32(tmp1, t1, 0xe0); \ + tcg_gen_movcond_i32(TCG_COND_NE, dest, tmp1, zero, zero, tmpd); \ + tcg_temp_free_i32(tmpd); \ + tcg_temp_free_i32(tmp1); \ +} +GEN_SHIFT(shl) +GEN_SHIFT(shr) +#undef GEN_SHIFT + +static void gen_sar(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) +{ + TCGv_i32 tmp1 = tcg_temp_new_i32(); + + tcg_gen_andi_i32(tmp1, t1, 0xff); + tcg_gen_umin_i32(tmp1, tmp1, tcg_constant_i32(31)); + tcg_gen_sar_i32(dest, t0, tmp1); + tcg_temp_free_i32(tmp1); +} + +static void shifter_out_im(TCGv_i32 var, int shift) +{ + tcg_gen_extract_i32(cpu_CF, var, shift, 1); +} + +/* Shift by immediate. Includes special handling for shift == 0. */ +static inline void gen_arm_shift_im(TCGv_i32 var, int shiftop, + int shift, int flags) +{ + switch (shiftop) { + case 0: /* LSL */ + if (shift != 0) { + if (flags) + shifter_out_im(var, 32 - shift); + tcg_gen_shli_i32(var, var, shift); + } + break; + case 1: /* LSR */ + if (shift == 0) { + if (flags) { + tcg_gen_shri_i32(cpu_CF, var, 31); + } + tcg_gen_movi_i32(var, 0); + } else { + if (flags) + shifter_out_im(var, shift - 1); + tcg_gen_shri_i32(var, var, shift); + } + break; + case 2: /* ASR */ + if (shift == 0) + shift = 32; + if (flags) + shifter_out_im(var, shift - 1); + if (shift == 32) + shift = 31; + tcg_gen_sari_i32(var, var, shift); + break; + case 3: /* ROR/RRX */ + if (shift != 0) { + if (flags) + shifter_out_im(var, shift - 1); + tcg_gen_rotri_i32(var, var, shift); break; + } else { + TCGv_i32 tmp = tcg_temp_new_i32(); + tcg_gen_shli_i32(tmp, cpu_CF, 31); + if (flags) + shifter_out_im(var, 0); + tcg_gen_shri_i32(var, var, 1); + tcg_gen_or_i32(var, var, tmp); + tcg_temp_free_i32(tmp); + } + } +}; + +static inline void gen_arm_shift_reg(TCGv_i32 var, int shiftop, + TCGv_i32 shift, int flags) +{ + if (flags) { + switch (shiftop) { + case 0: gen_helper_shl_cc(var, cpu_env, var, shift); break; + case 1: gen_helper_shr_cc(var, cpu_env, var, shift); break; + case 2: gen_helper_sar_cc(var, cpu_env, var, shift); break; + case 3: gen_helper_ror_cc(var, cpu_env, var, shift); break; + } + } else { + switch (shiftop) { + case 0: + gen_shl(var, var, shift); + break; + case 1: + gen_shr(var, var, shift); + break; + case 2: + gen_sar(var, var, shift); + break; + case 3: tcg_gen_andi_i32(shift, shift, 0x1f); + tcg_gen_rotr_i32(var, var, shift); break; + } + } + tcg_temp_free_i32(shift); +} + +/* + * Generate a conditional based on ARM condition code cc. + * This is common between ARM and Aarch64 targets. + */ +void arm_test_cc(DisasCompare *cmp, int cc) +{ + TCGv_i32 value; + TCGCond cond; + bool global = true; + + switch (cc) { + case 0: /* eq: Z */ + case 1: /* ne: !Z */ + cond = TCG_COND_EQ; + value = cpu_ZF; + break; + + case 2: /* cs: C */ + case 3: /* cc: !C */ + cond = TCG_COND_NE; + value = cpu_CF; + break; + + case 4: /* mi: N */ + case 5: /* pl: !N */ + cond = TCG_COND_LT; + value = cpu_NF; + break; + + case 6: /* vs: V */ + case 7: /* vc: !V */ + cond = TCG_COND_LT; + value = cpu_VF; + break; + + case 8: /* hi: C && !Z */ + case 9: /* ls: !C || Z -> !(C && !Z) */ + cond = TCG_COND_NE; + value = tcg_temp_new_i32(); + global = false; + /* CF is 1 for C, so -CF is an all-bits-set mask for C; + ZF is non-zero for !Z; so AND the two subexpressions. */ + tcg_gen_neg_i32(value, cpu_CF); + tcg_gen_and_i32(value, value, cpu_ZF); + break; + + case 10: /* ge: N == V -> N ^ V == 0 */ + case 11: /* lt: N != V -> N ^ V != 0 */ + /* Since we're only interested in the sign bit, == 0 is >= 0. */ + cond = TCG_COND_GE; + value = tcg_temp_new_i32(); + global = false; + tcg_gen_xor_i32(value, cpu_VF, cpu_NF); + break; + + case 12: /* gt: !Z && N == V */ + case 13: /* le: Z || N != V */ + cond = TCG_COND_NE; + value = tcg_temp_new_i32(); + global = false; + /* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate + * the sign bit then AND with ZF to yield the result. */ + tcg_gen_xor_i32(value, cpu_VF, cpu_NF); + tcg_gen_sari_i32(value, value, 31); + tcg_gen_andc_i32(value, cpu_ZF, value); + break; + + case 14: /* always */ + case 15: /* always */ + /* Use the ALWAYS condition, which will fold early. + * It doesn't matter what we use for the value. */ + cond = TCG_COND_ALWAYS; + value = cpu_ZF; + goto no_invert; + + default: + fprintf(stderr, "Bad condition code 0x%x\n", cc); + abort(); + } + + if (cc & 1) { + cond = tcg_invert_cond(cond); + } + + no_invert: + cmp->cond = cond; + cmp->value = value; + cmp->value_global = global; +} + +void arm_free_cc(DisasCompare *cmp) +{ + if (!cmp->value_global) { + tcg_temp_free_i32(cmp->value); + } +} + +void arm_jump_cc(DisasCompare *cmp, TCGLabel *label) +{ + tcg_gen_brcondi_i32(cmp->cond, cmp->value, 0, label); +} + +void arm_gen_test_cc(int cc, TCGLabel *label) +{ + DisasCompare cmp; + arm_test_cc(&cmp, cc); + arm_jump_cc(&cmp, label); + arm_free_cc(&cmp); +} + +void gen_set_condexec(DisasContext *s) +{ + if (s->condexec_mask) { + uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1); + + store_cpu_field_constant(val, condexec_bits); + } +} + +void gen_update_pc(DisasContext *s, target_long diff) +{ + gen_pc_plus_diff(s, cpu_R[15], diff); + s->pc_save = s->pc_curr + diff; +} + +/* Set PC and Thumb state from var. var is marked as dead. */ +static inline void gen_bx(DisasContext *s, TCGv_i32 var) +{ + s->base.is_jmp = DISAS_JUMP; + tcg_gen_andi_i32(cpu_R[15], var, ~1); + tcg_gen_andi_i32(var, var, 1); + store_cpu_field(var, thumb); + s->pc_save = -1; +} + +/* + * Set PC and Thumb state from var. var is marked as dead. + * For M-profile CPUs, include logic to detect exception-return + * branches and handle them. This is needed for Thumb POP/LDM to PC, LDR to PC, + * and BX reg, and no others, and happens only for code in Handler mode. + * The Security Extension also requires us to check for the FNC_RETURN + * which signals a function return from non-secure state; this can happen + * in both Handler and Thread mode. + * To avoid having to do multiple comparisons in inline generated code, + * we make the check we do here loose, so it will match for EXC_RETURN + * in Thread mode. For system emulation do_v7m_exception_exit() checks + * for these spurious cases and returns without doing anything (giving + * the same behaviour as for a branch to a non-magic address). + * + * In linux-user mode it is unclear what the right behaviour for an + * attempted FNC_RETURN should be, because in real hardware this will go + * directly to Secure code (ie not the Linux kernel) which will then treat + * the error in any way it chooses. For QEMU we opt to make the FNC_RETURN + * attempt behave the way it would on a CPU without the security extension, + * which is to say "like a normal branch". That means we can simply treat + * all branches as normal with no magic address behaviour. + */ +static inline void gen_bx_excret(DisasContext *s, TCGv_i32 var) +{ + /* Generate the same code here as for a simple bx, but flag via + * s->base.is_jmp that we need to do the rest of the work later. + */ + gen_bx(s, var); +#ifndef CONFIG_USER_ONLY + if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY) || + (s->v7m_handler_mode && arm_dc_feature(s, ARM_FEATURE_M))) { + s->base.is_jmp = DISAS_BX_EXCRET; + } +#endif +} + +static inline void gen_bx_excret_final_code(DisasContext *s) +{ + /* Generate the code to finish possible exception return and end the TB */ + DisasLabel excret_label = gen_disas_label(s); + uint32_t min_magic; + + if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY)) { + /* Covers FNC_RETURN and EXC_RETURN magic */ + min_magic = FNC_RETURN_MIN_MAGIC; + } else { + /* EXC_RETURN magic only */ + min_magic = EXC_RETURN_MIN_MAGIC; + } + + /* Is the new PC value in the magic range indicating exception return? */ + tcg_gen_brcondi_i32(TCG_COND_GEU, cpu_R[15], min_magic, excret_label.label); + /* No: end the TB as we would for a DISAS_JMP */ + if (s->ss_active) { + gen_singlestep_exception(s); + } else { + tcg_gen_exit_tb(NULL, 0); + } + set_disas_label(s, excret_label); + /* Yes: this is an exception return. + * At this point in runtime env->regs[15] and env->thumb will hold + * the exception-return magic number, which do_v7m_exception_exit() + * will read. Nothing else will be able to see those values because + * the cpu-exec main loop guarantees that we will always go straight + * from raising the exception to the exception-handling code. + * + * gen_ss_advance(s) does nothing on M profile currently but + * calling it is conceptually the right thing as we have executed + * this instruction (compare SWI, HVC, SMC handling). + */ + gen_ss_advance(s); + gen_exception_internal(EXCP_EXCEPTION_EXIT); +} + +static inline void gen_bxns(DisasContext *s, int rm) +{ + TCGv_i32 var = load_reg(s, rm); + + /* The bxns helper may raise an EXCEPTION_EXIT exception, so in theory + * we need to sync state before calling it, but: + * - we don't need to do gen_update_pc() because the bxns helper will + * always set the PC itself + * - we don't need to do gen_set_condexec() because BXNS is UNPREDICTABLE + * unless it's outside an IT block or the last insn in an IT block, + * so we know that condexec == 0 (already set at the top of the TB) + * is correct in the non-UNPREDICTABLE cases, and we can choose + * "zeroes the IT bits" as our UNPREDICTABLE behaviour otherwise. + */ + gen_helper_v7m_bxns(cpu_env, var); + tcg_temp_free_i32(var); + s->base.is_jmp = DISAS_EXIT; +} + +static inline void gen_blxns(DisasContext *s, int rm) +{ + TCGv_i32 var = load_reg(s, rm); + + /* We don't need to sync condexec state, for the same reason as bxns. + * We do however need to set the PC, because the blxns helper reads it. + * The blxns helper may throw an exception. + */ + gen_update_pc(s, curr_insn_len(s)); + gen_helper_v7m_blxns(cpu_env, var); + tcg_temp_free_i32(var); + s->base.is_jmp = DISAS_EXIT; +} + +/* Variant of store_reg which uses branch&exchange logic when storing + to r15 in ARM architecture v7 and above. The source must be a temporary + and will be marked as dead. */ +static inline void store_reg_bx(DisasContext *s, int reg, TCGv_i32 var) +{ + if (reg == 15 && ENABLE_ARCH_7) { + gen_bx(s, var); + } else { + store_reg(s, reg, var); + } +} + +/* Variant of store_reg which uses branch&exchange logic when storing + * to r15 in ARM architecture v5T and above. This is used for storing + * the results of a LDR/LDM/POP into r15, and corresponds to the cases + * in the ARM ARM which use the LoadWritePC() pseudocode function. */ +static inline void store_reg_from_load(DisasContext *s, int reg, TCGv_i32 var) +{ + if (reg == 15 && ENABLE_ARCH_5) { + gen_bx_excret(s, var); + } else { + store_reg(s, reg, var); + } +} + +#ifdef CONFIG_USER_ONLY +#define IS_USER_ONLY 1 +#else +#define IS_USER_ONLY 0 +#endif + +MemOp pow2_align(unsigned i) +{ + static const MemOp mop_align[] = { + 0, MO_ALIGN_2, MO_ALIGN_4, MO_ALIGN_8, MO_ALIGN_16, + /* + * FIXME: TARGET_PAGE_BITS_MIN affects TLB_FLAGS_MASK such + * that 256-bit alignment (MO_ALIGN_32) cannot be supported: + * see get_alignment_bits(). Enforce only 128-bit alignment for now. + */ + MO_ALIGN_16 + }; + g_assert(i < ARRAY_SIZE(mop_align)); + return mop_align[i]; +} + +/* + * Abstractions of "generate code to do a guest load/store for + * AArch32", where a vaddr is always 32 bits (and is zero + * extended if we're a 64 bit core) and data is also + * 32 bits unless specifically doing a 64 bit access. + * These functions work like tcg_gen_qemu_{ld,st}* except + * that the address argument is TCGv_i32 rather than TCGv. + */ + +static TCGv gen_aa32_addr(DisasContext *s, TCGv_i32 a32, MemOp op) +{ + TCGv addr = tcg_temp_new(); + tcg_gen_extu_i32_tl(addr, a32); + + /* Not needed for user-mode BE32, where we use MO_BE instead. */ + if (!IS_USER_ONLY && s->sctlr_b && (op & MO_SIZE) < MO_32) { + tcg_gen_xori_tl(addr, addr, 4 - (1 << (op & MO_SIZE))); + } + return addr; +} + +/* + * Internal routines are used for NEON cases where the endianness + * and/or alignment has already been taken into account and manipulated. + */ +void gen_aa32_ld_internal_i32(DisasContext *s, TCGv_i32 val, + TCGv_i32 a32, int index, MemOp opc) +{ + TCGv addr = gen_aa32_addr(s, a32, opc); + tcg_gen_qemu_ld_i32(val, addr, index, opc); + tcg_temp_free(addr); +} + +void gen_aa32_st_internal_i32(DisasContext *s, TCGv_i32 val, + TCGv_i32 a32, int index, MemOp opc) +{ + TCGv addr = gen_aa32_addr(s, a32, opc); + tcg_gen_qemu_st_i32(val, addr, index, opc); + tcg_temp_free(addr); +} + +void gen_aa32_ld_internal_i64(DisasContext *s, TCGv_i64 val, + TCGv_i32 a32, int index, MemOp opc) +{ + TCGv addr = gen_aa32_addr(s, a32, opc); + + tcg_gen_qemu_ld_i64(val, addr, index, opc); + + /* Not needed for user-mode BE32, where we use MO_BE instead. */ + if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) { + tcg_gen_rotri_i64(val, val, 32); + } + tcg_temp_free(addr); +} + +void gen_aa32_st_internal_i64(DisasContext *s, TCGv_i64 val, + TCGv_i32 a32, int index, MemOp opc) +{ + TCGv addr = gen_aa32_addr(s, a32, opc); + + /* Not needed for user-mode BE32, where we use MO_BE instead. */ + if (!IS_USER_ONLY && s->sctlr_b && (opc & MO_SIZE) == MO_64) { + TCGv_i64 tmp = tcg_temp_new_i64(); + tcg_gen_rotri_i64(tmp, val, 32); + tcg_gen_qemu_st_i64(tmp, addr, index, opc); + tcg_temp_free_i64(tmp); + } else { + tcg_gen_qemu_st_i64(val, addr, index, opc); + } + tcg_temp_free(addr); +} + +void gen_aa32_ld_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, + int index, MemOp opc) +{ + gen_aa32_ld_internal_i32(s, val, a32, index, finalize_memop(s, opc)); +} + +void gen_aa32_st_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32, + int index, MemOp opc) +{ + gen_aa32_st_internal_i32(s, val, a32, index, finalize_memop(s, opc)); +} + +void gen_aa32_ld_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, + int index, MemOp opc) +{ + gen_aa32_ld_internal_i64(s, val, a32, index, finalize_memop(s, opc)); +} + +void gen_aa32_st_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32, + int index, MemOp opc) +{ + gen_aa32_st_internal_i64(s, val, a32, index, finalize_memop(s, opc)); +} + +#define DO_GEN_LD(SUFF, OPC) \ + static inline void gen_aa32_ld##SUFF(DisasContext *s, TCGv_i32 val, \ + TCGv_i32 a32, int index) \ + { \ + gen_aa32_ld_i32(s, val, a32, index, OPC); \ + } + +#define DO_GEN_ST(SUFF, OPC) \ + static inline void gen_aa32_st##SUFF(DisasContext *s, TCGv_i32 val, \ + TCGv_i32 a32, int index) \ + { \ + gen_aa32_st_i32(s, val, a32, index, OPC); \ + } + +static inline void gen_hvc(DisasContext *s, int imm16) +{ + /* The pre HVC helper handles cases when HVC gets trapped + * as an undefined insn by runtime configuration (ie before + * the insn really executes). + */ + gen_update_pc(s, 0); + gen_helper_pre_hvc(cpu_env); + /* Otherwise we will treat this as a real exception which + * happens after execution of the insn. (The distinction matters + * for the PC value reported to the exception handler and also + * for single stepping.) + */ + s->svc_imm = imm16; + gen_update_pc(s, curr_insn_len(s)); + s->base.is_jmp = DISAS_HVC; +} + +static inline void gen_smc(DisasContext *s) +{ + /* As with HVC, we may take an exception either before or after + * the insn executes. + */ + gen_update_pc(s, 0); + gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa32_smc())); + gen_update_pc(s, curr_insn_len(s)); + s->base.is_jmp = DISAS_SMC; +} + +static void gen_exception_internal_insn(DisasContext *s, int excp) +{ + gen_set_condexec(s); + gen_update_pc(s, 0); + gen_exception_internal(excp); + s->base.is_jmp = DISAS_NORETURN; +} + +static void gen_exception_el_v(int excp, uint32_t syndrome, TCGv_i32 tcg_el) +{ + gen_helper_exception_with_syndrome_el(cpu_env, tcg_constant_i32(excp), + tcg_constant_i32(syndrome), tcg_el); +} + +static void gen_exception_el(int excp, uint32_t syndrome, uint32_t target_el) +{ + gen_exception_el_v(excp, syndrome, tcg_constant_i32(target_el)); +} + +static void gen_exception(int excp, uint32_t syndrome) +{ + gen_helper_exception_with_syndrome(cpu_env, tcg_constant_i32(excp), + tcg_constant_i32(syndrome)); +} + +static void gen_exception_insn_el_v(DisasContext *s, target_long pc_diff, + int excp, uint32_t syn, TCGv_i32 tcg_el) +{ + if (s->aarch64) { + gen_a64_update_pc(s, pc_diff); + } else { + gen_set_condexec(s); + gen_update_pc(s, pc_diff); + } + gen_exception_el_v(excp, syn, tcg_el); + s->base.is_jmp = DISAS_NORETURN; +} + +void gen_exception_insn_el(DisasContext *s, target_long pc_diff, int excp, + uint32_t syn, uint32_t target_el) +{ + gen_exception_insn_el_v(s, pc_diff, excp, syn, + tcg_constant_i32(target_el)); +} + +void gen_exception_insn(DisasContext *s, target_long pc_diff, + int excp, uint32_t syn) +{ + if (s->aarch64) { + gen_a64_update_pc(s, pc_diff); + } else { + gen_set_condexec(s); + gen_update_pc(s, pc_diff); + } + gen_exception(excp, syn); + s->base.is_jmp = DISAS_NORETURN; +} + +static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syn) +{ + gen_set_condexec(s); + gen_update_pc(s, 0); + gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syn)); + s->base.is_jmp = DISAS_NORETURN; +} + +void unallocated_encoding(DisasContext *s) +{ + /* Unallocated and reserved encodings are uncategorized */ + gen_exception_insn(s, 0, EXCP_UDEF, syn_uncategorized()); +} + +/* Force a TB lookup after an instruction that changes the CPU state. */ +void gen_lookup_tb(DisasContext *s) +{ + gen_pc_plus_diff(s, cpu_R[15], curr_insn_len(s)); + s->base.is_jmp = DISAS_EXIT; +} + +static inline void gen_hlt(DisasContext *s, int imm) +{ + /* HLT. This has two purposes. + * Architecturally, it is an external halting debug instruction. + * Since QEMU doesn't implement external debug, we treat this as + * it is required for halting debug disabled: it will UNDEF. + * Secondly, "HLT 0x3C" is a T32 semihosting trap instruction, + * and "HLT 0xF000" is an A32 semihosting syscall. These traps + * must trigger semihosting even for ARMv7 and earlier, where + * HLT was an undefined encoding. + * In system mode, we don't allow userspace access to + * semihosting, to provide some semblance of security + * (and for consistency with our 32-bit semihosting). + */ + if (semihosting_enabled(s->current_el == 0) && + (imm == (s->thumb ? 0x3c : 0xf000))) { + gen_exception_internal_insn(s, EXCP_SEMIHOST); + return; + } + + unallocated_encoding(s); +} + +/* + * Return the offset of a "full" NEON Dreg. + */ +long neon_full_reg_offset(unsigned reg) +{ + return offsetof(CPUARMState, vfp.zregs[reg >> 1].d[reg & 1]); +} + +/* + * Return the offset of a 2**SIZE piece of a NEON register, at index ELE, + * where 0 is the least significant end of the register. + */ +long neon_element_offset(int reg, int element, MemOp memop) +{ + int element_size = 1 << (memop & MO_SIZE); + int ofs = element * element_size; +#if HOST_BIG_ENDIAN + /* + * Calculate the offset assuming fully little-endian, + * then XOR to account for the order of the 8-byte units. + */ + if (element_size < 8) { + ofs ^= 8 - element_size; + } +#endif + return neon_full_reg_offset(reg) + ofs; +} + +/* Return the offset of a VFP Dreg (dp = true) or VFP Sreg (dp = false). */ +long vfp_reg_offset(bool dp, unsigned reg) +{ + if (dp) { + return neon_element_offset(reg, 0, MO_64); + } else { + return neon_element_offset(reg >> 1, reg & 1, MO_32); + } +} + +void read_neon_element32(TCGv_i32 dest, int reg, int ele, MemOp memop) +{ + long off = neon_element_offset(reg, ele, memop); + + switch (memop) { + case MO_SB: + tcg_gen_ld8s_i32(dest, cpu_env, off); + break; + case MO_UB: + tcg_gen_ld8u_i32(dest, cpu_env, off); + break; + case MO_SW: + tcg_gen_ld16s_i32(dest, cpu_env, off); + break; + case MO_UW: + tcg_gen_ld16u_i32(dest, cpu_env, off); + break; + case MO_UL: + case MO_SL: + tcg_gen_ld_i32(dest, cpu_env, off); + break; + default: + g_assert_not_reached(); + } +} + +void read_neon_element64(TCGv_i64 dest, int reg, int ele, MemOp memop) +{ + long off = neon_element_offset(reg, ele, memop); + + switch (memop) { + case MO_SL: + tcg_gen_ld32s_i64(dest, cpu_env, off); + break; + case MO_UL: + tcg_gen_ld32u_i64(dest, cpu_env, off); + break; + case MO_UQ: + tcg_gen_ld_i64(dest, cpu_env, off); + break; + default: + g_assert_not_reached(); + } +} + +void write_neon_element32(TCGv_i32 src, int reg, int ele, MemOp memop) +{ + long off = neon_element_offset(reg, ele, memop); + + switch (memop) { + case MO_8: + tcg_gen_st8_i32(src, cpu_env, off); + break; + case MO_16: + tcg_gen_st16_i32(src, cpu_env, off); + break; + case MO_32: + tcg_gen_st_i32(src, cpu_env, off); + break; + default: + g_assert_not_reached(); + } +} + +void write_neon_element64(TCGv_i64 src, int reg, int ele, MemOp memop) +{ + long off = neon_element_offset(reg, ele, memop); + + switch (memop) { + case MO_32: + tcg_gen_st32_i64(src, cpu_env, off); + break; + case MO_64: + tcg_gen_st_i64(src, cpu_env, off); + break; + default: + g_assert_not_reached(); + } +} + +#define ARM_CP_RW_BIT (1 << 20) + +static inline void iwmmxt_load_reg(TCGv_i64 var, int reg) +{ + tcg_gen_ld_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); +} + +static inline void iwmmxt_store_reg(TCGv_i64 var, int reg) +{ + tcg_gen_st_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg])); +} + +static inline TCGv_i32 iwmmxt_load_creg(int reg) +{ + TCGv_i32 var = tcg_temp_new_i32(); + tcg_gen_ld_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); + return var; +} + +static inline void iwmmxt_store_creg(int reg, TCGv_i32 var) +{ + tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg])); + tcg_temp_free_i32(var); +} + +static inline void gen_op_iwmmxt_movq_wRn_M0(int rn) +{ + iwmmxt_store_reg(cpu_M0, rn); +} + +static inline void gen_op_iwmmxt_movq_M0_wRn(int rn) +{ + iwmmxt_load_reg(cpu_M0, rn); +} + +static inline void gen_op_iwmmxt_orq_M0_wRn(int rn) +{ + iwmmxt_load_reg(cpu_V1, rn); + tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1); +} + +static inline void gen_op_iwmmxt_andq_M0_wRn(int rn) +{ + iwmmxt_load_reg(cpu_V1, rn); + tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1); +} + +static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn) +{ + iwmmxt_load_reg(cpu_V1, rn); + tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1); +} + +#define IWMMXT_OP(name) \ +static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ +{ \ + iwmmxt_load_reg(cpu_V1, rn); \ + gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \ +} + +#define IWMMXT_OP_ENV(name) \ +static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \ +{ \ + iwmmxt_load_reg(cpu_V1, rn); \ + gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0, cpu_V1); \ +} + +#define IWMMXT_OP_ENV_SIZE(name) \ +IWMMXT_OP_ENV(name##b) \ +IWMMXT_OP_ENV(name##w) \ +IWMMXT_OP_ENV(name##l) + +#define IWMMXT_OP_ENV1(name) \ +static inline void gen_op_iwmmxt_##name##_M0(void) \ +{ \ + gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0); \ +} + +IWMMXT_OP(maddsq) +IWMMXT_OP(madduq) +IWMMXT_OP(sadb) +IWMMXT_OP(sadw) +IWMMXT_OP(mulslw) +IWMMXT_OP(mulshw) +IWMMXT_OP(mululw) +IWMMXT_OP(muluhw) +IWMMXT_OP(macsw) +IWMMXT_OP(macuw) + +IWMMXT_OP_ENV_SIZE(unpackl) +IWMMXT_OP_ENV_SIZE(unpackh) + +IWMMXT_OP_ENV1(unpacklub) +IWMMXT_OP_ENV1(unpackluw) +IWMMXT_OP_ENV1(unpacklul) +IWMMXT_OP_ENV1(unpackhub) +IWMMXT_OP_ENV1(unpackhuw) +IWMMXT_OP_ENV1(unpackhul) +IWMMXT_OP_ENV1(unpacklsb) +IWMMXT_OP_ENV1(unpacklsw) +IWMMXT_OP_ENV1(unpacklsl) +IWMMXT_OP_ENV1(unpackhsb) +IWMMXT_OP_ENV1(unpackhsw) +IWMMXT_OP_ENV1(unpackhsl) + +IWMMXT_OP_ENV_SIZE(cmpeq) +IWMMXT_OP_ENV_SIZE(cmpgtu) +IWMMXT_OP_ENV_SIZE(cmpgts) + +IWMMXT_OP_ENV_SIZE(mins) +IWMMXT_OP_ENV_SIZE(minu) +IWMMXT_OP_ENV_SIZE(maxs) +IWMMXT_OP_ENV_SIZE(maxu) + +IWMMXT_OP_ENV_SIZE(subn) +IWMMXT_OP_ENV_SIZE(addn) +IWMMXT_OP_ENV_SIZE(subu) +IWMMXT_OP_ENV_SIZE(addu) +IWMMXT_OP_ENV_SIZE(subs) +IWMMXT_OP_ENV_SIZE(adds) + +IWMMXT_OP_ENV(avgb0) +IWMMXT_OP_ENV(avgb1) +IWMMXT_OP_ENV(avgw0) +IWMMXT_OP_ENV(avgw1) + +IWMMXT_OP_ENV(packuw) +IWMMXT_OP_ENV(packul) +IWMMXT_OP_ENV(packuq) +IWMMXT_OP_ENV(packsw) +IWMMXT_OP_ENV(packsl) +IWMMXT_OP_ENV(packsq) + +static void gen_op_iwmmxt_set_mup(void) +{ + TCGv_i32 tmp; + tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); + tcg_gen_ori_i32(tmp, tmp, 2); + store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); +} + +static void gen_op_iwmmxt_set_cup(void) +{ + TCGv_i32 tmp; + tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]); + tcg_gen_ori_i32(tmp, tmp, 1); + store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]); +} + +static void gen_op_iwmmxt_setpsr_nz(void) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0); + store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]); +} + +static inline void gen_op_iwmmxt_addl_M0_wRn(int rn) +{ + iwmmxt_load_reg(cpu_V1, rn); + tcg_gen_ext32u_i64(cpu_V1, cpu_V1); + tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); +} + +static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn, + TCGv_i32 dest) +{ + int rd; + uint32_t offset; + TCGv_i32 tmp; + + rd = (insn >> 16) & 0xf; + tmp = load_reg(s, rd); + + offset = (insn & 0xff) << ((insn >> 7) & 2); + if (insn & (1 << 24)) { + /* Pre indexed */ + if (insn & (1 << 23)) + tcg_gen_addi_i32(tmp, tmp, offset); + else + tcg_gen_addi_i32(tmp, tmp, -offset); + tcg_gen_mov_i32(dest, tmp); + if (insn & (1 << 21)) + store_reg(s, rd, tmp); + else + tcg_temp_free_i32(tmp); + } else if (insn & (1 << 21)) { + /* Post indexed */ + tcg_gen_mov_i32(dest, tmp); + if (insn & (1 << 23)) + tcg_gen_addi_i32(tmp, tmp, offset); + else + tcg_gen_addi_i32(tmp, tmp, -offset); + store_reg(s, rd, tmp); + } else if (!(insn & (1 << 23))) + return 1; + return 0; +} + +static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv_i32 dest) +{ + int rd = (insn >> 0) & 0xf; + TCGv_i32 tmp; + + if (insn & (1 << 8)) { + if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) { + return 1; + } else { + tmp = iwmmxt_load_creg(rd); + } + } else { + tmp = tcg_temp_new_i32(); + iwmmxt_load_reg(cpu_V0, rd); + tcg_gen_extrl_i64_i32(tmp, cpu_V0); + } + tcg_gen_andi_i32(tmp, tmp, mask); + tcg_gen_mov_i32(dest, tmp); + tcg_temp_free_i32(tmp); + return 0; +} + +/* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred + (ie. an undefined instruction). */ +static int disas_iwmmxt_insn(DisasContext *s, uint32_t insn) +{ + int rd, wrd; + int rdhi, rdlo, rd0, rd1, i; + TCGv_i32 addr; + TCGv_i32 tmp, tmp2, tmp3; + + if ((insn & 0x0e000e00) == 0x0c000000) { + if ((insn & 0x0fe00ff0) == 0x0c400000) { + wrd = insn & 0xf; + rdlo = (insn >> 12) & 0xf; + rdhi = (insn >> 16) & 0xf; + if (insn & ARM_CP_RW_BIT) { /* TMRRC */ + iwmmxt_load_reg(cpu_V0, wrd); + tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); + tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); + } else { /* TMCRR */ + tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); + iwmmxt_store_reg(cpu_V0, wrd); + gen_op_iwmmxt_set_mup(); + } + return 0; + } + + wrd = (insn >> 12) & 0xf; + addr = tcg_temp_new_i32(); + if (gen_iwmmxt_address(s, insn, addr)) { + tcg_temp_free_i32(addr); + return 1; + } + if (insn & ARM_CP_RW_BIT) { + if ((insn >> 28) == 0xf) { /* WLDRW wCx */ + tmp = tcg_temp_new_i32(); + gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); + iwmmxt_store_creg(wrd, tmp); + } else { + i = 1; + if (insn & (1 << 8)) { + if (insn & (1 << 22)) { /* WLDRD */ + gen_aa32_ld64(s, cpu_M0, addr, get_mem_index(s)); + i = 0; + } else { /* WLDRW wRd */ + tmp = tcg_temp_new_i32(); + gen_aa32_ld32u(s, tmp, addr, get_mem_index(s)); + } + } else { + tmp = tcg_temp_new_i32(); + if (insn & (1 << 22)) { /* WLDRH */ + gen_aa32_ld16u(s, tmp, addr, get_mem_index(s)); + } else { /* WLDRB */ + gen_aa32_ld8u(s, tmp, addr, get_mem_index(s)); + } + } + if (i) { + tcg_gen_extu_i32_i64(cpu_M0, tmp); + tcg_temp_free_i32(tmp); + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + } + } else { + if ((insn >> 28) == 0xf) { /* WSTRW wCx */ + tmp = iwmmxt_load_creg(wrd); + gen_aa32_st32(s, tmp, addr, get_mem_index(s)); + } else { + gen_op_iwmmxt_movq_M0_wRn(wrd); + tmp = tcg_temp_new_i32(); + if (insn & (1 << 8)) { + if (insn & (1 << 22)) { /* WSTRD */ + gen_aa32_st64(s, cpu_M0, addr, get_mem_index(s)); + } else { /* WSTRW wRd */ + tcg_gen_extrl_i64_i32(tmp, cpu_M0); + gen_aa32_st32(s, tmp, addr, get_mem_index(s)); + } + } else { + if (insn & (1 << 22)) { /* WSTRH */ + tcg_gen_extrl_i64_i32(tmp, cpu_M0); + gen_aa32_st16(s, tmp, addr, get_mem_index(s)); + } else { /* WSTRB */ + tcg_gen_extrl_i64_i32(tmp, cpu_M0); + gen_aa32_st8(s, tmp, addr, get_mem_index(s)); + } + } + } + tcg_temp_free_i32(tmp); + } + tcg_temp_free_i32(addr); + return 0; + } + + if ((insn & 0x0f000000) != 0x0e000000) + return 1; + + switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) { + case 0x000: /* WOR */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + gen_op_iwmmxt_orq_M0_wRn(rd1); + gen_op_iwmmxt_setpsr_nz(); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x011: /* TMCR */ + if (insn & 0xf) + return 1; + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + switch (wrd) { + case ARM_IWMMXT_wCID: + case ARM_IWMMXT_wCASF: + break; + case ARM_IWMMXT_wCon: + gen_op_iwmmxt_set_cup(); + /* Fall through. */ + case ARM_IWMMXT_wCSSF: + tmp = iwmmxt_load_creg(wrd); + tmp2 = load_reg(s, rd); + tcg_gen_andc_i32(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + iwmmxt_store_creg(wrd, tmp); + break; + case ARM_IWMMXT_wCGR0: + case ARM_IWMMXT_wCGR1: + case ARM_IWMMXT_wCGR2: + case ARM_IWMMXT_wCGR3: + gen_op_iwmmxt_set_cup(); + tmp = load_reg(s, rd); + iwmmxt_store_creg(wrd, tmp); + break; + default: + return 1; + } + break; + case 0x100: /* WXOR */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + gen_op_iwmmxt_xorq_M0_wRn(rd1); + gen_op_iwmmxt_setpsr_nz(); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x111: /* TMRC */ + if (insn & 0xf) + return 1; + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + tmp = iwmmxt_load_creg(wrd); + store_reg(s, rd, tmp); + break; + case 0x300: /* WANDN */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tcg_gen_neg_i64(cpu_M0, cpu_M0); + gen_op_iwmmxt_andq_M0_wRn(rd1); + gen_op_iwmmxt_setpsr_nz(); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x200: /* WAND */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + gen_op_iwmmxt_andq_M0_wRn(rd1); + gen_op_iwmmxt_setpsr_nz(); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x810: case 0xa10: /* WMADD */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 0) & 0xf; + rd1 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 21)) + gen_op_iwmmxt_maddsq_M0_wRn(rd1); + else + gen_op_iwmmxt_madduq_M0_wRn(rd1); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + gen_op_iwmmxt_unpacklb_M0_wRn(rd1); + break; + case 1: + gen_op_iwmmxt_unpacklw_M0_wRn(rd1); + break; + case 2: + gen_op_iwmmxt_unpackll_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + gen_op_iwmmxt_unpackhb_M0_wRn(rd1); + break; + case 1: + gen_op_iwmmxt_unpackhw_M0_wRn(rd1); + break; + case 2: + gen_op_iwmmxt_unpackhl_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 22)) + gen_op_iwmmxt_sadw_M0_wRn(rd1); + else + gen_op_iwmmxt_sadb_M0_wRn(rd1); + if (!(insn & (1 << 20))) + gen_op_iwmmxt_addl_M0_wRn(wrd); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 21)) { + if (insn & (1 << 20)) + gen_op_iwmmxt_mulshw_M0_wRn(rd1); + else + gen_op_iwmmxt_mulslw_M0_wRn(rd1); + } else { + if (insn & (1 << 20)) + gen_op_iwmmxt_muluhw_M0_wRn(rd1); + else + gen_op_iwmmxt_mululw_M0_wRn(rd1); + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 21)) + gen_op_iwmmxt_macsw_M0_wRn(rd1); + else + gen_op_iwmmxt_macuw_M0_wRn(rd1); + if (!(insn & (1 << 20))) { + iwmmxt_load_reg(cpu_V1, wrd); + tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1); + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + gen_op_iwmmxt_cmpeqb_M0_wRn(rd1); + break; + case 1: + gen_op_iwmmxt_cmpeqw_M0_wRn(rd1); + break; + case 2: + gen_op_iwmmxt_cmpeql_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + if (insn & (1 << 22)) { + if (insn & (1 << 20)) + gen_op_iwmmxt_avgw1_M0_wRn(rd1); + else + gen_op_iwmmxt_avgw0_M0_wRn(rd1); + } else { + if (insn & (1 << 20)) + gen_op_iwmmxt_avgb1_M0_wRn(rd1); + else + gen_op_iwmmxt_avgb0_M0_wRn(rd1); + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3)); + tcg_gen_andi_i32(tmp, tmp, 7); + iwmmxt_load_reg(cpu_V1, rd1); + gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp); + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */ + if (((insn >> 6) & 3) == 3) + return 1; + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + tmp = load_reg(s, rd); + gen_op_iwmmxt_movq_M0_wRn(wrd); + switch ((insn >> 6) & 3) { + case 0: + tmp2 = tcg_constant_i32(0xff); + tmp3 = tcg_constant_i32((insn & 7) << 3); + break; + case 1: + tmp2 = tcg_constant_i32(0xffff); + tmp3 = tcg_constant_i32((insn & 3) << 4); + break; + case 2: + tmp2 = tcg_constant_i32(0xffffffff); + tmp3 = tcg_constant_i32((insn & 1) << 5); + break; + default: + g_assert_not_reached(); + } + gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3); + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */ + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + if (rd == 15 || ((insn >> 22) & 3) == 3) + return 1; + gen_op_iwmmxt_movq_M0_wRn(wrd); + tmp = tcg_temp_new_i32(); + switch ((insn >> 22) & 3) { + case 0: + tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3); + tcg_gen_extrl_i64_i32(tmp, cpu_M0); + if (insn & 8) { + tcg_gen_ext8s_i32(tmp, tmp); + } else { + tcg_gen_andi_i32(tmp, tmp, 0xff); + } + break; + case 1: + tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4); + tcg_gen_extrl_i64_i32(tmp, cpu_M0); + if (insn & 8) { + tcg_gen_ext16s_i32(tmp, tmp); + } else { + tcg_gen_andi_i32(tmp, tmp, 0xffff); + } + break; + case 2: + tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5); + tcg_gen_extrl_i64_i32(tmp, cpu_M0); + break; + } + store_reg(s, rd, tmp); + break; + case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */ + if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3) + return 1; + tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); + switch ((insn >> 22) & 3) { + case 0: + tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0); + break; + case 1: + tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4); + break; + case 2: + tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12); + break; + } + tcg_gen_shli_i32(tmp, tmp, 28); + gen_set_nzcv(tmp); + tcg_temp_free_i32(tmp); + break; + case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */ + if (((insn >> 6) & 3) == 3) + return 1; + rd = (insn >> 12) & 0xf; + wrd = (insn >> 16) & 0xf; + tmp = load_reg(s, rd); + switch ((insn >> 6) & 3) { + case 0: + gen_helper_iwmmxt_bcstb(cpu_M0, tmp); + break; + case 1: + gen_helper_iwmmxt_bcstw(cpu_M0, tmp); + break; + case 2: + gen_helper_iwmmxt_bcstl(cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */ + if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) + return 1; + tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); + tmp2 = tcg_temp_new_i32(); + tcg_gen_mov_i32(tmp2, tmp); + switch ((insn >> 22) & 3) { + case 0: + for (i = 0; i < 7; i ++) { + tcg_gen_shli_i32(tmp2, tmp2, 4); + tcg_gen_and_i32(tmp, tmp, tmp2); + } + break; + case 1: + for (i = 0; i < 3; i ++) { + tcg_gen_shli_i32(tmp2, tmp2, 8); + tcg_gen_and_i32(tmp, tmp, tmp2); + } + break; + case 2: + tcg_gen_shli_i32(tmp2, tmp2, 16); + tcg_gen_and_i32(tmp, tmp, tmp2); + break; + } + gen_set_nzcv(tmp); + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + break; + case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */ + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0); + break; + case 1: + gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0); + break; + case 2: + gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */ + if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3) + return 1; + tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF); + tmp2 = tcg_temp_new_i32(); + tcg_gen_mov_i32(tmp2, tmp); + switch ((insn >> 22) & 3) { + case 0: + for (i = 0; i < 7; i ++) { + tcg_gen_shli_i32(tmp2, tmp2, 4); + tcg_gen_or_i32(tmp, tmp, tmp2); + } + break; + case 1: + for (i = 0; i < 3; i ++) { + tcg_gen_shli_i32(tmp2, tmp2, 8); + tcg_gen_or_i32(tmp, tmp, tmp2); + } + break; + case 2: + tcg_gen_shli_i32(tmp2, tmp2, 16); + tcg_gen_or_i32(tmp, tmp, tmp2); + break; + } + gen_set_nzcv(tmp); + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + break; + case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */ + rd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3) + return 1; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + switch ((insn >> 22) & 3) { + case 0: + gen_helper_iwmmxt_msbb(tmp, cpu_M0); + break; + case 1: + gen_helper_iwmmxt_msbw(tmp, cpu_M0); + break; + case 2: + gen_helper_iwmmxt_msbl(tmp, cpu_M0); + break; + } + store_reg(s, rd, tmp); + break; + case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */ + case 0x906: case 0xb06: case 0xd06: case 0xf06: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1); + else + gen_op_iwmmxt_cmpgtub_M0_wRn(rd1); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1); + else + gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1); + else + gen_op_iwmmxt_cmpgtul_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */ + case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpacklsb_M0(); + else + gen_op_iwmmxt_unpacklub_M0(); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpacklsw_M0(); + else + gen_op_iwmmxt_unpackluw_M0(); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpacklsl_M0(); + else + gen_op_iwmmxt_unpacklul_M0(); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */ + case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpackhsb_M0(); + else + gen_op_iwmmxt_unpackhub_M0(); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpackhsw_M0(); + else + gen_op_iwmmxt_unpackhuw_M0(); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_unpackhsl_M0(); + else + gen_op_iwmmxt_unpackhul_M0(); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */ + case 0x214: case 0x614: case 0xa14: case 0xe14: + if (((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + if (gen_iwmmxt_shift(insn, 0xff, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + switch ((insn >> 22) & 3) { + case 1: + gen_helper_iwmmxt_srlw(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 2: + gen_helper_iwmmxt_srll(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 3: + gen_helper_iwmmxt_srlq(cpu_M0, cpu_env, cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */ + case 0x014: case 0x414: case 0x814: case 0xc14: + if (((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + if (gen_iwmmxt_shift(insn, 0xff, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + switch ((insn >> 22) & 3) { + case 1: + gen_helper_iwmmxt_sraw(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 2: + gen_helper_iwmmxt_sral(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 3: + gen_helper_iwmmxt_sraq(cpu_M0, cpu_env, cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */ + case 0x114: case 0x514: case 0x914: case 0xd14: + if (((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + if (gen_iwmmxt_shift(insn, 0xff, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + switch ((insn >> 22) & 3) { + case 1: + gen_helper_iwmmxt_sllw(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 2: + gen_helper_iwmmxt_slll(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 3: + gen_helper_iwmmxt_sllq(cpu_M0, cpu_env, cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */ + case 0x314: case 0x714: case 0xb14: case 0xf14: + if (((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_temp_new_i32(); + switch ((insn >> 22) & 3) { + case 1: + if (gen_iwmmxt_shift(insn, 0xf, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + gen_helper_iwmmxt_rorw(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 2: + if (gen_iwmmxt_shift(insn, 0x1f, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + gen_helper_iwmmxt_rorl(cpu_M0, cpu_env, cpu_M0, tmp); + break; + case 3: + if (gen_iwmmxt_shift(insn, 0x3f, tmp)) { + tcg_temp_free_i32(tmp); + return 1; + } + gen_helper_iwmmxt_rorq(cpu_M0, cpu_env, cpu_M0, tmp); + break; + } + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */ + case 0x916: case 0xb16: case 0xd16: case 0xf16: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_minsb_M0_wRn(rd1); + else + gen_op_iwmmxt_minub_M0_wRn(rd1); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_minsw_M0_wRn(rd1); + else + gen_op_iwmmxt_minuw_M0_wRn(rd1); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_minsl_M0_wRn(rd1); + else + gen_op_iwmmxt_minul_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */ + case 0x816: case 0xa16: case 0xc16: case 0xe16: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 0: + if (insn & (1 << 21)) + gen_op_iwmmxt_maxsb_M0_wRn(rd1); + else + gen_op_iwmmxt_maxub_M0_wRn(rd1); + break; + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_maxsw_M0_wRn(rd1); + else + gen_op_iwmmxt_maxuw_M0_wRn(rd1); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_maxsl_M0_wRn(rd1); + else + gen_op_iwmmxt_maxul_M0_wRn(rd1); + break; + case 3: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */ + case 0x402: case 0x502: case 0x602: case 0x702: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + iwmmxt_load_reg(cpu_V1, rd1); + gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, + tcg_constant_i32((insn >> 20) & 3)); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */ + case 0x41a: case 0x51a: case 0x61a: case 0x71a: + case 0x81a: case 0x91a: case 0xa1a: case 0xb1a: + case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 20) & 0xf) { + case 0x0: + gen_op_iwmmxt_subnb_M0_wRn(rd1); + break; + case 0x1: + gen_op_iwmmxt_subub_M0_wRn(rd1); + break; + case 0x3: + gen_op_iwmmxt_subsb_M0_wRn(rd1); + break; + case 0x4: + gen_op_iwmmxt_subnw_M0_wRn(rd1); + break; + case 0x5: + gen_op_iwmmxt_subuw_M0_wRn(rd1); + break; + case 0x7: + gen_op_iwmmxt_subsw_M0_wRn(rd1); + break; + case 0x8: + gen_op_iwmmxt_subnl_M0_wRn(rd1); + break; + case 0x9: + gen_op_iwmmxt_subul_M0_wRn(rd1); + break; + case 0xb: + gen_op_iwmmxt_subsl_M0_wRn(rd1); + break; + default: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */ + case 0x41e: case 0x51e: case 0x61e: case 0x71e: + case 0x81e: case 0x91e: case 0xa1e: case 0xb1e: + case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + tmp = tcg_constant_i32(((insn >> 16) & 0xf0) | (insn & 0x0f)); + gen_helper_iwmmxt_shufh(cpu_M0, cpu_env, cpu_M0, tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */ + case 0x418: case 0x518: case 0x618: case 0x718: + case 0x818: case 0x918: case 0xa18: case 0xb18: + case 0xc18: case 0xd18: case 0xe18: case 0xf18: + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 20) & 0xf) { + case 0x0: + gen_op_iwmmxt_addnb_M0_wRn(rd1); + break; + case 0x1: + gen_op_iwmmxt_addub_M0_wRn(rd1); + break; + case 0x3: + gen_op_iwmmxt_addsb_M0_wRn(rd1); + break; + case 0x4: + gen_op_iwmmxt_addnw_M0_wRn(rd1); + break; + case 0x5: + gen_op_iwmmxt_adduw_M0_wRn(rd1); + break; + case 0x7: + gen_op_iwmmxt_addsw_M0_wRn(rd1); + break; + case 0x8: + gen_op_iwmmxt_addnl_M0_wRn(rd1); + break; + case 0x9: + gen_op_iwmmxt_addul_M0_wRn(rd1); + break; + case 0xb: + gen_op_iwmmxt_addsl_M0_wRn(rd1); + break; + default: + return 1; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */ + case 0x408: case 0x508: case 0x608: case 0x708: + case 0x808: case 0x908: case 0xa08: case 0xb08: + case 0xc08: case 0xd08: case 0xe08: case 0xf08: + if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0) + return 1; + wrd = (insn >> 12) & 0xf; + rd0 = (insn >> 16) & 0xf; + rd1 = (insn >> 0) & 0xf; + gen_op_iwmmxt_movq_M0_wRn(rd0); + switch ((insn >> 22) & 3) { + case 1: + if (insn & (1 << 21)) + gen_op_iwmmxt_packsw_M0_wRn(rd1); + else + gen_op_iwmmxt_packuw_M0_wRn(rd1); + break; + case 2: + if (insn & (1 << 21)) + gen_op_iwmmxt_packsl_M0_wRn(rd1); + else + gen_op_iwmmxt_packul_M0_wRn(rd1); + break; + case 3: + if (insn & (1 << 21)) + gen_op_iwmmxt_packsq_M0_wRn(rd1); + else + gen_op_iwmmxt_packuq_M0_wRn(rd1); + break; + } + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + gen_op_iwmmxt_set_cup(); + break; + case 0x201: case 0x203: case 0x205: case 0x207: + case 0x209: case 0x20b: case 0x20d: case 0x20f: + case 0x211: case 0x213: case 0x215: case 0x217: + case 0x219: case 0x21b: case 0x21d: case 0x21f: + wrd = (insn >> 5) & 0xf; + rd0 = (insn >> 12) & 0xf; + rd1 = (insn >> 0) & 0xf; + if (rd0 == 0xf || rd1 == 0xf) + return 1; + gen_op_iwmmxt_movq_M0_wRn(wrd); + tmp = load_reg(s, rd0); + tmp2 = load_reg(s, rd1); + switch ((insn >> 16) & 0xf) { + case 0x0: /* TMIA */ + gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); + break; + case 0x8: /* TMIAPH */ + gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); + break; + case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */ + if (insn & (1 << 16)) + tcg_gen_shri_i32(tmp, tmp, 16); + if (insn & (1 << 17)) + tcg_gen_shri_i32(tmp2, tmp2, 16); + gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); + break; + default: + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + return 1; + } + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + gen_op_iwmmxt_movq_wRn_M0(wrd); + gen_op_iwmmxt_set_mup(); + break; + default: + return 1; + } + + return 0; +} + +/* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred + (ie. an undefined instruction). */ +static int disas_dsp_insn(DisasContext *s, uint32_t insn) +{ + int acc, rd0, rd1, rdhi, rdlo; + TCGv_i32 tmp, tmp2; + + if ((insn & 0x0ff00f10) == 0x0e200010) { + /* Multiply with Internal Accumulate Format */ + rd0 = (insn >> 12) & 0xf; + rd1 = insn & 0xf; + acc = (insn >> 5) & 7; + + if (acc != 0) + return 1; + + tmp = load_reg(s, rd0); + tmp2 = load_reg(s, rd1); + switch ((insn >> 16) & 0xf) { + case 0x0: /* MIA */ + gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2); + break; + case 0x8: /* MIAPH */ + gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2); + break; + case 0xc: /* MIABB */ + case 0xd: /* MIABT */ + case 0xe: /* MIATB */ + case 0xf: /* MIATT */ + if (insn & (1 << 16)) + tcg_gen_shri_i32(tmp, tmp, 16); + if (insn & (1 << 17)) + tcg_gen_shri_i32(tmp2, tmp2, 16); + gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2); + break; + default: + return 1; + } + tcg_temp_free_i32(tmp2); + tcg_temp_free_i32(tmp); + + gen_op_iwmmxt_movq_wRn_M0(acc); + return 0; + } + + if ((insn & 0x0fe00ff8) == 0x0c400000) { + /* Internal Accumulator Access Format */ + rdhi = (insn >> 16) & 0xf; + rdlo = (insn >> 12) & 0xf; + acc = insn & 7; + + if (acc != 0) + return 1; + + if (insn & ARM_CP_RW_BIT) { /* MRA */ + iwmmxt_load_reg(cpu_V0, acc); + tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0); + tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0); + tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1); + } else { /* MAR */ + tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]); + iwmmxt_store_reg(cpu_V0, acc); + } + return 0; + } + + return 1; +} + +static void gen_goto_ptr(void) +{ + tcg_gen_lookup_and_goto_ptr(); +} + +/* This will end the TB but doesn't guarantee we'll return to + * cpu_loop_exec. Any live exit_requests will be processed as we + * enter the next TB. + */ +static void gen_goto_tb(DisasContext *s, int n, target_long diff) +{ + if (translator_use_goto_tb(&s->base, s->pc_curr + diff)) { + /* + * For pcrel, the pc must always be up-to-date on entry to + * the linked TB, so that it can use simple additions for all + * further adjustments. For !pcrel, the linked TB is compiled + * to know its full virtual address, so we can delay the + * update to pc to the unlinked path. A long chain of links + * can thus avoid many updates to the PC. + */ + if (TARGET_TB_PCREL) { + gen_update_pc(s, diff); + tcg_gen_goto_tb(n); + } else { + tcg_gen_goto_tb(n); + gen_update_pc(s, diff); + } + tcg_gen_exit_tb(s->base.tb, n); + } else { + gen_update_pc(s, diff); + gen_goto_ptr(); + } + s->base.is_jmp = DISAS_NORETURN; +} + +/* Jump, specifying which TB number to use if we gen_goto_tb() */ +static void gen_jmp_tb(DisasContext *s, target_long diff, int tbno) +{ + if (unlikely(s->ss_active)) { + /* An indirect jump so that we still trigger the debug exception. */ + gen_update_pc(s, diff); + s->base.is_jmp = DISAS_JUMP; + return; + } + switch (s->base.is_jmp) { + case DISAS_NEXT: + case DISAS_TOO_MANY: + case DISAS_NORETURN: + /* + * The normal case: just go to the destination TB. + * NB: NORETURN happens if we generate code like + * gen_brcondi(l); + * gen_jmp(); + * gen_set_label(l); + * gen_jmp(); + * on the second call to gen_jmp(). + */ + gen_goto_tb(s, tbno, diff); + break; + case DISAS_UPDATE_NOCHAIN: + case DISAS_UPDATE_EXIT: + /* + * We already decided we're leaving the TB for some other reason. + * Avoid using goto_tb so we really do exit back to the main loop + * and don't chain to another TB. + */ + gen_update_pc(s, diff); + gen_goto_ptr(); + s->base.is_jmp = DISAS_NORETURN; + break; + default: + /* + * We shouldn't be emitting code for a jump and also have + * is_jmp set to one of the special cases like DISAS_SWI. + */ + g_assert_not_reached(); + } +} + +static inline void gen_jmp(DisasContext *s, target_long diff) +{ + gen_jmp_tb(s, diff, 0); +} + +static inline void gen_mulxy(TCGv_i32 t0, TCGv_i32 t1, int x, int y) +{ + if (x) + tcg_gen_sari_i32(t0, t0, 16); + else + gen_sxth(t0); + if (y) + tcg_gen_sari_i32(t1, t1, 16); + else + gen_sxth(t1); + tcg_gen_mul_i32(t0, t0, t1); +} + +/* Return the mask of PSR bits set by a MSR instruction. */ +static uint32_t msr_mask(DisasContext *s, int flags, int spsr) +{ + uint32_t mask = 0; + + if (flags & (1 << 0)) { + mask |= 0xff; + } + if (flags & (1 << 1)) { + mask |= 0xff00; + } + if (flags & (1 << 2)) { + mask |= 0xff0000; + } + if (flags & (1 << 3)) { + mask |= 0xff000000; + } + + /* Mask out undefined and reserved bits. */ + mask &= aarch32_cpsr_valid_mask(s->features, s->isar); + + /* Mask out execution state. */ + if (!spsr) { + mask &= ~CPSR_EXEC; + } + + /* Mask out privileged bits. */ + if (IS_USER(s)) { + mask &= CPSR_USER; + } + return mask; +} + +/* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */ +static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv_i32 t0) +{ + TCGv_i32 tmp; + if (spsr) { + /* ??? This is also undefined in system mode. */ + if (IS_USER(s)) + return 1; + + tmp = load_cpu_field(spsr); + tcg_gen_andi_i32(tmp, tmp, ~mask); + tcg_gen_andi_i32(t0, t0, mask); + tcg_gen_or_i32(tmp, tmp, t0); + store_cpu_field(tmp, spsr); + } else { + gen_set_cpsr(t0, mask); + } + tcg_temp_free_i32(t0); + gen_lookup_tb(s); + return 0; +} + +/* Returns nonzero if access to the PSR is not permitted. */ +static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val) +{ + TCGv_i32 tmp; + tmp = tcg_temp_new_i32(); + tcg_gen_movi_i32(tmp, val); + return gen_set_psr(s, mask, spsr, tmp); +} + +static bool msr_banked_access_decode(DisasContext *s, int r, int sysm, int rn, + int *tgtmode, int *regno) +{ + /* Decode the r and sysm fields of MSR/MRS banked accesses into + * the target mode and register number, and identify the various + * unpredictable cases. + * MSR (banked) and MRS (banked) are CONSTRAINED UNPREDICTABLE if: + * + executed in user mode + * + using R15 as the src/dest register + * + accessing an unimplemented register + * + accessing a register that's inaccessible at current PL/security state* + * + accessing a register that you could access with a different insn + * We choose to UNDEF in all these cases. + * Since we don't know which of the various AArch32 modes we are in + * we have to defer some checks to runtime. + * Accesses to Monitor mode registers from Secure EL1 (which implies + * that EL3 is AArch64) must trap to EL3. + * + * If the access checks fail this function will emit code to take + * an exception and return false. Otherwise it will return true, + * and set *tgtmode and *regno appropriately. + */ + /* These instructions are present only in ARMv8, or in ARMv7 with the + * Virtualization Extensions. + */ + if (!arm_dc_feature(s, ARM_FEATURE_V8) && + !arm_dc_feature(s, ARM_FEATURE_EL2)) { + goto undef; + } + + if (IS_USER(s) || rn == 15) { + goto undef; + } + + /* The table in the v8 ARM ARM section F5.2.3 describes the encoding + * of registers into (r, sysm). + */ + if (r) { + /* SPSRs for other modes */ + switch (sysm) { + case 0xe: /* SPSR_fiq */ + *tgtmode = ARM_CPU_MODE_FIQ; + break; + case 0x10: /* SPSR_irq */ + *tgtmode = ARM_CPU_MODE_IRQ; + break; + case 0x12: /* SPSR_svc */ + *tgtmode = ARM_CPU_MODE_SVC; + break; + case 0x14: /* SPSR_abt */ + *tgtmode = ARM_CPU_MODE_ABT; + break; + case 0x16: /* SPSR_und */ + *tgtmode = ARM_CPU_MODE_UND; + break; + case 0x1c: /* SPSR_mon */ + *tgtmode = ARM_CPU_MODE_MON; + break; + case 0x1e: /* SPSR_hyp */ + *tgtmode = ARM_CPU_MODE_HYP; + break; + default: /* unallocated */ + goto undef; + } + /* We arbitrarily assign SPSR a register number of 16. */ + *regno = 16; + } else { + /* general purpose registers for other modes */ + switch (sysm) { + case 0x0 ... 0x6: /* 0b00xxx : r8_usr ... r14_usr */ + *tgtmode = ARM_CPU_MODE_USR; + *regno = sysm + 8; + break; + case 0x8 ... 0xe: /* 0b01xxx : r8_fiq ... r14_fiq */ + *tgtmode = ARM_CPU_MODE_FIQ; + *regno = sysm; + break; + case 0x10 ... 0x11: /* 0b1000x : r14_irq, r13_irq */ + *tgtmode = ARM_CPU_MODE_IRQ; + *regno = sysm & 1 ? 13 : 14; + break; + case 0x12 ... 0x13: /* 0b1001x : r14_svc, r13_svc */ + *tgtmode = ARM_CPU_MODE_SVC; + *regno = sysm & 1 ? 13 : 14; + break; + case 0x14 ... 0x15: /* 0b1010x : r14_abt, r13_abt */ + *tgtmode = ARM_CPU_MODE_ABT; + *regno = sysm & 1 ? 13 : 14; + break; + case 0x16 ... 0x17: /* 0b1011x : r14_und, r13_und */ + *tgtmode = ARM_CPU_MODE_UND; + *regno = sysm & 1 ? 13 : 14; + break; + case 0x1c ... 0x1d: /* 0b1110x : r14_mon, r13_mon */ + *tgtmode = ARM_CPU_MODE_MON; + *regno = sysm & 1 ? 13 : 14; + break; + case 0x1e ... 0x1f: /* 0b1111x : elr_hyp, r13_hyp */ + *tgtmode = ARM_CPU_MODE_HYP; + /* Arbitrarily pick 17 for ELR_Hyp (which is not a banked LR!) */ + *regno = sysm & 1 ? 13 : 17; + break; + default: /* unallocated */ + goto undef; + } + } + + /* Catch the 'accessing inaccessible register' cases we can detect + * at translate time. + */ + switch (*tgtmode) { + case ARM_CPU_MODE_MON: + if (!arm_dc_feature(s, ARM_FEATURE_EL3) || s->ns) { + goto undef; + } + if (s->current_el == 1) { + /* If we're in Secure EL1 (which implies that EL3 is AArch64) + * then accesses to Mon registers trap to Secure EL2, if it exists, + * otherwise EL3. + */ + TCGv_i32 tcg_el; + + if (arm_dc_feature(s, ARM_FEATURE_AARCH64) && + dc_isar_feature(aa64_sel2, s)) { + /* Target EL is EL<3 minus SCR_EL3.EEL2> */ + tcg_el = load_cpu_field(cp15.scr_el3); + tcg_gen_sextract_i32(tcg_el, tcg_el, ctz32(SCR_EEL2), 1); + tcg_gen_addi_i32(tcg_el, tcg_el, 3); + } else { + tcg_el = tcg_constant_i32(3); + } + + gen_exception_insn_el_v(s, 0, EXCP_UDEF, + syn_uncategorized(), tcg_el); + tcg_temp_free_i32(tcg_el); + return false; + } + break; + case ARM_CPU_MODE_HYP: + /* + * SPSR_hyp and r13_hyp can only be accessed from Monitor mode + * (and so we can forbid accesses from EL2 or below). elr_hyp + * can be accessed also from Hyp mode, so forbid accesses from + * EL0 or EL1. + */ + if (!arm_dc_feature(s, ARM_FEATURE_EL2) || s->current_el < 2 || + (s->current_el < 3 && *regno != 17)) { + goto undef; + } + break; + default: + break; + } + + return true; + +undef: + /* If we get here then some access check did not pass */ + gen_exception_insn(s, 0, EXCP_UDEF, syn_uncategorized()); + return false; +} + +static void gen_msr_banked(DisasContext *s, int r, int sysm, int rn) +{ + TCGv_i32 tcg_reg; + int tgtmode = 0, regno = 0; + + if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { + return; + } + + /* Sync state because msr_banked() can raise exceptions */ + gen_set_condexec(s); + gen_update_pc(s, 0); + tcg_reg = load_reg(s, rn); + gen_helper_msr_banked(cpu_env, tcg_reg, + tcg_constant_i32(tgtmode), + tcg_constant_i32(regno)); + tcg_temp_free_i32(tcg_reg); + s->base.is_jmp = DISAS_UPDATE_EXIT; +} + +static void gen_mrs_banked(DisasContext *s, int r, int sysm, int rn) +{ + TCGv_i32 tcg_reg; + int tgtmode = 0, regno = 0; + + if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) { + return; + } + + /* Sync state because mrs_banked() can raise exceptions */ + gen_set_condexec(s); + gen_update_pc(s, 0); + tcg_reg = tcg_temp_new_i32(); + gen_helper_mrs_banked(tcg_reg, cpu_env, + tcg_constant_i32(tgtmode), + tcg_constant_i32(regno)); + store_reg(s, rn, tcg_reg); + s->base.is_jmp = DISAS_UPDATE_EXIT; +} + +/* Store value to PC as for an exception return (ie don't + * mask bits). The subsequent call to gen_helper_cpsr_write_eret() + * will do the masking based on the new value of the Thumb bit. + */ +static void store_pc_exc_ret(DisasContext *s, TCGv_i32 pc) +{ + tcg_gen_mov_i32(cpu_R[15], pc); + tcg_temp_free_i32(pc); +} + +/* Generate a v6 exception return. Marks both values as dead. */ +static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr) +{ + store_pc_exc_ret(s, pc); + /* The cpsr_write_eret helper will mask the low bits of PC + * appropriately depending on the new Thumb bit, so it must + * be called after storing the new PC. + */ + if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { + gen_io_start(); + } + gen_helper_cpsr_write_eret(cpu_env, cpsr); + tcg_temp_free_i32(cpsr); + /* Must exit loop to check un-masked IRQs */ + s->base.is_jmp = DISAS_EXIT; +} + +/* Generate an old-style exception return. Marks pc as dead. */ +static void gen_exception_return(DisasContext *s, TCGv_i32 pc) +{ + gen_rfe(s, pc, load_cpu_field(spsr)); +} + +static void gen_gvec_fn3_qc(uint32_t rd_ofs, uint32_t rn_ofs, uint32_t rm_ofs, + uint32_t opr_sz, uint32_t max_sz, + gen_helper_gvec_3_ptr *fn) +{ + TCGv_ptr qc_ptr = tcg_temp_new_ptr(); + + tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc)); + tcg_gen_gvec_3_ptr(rd_ofs, rn_ofs, rm_ofs, qc_ptr, + opr_sz, max_sz, 0, fn); + tcg_temp_free_ptr(qc_ptr); +} + +void gen_gvec_sqrdmlah_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static gen_helper_gvec_3_ptr * const fns[2] = { + gen_helper_gvec_qrdmlah_s16, gen_helper_gvec_qrdmlah_s32 + }; + tcg_debug_assert(vece >= 1 && vece <= 2); + gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); +} + +void gen_gvec_sqrdmlsh_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static gen_helper_gvec_3_ptr * const fns[2] = { + gen_helper_gvec_qrdmlsh_s16, gen_helper_gvec_qrdmlsh_s32 + }; + tcg_debug_assert(vece >= 1 && vece <= 2); + gen_gvec_fn3_qc(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, fns[vece - 1]); +} + +#define GEN_CMP0(NAME, COND) \ + static void gen_##NAME##0_i32(TCGv_i32 d, TCGv_i32 a) \ + { \ + tcg_gen_setcondi_i32(COND, d, a, 0); \ + tcg_gen_neg_i32(d, d); \ + } \ + static void gen_##NAME##0_i64(TCGv_i64 d, TCGv_i64 a) \ + { \ + tcg_gen_setcondi_i64(COND, d, a, 0); \ + tcg_gen_neg_i64(d, d); \ + } \ + static void gen_##NAME##0_vec(unsigned vece, TCGv_vec d, TCGv_vec a) \ + { \ + TCGv_vec zero = tcg_constant_vec_matching(d, vece, 0); \ + tcg_gen_cmp_vec(COND, vece, d, a, zero); \ + } \ + void gen_gvec_##NAME##0(unsigned vece, uint32_t d, uint32_t m, \ + uint32_t opr_sz, uint32_t max_sz) \ + { \ + const GVecGen2 op[4] = { \ + { .fno = gen_helper_gvec_##NAME##0_b, \ + .fniv = gen_##NAME##0_vec, \ + .opt_opc = vecop_list_cmp, \ + .vece = MO_8 }, \ + { .fno = gen_helper_gvec_##NAME##0_h, \ + .fniv = gen_##NAME##0_vec, \ + .opt_opc = vecop_list_cmp, \ + .vece = MO_16 }, \ + { .fni4 = gen_##NAME##0_i32, \ + .fniv = gen_##NAME##0_vec, \ + .opt_opc = vecop_list_cmp, \ + .vece = MO_32 }, \ + { .fni8 = gen_##NAME##0_i64, \ + .fniv = gen_##NAME##0_vec, \ + .opt_opc = vecop_list_cmp, \ + .prefer_i64 = TCG_TARGET_REG_BITS == 64, \ + .vece = MO_64 }, \ + }; \ + tcg_gen_gvec_2(d, m, opr_sz, max_sz, &op[vece]); \ + } + +static const TCGOpcode vecop_list_cmp[] = { + INDEX_op_cmp_vec, 0 +}; + +GEN_CMP0(ceq, TCG_COND_EQ) +GEN_CMP0(cle, TCG_COND_LE) +GEN_CMP0(cge, TCG_COND_GE) +GEN_CMP0(clt, TCG_COND_LT) +GEN_CMP0(cgt, TCG_COND_GT) + +#undef GEN_CMP0 + +static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + tcg_gen_vec_sar8i_i64(a, a, shift); + tcg_gen_vec_add8_i64(d, d, a); +} + +static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + tcg_gen_vec_sar16i_i64(a, a, shift); + tcg_gen_vec_add16_i64(d, d, a); +} + +static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) +{ + tcg_gen_sari_i32(a, a, shift); + tcg_gen_add_i32(d, d, a); +} + +static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + tcg_gen_sari_i64(a, a, shift); + tcg_gen_add_i64(d, d, a); +} + +static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) +{ + tcg_gen_sari_vec(vece, a, a, sh); + tcg_gen_add_vec(vece, d, d, a); +} + +void gen_gvec_ssra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, + int64_t shift, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_sari_vec, INDEX_op_add_vec, 0 + }; + static const GVecGen2i ops[4] = { + { .fni8 = gen_ssra8_i64, + .fniv = gen_ssra_vec, + .fno = gen_helper_gvec_ssra_b, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fni8 = gen_ssra16_i64, + .fniv = gen_ssra_vec, + .fno = gen_helper_gvec_ssra_h, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_ssra32_i32, + .fniv = gen_ssra_vec, + .fno = gen_helper_gvec_ssra_s, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_ssra64_i64, + .fniv = gen_ssra_vec, + .fno = gen_helper_gvec_ssra_b, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_64 }, + }; + + /* tszimm encoding produces immediates in the range [1..esize]. */ + tcg_debug_assert(shift > 0); + tcg_debug_assert(shift <= (8 << vece)); + + /* + * Shifts larger than the element size are architecturally valid. + * Signed results in all sign bits. + */ + shift = MIN(shift, (8 << vece) - 1); + tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); +} + +static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + tcg_gen_vec_shr8i_i64(a, a, shift); + tcg_gen_vec_add8_i64(d, d, a); +} + +static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + tcg_gen_vec_shr16i_i64(a, a, shift); + tcg_gen_vec_add16_i64(d, d, a); +} + +static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) +{ + tcg_gen_shri_i32(a, a, shift); + tcg_gen_add_i32(d, d, a); +} + +static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + tcg_gen_shri_i64(a, a, shift); + tcg_gen_add_i64(d, d, a); +} + +static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) +{ + tcg_gen_shri_vec(vece, a, a, sh); + tcg_gen_add_vec(vece, d, d, a); +} + +void gen_gvec_usra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, + int64_t shift, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_shri_vec, INDEX_op_add_vec, 0 + }; + static const GVecGen2i ops[4] = { + { .fni8 = gen_usra8_i64, + .fniv = gen_usra_vec, + .fno = gen_helper_gvec_usra_b, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_8, }, + { .fni8 = gen_usra16_i64, + .fniv = gen_usra_vec, + .fno = gen_helper_gvec_usra_h, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_16, }, + { .fni4 = gen_usra32_i32, + .fniv = gen_usra_vec, + .fno = gen_helper_gvec_usra_s, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_32, }, + { .fni8 = gen_usra64_i64, + .fniv = gen_usra_vec, + .fno = gen_helper_gvec_usra_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_64, }, + }; + + /* tszimm encoding produces immediates in the range [1..esize]. */ + tcg_debug_assert(shift > 0); + tcg_debug_assert(shift <= (8 << vece)); + + /* + * Shifts larger than the element size are architecturally valid. + * Unsigned results in all zeros as input to accumulate: nop. + */ + if (shift < (8 << vece)) { + tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); + } else { + /* Nop, but we do need to clear the tail. */ + tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); + } +} + +/* + * Shift one less than the requested amount, and the low bit is + * the rounding bit. For the 8 and 16-bit operations, because we + * mask the low bit, we can perform a normal integer shift instead + * of a vector shift. + */ +static void gen_srshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_shri_i64(t, a, sh - 1); + tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); + tcg_gen_vec_sar8i_i64(d, a, sh); + tcg_gen_vec_add8_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_srshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_shri_i64(t, a, sh - 1); + tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); + tcg_gen_vec_sar16i_i64(d, a, sh); + tcg_gen_vec_add16_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_srshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) +{ + TCGv_i32 t; + + /* Handle shift by the input size for the benefit of trans_SRSHR_ri */ + if (sh == 32) { + tcg_gen_movi_i32(d, 0); + return; + } + t = tcg_temp_new_i32(); + tcg_gen_extract_i32(t, a, sh - 1, 1); + tcg_gen_sari_i32(d, a, sh); + tcg_gen_add_i32(d, d, t); + tcg_temp_free_i32(t); +} + +static void gen_srshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_extract_i64(t, a, sh - 1, 1); + tcg_gen_sari_i64(d, a, sh); + tcg_gen_add_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_srshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + TCGv_vec ones = tcg_temp_new_vec_matching(d); + + tcg_gen_shri_vec(vece, t, a, sh - 1); + tcg_gen_dupi_vec(vece, ones, 1); + tcg_gen_and_vec(vece, t, t, ones); + tcg_gen_sari_vec(vece, d, a, sh); + tcg_gen_add_vec(vece, d, d, t); + + tcg_temp_free_vec(t); + tcg_temp_free_vec(ones); +} + +void gen_gvec_srshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, + int64_t shift, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 + }; + static const GVecGen2i ops[4] = { + { .fni8 = gen_srshr8_i64, + .fniv = gen_srshr_vec, + .fno = gen_helper_gvec_srshr_b, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fni8 = gen_srshr16_i64, + .fniv = gen_srshr_vec, + .fno = gen_helper_gvec_srshr_h, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_srshr32_i32, + .fniv = gen_srshr_vec, + .fno = gen_helper_gvec_srshr_s, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_srshr64_i64, + .fniv = gen_srshr_vec, + .fno = gen_helper_gvec_srshr_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + + /* tszimm encoding produces immediates in the range [1..esize] */ + tcg_debug_assert(shift > 0); + tcg_debug_assert(shift <= (8 << vece)); + + if (shift == (8 << vece)) { + /* + * Shifts larger than the element size are architecturally valid. + * Signed results in all sign bits. With rounding, this produces + * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. + * I.e. always zero. + */ + tcg_gen_gvec_dup_imm(vece, rd_ofs, opr_sz, max_sz, 0); + } else { + tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); + } +} + +static void gen_srsra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + gen_srshr8_i64(t, a, sh); + tcg_gen_vec_add8_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_srsra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + gen_srshr16_i64(t, a, sh); + tcg_gen_vec_add16_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_srsra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) +{ + TCGv_i32 t = tcg_temp_new_i32(); + + gen_srshr32_i32(t, a, sh); + tcg_gen_add_i32(d, d, t); + tcg_temp_free_i32(t); +} + +static void gen_srsra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + gen_srshr64_i64(t, a, sh); + tcg_gen_add_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_srsra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + + gen_srshr_vec(vece, t, a, sh); + tcg_gen_add_vec(vece, d, d, t); + tcg_temp_free_vec(t); +} + +void gen_gvec_srsra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, + int64_t shift, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_shri_vec, INDEX_op_sari_vec, INDEX_op_add_vec, 0 + }; + static const GVecGen2i ops[4] = { + { .fni8 = gen_srsra8_i64, + .fniv = gen_srsra_vec, + .fno = gen_helper_gvec_srsra_b, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_8 }, + { .fni8 = gen_srsra16_i64, + .fniv = gen_srsra_vec, + .fno = gen_helper_gvec_srsra_h, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_16 }, + { .fni4 = gen_srsra32_i32, + .fniv = gen_srsra_vec, + .fno = gen_helper_gvec_srsra_s, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_32 }, + { .fni8 = gen_srsra64_i64, + .fniv = gen_srsra_vec, + .fno = gen_helper_gvec_srsra_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_64 }, + }; + + /* tszimm encoding produces immediates in the range [1..esize] */ + tcg_debug_assert(shift > 0); + tcg_debug_assert(shift <= (8 << vece)); + + /* + * Shifts larger than the element size are architecturally valid. + * Signed results in all sign bits. With rounding, this produces + * (-1 + 1) >> 1 == 0, or (0 + 1) >> 1 == 0. + * I.e. always zero. With accumulation, this leaves D unchanged. + */ + if (shift == (8 << vece)) { + /* Nop, but we do need to clear the tail. */ + tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); + } else { + tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); + } +} + +static void gen_urshr8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_shri_i64(t, a, sh - 1); + tcg_gen_andi_i64(t, t, dup_const(MO_8, 1)); + tcg_gen_vec_shr8i_i64(d, a, sh); + tcg_gen_vec_add8_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_urshr16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_shri_i64(t, a, sh - 1); + tcg_gen_andi_i64(t, t, dup_const(MO_16, 1)); + tcg_gen_vec_shr16i_i64(d, a, sh); + tcg_gen_vec_add16_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_urshr32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) +{ + TCGv_i32 t; + + /* Handle shift by the input size for the benefit of trans_URSHR_ri */ + if (sh == 32) { + tcg_gen_extract_i32(d, a, sh - 1, 1); + return; + } + t = tcg_temp_new_i32(); + tcg_gen_extract_i32(t, a, sh - 1, 1); + tcg_gen_shri_i32(d, a, sh); + tcg_gen_add_i32(d, d, t); + tcg_temp_free_i32(t); +} + +static void gen_urshr64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_extract_i64(t, a, sh - 1, 1); + tcg_gen_shri_i64(d, a, sh); + tcg_gen_add_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_urshr_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t shift) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + TCGv_vec ones = tcg_temp_new_vec_matching(d); + + tcg_gen_shri_vec(vece, t, a, shift - 1); + tcg_gen_dupi_vec(vece, ones, 1); + tcg_gen_and_vec(vece, t, t, ones); + tcg_gen_shri_vec(vece, d, a, shift); + tcg_gen_add_vec(vece, d, d, t); + + tcg_temp_free_vec(t); + tcg_temp_free_vec(ones); +} + +void gen_gvec_urshr(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, + int64_t shift, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_shri_vec, INDEX_op_add_vec, 0 + }; + static const GVecGen2i ops[4] = { + { .fni8 = gen_urshr8_i64, + .fniv = gen_urshr_vec, + .fno = gen_helper_gvec_urshr_b, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fni8 = gen_urshr16_i64, + .fniv = gen_urshr_vec, + .fno = gen_helper_gvec_urshr_h, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_urshr32_i32, + .fniv = gen_urshr_vec, + .fno = gen_helper_gvec_urshr_s, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_urshr64_i64, + .fniv = gen_urshr_vec, + .fno = gen_helper_gvec_urshr_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + + /* tszimm encoding produces immediates in the range [1..esize] */ + tcg_debug_assert(shift > 0); + tcg_debug_assert(shift <= (8 << vece)); + + if (shift == (8 << vece)) { + /* + * Shifts larger than the element size are architecturally valid. + * Unsigned results in zero. With rounding, this produces a + * copy of the most significant bit. + */ + tcg_gen_gvec_shri(vece, rd_ofs, rm_ofs, shift - 1, opr_sz, max_sz); + } else { + tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); + } +} + +static void gen_ursra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + if (sh == 8) { + tcg_gen_vec_shr8i_i64(t, a, 7); + } else { + gen_urshr8_i64(t, a, sh); + } + tcg_gen_vec_add8_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_ursra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + if (sh == 16) { + tcg_gen_vec_shr16i_i64(t, a, 15); + } else { + gen_urshr16_i64(t, a, sh); + } + tcg_gen_vec_add16_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_ursra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t sh) +{ + TCGv_i32 t = tcg_temp_new_i32(); + + if (sh == 32) { + tcg_gen_shri_i32(t, a, 31); + } else { + gen_urshr32_i32(t, a, sh); + } + tcg_gen_add_i32(d, d, t); + tcg_temp_free_i32(t); +} + +static void gen_ursra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t sh) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + if (sh == 64) { + tcg_gen_shri_i64(t, a, 63); + } else { + gen_urshr64_i64(t, a, sh); + } + tcg_gen_add_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_ursra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + + if (sh == (8 << vece)) { + tcg_gen_shri_vec(vece, t, a, sh - 1); + } else { + gen_urshr_vec(vece, t, a, sh); + } + tcg_gen_add_vec(vece, d, d, t); + tcg_temp_free_vec(t); +} + +void gen_gvec_ursra(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, + int64_t shift, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_shri_vec, INDEX_op_add_vec, 0 + }; + static const GVecGen2i ops[4] = { + { .fni8 = gen_ursra8_i64, + .fniv = gen_ursra_vec, + .fno = gen_helper_gvec_ursra_b, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_8 }, + { .fni8 = gen_ursra16_i64, + .fniv = gen_ursra_vec, + .fno = gen_helper_gvec_ursra_h, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_16 }, + { .fni4 = gen_ursra32_i32, + .fniv = gen_ursra_vec, + .fno = gen_helper_gvec_ursra_s, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_32 }, + { .fni8 = gen_ursra64_i64, + .fniv = gen_ursra_vec, + .fno = gen_helper_gvec_ursra_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_64 }, + }; + + /* tszimm encoding produces immediates in the range [1..esize] */ + tcg_debug_assert(shift > 0); + tcg_debug_assert(shift <= (8 << vece)); + + tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); +} + +static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + uint64_t mask = dup_const(MO_8, 0xff >> shift); + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_shri_i64(t, a, shift); + tcg_gen_andi_i64(t, t, mask); + tcg_gen_andi_i64(d, d, ~mask); + tcg_gen_or_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + uint64_t mask = dup_const(MO_16, 0xffff >> shift); + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_shri_i64(t, a, shift); + tcg_gen_andi_i64(t, t, mask); + tcg_gen_andi_i64(d, d, ~mask); + tcg_gen_or_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) +{ + tcg_gen_shri_i32(a, a, shift); + tcg_gen_deposit_i32(d, d, a, 0, 32 - shift); +} + +static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + tcg_gen_shri_i64(a, a, shift); + tcg_gen_deposit_i64(d, d, a, 0, 64 - shift); +} + +static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + TCGv_vec m = tcg_temp_new_vec_matching(d); + + tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK((8 << vece) - sh, sh)); + tcg_gen_shri_vec(vece, t, a, sh); + tcg_gen_and_vec(vece, d, d, m); + tcg_gen_or_vec(vece, d, d, t); + + tcg_temp_free_vec(t); + tcg_temp_free_vec(m); +} + +void gen_gvec_sri(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, + int64_t shift, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 }; + const GVecGen2i ops[4] = { + { .fni8 = gen_shr8_ins_i64, + .fniv = gen_shr_ins_vec, + .fno = gen_helper_gvec_sri_b, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fni8 = gen_shr16_ins_i64, + .fniv = gen_shr_ins_vec, + .fno = gen_helper_gvec_sri_h, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_shr32_ins_i32, + .fniv = gen_shr_ins_vec, + .fno = gen_helper_gvec_sri_s, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_shr64_ins_i64, + .fniv = gen_shr_ins_vec, + .fno = gen_helper_gvec_sri_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + + /* tszimm encoding produces immediates in the range [1..esize]. */ + tcg_debug_assert(shift > 0); + tcg_debug_assert(shift <= (8 << vece)); + + /* Shift of esize leaves destination unchanged. */ + if (shift < (8 << vece)) { + tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); + } else { + /* Nop, but we do need to clear the tail. */ + tcg_gen_gvec_mov(vece, rd_ofs, rd_ofs, opr_sz, max_sz); + } +} + +static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + uint64_t mask = dup_const(MO_8, 0xff << shift); + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_shli_i64(t, a, shift); + tcg_gen_andi_i64(t, t, mask); + tcg_gen_andi_i64(d, d, ~mask); + tcg_gen_or_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + uint64_t mask = dup_const(MO_16, 0xffff << shift); + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_shli_i64(t, a, shift); + tcg_gen_andi_i64(t, t, mask); + tcg_gen_andi_i64(d, d, ~mask); + tcg_gen_or_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) +{ + tcg_gen_deposit_i32(d, d, a, shift, 32 - shift); +} + +static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) +{ + tcg_gen_deposit_i64(d, d, a, shift, 64 - shift); +} + +static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + TCGv_vec m = tcg_temp_new_vec_matching(d); + + tcg_gen_shli_vec(vece, t, a, sh); + tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK(0, sh)); + tcg_gen_and_vec(vece, d, d, m); + tcg_gen_or_vec(vece, d, d, t); + + tcg_temp_free_vec(t); + tcg_temp_free_vec(m); +} + +void gen_gvec_sli(unsigned vece, uint32_t rd_ofs, uint32_t rm_ofs, + int64_t shift, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; + const GVecGen2i ops[4] = { + { .fni8 = gen_shl8_ins_i64, + .fniv = gen_shl_ins_vec, + .fno = gen_helper_gvec_sli_b, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fni8 = gen_shl16_ins_i64, + .fniv = gen_shl_ins_vec, + .fno = gen_helper_gvec_sli_h, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_shl32_ins_i32, + .fniv = gen_shl_ins_vec, + .fno = gen_helper_gvec_sli_s, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_shl64_ins_i64, + .fniv = gen_shl_ins_vec, + .fno = gen_helper_gvec_sli_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + + /* tszimm encoding produces immediates in the range [0..esize-1]. */ + tcg_debug_assert(shift >= 0); + tcg_debug_assert(shift < (8 << vece)); + + if (shift == 0) { + tcg_gen_gvec_mov(vece, rd_ofs, rm_ofs, opr_sz, max_sz); + } else { + tcg_gen_gvec_2i(rd_ofs, rm_ofs, opr_sz, max_sz, shift, &ops[vece]); + } +} + +static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + gen_helper_neon_mul_u8(a, a, b); + gen_helper_neon_add_u8(d, d, a); +} + +static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + gen_helper_neon_mul_u8(a, a, b); + gen_helper_neon_sub_u8(d, d, a); +} + +static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + gen_helper_neon_mul_u16(a, a, b); + gen_helper_neon_add_u16(d, d, a); +} + +static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + gen_helper_neon_mul_u16(a, a, b); + gen_helper_neon_sub_u16(d, d, a); +} + +static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + tcg_gen_mul_i32(a, a, b); + tcg_gen_add_i32(d, d, a); +} + +static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + tcg_gen_mul_i32(a, a, b); + tcg_gen_sub_i32(d, d, a); +} + +static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) +{ + tcg_gen_mul_i64(a, a, b); + tcg_gen_add_i64(d, d, a); +} + +static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) +{ + tcg_gen_mul_i64(a, a, b); + tcg_gen_sub_i64(d, d, a); +} + +static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) +{ + tcg_gen_mul_vec(vece, a, a, b); + tcg_gen_add_vec(vece, d, d, a); +} + +static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) +{ + tcg_gen_mul_vec(vece, a, a, b); + tcg_gen_sub_vec(vece, d, d, a); +} + +/* Note that while NEON does not support VMLA and VMLS as 64-bit ops, + * these tables are shared with AArch64 which does support them. + */ +void gen_gvec_mla(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_mul_vec, INDEX_op_add_vec, 0 + }; + static const GVecGen3 ops[4] = { + { .fni4 = gen_mla8_i32, + .fniv = gen_mla_vec, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fni4 = gen_mla16_i32, + .fniv = gen_mla_vec, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_mla32_i32, + .fniv = gen_mla_vec, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_mla64_i64, + .fniv = gen_mla_vec, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +void gen_gvec_mls(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_mul_vec, INDEX_op_sub_vec, 0 + }; + static const GVecGen3 ops[4] = { + { .fni4 = gen_mls8_i32, + .fniv = gen_mls_vec, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fni4 = gen_mls16_i32, + .fniv = gen_mls_vec, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_mls32_i32, + .fniv = gen_mls_vec, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_mls64_i64, + .fniv = gen_mls_vec, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .load_dest = true, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +/* CMTST : test is "if (X & Y != 0)". */ +static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + tcg_gen_and_i32(d, a, b); + tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0); + tcg_gen_neg_i32(d, d); +} + +void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) +{ + tcg_gen_and_i64(d, a, b); + tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0); + tcg_gen_neg_i64(d, d); +} + +static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) +{ + tcg_gen_and_vec(vece, d, a, b); + tcg_gen_dupi_vec(vece, a, 0); + tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a); +} + +void gen_gvec_cmtst(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { INDEX_op_cmp_vec, 0 }; + static const GVecGen3 ops[4] = { + { .fni4 = gen_helper_neon_tst_u8, + .fniv = gen_cmtst_vec, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fni4 = gen_helper_neon_tst_u16, + .fniv = gen_cmtst_vec, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_cmtst_i32, + .fniv = gen_cmtst_vec, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_cmtst_i64, + .fniv = gen_cmtst_vec, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +void gen_ushl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) +{ + TCGv_i32 lval = tcg_temp_new_i32(); + TCGv_i32 rval = tcg_temp_new_i32(); + TCGv_i32 lsh = tcg_temp_new_i32(); + TCGv_i32 rsh = tcg_temp_new_i32(); + TCGv_i32 zero = tcg_constant_i32(0); + TCGv_i32 max = tcg_constant_i32(32); + + /* + * Rely on the TCG guarantee that out of range shifts produce + * unspecified results, not undefined behaviour (i.e. no trap). + * Discard out-of-range results after the fact. + */ + tcg_gen_ext8s_i32(lsh, shift); + tcg_gen_neg_i32(rsh, lsh); + tcg_gen_shl_i32(lval, src, lsh); + tcg_gen_shr_i32(rval, src, rsh); + tcg_gen_movcond_i32(TCG_COND_LTU, dst, lsh, max, lval, zero); + tcg_gen_movcond_i32(TCG_COND_LTU, dst, rsh, max, rval, dst); + + tcg_temp_free_i32(lval); + tcg_temp_free_i32(rval); + tcg_temp_free_i32(lsh); + tcg_temp_free_i32(rsh); +} + +void gen_ushl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) +{ + TCGv_i64 lval = tcg_temp_new_i64(); + TCGv_i64 rval = tcg_temp_new_i64(); + TCGv_i64 lsh = tcg_temp_new_i64(); + TCGv_i64 rsh = tcg_temp_new_i64(); + TCGv_i64 zero = tcg_constant_i64(0); + TCGv_i64 max = tcg_constant_i64(64); + + /* + * Rely on the TCG guarantee that out of range shifts produce + * unspecified results, not undefined behaviour (i.e. no trap). + * Discard out-of-range results after the fact. + */ + tcg_gen_ext8s_i64(lsh, shift); + tcg_gen_neg_i64(rsh, lsh); + tcg_gen_shl_i64(lval, src, lsh); + tcg_gen_shr_i64(rval, src, rsh); + tcg_gen_movcond_i64(TCG_COND_LTU, dst, lsh, max, lval, zero); + tcg_gen_movcond_i64(TCG_COND_LTU, dst, rsh, max, rval, dst); + + tcg_temp_free_i64(lval); + tcg_temp_free_i64(rval); + tcg_temp_free_i64(lsh); + tcg_temp_free_i64(rsh); +} + +static void gen_ushl_vec(unsigned vece, TCGv_vec dst, + TCGv_vec src, TCGv_vec shift) +{ + TCGv_vec lval = tcg_temp_new_vec_matching(dst); + TCGv_vec rval = tcg_temp_new_vec_matching(dst); + TCGv_vec lsh = tcg_temp_new_vec_matching(dst); + TCGv_vec rsh = tcg_temp_new_vec_matching(dst); + TCGv_vec msk, max; + + tcg_gen_neg_vec(vece, rsh, shift); + if (vece == MO_8) { + tcg_gen_mov_vec(lsh, shift); + } else { + msk = tcg_temp_new_vec_matching(dst); + tcg_gen_dupi_vec(vece, msk, 0xff); + tcg_gen_and_vec(vece, lsh, shift, msk); + tcg_gen_and_vec(vece, rsh, rsh, msk); + tcg_temp_free_vec(msk); + } + + /* + * Rely on the TCG guarantee that out of range shifts produce + * unspecified results, not undefined behaviour (i.e. no trap). + * Discard out-of-range results after the fact. + */ + tcg_gen_shlv_vec(vece, lval, src, lsh); + tcg_gen_shrv_vec(vece, rval, src, rsh); + + max = tcg_temp_new_vec_matching(dst); + tcg_gen_dupi_vec(vece, max, 8 << vece); + + /* + * The choice of LT (signed) and GEU (unsigned) are biased toward + * the instructions of the x86_64 host. For MO_8, the whole byte + * is significant so we must use an unsigned compare; otherwise we + * have already masked to a byte and so a signed compare works. + * Other tcg hosts have a full set of comparisons and do not care. + */ + if (vece == MO_8) { + tcg_gen_cmp_vec(TCG_COND_GEU, vece, lsh, lsh, max); + tcg_gen_cmp_vec(TCG_COND_GEU, vece, rsh, rsh, max); + tcg_gen_andc_vec(vece, lval, lval, lsh); + tcg_gen_andc_vec(vece, rval, rval, rsh); + } else { + tcg_gen_cmp_vec(TCG_COND_LT, vece, lsh, lsh, max); + tcg_gen_cmp_vec(TCG_COND_LT, vece, rsh, rsh, max); + tcg_gen_and_vec(vece, lval, lval, lsh); + tcg_gen_and_vec(vece, rval, rval, rsh); + } + tcg_gen_or_vec(vece, dst, lval, rval); + + tcg_temp_free_vec(max); + tcg_temp_free_vec(lval); + tcg_temp_free_vec(rval); + tcg_temp_free_vec(lsh); + tcg_temp_free_vec(rsh); +} + +void gen_gvec_ushl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_neg_vec, INDEX_op_shlv_vec, + INDEX_op_shrv_vec, INDEX_op_cmp_vec, 0 + }; + static const GVecGen3 ops[4] = { + { .fniv = gen_ushl_vec, + .fno = gen_helper_gvec_ushl_b, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fniv = gen_ushl_vec, + .fno = gen_helper_gvec_ushl_h, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_ushl_i32, + .fniv = gen_ushl_vec, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_ushl_i64, + .fniv = gen_ushl_vec, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +void gen_sshl_i32(TCGv_i32 dst, TCGv_i32 src, TCGv_i32 shift) +{ + TCGv_i32 lval = tcg_temp_new_i32(); + TCGv_i32 rval = tcg_temp_new_i32(); + TCGv_i32 lsh = tcg_temp_new_i32(); + TCGv_i32 rsh = tcg_temp_new_i32(); + TCGv_i32 zero = tcg_constant_i32(0); + TCGv_i32 max = tcg_constant_i32(31); + + /* + * Rely on the TCG guarantee that out of range shifts produce + * unspecified results, not undefined behaviour (i.e. no trap). + * Discard out-of-range results after the fact. + */ + tcg_gen_ext8s_i32(lsh, shift); + tcg_gen_neg_i32(rsh, lsh); + tcg_gen_shl_i32(lval, src, lsh); + tcg_gen_umin_i32(rsh, rsh, max); + tcg_gen_sar_i32(rval, src, rsh); + tcg_gen_movcond_i32(TCG_COND_LEU, lval, lsh, max, lval, zero); + tcg_gen_movcond_i32(TCG_COND_LT, dst, lsh, zero, rval, lval); + + tcg_temp_free_i32(lval); + tcg_temp_free_i32(rval); + tcg_temp_free_i32(lsh); + tcg_temp_free_i32(rsh); +} + +void gen_sshl_i64(TCGv_i64 dst, TCGv_i64 src, TCGv_i64 shift) +{ + TCGv_i64 lval = tcg_temp_new_i64(); + TCGv_i64 rval = tcg_temp_new_i64(); + TCGv_i64 lsh = tcg_temp_new_i64(); + TCGv_i64 rsh = tcg_temp_new_i64(); + TCGv_i64 zero = tcg_constant_i64(0); + TCGv_i64 max = tcg_constant_i64(63); + + /* + * Rely on the TCG guarantee that out of range shifts produce + * unspecified results, not undefined behaviour (i.e. no trap). + * Discard out-of-range results after the fact. + */ + tcg_gen_ext8s_i64(lsh, shift); + tcg_gen_neg_i64(rsh, lsh); + tcg_gen_shl_i64(lval, src, lsh); + tcg_gen_umin_i64(rsh, rsh, max); + tcg_gen_sar_i64(rval, src, rsh); + tcg_gen_movcond_i64(TCG_COND_LEU, lval, lsh, max, lval, zero); + tcg_gen_movcond_i64(TCG_COND_LT, dst, lsh, zero, rval, lval); + + tcg_temp_free_i64(lval); + tcg_temp_free_i64(rval); + tcg_temp_free_i64(lsh); + tcg_temp_free_i64(rsh); +} + +static void gen_sshl_vec(unsigned vece, TCGv_vec dst, + TCGv_vec src, TCGv_vec shift) +{ + TCGv_vec lval = tcg_temp_new_vec_matching(dst); + TCGv_vec rval = tcg_temp_new_vec_matching(dst); + TCGv_vec lsh = tcg_temp_new_vec_matching(dst); + TCGv_vec rsh = tcg_temp_new_vec_matching(dst); + TCGv_vec tmp = tcg_temp_new_vec_matching(dst); + + /* + * Rely on the TCG guarantee that out of range shifts produce + * unspecified results, not undefined behaviour (i.e. no trap). + * Discard out-of-range results after the fact. + */ + tcg_gen_neg_vec(vece, rsh, shift); + if (vece == MO_8) { + tcg_gen_mov_vec(lsh, shift); + } else { + tcg_gen_dupi_vec(vece, tmp, 0xff); + tcg_gen_and_vec(vece, lsh, shift, tmp); + tcg_gen_and_vec(vece, rsh, rsh, tmp); + } + + /* Bound rsh so out of bound right shift gets -1. */ + tcg_gen_dupi_vec(vece, tmp, (8 << vece) - 1); + tcg_gen_umin_vec(vece, rsh, rsh, tmp); + tcg_gen_cmp_vec(TCG_COND_GT, vece, tmp, lsh, tmp); + + tcg_gen_shlv_vec(vece, lval, src, lsh); + tcg_gen_sarv_vec(vece, rval, src, rsh); + + /* Select in-bound left shift. */ + tcg_gen_andc_vec(vece, lval, lval, tmp); + + /* Select between left and right shift. */ + if (vece == MO_8) { + tcg_gen_dupi_vec(vece, tmp, 0); + tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, rval, lval); + } else { + tcg_gen_dupi_vec(vece, tmp, 0x80); + tcg_gen_cmpsel_vec(TCG_COND_LT, vece, dst, lsh, tmp, lval, rval); + } + + tcg_temp_free_vec(lval); + tcg_temp_free_vec(rval); + tcg_temp_free_vec(lsh); + tcg_temp_free_vec(rsh); + tcg_temp_free_vec(tmp); +} + +void gen_gvec_sshl(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_neg_vec, INDEX_op_umin_vec, INDEX_op_shlv_vec, + INDEX_op_sarv_vec, INDEX_op_cmp_vec, INDEX_op_cmpsel_vec, 0 + }; + static const GVecGen3 ops[4] = { + { .fniv = gen_sshl_vec, + .fno = gen_helper_gvec_sshl_b, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fniv = gen_sshl_vec, + .fno = gen_helper_gvec_sshl_h, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_sshl_i32, + .fniv = gen_sshl_vec, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_sshl_i64, + .fniv = gen_sshl_vec, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +static void gen_uqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, + TCGv_vec a, TCGv_vec b) +{ + TCGv_vec x = tcg_temp_new_vec_matching(t); + tcg_gen_add_vec(vece, x, a, b); + tcg_gen_usadd_vec(vece, t, a, b); + tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); + tcg_gen_or_vec(vece, sat, sat, x); + tcg_temp_free_vec(x); +} + +void gen_gvec_uqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_usadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 + }; + static const GVecGen4 ops[4] = { + { .fniv = gen_uqadd_vec, + .fno = gen_helper_gvec_uqadd_b, + .write_aofs = true, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fniv = gen_uqadd_vec, + .fno = gen_helper_gvec_uqadd_h, + .write_aofs = true, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fniv = gen_uqadd_vec, + .fno = gen_helper_gvec_uqadd_s, + .write_aofs = true, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fniv = gen_uqadd_vec, + .fno = gen_helper_gvec_uqadd_d, + .write_aofs = true, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), + rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +static void gen_sqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, + TCGv_vec a, TCGv_vec b) +{ + TCGv_vec x = tcg_temp_new_vec_matching(t); + tcg_gen_add_vec(vece, x, a, b); + tcg_gen_ssadd_vec(vece, t, a, b); + tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); + tcg_gen_or_vec(vece, sat, sat, x); + tcg_temp_free_vec(x); +} + +void gen_gvec_sqadd_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_ssadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0 + }; + static const GVecGen4 ops[4] = { + { .fniv = gen_sqadd_vec, + .fno = gen_helper_gvec_sqadd_b, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_8 }, + { .fniv = gen_sqadd_vec, + .fno = gen_helper_gvec_sqadd_h, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_16 }, + { .fniv = gen_sqadd_vec, + .fno = gen_helper_gvec_sqadd_s, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_32 }, + { .fniv = gen_sqadd_vec, + .fno = gen_helper_gvec_sqadd_d, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_64 }, + }; + tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), + rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +static void gen_uqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, + TCGv_vec a, TCGv_vec b) +{ + TCGv_vec x = tcg_temp_new_vec_matching(t); + tcg_gen_sub_vec(vece, x, a, b); + tcg_gen_ussub_vec(vece, t, a, b); + tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); + tcg_gen_or_vec(vece, sat, sat, x); + tcg_temp_free_vec(x); +} + +void gen_gvec_uqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_ussub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 + }; + static const GVecGen4 ops[4] = { + { .fniv = gen_uqsub_vec, + .fno = gen_helper_gvec_uqsub_b, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_8 }, + { .fniv = gen_uqsub_vec, + .fno = gen_helper_gvec_uqsub_h, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_16 }, + { .fniv = gen_uqsub_vec, + .fno = gen_helper_gvec_uqsub_s, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_32 }, + { .fniv = gen_uqsub_vec, + .fno = gen_helper_gvec_uqsub_d, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_64 }, + }; + tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), + rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +static void gen_sqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat, + TCGv_vec a, TCGv_vec b) +{ + TCGv_vec x = tcg_temp_new_vec_matching(t); + tcg_gen_sub_vec(vece, x, a, b); + tcg_gen_sssub_vec(vece, t, a, b); + tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t); + tcg_gen_or_vec(vece, sat, sat, x); + tcg_temp_free_vec(x); +} + +void gen_gvec_sqsub_qc(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_sssub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0 + }; + static const GVecGen4 ops[4] = { + { .fniv = gen_sqsub_vec, + .fno = gen_helper_gvec_sqsub_b, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_8 }, + { .fniv = gen_sqsub_vec, + .fno = gen_helper_gvec_sqsub_h, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_16 }, + { .fniv = gen_sqsub_vec, + .fno = gen_helper_gvec_sqsub_s, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_32 }, + { .fniv = gen_sqsub_vec, + .fno = gen_helper_gvec_sqsub_d, + .opt_opc = vecop_list, + .write_aofs = true, + .vece = MO_64 }, + }; + tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc), + rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +static void gen_sabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + TCGv_i32 t = tcg_temp_new_i32(); + + tcg_gen_sub_i32(t, a, b); + tcg_gen_sub_i32(d, b, a); + tcg_gen_movcond_i32(TCG_COND_LT, d, a, b, d, t); + tcg_temp_free_i32(t); +} + +static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_sub_i64(t, a, b); + tcg_gen_sub_i64(d, b, a); + tcg_gen_movcond_i64(TCG_COND_LT, d, a, b, d, t); + tcg_temp_free_i64(t); +} + +static void gen_sabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + + tcg_gen_smin_vec(vece, t, a, b); + tcg_gen_smax_vec(vece, d, a, b); + tcg_gen_sub_vec(vece, d, d, t); + tcg_temp_free_vec(t); +} + +void gen_gvec_sabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_sub_vec, INDEX_op_smin_vec, INDEX_op_smax_vec, 0 + }; + static const GVecGen3 ops[4] = { + { .fniv = gen_sabd_vec, + .fno = gen_helper_gvec_sabd_b, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fniv = gen_sabd_vec, + .fno = gen_helper_gvec_sabd_h, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_sabd_i32, + .fniv = gen_sabd_vec, + .fno = gen_helper_gvec_sabd_s, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_sabd_i64, + .fniv = gen_sabd_vec, + .fno = gen_helper_gvec_sabd_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +static void gen_uabd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + TCGv_i32 t = tcg_temp_new_i32(); + + tcg_gen_sub_i32(t, a, b); + tcg_gen_sub_i32(d, b, a); + tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, d, t); + tcg_temp_free_i32(t); +} + +static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) +{ + TCGv_i64 t = tcg_temp_new_i64(); + + tcg_gen_sub_i64(t, a, b); + tcg_gen_sub_i64(d, b, a); + tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, d, t); + tcg_temp_free_i64(t); +} + +static void gen_uabd_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + + tcg_gen_umin_vec(vece, t, a, b); + tcg_gen_umax_vec(vece, d, a, b); + tcg_gen_sub_vec(vece, d, d, t); + tcg_temp_free_vec(t); +} + +void gen_gvec_uabd(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_sub_vec, INDEX_op_umin_vec, INDEX_op_umax_vec, 0 + }; + static const GVecGen3 ops[4] = { + { .fniv = gen_uabd_vec, + .fno = gen_helper_gvec_uabd_b, + .opt_opc = vecop_list, + .vece = MO_8 }, + { .fniv = gen_uabd_vec, + .fno = gen_helper_gvec_uabd_h, + .opt_opc = vecop_list, + .vece = MO_16 }, + { .fni4 = gen_uabd_i32, + .fniv = gen_uabd_vec, + .fno = gen_helper_gvec_uabd_s, + .opt_opc = vecop_list, + .vece = MO_32 }, + { .fni8 = gen_uabd_i64, + .fniv = gen_uabd_vec, + .fno = gen_helper_gvec_uabd_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .vece = MO_64 }, + }; + tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +static void gen_saba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + TCGv_i32 t = tcg_temp_new_i32(); + gen_sabd_i32(t, a, b); + tcg_gen_add_i32(d, d, t); + tcg_temp_free_i32(t); +} + +static void gen_saba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) +{ + TCGv_i64 t = tcg_temp_new_i64(); + gen_sabd_i64(t, a, b); + tcg_gen_add_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_saba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + gen_sabd_vec(vece, t, a, b); + tcg_gen_add_vec(vece, d, d, t); + tcg_temp_free_vec(t); +} + +void gen_gvec_saba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_sub_vec, INDEX_op_add_vec, + INDEX_op_smin_vec, INDEX_op_smax_vec, 0 + }; + static const GVecGen3 ops[4] = { + { .fniv = gen_saba_vec, + .fno = gen_helper_gvec_saba_b, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_8 }, + { .fniv = gen_saba_vec, + .fno = gen_helper_gvec_saba_h, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_16 }, + { .fni4 = gen_saba_i32, + .fniv = gen_saba_vec, + .fno = gen_helper_gvec_saba_s, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_32 }, + { .fni8 = gen_saba_i64, + .fniv = gen_saba_vec, + .fno = gen_helper_gvec_saba_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_64 }, + }; + tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +static void gen_uaba_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) +{ + TCGv_i32 t = tcg_temp_new_i32(); + gen_uabd_i32(t, a, b); + tcg_gen_add_i32(d, d, t); + tcg_temp_free_i32(t); +} + +static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) +{ + TCGv_i64 t = tcg_temp_new_i64(); + gen_uabd_i64(t, a, b); + tcg_gen_add_i64(d, d, t); + tcg_temp_free_i64(t); +} + +static void gen_uaba_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) +{ + TCGv_vec t = tcg_temp_new_vec_matching(d); + gen_uabd_vec(vece, t, a, b); + tcg_gen_add_vec(vece, d, d, t); + tcg_temp_free_vec(t); +} + +void gen_gvec_uaba(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs, + uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz) +{ + static const TCGOpcode vecop_list[] = { + INDEX_op_sub_vec, INDEX_op_add_vec, + INDEX_op_umin_vec, INDEX_op_umax_vec, 0 + }; + static const GVecGen3 ops[4] = { + { .fniv = gen_uaba_vec, + .fno = gen_helper_gvec_uaba_b, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_8 }, + { .fniv = gen_uaba_vec, + .fno = gen_helper_gvec_uaba_h, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_16 }, + { .fni4 = gen_uaba_i32, + .fniv = gen_uaba_vec, + .fno = gen_helper_gvec_uaba_s, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_32 }, + { .fni8 = gen_uaba_i64, + .fniv = gen_uaba_vec, + .fno = gen_helper_gvec_uaba_d, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + .opt_opc = vecop_list, + .load_dest = true, + .vece = MO_64 }, + }; + tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]); +} + +static void do_coproc_insn(DisasContext *s, int cpnum, int is64, + int opc1, int crn, int crm, int opc2, + bool isread, int rt, int rt2) +{ + uint32_t key = ENCODE_CP_REG(cpnum, is64, s->ns, crn, crm, opc1, opc2); + const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key); + TCGv_ptr tcg_ri = NULL; + bool need_exit_tb; + uint32_t syndrome; + + /* + * Note that since we are an implementation which takes an + * exception on a trapped conditional instruction only if the + * instruction passes its condition code check, we can take + * advantage of the clause in the ARM ARM that allows us to set + * the COND field in the instruction to 0xE in all cases. + * We could fish the actual condition out of the insn (ARM) + * or the condexec bits (Thumb) but it isn't necessary. + */ + switch (cpnum) { + case 14: + if (is64) { + syndrome = syn_cp14_rrt_trap(1, 0xe, opc1, crm, rt, rt2, + isread, false); + } else { + syndrome = syn_cp14_rt_trap(1, 0xe, opc1, opc2, crn, crm, + rt, isread, false); + } + break; + case 15: + if (is64) { + syndrome = syn_cp15_rrt_trap(1, 0xe, opc1, crm, rt, rt2, + isread, false); + } else { + syndrome = syn_cp15_rt_trap(1, 0xe, opc1, opc2, crn, crm, + rt, isread, false); + } + break; + default: + /* + * ARMv8 defines that only coprocessors 14 and 15 exist, + * so this can only happen if this is an ARMv7 or earlier CPU, + * in which case the syndrome information won't actually be + * guest visible. + */ + assert(!arm_dc_feature(s, ARM_FEATURE_V8)); + syndrome = syn_uncategorized(); + break; + } + + if (s->hstr_active && cpnum == 15 && s->current_el == 1) { + /* + * At EL1, check for a HSTR_EL2 trap, which must take precedence + * over the UNDEF for "no such register" or the UNDEF for "access + * permissions forbid this EL1 access". HSTR_EL2 traps from EL0 + * only happen if the cpreg doesn't UNDEF at EL0, so we do those in + * access_check_cp_reg(), after the checks for whether the access + * configurably trapped to EL1. + */ + uint32_t maskbit = is64 ? crm : crn; + + if (maskbit != 4 && maskbit != 14) { + /* T4 and T14 are RES0 so never cause traps */ + TCGv_i32 t; + DisasLabel over = gen_disas_label(s); + + t = load_cpu_offset(offsetoflow32(CPUARMState, cp15.hstr_el2)); + tcg_gen_andi_i32(t, t, 1u << maskbit); + tcg_gen_brcondi_i32(TCG_COND_EQ, t, 0, over.label); + tcg_temp_free_i32(t); + + gen_exception_insn(s, 0, EXCP_UDEF, syndrome); + set_disas_label(s, over); + } + } + + if (!ri) { + /* + * Unknown register; this might be a guest error or a QEMU + * unimplemented feature. + */ + if (is64) { + qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " + "64 bit system register cp:%d opc1: %d crm:%d " + "(%s)\n", + isread ? "read" : "write", cpnum, opc1, crm, + s->ns ? "non-secure" : "secure"); + } else { + qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 " + "system register cp:%d opc1:%d crn:%d crm:%d " + "opc2:%d (%s)\n", + isread ? "read" : "write", cpnum, opc1, crn, + crm, opc2, s->ns ? "non-secure" : "secure"); + } + unallocated_encoding(s); + return; + } + + /* Check access permissions */ + if (!cp_access_ok(s->current_el, ri, isread)) { + unallocated_encoding(s); + return; + } + + if ((s->hstr_active && s->current_el == 0) || ri->accessfn || + (ri->fgt && s->fgt_active) || + (arm_dc_feature(s, ARM_FEATURE_XSCALE) && cpnum < 14)) { + /* + * Emit code to perform further access permissions checks at + * runtime; this may result in an exception. + * Note that on XScale all cp0..c13 registers do an access check + * call in order to handle c15_cpar. + */ + gen_set_condexec(s); + gen_update_pc(s, 0); + tcg_ri = tcg_temp_new_ptr(); + gen_helper_access_check_cp_reg(tcg_ri, cpu_env, + tcg_constant_i32(key), + tcg_constant_i32(syndrome), + tcg_constant_i32(isread)); + } else if (ri->type & ARM_CP_RAISES_EXC) { + /* + * The readfn or writefn might raise an exception; + * synchronize the CPU state in case it does. + */ + gen_set_condexec(s); + gen_update_pc(s, 0); + } + + /* Handle special cases first */ + switch (ri->type & ARM_CP_SPECIAL_MASK) { + case 0: + break; + case ARM_CP_NOP: + goto exit; + case ARM_CP_WFI: + if (isread) { + unallocated_encoding(s); + } else { + gen_update_pc(s, curr_insn_len(s)); + s->base.is_jmp = DISAS_WFI; + } + goto exit; + default: + g_assert_not_reached(); + } + + if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { + gen_io_start(); + } + + if (isread) { + /* Read */ + if (is64) { + TCGv_i64 tmp64; + TCGv_i32 tmp; + if (ri->type & ARM_CP_CONST) { + tmp64 = tcg_constant_i64(ri->resetvalue); + } else if (ri->readfn) { + if (!tcg_ri) { + tcg_ri = gen_lookup_cp_reg(key); + } + tmp64 = tcg_temp_new_i64(); + gen_helper_get_cp_reg64(tmp64, cpu_env, tcg_ri); + } else { + tmp64 = tcg_temp_new_i64(); + tcg_gen_ld_i64(tmp64, cpu_env, ri->fieldoffset); + } + tmp = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(tmp, tmp64); + store_reg(s, rt, tmp); + tmp = tcg_temp_new_i32(); + tcg_gen_extrh_i64_i32(tmp, tmp64); + tcg_temp_free_i64(tmp64); + store_reg(s, rt2, tmp); + } else { + TCGv_i32 tmp; + if (ri->type & ARM_CP_CONST) { + tmp = tcg_constant_i32(ri->resetvalue); + } else if (ri->readfn) { + if (!tcg_ri) { + tcg_ri = gen_lookup_cp_reg(key); + } + tmp = tcg_temp_new_i32(); + gen_helper_get_cp_reg(tmp, cpu_env, tcg_ri); + } else { + tmp = load_cpu_offset(ri->fieldoffset); + } + if (rt == 15) { + /* Destination register of r15 for 32 bit loads sets + * the condition codes from the high 4 bits of the value + */ + gen_set_nzcv(tmp); + tcg_temp_free_i32(tmp); + } else { + store_reg(s, rt, tmp); + } + } + } else { + /* Write */ + if (ri->type & ARM_CP_CONST) { + /* If not forbidden by access permissions, treat as WI */ + goto exit; + } + + if (is64) { + TCGv_i32 tmplo, tmphi; + TCGv_i64 tmp64 = tcg_temp_new_i64(); + tmplo = load_reg(s, rt); + tmphi = load_reg(s, rt2); + tcg_gen_concat_i32_i64(tmp64, tmplo, tmphi); + tcg_temp_free_i32(tmplo); + tcg_temp_free_i32(tmphi); + if (ri->writefn) { + if (!tcg_ri) { + tcg_ri = gen_lookup_cp_reg(key); + } + gen_helper_set_cp_reg64(cpu_env, tcg_ri, tmp64); + } else { + tcg_gen_st_i64(tmp64, cpu_env, ri->fieldoffset); + } + tcg_temp_free_i64(tmp64); + } else { + TCGv_i32 tmp = load_reg(s, rt); + if (ri->writefn) { + if (!tcg_ri) { + tcg_ri = gen_lookup_cp_reg(key); + } + gen_helper_set_cp_reg(cpu_env, tcg_ri, tmp); + tcg_temp_free_i32(tmp); + } else { + store_cpu_offset(tmp, ri->fieldoffset, 4); + } + } + } + + /* I/O operations must end the TB here (whether read or write) */ + need_exit_tb = ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && + (ri->type & ARM_CP_IO)); + + if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { + /* + * A write to any coprocessor register that ends a TB + * must rebuild the hflags for the next TB. + */ + gen_rebuild_hflags(s, ri->type & ARM_CP_NEWEL); + /* + * We default to ending the TB on a coprocessor register write, + * but allow this to be suppressed by the register definition + * (usually only necessary to work around guest bugs). + */ + need_exit_tb = true; + } + if (need_exit_tb) { + gen_lookup_tb(s); + } + + exit: + if (tcg_ri) { + tcg_temp_free_ptr(tcg_ri); + } +} + +/* Decode XScale DSP or iWMMXt insn (in the copro space, cp=0 or 1) */ +static void disas_xscale_insn(DisasContext *s, uint32_t insn) +{ + int cpnum = (insn >> 8) & 0xf; + + if (extract32(s->c15_cpar, cpnum, 1) == 0) { + unallocated_encoding(s); + } else if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { + if (disas_iwmmxt_insn(s, insn)) { + unallocated_encoding(s); + } + } else if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) { + if (disas_dsp_insn(s, insn)) { + unallocated_encoding(s); + } + } +} + +/* Store a 64-bit value to a register pair. Clobbers val. */ +static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val) +{ + TCGv_i32 tmp; + tmp = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(tmp, val); + store_reg(s, rlow, tmp); + tmp = tcg_temp_new_i32(); + tcg_gen_extrh_i64_i32(tmp, val); + store_reg(s, rhigh, tmp); +} + +/* load and add a 64-bit value from a register pair. */ +static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh) +{ + TCGv_i64 tmp; + TCGv_i32 tmpl; + TCGv_i32 tmph; + + /* Load 64-bit value rd:rn. */ + tmpl = load_reg(s, rlow); + tmph = load_reg(s, rhigh); + tmp = tcg_temp_new_i64(); + tcg_gen_concat_i32_i64(tmp, tmpl, tmph); + tcg_temp_free_i32(tmpl); + tcg_temp_free_i32(tmph); + tcg_gen_add_i64(val, val, tmp); + tcg_temp_free_i64(tmp); +} + +/* Set N and Z flags from hi|lo. */ +static void gen_logicq_cc(TCGv_i32 lo, TCGv_i32 hi) +{ + tcg_gen_mov_i32(cpu_NF, hi); + tcg_gen_or_i32(cpu_ZF, lo, hi); +} + +/* Load/Store exclusive instructions are implemented by remembering + the value/address loaded, and seeing if these are the same + when the store is performed. This should be sufficient to implement + the architecturally mandated semantics, and avoids having to monitor + regular stores. The compare vs the remembered value is done during + the cmpxchg operation, but we must compare the addresses manually. */ +static void gen_load_exclusive(DisasContext *s, int rt, int rt2, + TCGv_i32 addr, int size) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + MemOp opc = size | MO_ALIGN | s->be_data; + + s->is_ldex = true; + + if (size == 3) { + TCGv_i32 tmp2 = tcg_temp_new_i32(); + TCGv_i64 t64 = tcg_temp_new_i64(); + + /* + * For AArch32, architecturally the 32-bit word at the lowest + * address is always Rt and the one at addr+4 is Rt2, even if + * the CPU is big-endian. That means we don't want to do a + * gen_aa32_ld_i64(), which checks SCTLR_B as if for an + * architecturally 64-bit access, but instead do a 64-bit access + * using MO_BE if appropriate and then split the two halves. + */ + TCGv taddr = gen_aa32_addr(s, addr, opc); + + tcg_gen_qemu_ld_i64(t64, taddr, get_mem_index(s), opc); + tcg_temp_free(taddr); + tcg_gen_mov_i64(cpu_exclusive_val, t64); + if (s->be_data == MO_BE) { + tcg_gen_extr_i64_i32(tmp2, tmp, t64); + } else { + tcg_gen_extr_i64_i32(tmp, tmp2, t64); + } + tcg_temp_free_i64(t64); + + store_reg(s, rt2, tmp2); + } else { + gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), opc); + tcg_gen_extu_i32_i64(cpu_exclusive_val, tmp); + } + + store_reg(s, rt, tmp); + tcg_gen_extu_i32_i64(cpu_exclusive_addr, addr); +} + +static void gen_clrex(DisasContext *s) +{ + tcg_gen_movi_i64(cpu_exclusive_addr, -1); +} + +static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, + TCGv_i32 addr, int size) +{ + TCGv_i32 t0, t1, t2; + TCGv_i64 extaddr; + TCGv taddr; + TCGLabel *done_label; + TCGLabel *fail_label; + MemOp opc = size | MO_ALIGN | s->be_data; + + /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) { + [addr] = {Rt}; + {Rd} = 0; + } else { + {Rd} = 1; + } */ + fail_label = gen_new_label(); + done_label = gen_new_label(); + extaddr = tcg_temp_new_i64(); + tcg_gen_extu_i32_i64(extaddr, addr); + tcg_gen_brcond_i64(TCG_COND_NE, extaddr, cpu_exclusive_addr, fail_label); + tcg_temp_free_i64(extaddr); + + taddr = gen_aa32_addr(s, addr, opc); + t0 = tcg_temp_new_i32(); + t1 = load_reg(s, rt); + if (size == 3) { + TCGv_i64 o64 = tcg_temp_new_i64(); + TCGv_i64 n64 = tcg_temp_new_i64(); + + t2 = load_reg(s, rt2); + + /* + * For AArch32, architecturally the 32-bit word at the lowest + * address is always Rt and the one at addr+4 is Rt2, even if + * the CPU is big-endian. Since we're going to treat this as a + * single 64-bit BE store, we need to put the two halves in the + * opposite order for BE to LE, so that they end up in the right + * places. We don't want gen_aa32_st_i64, because that checks + * SCTLR_B as if for an architectural 64-bit access. + */ + if (s->be_data == MO_BE) { + tcg_gen_concat_i32_i64(n64, t2, t1); + } else { + tcg_gen_concat_i32_i64(n64, t1, t2); + } + tcg_temp_free_i32(t2); + + tcg_gen_atomic_cmpxchg_i64(o64, taddr, cpu_exclusive_val, n64, + get_mem_index(s), opc); + tcg_temp_free_i64(n64); + + tcg_gen_setcond_i64(TCG_COND_NE, o64, o64, cpu_exclusive_val); + tcg_gen_extrl_i64_i32(t0, o64); + + tcg_temp_free_i64(o64); + } else { + t2 = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(t2, cpu_exclusive_val); + tcg_gen_atomic_cmpxchg_i32(t0, taddr, t2, t1, get_mem_index(s), opc); + tcg_gen_setcond_i32(TCG_COND_NE, t0, t0, t2); + tcg_temp_free_i32(t2); + } + tcg_temp_free_i32(t1); + tcg_temp_free(taddr); + tcg_gen_mov_i32(cpu_R[rd], t0); + tcg_temp_free_i32(t0); + tcg_gen_br(done_label); + + gen_set_label(fail_label); + tcg_gen_movi_i32(cpu_R[rd], 1); + gen_set_label(done_label); + tcg_gen_movi_i64(cpu_exclusive_addr, -1); +} + +/* gen_srs: + * @env: CPUARMState + * @s: DisasContext + * @mode: mode field from insn (which stack to store to) + * @amode: addressing mode (DA/IA/DB/IB), encoded as per P,U bits in ARM insn + * @writeback: true if writeback bit set + * + * Generate code for the SRS (Store Return State) insn. + */ +static void gen_srs(DisasContext *s, + uint32_t mode, uint32_t amode, bool writeback) +{ + int32_t offset; + TCGv_i32 addr, tmp; + bool undef = false; + + /* SRS is: + * - trapped to EL3 if EL3 is AArch64 and we are at Secure EL1 + * and specified mode is monitor mode + * - UNDEFINED in Hyp mode + * - UNPREDICTABLE in User or System mode + * - UNPREDICTABLE if the specified mode is: + * -- not implemented + * -- not a valid mode number + * -- a mode that's at a higher exception level + * -- Monitor, if we are Non-secure + * For the UNPREDICTABLE cases we choose to UNDEF. + */ + if (s->current_el == 1 && !s->ns && mode == ARM_CPU_MODE_MON) { + gen_exception_insn_el(s, 0, EXCP_UDEF, syn_uncategorized(), 3); + return; + } + + if (s->current_el == 0 || s->current_el == 2) { + undef = true; + } + + switch (mode) { + case ARM_CPU_MODE_USR: + case ARM_CPU_MODE_FIQ: + case ARM_CPU_MODE_IRQ: + case ARM_CPU_MODE_SVC: + case ARM_CPU_MODE_ABT: + case ARM_CPU_MODE_UND: + case ARM_CPU_MODE_SYS: + break; + case ARM_CPU_MODE_HYP: + if (s->current_el == 1 || !arm_dc_feature(s, ARM_FEATURE_EL2)) { + undef = true; + } + break; + case ARM_CPU_MODE_MON: + /* No need to check specifically for "are we non-secure" because + * we've already made EL0 UNDEF and handled the trap for S-EL1; + * so if this isn't EL3 then we must be non-secure. + */ + if (s->current_el != 3) { + undef = true; + } + break; + default: + undef = true; + } + + if (undef) { + unallocated_encoding(s); + return; + } + + addr = tcg_temp_new_i32(); + /* get_r13_banked() will raise an exception if called from System mode */ + gen_set_condexec(s); + gen_update_pc(s, 0); + gen_helper_get_r13_banked(addr, cpu_env, tcg_constant_i32(mode)); + switch (amode) { + case 0: /* DA */ + offset = -4; + break; + case 1: /* IA */ + offset = 0; + break; + case 2: /* DB */ + offset = -8; + break; + case 3: /* IB */ + offset = 4; + break; + default: + g_assert_not_reached(); + } + tcg_gen_addi_i32(addr, addr, offset); + tmp = load_reg(s, 14); + gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); + tcg_temp_free_i32(tmp); + tmp = load_cpu_field(spsr); + tcg_gen_addi_i32(addr, addr, 4); + gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); + tcg_temp_free_i32(tmp); + if (writeback) { + switch (amode) { + case 0: + offset = -8; + break; + case 1: + offset = 4; + break; + case 2: + offset = -4; + break; + case 3: + offset = 0; + break; + default: + g_assert_not_reached(); + } + tcg_gen_addi_i32(addr, addr, offset); + gen_helper_set_r13_banked(cpu_env, tcg_constant_i32(mode), addr); + } + tcg_temp_free_i32(addr); + s->base.is_jmp = DISAS_UPDATE_EXIT; +} + +/* Skip this instruction if the ARM condition is false */ +static void arm_skip_unless(DisasContext *s, uint32_t cond) +{ + arm_gen_condlabel(s); + arm_gen_test_cc(cond ^ 1, s->condlabel.label); +} + + +/* + * Constant expanders used by T16/T32 decode + */ + +/* Return only the rotation part of T32ExpandImm. */ +static int t32_expandimm_rot(DisasContext *s, int x) +{ + return x & 0xc00 ? extract32(x, 7, 5) : 0; +} + +/* Return the unrotated immediate from T32ExpandImm. */ +static int t32_expandimm_imm(DisasContext *s, int x) +{ + int imm = extract32(x, 0, 8); + + switch (extract32(x, 8, 4)) { + case 0: /* XY */ + /* Nothing to do. */ + break; + case 1: /* 00XY00XY */ + imm *= 0x00010001; + break; + case 2: /* XY00XY00 */ + imm *= 0x01000100; + break; + case 3: /* XYXYXYXY */ + imm *= 0x01010101; + break; + default: + /* Rotated constant. */ + imm |= 0x80; + break; + } + return imm; +} + +static int t32_branch24(DisasContext *s, int x) +{ + /* Convert J1:J2 at x[22:21] to I2:I1, which involves I=J^~S. */ + x ^= !(x < 0) * (3 << 21); + /* Append the final zero. */ + return x << 1; +} + +static int t16_setflags(DisasContext *s) +{ + return s->condexec_mask == 0; +} + +static int t16_push_list(DisasContext *s, int x) +{ + return (x & 0xff) | (x & 0x100) << (14 - 8); +} + +static int t16_pop_list(DisasContext *s, int x) +{ + return (x & 0xff) | (x & 0x100) << (15 - 8); +} + +/* + * Include the generated decoders. + */ + +#include "decode-a32.c.inc" +#include "decode-a32-uncond.c.inc" +#include "decode-t32.c.inc" +#include "decode-t16.c.inc" + +static bool valid_cp(DisasContext *s, int cp) +{ + /* + * Return true if this coprocessor field indicates something + * that's really a possible coprocessor. + * For v7 and earlier, coprocessors 8..15 were reserved for Arm use, + * and of those only cp14 and cp15 were used for registers. + * cp10 and cp11 were used for VFP and Neon, whose decode is + * dealt with elsewhere. With the advent of fp16, cp9 is also + * now part of VFP. + * For v8A and later, the encoding has been tightened so that + * only cp14 and cp15 are valid, and other values aren't considered + * to be in the coprocessor-instruction space at all. v8M still + * permits coprocessors 0..7. + * For XScale, we must not decode the XScale cp0, cp1 space as + * a standard coprocessor insn, because we want to fall through to + * the legacy disas_xscale_insn() decoder after decodetree is done. + */ + if (arm_dc_feature(s, ARM_FEATURE_XSCALE) && (cp == 0 || cp == 1)) { + return false; + } + + if (arm_dc_feature(s, ARM_FEATURE_V8) && + !arm_dc_feature(s, ARM_FEATURE_M)) { + return cp >= 14; + } + return cp < 8 || cp >= 14; +} + +static bool trans_MCR(DisasContext *s, arg_MCR *a) +{ + if (!valid_cp(s, a->cp)) { + return false; + } + do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2, + false, a->rt, 0); + return true; +} + +static bool trans_MRC(DisasContext *s, arg_MRC *a) +{ + if (!valid_cp(s, a->cp)) { + return false; + } + do_coproc_insn(s, a->cp, false, a->opc1, a->crn, a->crm, a->opc2, + true, a->rt, 0); + return true; +} + +static bool trans_MCRR(DisasContext *s, arg_MCRR *a) +{ + if (!valid_cp(s, a->cp)) { + return false; + } + do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0, + false, a->rt, a->rt2); + return true; +} + +static bool trans_MRRC(DisasContext *s, arg_MRRC *a) +{ + if (!valid_cp(s, a->cp)) { + return false; + } + do_coproc_insn(s, a->cp, true, a->opc1, 0, a->crm, 0, + true, a->rt, a->rt2); + return true; +} + +/* Helpers to swap operands for reverse-subtract. */ +static void gen_rsb(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) +{ + tcg_gen_sub_i32(dst, b, a); +} + +static void gen_rsb_CC(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b) +{ + gen_sub_CC(dst, b, a); +} + +static void gen_rsc(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) +{ + gen_sub_carry(dest, b, a); +} + +static void gen_rsc_CC(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b) +{ + gen_sbc_CC(dest, b, a); +} + +/* + * Helpers for the data processing routines. + * + * After the computation store the results back. + * This may be suppressed altogether (STREG_NONE), require a runtime + * check against the stack limits (STREG_SP_CHECK), or generate an + * exception return. Oh, or store into a register. + * + * Always return true, indicating success for a trans_* function. + */ +typedef enum { + STREG_NONE, + STREG_NORMAL, + STREG_SP_CHECK, + STREG_EXC_RET, +} StoreRegKind; + +static bool store_reg_kind(DisasContext *s, int rd, + TCGv_i32 val, StoreRegKind kind) +{ + switch (kind) { + case STREG_NONE: + tcg_temp_free_i32(val); + return true; + case STREG_NORMAL: + /* See ALUWritePC: Interworking only from a32 mode. */ + if (s->thumb) { + store_reg(s, rd, val); + } else { + store_reg_bx(s, rd, val); + } + return true; + case STREG_SP_CHECK: + store_sp_checked(s, val); + return true; + case STREG_EXC_RET: + gen_exception_return(s, val); + return true; + } + g_assert_not_reached(); +} + +/* + * Data Processing (register) + * + * Operate, with set flags, one register source, + * one immediate shifted register source, and a destination. + */ +static bool op_s_rrr_shi(DisasContext *s, arg_s_rrr_shi *a, + void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), + int logic_cc, StoreRegKind kind) +{ + TCGv_i32 tmp1, tmp2; + + tmp2 = load_reg(s, a->rm); + gen_arm_shift_im(tmp2, a->shty, a->shim, logic_cc); + tmp1 = load_reg(s, a->rn); + + gen(tmp1, tmp1, tmp2); + tcg_temp_free_i32(tmp2); + + if (logic_cc) { + gen_logic_CC(tmp1); + } + return store_reg_kind(s, a->rd, tmp1, kind); +} + +static bool op_s_rxr_shi(DisasContext *s, arg_s_rrr_shi *a, + void (*gen)(TCGv_i32, TCGv_i32), + int logic_cc, StoreRegKind kind) +{ + TCGv_i32 tmp; + + tmp = load_reg(s, a->rm); + gen_arm_shift_im(tmp, a->shty, a->shim, logic_cc); + + gen(tmp, tmp); + if (logic_cc) { + gen_logic_CC(tmp); + } + return store_reg_kind(s, a->rd, tmp, kind); +} + +/* + * Data-processing (register-shifted register) + * + * Operate, with set flags, one register source, + * one register shifted register source, and a destination. + */ +static bool op_s_rrr_shr(DisasContext *s, arg_s_rrr_shr *a, + void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), + int logic_cc, StoreRegKind kind) +{ + TCGv_i32 tmp1, tmp2; + + tmp1 = load_reg(s, a->rs); + tmp2 = load_reg(s, a->rm); + gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); + tmp1 = load_reg(s, a->rn); + + gen(tmp1, tmp1, tmp2); + tcg_temp_free_i32(tmp2); + + if (logic_cc) { + gen_logic_CC(tmp1); + } + return store_reg_kind(s, a->rd, tmp1, kind); +} + +static bool op_s_rxr_shr(DisasContext *s, arg_s_rrr_shr *a, + void (*gen)(TCGv_i32, TCGv_i32), + int logic_cc, StoreRegKind kind) +{ + TCGv_i32 tmp1, tmp2; + + tmp1 = load_reg(s, a->rs); + tmp2 = load_reg(s, a->rm); + gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc); + + gen(tmp2, tmp2); + if (logic_cc) { + gen_logic_CC(tmp2); + } + return store_reg_kind(s, a->rd, tmp2, kind); +} + +/* + * Data-processing (immediate) + * + * Operate, with set flags, one register source, + * one rotated immediate, and a destination. + * + * Note that logic_cc && a->rot setting CF based on the msb of the + * immediate is the reason why we must pass in the unrotated form + * of the immediate. + */ +static bool op_s_rri_rot(DisasContext *s, arg_s_rri_rot *a, + void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32), + int logic_cc, StoreRegKind kind) +{ + TCGv_i32 tmp1; + uint32_t imm; + + imm = ror32(a->imm, a->rot); + if (logic_cc && a->rot) { + tcg_gen_movi_i32(cpu_CF, imm >> 31); + } + tmp1 = load_reg(s, a->rn); + + gen(tmp1, tmp1, tcg_constant_i32(imm)); + + if (logic_cc) { + gen_logic_CC(tmp1); + } + return store_reg_kind(s, a->rd, tmp1, kind); +} + +static bool op_s_rxi_rot(DisasContext *s, arg_s_rri_rot *a, + void (*gen)(TCGv_i32, TCGv_i32), + int logic_cc, StoreRegKind kind) +{ + TCGv_i32 tmp; + uint32_t imm; + + imm = ror32(a->imm, a->rot); + if (logic_cc && a->rot) { + tcg_gen_movi_i32(cpu_CF, imm >> 31); + } + + tmp = tcg_temp_new_i32(); + gen(tmp, tcg_constant_i32(imm)); + + if (logic_cc) { + gen_logic_CC(tmp); + } + return store_reg_kind(s, a->rd, tmp, kind); +} + +#define DO_ANY3(NAME, OP, L, K) \ + static bool trans_##NAME##_rrri(DisasContext *s, arg_s_rrr_shi *a) \ + { StoreRegKind k = (K); return op_s_rrr_shi(s, a, OP, L, k); } \ + static bool trans_##NAME##_rrrr(DisasContext *s, arg_s_rrr_shr *a) \ + { StoreRegKind k = (K); return op_s_rrr_shr(s, a, OP, L, k); } \ + static bool trans_##NAME##_rri(DisasContext *s, arg_s_rri_rot *a) \ + { StoreRegKind k = (K); return op_s_rri_rot(s, a, OP, L, k); } + +#define DO_ANY2(NAME, OP, L, K) \ + static bool trans_##NAME##_rxri(DisasContext *s, arg_s_rrr_shi *a) \ + { StoreRegKind k = (K); return op_s_rxr_shi(s, a, OP, L, k); } \ + static bool trans_##NAME##_rxrr(DisasContext *s, arg_s_rrr_shr *a) \ + { StoreRegKind k = (K); return op_s_rxr_shr(s, a, OP, L, k); } \ + static bool trans_##NAME##_rxi(DisasContext *s, arg_s_rri_rot *a) \ + { StoreRegKind k = (K); return op_s_rxi_rot(s, a, OP, L, k); } + +#define DO_CMP2(NAME, OP, L) \ + static bool trans_##NAME##_xrri(DisasContext *s, arg_s_rrr_shi *a) \ + { return op_s_rrr_shi(s, a, OP, L, STREG_NONE); } \ + static bool trans_##NAME##_xrrr(DisasContext *s, arg_s_rrr_shr *a) \ + { return op_s_rrr_shr(s, a, OP, L, STREG_NONE); } \ + static bool trans_##NAME##_xri(DisasContext *s, arg_s_rri_rot *a) \ + { return op_s_rri_rot(s, a, OP, L, STREG_NONE); } + +DO_ANY3(AND, tcg_gen_and_i32, a->s, STREG_NORMAL) +DO_ANY3(EOR, tcg_gen_xor_i32, a->s, STREG_NORMAL) +DO_ANY3(ORR, tcg_gen_or_i32, a->s, STREG_NORMAL) +DO_ANY3(BIC, tcg_gen_andc_i32, a->s, STREG_NORMAL) + +DO_ANY3(RSB, a->s ? gen_rsb_CC : gen_rsb, false, STREG_NORMAL) +DO_ANY3(ADC, a->s ? gen_adc_CC : gen_add_carry, false, STREG_NORMAL) +DO_ANY3(SBC, a->s ? gen_sbc_CC : gen_sub_carry, false, STREG_NORMAL) +DO_ANY3(RSC, a->s ? gen_rsc_CC : gen_rsc, false, STREG_NORMAL) + +DO_CMP2(TST, tcg_gen_and_i32, true) +DO_CMP2(TEQ, tcg_gen_xor_i32, true) +DO_CMP2(CMN, gen_add_CC, false) +DO_CMP2(CMP, gen_sub_CC, false) + +DO_ANY3(ADD, a->s ? gen_add_CC : tcg_gen_add_i32, false, + a->rd == 13 && a->rn == 13 ? STREG_SP_CHECK : STREG_NORMAL) + +/* + * Note for the computation of StoreRegKind we return out of the + * middle of the functions that are expanded by DO_ANY3, and that + * we modify a->s via that parameter before it is used by OP. + */ +DO_ANY3(SUB, a->s ? gen_sub_CC : tcg_gen_sub_i32, false, + ({ + StoreRegKind ret = STREG_NORMAL; + if (a->rd == 15 && a->s) { + /* + * See ALUExceptionReturn: + * In User mode, UNPREDICTABLE; we choose UNDEF. + * In Hyp mode, UNDEFINED. + */ + if (IS_USER(s) || s->current_el == 2) { + unallocated_encoding(s); + return true; + } + /* There is no writeback of nzcv to PSTATE. */ + a->s = 0; + ret = STREG_EXC_RET; + } else if (a->rd == 13 && a->rn == 13) { + ret = STREG_SP_CHECK; + } + ret; + })) + +DO_ANY2(MOV, tcg_gen_mov_i32, a->s, + ({ + StoreRegKind ret = STREG_NORMAL; + if (a->rd == 15 && a->s) { + /* + * See ALUExceptionReturn: + * In User mode, UNPREDICTABLE; we choose UNDEF. + * In Hyp mode, UNDEFINED. + */ + if (IS_USER(s) || s->current_el == 2) { + unallocated_encoding(s); + return true; + } + /* There is no writeback of nzcv to PSTATE. */ + a->s = 0; + ret = STREG_EXC_RET; + } else if (a->rd == 13) { + ret = STREG_SP_CHECK; + } + ret; + })) + +DO_ANY2(MVN, tcg_gen_not_i32, a->s, STREG_NORMAL) + +/* + * ORN is only available with T32, so there is no register-shifted-register + * form of the insn. Using the DO_ANY3 macro would create an unused function. + */ +static bool trans_ORN_rrri(DisasContext *s, arg_s_rrr_shi *a) +{ + return op_s_rrr_shi(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); +} + +static bool trans_ORN_rri(DisasContext *s, arg_s_rri_rot *a) +{ + return op_s_rri_rot(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL); +} + +#undef DO_ANY3 +#undef DO_ANY2 +#undef DO_CMP2 + +static bool trans_ADR(DisasContext *s, arg_ri *a) +{ + store_reg_bx(s, a->rd, add_reg_for_lit(s, 15, a->imm)); + return true; +} + +static bool trans_MOVW(DisasContext *s, arg_MOVW *a) +{ + if (!ENABLE_ARCH_6T2) { + return false; + } + + store_reg(s, a->rd, tcg_constant_i32(a->imm)); + return true; +} + +static bool trans_MOVT(DisasContext *s, arg_MOVW *a) +{ + TCGv_i32 tmp; + + if (!ENABLE_ARCH_6T2) { + return false; + } + + tmp = load_reg(s, a->rd); + tcg_gen_ext16u_i32(tmp, tmp); + tcg_gen_ori_i32(tmp, tmp, a->imm << 16); + store_reg(s, a->rd, tmp); + return true; +} + +/* + * v8.1M MVE wide-shifts + */ +static bool do_mve_shl_ri(DisasContext *s, arg_mve_shl_ri *a, + WideShiftImmFn *fn) +{ + TCGv_i64 rda; + TCGv_i32 rdalo, rdahi; + + if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { + /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ + return false; + } + if (a->rdahi == 15) { + /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */ + return false; + } + if (!dc_isar_feature(aa32_mve, s) || + !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || + a->rdahi == 13) { + /* RdaHi == 13 is UNPREDICTABLE; we choose to UNDEF */ + unallocated_encoding(s); + return true; + } + + if (a->shim == 0) { + a->shim = 32; + } + + rda = tcg_temp_new_i64(); + rdalo = load_reg(s, a->rdalo); + rdahi = load_reg(s, a->rdahi); + tcg_gen_concat_i32_i64(rda, rdalo, rdahi); + + fn(rda, rda, a->shim); + + tcg_gen_extrl_i64_i32(rdalo, rda); + tcg_gen_extrh_i64_i32(rdahi, rda); + store_reg(s, a->rdalo, rdalo); + store_reg(s, a->rdahi, rdahi); + tcg_temp_free_i64(rda); + + return true; +} + +static bool trans_ASRL_ri(DisasContext *s, arg_mve_shl_ri *a) +{ + return do_mve_shl_ri(s, a, tcg_gen_sari_i64); +} + +static bool trans_LSLL_ri(DisasContext *s, arg_mve_shl_ri *a) +{ + return do_mve_shl_ri(s, a, tcg_gen_shli_i64); +} + +static bool trans_LSRL_ri(DisasContext *s, arg_mve_shl_ri *a) +{ + return do_mve_shl_ri(s, a, tcg_gen_shri_i64); +} + +static void gen_mve_sqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift) +{ + gen_helper_mve_sqshll(r, cpu_env, n, tcg_constant_i32(shift)); +} + +static bool trans_SQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a) +{ + return do_mve_shl_ri(s, a, gen_mve_sqshll); +} + +static void gen_mve_uqshll(TCGv_i64 r, TCGv_i64 n, int64_t shift) +{ + gen_helper_mve_uqshll(r, cpu_env, n, tcg_constant_i32(shift)); +} + +static bool trans_UQSHLL_ri(DisasContext *s, arg_mve_shl_ri *a) +{ + return do_mve_shl_ri(s, a, gen_mve_uqshll); +} + +static bool trans_SRSHRL_ri(DisasContext *s, arg_mve_shl_ri *a) +{ + return do_mve_shl_ri(s, a, gen_srshr64_i64); +} + +static bool trans_URSHRL_ri(DisasContext *s, arg_mve_shl_ri *a) +{ + return do_mve_shl_ri(s, a, gen_urshr64_i64); +} + +static bool do_mve_shl_rr(DisasContext *s, arg_mve_shl_rr *a, WideShiftFn *fn) +{ + TCGv_i64 rda; + TCGv_i32 rdalo, rdahi; + + if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { + /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ + return false; + } + if (a->rdahi == 15) { + /* These are a different encoding (SQSHL/SRSHR/UQSHL/URSHR) */ + return false; + } + if (!dc_isar_feature(aa32_mve, s) || + !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || + a->rdahi == 13 || a->rm == 13 || a->rm == 15 || + a->rm == a->rdahi || a->rm == a->rdalo) { + /* These rdahi/rdalo/rm cases are UNPREDICTABLE; we choose to UNDEF */ + unallocated_encoding(s); + return true; + } + + rda = tcg_temp_new_i64(); + rdalo = load_reg(s, a->rdalo); + rdahi = load_reg(s, a->rdahi); + tcg_gen_concat_i32_i64(rda, rdalo, rdahi); + + /* The helper takes care of the sign-extension of the low 8 bits of Rm */ + fn(rda, cpu_env, rda, cpu_R[a->rm]); + + tcg_gen_extrl_i64_i32(rdalo, rda); + tcg_gen_extrh_i64_i32(rdahi, rda); + store_reg(s, a->rdalo, rdalo); + store_reg(s, a->rdahi, rdahi); + tcg_temp_free_i64(rda); + + return true; +} + +static bool trans_LSLL_rr(DisasContext *s, arg_mve_shl_rr *a) +{ + return do_mve_shl_rr(s, a, gen_helper_mve_ushll); +} + +static bool trans_ASRL_rr(DisasContext *s, arg_mve_shl_rr *a) +{ + return do_mve_shl_rr(s, a, gen_helper_mve_sshrl); +} + +static bool trans_UQRSHLL64_rr(DisasContext *s, arg_mve_shl_rr *a) +{ + return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll); +} + +static bool trans_SQRSHRL64_rr(DisasContext *s, arg_mve_shl_rr *a) +{ + return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl); +} + +static bool trans_UQRSHLL48_rr(DisasContext *s, arg_mve_shl_rr *a) +{ + return do_mve_shl_rr(s, a, gen_helper_mve_uqrshll48); +} + +static bool trans_SQRSHRL48_rr(DisasContext *s, arg_mve_shl_rr *a) +{ + return do_mve_shl_rr(s, a, gen_helper_mve_sqrshrl48); +} + +static bool do_mve_sh_ri(DisasContext *s, arg_mve_sh_ri *a, ShiftImmFn *fn) +{ + if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { + /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ + return false; + } + if (!dc_isar_feature(aa32_mve, s) || + !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || + a->rda == 13 || a->rda == 15) { + /* These rda cases are UNPREDICTABLE; we choose to UNDEF */ + unallocated_encoding(s); + return true; + } + + if (a->shim == 0) { + a->shim = 32; + } + fn(cpu_R[a->rda], cpu_R[a->rda], a->shim); + + return true; +} + +static bool trans_URSHR_ri(DisasContext *s, arg_mve_sh_ri *a) +{ + return do_mve_sh_ri(s, a, gen_urshr32_i32); +} + +static bool trans_SRSHR_ri(DisasContext *s, arg_mve_sh_ri *a) +{ + return do_mve_sh_ri(s, a, gen_srshr32_i32); +} + +static void gen_mve_sqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift) +{ + gen_helper_mve_sqshl(r, cpu_env, n, tcg_constant_i32(shift)); +} + +static bool trans_SQSHL_ri(DisasContext *s, arg_mve_sh_ri *a) +{ + return do_mve_sh_ri(s, a, gen_mve_sqshl); +} + +static void gen_mve_uqshl(TCGv_i32 r, TCGv_i32 n, int32_t shift) +{ + gen_helper_mve_uqshl(r, cpu_env, n, tcg_constant_i32(shift)); +} + +static bool trans_UQSHL_ri(DisasContext *s, arg_mve_sh_ri *a) +{ + return do_mve_sh_ri(s, a, gen_mve_uqshl); +} + +static bool do_mve_sh_rr(DisasContext *s, arg_mve_sh_rr *a, ShiftFn *fn) +{ + if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { + /* Decode falls through to ORR/MOV UNPREDICTABLE handling */ + return false; + } + if (!dc_isar_feature(aa32_mve, s) || + !arm_dc_feature(s, ARM_FEATURE_M_MAIN) || + a->rda == 13 || a->rda == 15 || a->rm == 13 || a->rm == 15 || + a->rm == a->rda) { + /* These rda/rm cases are UNPREDICTABLE; we choose to UNDEF */ + unallocated_encoding(s); + return true; + } + + /* The helper takes care of the sign-extension of the low 8 bits of Rm */ + fn(cpu_R[a->rda], cpu_env, cpu_R[a->rda], cpu_R[a->rm]); + return true; +} + +static bool trans_SQRSHR_rr(DisasContext *s, arg_mve_sh_rr *a) +{ + return do_mve_sh_rr(s, a, gen_helper_mve_sqrshr); +} + +static bool trans_UQRSHL_rr(DisasContext *s, arg_mve_sh_rr *a) +{ + return do_mve_sh_rr(s, a, gen_helper_mve_uqrshl); +} + +/* + * Multiply and multiply accumulate + */ + +static bool op_mla(DisasContext *s, arg_s_rrrr *a, bool add) +{ + TCGv_i32 t1, t2; + + t1 = load_reg(s, a->rn); + t2 = load_reg(s, a->rm); + tcg_gen_mul_i32(t1, t1, t2); + tcg_temp_free_i32(t2); + if (add) { + t2 = load_reg(s, a->ra); + tcg_gen_add_i32(t1, t1, t2); + tcg_temp_free_i32(t2); + } + if (a->s) { + gen_logic_CC(t1); + } + store_reg(s, a->rd, t1); + return true; +} + +static bool trans_MUL(DisasContext *s, arg_MUL *a) +{ + return op_mla(s, a, false); +} + +static bool trans_MLA(DisasContext *s, arg_MLA *a) +{ + return op_mla(s, a, true); +} + +static bool trans_MLS(DisasContext *s, arg_MLS *a) +{ + TCGv_i32 t1, t2; + + if (!ENABLE_ARCH_6T2) { + return false; + } + t1 = load_reg(s, a->rn); + t2 = load_reg(s, a->rm); + tcg_gen_mul_i32(t1, t1, t2); + tcg_temp_free_i32(t2); + t2 = load_reg(s, a->ra); + tcg_gen_sub_i32(t1, t2, t1); + tcg_temp_free_i32(t2); + store_reg(s, a->rd, t1); + return true; +} + +static bool op_mlal(DisasContext *s, arg_s_rrrr *a, bool uns, bool add) +{ + TCGv_i32 t0, t1, t2, t3; + + t0 = load_reg(s, a->rm); + t1 = load_reg(s, a->rn); + if (uns) { + tcg_gen_mulu2_i32(t0, t1, t0, t1); + } else { + tcg_gen_muls2_i32(t0, t1, t0, t1); + } + if (add) { + t2 = load_reg(s, a->ra); + t3 = load_reg(s, a->rd); + tcg_gen_add2_i32(t0, t1, t0, t1, t2, t3); + tcg_temp_free_i32(t2); + tcg_temp_free_i32(t3); + } + if (a->s) { + gen_logicq_cc(t0, t1); + } + store_reg(s, a->ra, t0); + store_reg(s, a->rd, t1); + return true; +} + +static bool trans_UMULL(DisasContext *s, arg_UMULL *a) +{ + return op_mlal(s, a, true, false); +} + +static bool trans_SMULL(DisasContext *s, arg_SMULL *a) +{ + return op_mlal(s, a, false, false); +} + +static bool trans_UMLAL(DisasContext *s, arg_UMLAL *a) +{ + return op_mlal(s, a, true, true); +} + +static bool trans_SMLAL(DisasContext *s, arg_SMLAL *a) +{ + return op_mlal(s, a, false, true); +} + +static bool trans_UMAAL(DisasContext *s, arg_UMAAL *a) +{ + TCGv_i32 t0, t1, t2, zero; + + if (s->thumb + ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) + : !ENABLE_ARCH_6) { + return false; + } + + t0 = load_reg(s, a->rm); + t1 = load_reg(s, a->rn); + tcg_gen_mulu2_i32(t0, t1, t0, t1); + zero = tcg_constant_i32(0); + t2 = load_reg(s, a->ra); + tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); + tcg_temp_free_i32(t2); + t2 = load_reg(s, a->rd); + tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero); + tcg_temp_free_i32(t2); + store_reg(s, a->ra, t0); + store_reg(s, a->rd, t1); + return true; +} + +/* + * Saturating addition and subtraction + */ + +static bool op_qaddsub(DisasContext *s, arg_rrr *a, bool add, bool doub) +{ + TCGv_i32 t0, t1; + + if (s->thumb + ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) + : !ENABLE_ARCH_5TE) { + return false; + } + + t0 = load_reg(s, a->rm); + t1 = load_reg(s, a->rn); + if (doub) { + gen_helper_add_saturate(t1, cpu_env, t1, t1); + } + if (add) { + gen_helper_add_saturate(t0, cpu_env, t0, t1); + } else { + gen_helper_sub_saturate(t0, cpu_env, t0, t1); + } + tcg_temp_free_i32(t1); + store_reg(s, a->rd, t0); + return true; +} + +#define DO_QADDSUB(NAME, ADD, DOUB) \ +static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ +{ \ + return op_qaddsub(s, a, ADD, DOUB); \ +} + +DO_QADDSUB(QADD, true, false) +DO_QADDSUB(QSUB, false, false) +DO_QADDSUB(QDADD, true, true) +DO_QADDSUB(QDSUB, false, true) + +#undef DO_QADDSUB + +/* + * Halfword multiply and multiply accumulate + */ + +static bool op_smlaxxx(DisasContext *s, arg_rrrr *a, + int add_long, bool nt, bool mt) +{ + TCGv_i32 t0, t1, tl, th; + + if (s->thumb + ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) + : !ENABLE_ARCH_5TE) { + return false; + } + + t0 = load_reg(s, a->rn); + t1 = load_reg(s, a->rm); + gen_mulxy(t0, t1, nt, mt); + tcg_temp_free_i32(t1); + + switch (add_long) { + case 0: + store_reg(s, a->rd, t0); + break; + case 1: + t1 = load_reg(s, a->ra); + gen_helper_add_setq(t0, cpu_env, t0, t1); + tcg_temp_free_i32(t1); + store_reg(s, a->rd, t0); + break; + case 2: + tl = load_reg(s, a->ra); + th = load_reg(s, a->rd); + /* Sign-extend the 32-bit product to 64 bits. */ + t1 = tcg_temp_new_i32(); + tcg_gen_sari_i32(t1, t0, 31); + tcg_gen_add2_i32(tl, th, tl, th, t0, t1); + tcg_temp_free_i32(t0); + tcg_temp_free_i32(t1); + store_reg(s, a->ra, tl); + store_reg(s, a->rd, th); + break; + default: + g_assert_not_reached(); + } + return true; +} + +#define DO_SMLAX(NAME, add, nt, mt) \ +static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ +{ \ + return op_smlaxxx(s, a, add, nt, mt); \ +} + +DO_SMLAX(SMULBB, 0, 0, 0) +DO_SMLAX(SMULBT, 0, 0, 1) +DO_SMLAX(SMULTB, 0, 1, 0) +DO_SMLAX(SMULTT, 0, 1, 1) + +DO_SMLAX(SMLABB, 1, 0, 0) +DO_SMLAX(SMLABT, 1, 0, 1) +DO_SMLAX(SMLATB, 1, 1, 0) +DO_SMLAX(SMLATT, 1, 1, 1) + +DO_SMLAX(SMLALBB, 2, 0, 0) +DO_SMLAX(SMLALBT, 2, 0, 1) +DO_SMLAX(SMLALTB, 2, 1, 0) +DO_SMLAX(SMLALTT, 2, 1, 1) + +#undef DO_SMLAX + +static bool op_smlawx(DisasContext *s, arg_rrrr *a, bool add, bool mt) +{ + TCGv_i32 t0, t1; + + if (!ENABLE_ARCH_5TE) { + return false; + } + + t0 = load_reg(s, a->rn); + t1 = load_reg(s, a->rm); + /* + * Since the nominal result is product<47:16>, shift the 16-bit + * input up by 16 bits, so that the result is at product<63:32>. + */ + if (mt) { + tcg_gen_andi_i32(t1, t1, 0xffff0000); + } else { + tcg_gen_shli_i32(t1, t1, 16); + } + tcg_gen_muls2_i32(t0, t1, t0, t1); + tcg_temp_free_i32(t0); + if (add) { + t0 = load_reg(s, a->ra); + gen_helper_add_setq(t1, cpu_env, t1, t0); + tcg_temp_free_i32(t0); + } + store_reg(s, a->rd, t1); + return true; +} + +#define DO_SMLAWX(NAME, add, mt) \ +static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \ +{ \ + return op_smlawx(s, a, add, mt); \ +} + +DO_SMLAWX(SMULWB, 0, 0) +DO_SMLAWX(SMULWT, 0, 1) +DO_SMLAWX(SMLAWB, 1, 0) +DO_SMLAWX(SMLAWT, 1, 1) + +#undef DO_SMLAWX + +/* + * MSR (immediate) and hints + */ + +static bool trans_YIELD(DisasContext *s, arg_YIELD *a) +{ + /* + * When running single-threaded TCG code, use the helper to ensure that + * the next round-robin scheduled vCPU gets a crack. When running in + * MTTCG we don't generate jumps to the helper as it won't affect the + * scheduling of other vCPUs. + */ + if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { + gen_update_pc(s, curr_insn_len(s)); + s->base.is_jmp = DISAS_YIELD; + } + return true; +} + +static bool trans_WFE(DisasContext *s, arg_WFE *a) +{ + /* + * When running single-threaded TCG code, use the helper to ensure that + * the next round-robin scheduled vCPU gets a crack. In MTTCG mode we + * just skip this instruction. Currently the SEV/SEVL instructions, + * which are *one* of many ways to wake the CPU from WFE, are not + * implemented so we can't sleep like WFI does. + */ + if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { + gen_update_pc(s, curr_insn_len(s)); + s->base.is_jmp = DISAS_WFE; + } + return true; +} + +static bool trans_WFI(DisasContext *s, arg_WFI *a) +{ + /* For WFI, halt the vCPU until an IRQ. */ + gen_update_pc(s, curr_insn_len(s)); + s->base.is_jmp = DISAS_WFI; + return true; +} + +static bool trans_ESB(DisasContext *s, arg_ESB *a) +{ + /* + * For M-profile, minimal-RAS ESB can be a NOP. + * Without RAS, we must implement this as NOP. + */ + if (!arm_dc_feature(s, ARM_FEATURE_M) && dc_isar_feature(aa32_ras, s)) { + /* + * QEMU does not have a source of physical SErrors, + * so we are only concerned with virtual SErrors. + * The pseudocode in the ARM for this case is + * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then + * AArch32.vESBOperation(); + * Most of the condition can be evaluated at translation time. + * Test for EL2 present, and defer test for SEL2 to runtime. + */ + if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) { + gen_helper_vesb(cpu_env); + } + } + return true; +} + +static bool trans_NOP(DisasContext *s, arg_NOP *a) +{ + return true; +} + +static bool trans_MSR_imm(DisasContext *s, arg_MSR_imm *a) +{ + uint32_t val = ror32(a->imm, a->rot * 2); + uint32_t mask = msr_mask(s, a->mask, a->r); + + if (gen_set_psr_im(s, mask, a->r, val)) { + unallocated_encoding(s); + } + return true; +} + +/* + * Cyclic Redundancy Check + */ + +static bool op_crc32(DisasContext *s, arg_rrr *a, bool c, MemOp sz) +{ + TCGv_i32 t1, t2, t3; + + if (!dc_isar_feature(aa32_crc32, s)) { + return false; + } + + t1 = load_reg(s, a->rn); + t2 = load_reg(s, a->rm); + switch (sz) { + case MO_8: + gen_uxtb(t2); + break; + case MO_16: + gen_uxth(t2); + break; + case MO_32: + break; + default: + g_assert_not_reached(); + } + t3 = tcg_constant_i32(1 << sz); + if (c) { + gen_helper_crc32c(t1, t1, t2, t3); + } else { + gen_helper_crc32(t1, t1, t2, t3); + } + tcg_temp_free_i32(t2); + store_reg(s, a->rd, t1); + return true; +} + +#define DO_CRC32(NAME, c, sz) \ +static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ + { return op_crc32(s, a, c, sz); } + +DO_CRC32(CRC32B, false, MO_8) +DO_CRC32(CRC32H, false, MO_16) +DO_CRC32(CRC32W, false, MO_32) +DO_CRC32(CRC32CB, true, MO_8) +DO_CRC32(CRC32CH, true, MO_16) +DO_CRC32(CRC32CW, true, MO_32) + +#undef DO_CRC32 + +/* + * Miscellaneous instructions + */ + +static bool trans_MRS_bank(DisasContext *s, arg_MRS_bank *a) +{ + if (arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + gen_mrs_banked(s, a->r, a->sysm, a->rd); + return true; +} + +static bool trans_MSR_bank(DisasContext *s, arg_MSR_bank *a) +{ + if (arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + gen_msr_banked(s, a->r, a->sysm, a->rn); + return true; +} + +static bool trans_MRS_reg(DisasContext *s, arg_MRS_reg *a) +{ + TCGv_i32 tmp; + + if (arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + if (a->r) { + if (IS_USER(s)) { + unallocated_encoding(s); + return true; + } + tmp = load_cpu_field(spsr); + } else { + tmp = tcg_temp_new_i32(); + gen_helper_cpsr_read(tmp, cpu_env); + } + store_reg(s, a->rd, tmp); + return true; +} + +static bool trans_MSR_reg(DisasContext *s, arg_MSR_reg *a) +{ + TCGv_i32 tmp; + uint32_t mask = msr_mask(s, a->mask, a->r); + + if (arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + tmp = load_reg(s, a->rn); + if (gen_set_psr(s, mask, a->r, tmp)) { + unallocated_encoding(s); + } + return true; +} + +static bool trans_MRS_v7m(DisasContext *s, arg_MRS_v7m *a) +{ + TCGv_i32 tmp; + + if (!arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + tmp = tcg_temp_new_i32(); + gen_helper_v7m_mrs(tmp, cpu_env, tcg_constant_i32(a->sysm)); + store_reg(s, a->rd, tmp); + return true; +} + +static bool trans_MSR_v7m(DisasContext *s, arg_MSR_v7m *a) +{ + TCGv_i32 addr, reg; + + if (!arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + addr = tcg_constant_i32((a->mask << 10) | a->sysm); + reg = load_reg(s, a->rn); + gen_helper_v7m_msr(cpu_env, addr, reg); + tcg_temp_free_i32(reg); + /* If we wrote to CONTROL, the EL might have changed */ + gen_rebuild_hflags(s, true); + gen_lookup_tb(s); + return true; +} + +static bool trans_BX(DisasContext *s, arg_BX *a) +{ + if (!ENABLE_ARCH_4T) { + return false; + } + gen_bx_excret(s, load_reg(s, a->rm)); + return true; +} + +static bool trans_BXJ(DisasContext *s, arg_BXJ *a) +{ + if (!ENABLE_ARCH_5J || arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + /* + * v7A allows BXJ to be trapped via HSTR.TJDBX. We don't waste a + * TBFLAGS bit on a basically-never-happens case, so call a helper + * function to check for the trap and raise the exception if needed + * (passing it the register number for the syndrome value). + * v8A doesn't have this HSTR bit. + */ + if (!arm_dc_feature(s, ARM_FEATURE_V8) && + arm_dc_feature(s, ARM_FEATURE_EL2) && + s->current_el < 2 && s->ns) { + gen_helper_check_bxj_trap(cpu_env, tcg_constant_i32(a->rm)); + } + /* Trivial implementation equivalent to bx. */ + gen_bx(s, load_reg(s, a->rm)); + return true; +} + +static bool trans_BLX_r(DisasContext *s, arg_BLX_r *a) +{ + TCGv_i32 tmp; + + if (!ENABLE_ARCH_5) { + return false; + } + tmp = load_reg(s, a->rm); + gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); + gen_bx(s, tmp); + return true; +} + +/* + * BXNS/BLXNS: only exist for v8M with the security extensions, + * and always UNDEF if NonSecure. We don't implement these in + * the user-only mode either (in theory you can use them from + * Secure User mode but they are too tied in to system emulation). + */ +static bool trans_BXNS(DisasContext *s, arg_BXNS *a) +{ + if (!s->v8m_secure || IS_USER_ONLY) { + unallocated_encoding(s); + } else { + gen_bxns(s, a->rm); + } + return true; +} + +static bool trans_BLXNS(DisasContext *s, arg_BLXNS *a) +{ + if (!s->v8m_secure || IS_USER_ONLY) { + unallocated_encoding(s); + } else { + gen_blxns(s, a->rm); + } + return true; +} + +static bool trans_CLZ(DisasContext *s, arg_CLZ *a) +{ + TCGv_i32 tmp; + + if (!ENABLE_ARCH_5) { + return false; + } + tmp = load_reg(s, a->rm); + tcg_gen_clzi_i32(tmp, tmp, 32); + store_reg(s, a->rd, tmp); + return true; +} + +static bool trans_ERET(DisasContext *s, arg_ERET *a) +{ + TCGv_i32 tmp; + + if (!arm_dc_feature(s, ARM_FEATURE_V7VE)) { + return false; + } + if (IS_USER(s)) { + unallocated_encoding(s); + return true; + } + if (s->current_el == 2) { + /* ERET from Hyp uses ELR_Hyp, not LR */ + tmp = load_cpu_field(elr_el[2]); + } else { + tmp = load_reg(s, 14); + } + gen_exception_return(s, tmp); + return true; +} + +static bool trans_HLT(DisasContext *s, arg_HLT *a) +{ + gen_hlt(s, a->imm); + return true; +} + +static bool trans_BKPT(DisasContext *s, arg_BKPT *a) +{ + if (!ENABLE_ARCH_5) { + return false; + } + /* BKPT is OK with ECI set and leaves it untouched */ + s->eci_handled = true; + if (arm_dc_feature(s, ARM_FEATURE_M) && + semihosting_enabled(s->current_el == 0) && + (a->imm == 0xab)) { + gen_exception_internal_insn(s, EXCP_SEMIHOST); + } else { + gen_exception_bkpt_insn(s, syn_aa32_bkpt(a->imm, false)); + } + return true; +} + +static bool trans_HVC(DisasContext *s, arg_HVC *a) +{ + if (!ENABLE_ARCH_7 || arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + if (IS_USER(s)) { + unallocated_encoding(s); + } else { + gen_hvc(s, a->imm); + } + return true; +} + +static bool trans_SMC(DisasContext *s, arg_SMC *a) +{ + if (!ENABLE_ARCH_6K || arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + if (IS_USER(s)) { + unallocated_encoding(s); + } else { + gen_smc(s); + } + return true; +} + +static bool trans_SG(DisasContext *s, arg_SG *a) +{ + if (!arm_dc_feature(s, ARM_FEATURE_M) || + !arm_dc_feature(s, ARM_FEATURE_V8)) { + return false; + } + /* + * SG (v8M only) + * The bulk of the behaviour for this instruction is implemented + * in v7m_handle_execute_nsc(), which deals with the insn when + * it is executed by a CPU in non-secure state from memory + * which is Secure & NonSecure-Callable. + * Here we only need to handle the remaining cases: + * * in NS memory (including the "security extension not + * implemented" case) : NOP + * * in S memory but CPU already secure (clear IT bits) + * We know that the attribute for the memory this insn is + * in must match the current CPU state, because otherwise + * get_phys_addr_pmsav8 would have generated an exception. + */ + if (s->v8m_secure) { + /* Like the IT insn, we don't need to generate any code */ + s->condexec_cond = 0; + s->condexec_mask = 0; + } + return true; +} + +static bool trans_TT(DisasContext *s, arg_TT *a) +{ + TCGv_i32 addr, tmp; + + if (!arm_dc_feature(s, ARM_FEATURE_M) || + !arm_dc_feature(s, ARM_FEATURE_V8)) { + return false; + } + if (a->rd == 13 || a->rd == 15 || a->rn == 15) { + /* We UNDEF for these UNPREDICTABLE cases */ + unallocated_encoding(s); + return true; + } + if (a->A && !s->v8m_secure) { + /* This case is UNDEFINED. */ + unallocated_encoding(s); + return true; + } + + addr = load_reg(s, a->rn); + tmp = tcg_temp_new_i32(); + gen_helper_v7m_tt(tmp, cpu_env, addr, tcg_constant_i32((a->A << 1) | a->T)); + tcg_temp_free_i32(addr); + store_reg(s, a->rd, tmp); + return true; +} + +/* + * Load/store register index + */ + +static ISSInfo make_issinfo(DisasContext *s, int rd, bool p, bool w) +{ + ISSInfo ret; + + /* ISS not valid if writeback */ + if (p && !w) { + ret = rd; + if (curr_insn_len(s) == 2) { + ret |= ISSIs16Bit; + } + } else { + ret = ISSInvalid; + } + return ret; +} + +static TCGv_i32 op_addr_rr_pre(DisasContext *s, arg_ldst_rr *a) +{ + TCGv_i32 addr = load_reg(s, a->rn); + + if (s->v8m_stackcheck && a->rn == 13 && a->w) { + gen_helper_v8m_stackcheck(cpu_env, addr); + } + + if (a->p) { + TCGv_i32 ofs = load_reg(s, a->rm); + gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); + if (a->u) { + tcg_gen_add_i32(addr, addr, ofs); + } else { + tcg_gen_sub_i32(addr, addr, ofs); + } + tcg_temp_free_i32(ofs); + } + return addr; +} + +static void op_addr_rr_post(DisasContext *s, arg_ldst_rr *a, + TCGv_i32 addr, int address_offset) +{ + if (!a->p) { + TCGv_i32 ofs = load_reg(s, a->rm); + gen_arm_shift_im(ofs, a->shtype, a->shimm, 0); + if (a->u) { + tcg_gen_add_i32(addr, addr, ofs); + } else { + tcg_gen_sub_i32(addr, addr, ofs); + } + tcg_temp_free_i32(ofs); + } else if (!a->w) { + tcg_temp_free_i32(addr); + return; + } + tcg_gen_addi_i32(addr, addr, address_offset); + store_reg(s, a->rn, addr); +} + +static bool op_load_rr(DisasContext *s, arg_ldst_rr *a, + MemOp mop, int mem_idx) +{ + ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); + TCGv_i32 addr, tmp; + + addr = op_addr_rr_pre(s, a); + + tmp = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop); + disas_set_da_iss(s, mop, issinfo); + + /* + * Perform base writeback before the loaded value to + * ensure correct behavior with overlapping index registers. + */ + op_addr_rr_post(s, a, addr, 0); + store_reg_from_load(s, a->rt, tmp); + return true; +} + +static bool op_store_rr(DisasContext *s, arg_ldst_rr *a, + MemOp mop, int mem_idx) +{ + ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; + TCGv_i32 addr, tmp; + + /* + * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it + * is either UNPREDICTABLE or has defined behaviour + */ + if (s->thumb && a->rn == 15) { + return false; + } + + addr = op_addr_rr_pre(s, a); + + tmp = load_reg(s, a->rt); + gen_aa32_st_i32(s, tmp, addr, mem_idx, mop); + disas_set_da_iss(s, mop, issinfo); + tcg_temp_free_i32(tmp); + + op_addr_rr_post(s, a, addr, 0); + return true; +} + +static bool trans_LDRD_rr(DisasContext *s, arg_ldst_rr *a) +{ + int mem_idx = get_mem_index(s); + TCGv_i32 addr, tmp; + + if (!ENABLE_ARCH_5TE) { + return false; + } + if (a->rt & 1) { + unallocated_encoding(s); + return true; + } + addr = op_addr_rr_pre(s, a); + + tmp = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + store_reg(s, a->rt, tmp); + + tcg_gen_addi_i32(addr, addr, 4); + + tmp = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + store_reg(s, a->rt + 1, tmp); + + /* LDRD w/ base writeback is undefined if the registers overlap. */ + op_addr_rr_post(s, a, addr, -4); + return true; +} + +static bool trans_STRD_rr(DisasContext *s, arg_ldst_rr *a) +{ + int mem_idx = get_mem_index(s); + TCGv_i32 addr, tmp; + + if (!ENABLE_ARCH_5TE) { + return false; + } + if (a->rt & 1) { + unallocated_encoding(s); + return true; + } + addr = op_addr_rr_pre(s, a); + + tmp = load_reg(s, a->rt); + gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + tcg_temp_free_i32(tmp); + + tcg_gen_addi_i32(addr, addr, 4); + + tmp = load_reg(s, a->rt + 1); + gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + tcg_temp_free_i32(tmp); + + op_addr_rr_post(s, a, addr, -4); + return true; +} + +/* + * Load/store immediate index + */ + +static TCGv_i32 op_addr_ri_pre(DisasContext *s, arg_ldst_ri *a) +{ + int ofs = a->imm; + + if (!a->u) { + ofs = -ofs; + } + + if (s->v8m_stackcheck && a->rn == 13 && a->w) { + /* + * Stackcheck. Here we know 'addr' is the current SP; + * U is set if we're moving SP up, else down. It is + * UNKNOWN whether the limit check triggers when SP starts + * below the limit and ends up above it; we chose to do so. + */ + if (!a->u) { + TCGv_i32 newsp = tcg_temp_new_i32(); + tcg_gen_addi_i32(newsp, cpu_R[13], ofs); + gen_helper_v8m_stackcheck(cpu_env, newsp); + tcg_temp_free_i32(newsp); + } else { + gen_helper_v8m_stackcheck(cpu_env, cpu_R[13]); + } + } + + return add_reg_for_lit(s, a->rn, a->p ? ofs : 0); +} + +static void op_addr_ri_post(DisasContext *s, arg_ldst_ri *a, + TCGv_i32 addr, int address_offset) +{ + if (!a->p) { + if (a->u) { + address_offset += a->imm; + } else { + address_offset -= a->imm; + } + } else if (!a->w) { + tcg_temp_free_i32(addr); + return; + } + tcg_gen_addi_i32(addr, addr, address_offset); + store_reg(s, a->rn, addr); +} + +static bool op_load_ri(DisasContext *s, arg_ldst_ri *a, + MemOp mop, int mem_idx) +{ + ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w); + TCGv_i32 addr, tmp; + + addr = op_addr_ri_pre(s, a); + + tmp = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop); + disas_set_da_iss(s, mop, issinfo); + + /* + * Perform base writeback before the loaded value to + * ensure correct behavior with overlapping index registers. + */ + op_addr_ri_post(s, a, addr, 0); + store_reg_from_load(s, a->rt, tmp); + return true; +} + +static bool op_store_ri(DisasContext *s, arg_ldst_ri *a, + MemOp mop, int mem_idx) +{ + ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite; + TCGv_i32 addr, tmp; + + /* + * In Thumb encodings of stores Rn=1111 is UNDEF; for Arm it + * is either UNPREDICTABLE or has defined behaviour + */ + if (s->thumb && a->rn == 15) { + return false; + } + + addr = op_addr_ri_pre(s, a); + + tmp = load_reg(s, a->rt); + gen_aa32_st_i32(s, tmp, addr, mem_idx, mop); + disas_set_da_iss(s, mop, issinfo); + tcg_temp_free_i32(tmp); + + op_addr_ri_post(s, a, addr, 0); + return true; +} + +static bool op_ldrd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) +{ + int mem_idx = get_mem_index(s); + TCGv_i32 addr, tmp; + + addr = op_addr_ri_pre(s, a); + + tmp = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + store_reg(s, a->rt, tmp); + + tcg_gen_addi_i32(addr, addr, 4); + + tmp = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + store_reg(s, rt2, tmp); + + /* LDRD w/ base writeback is undefined if the registers overlap. */ + op_addr_ri_post(s, a, addr, -4); + return true; +} + +static bool trans_LDRD_ri_a32(DisasContext *s, arg_ldst_ri *a) +{ + if (!ENABLE_ARCH_5TE || (a->rt & 1)) { + return false; + } + return op_ldrd_ri(s, a, a->rt + 1); +} + +static bool trans_LDRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) +{ + arg_ldst_ri b = { + .u = a->u, .w = a->w, .p = a->p, + .rn = a->rn, .rt = a->rt, .imm = a->imm + }; + return op_ldrd_ri(s, &b, a->rt2); +} + +static bool op_strd_ri(DisasContext *s, arg_ldst_ri *a, int rt2) +{ + int mem_idx = get_mem_index(s); + TCGv_i32 addr, tmp; + + addr = op_addr_ri_pre(s, a); + + tmp = load_reg(s, a->rt); + gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + tcg_temp_free_i32(tmp); + + tcg_gen_addi_i32(addr, addr, 4); + + tmp = load_reg(s, rt2); + gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + tcg_temp_free_i32(tmp); + + op_addr_ri_post(s, a, addr, -4); + return true; +} + +static bool trans_STRD_ri_a32(DisasContext *s, arg_ldst_ri *a) +{ + if (!ENABLE_ARCH_5TE || (a->rt & 1)) { + return false; + } + return op_strd_ri(s, a, a->rt + 1); +} + +static bool trans_STRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a) +{ + arg_ldst_ri b = { + .u = a->u, .w = a->w, .p = a->p, + .rn = a->rn, .rt = a->rt, .imm = a->imm + }; + return op_strd_ri(s, &b, a->rt2); +} + +#define DO_LDST(NAME, WHICH, MEMOP) \ +static bool trans_##NAME##_ri(DisasContext *s, arg_ldst_ri *a) \ +{ \ + return op_##WHICH##_ri(s, a, MEMOP, get_mem_index(s)); \ +} \ +static bool trans_##NAME##T_ri(DisasContext *s, arg_ldst_ri *a) \ +{ \ + return op_##WHICH##_ri(s, a, MEMOP, get_a32_user_mem_index(s)); \ +} \ +static bool trans_##NAME##_rr(DisasContext *s, arg_ldst_rr *a) \ +{ \ + return op_##WHICH##_rr(s, a, MEMOP, get_mem_index(s)); \ +} \ +static bool trans_##NAME##T_rr(DisasContext *s, arg_ldst_rr *a) \ +{ \ + return op_##WHICH##_rr(s, a, MEMOP, get_a32_user_mem_index(s)); \ +} + +DO_LDST(LDR, load, MO_UL) +DO_LDST(LDRB, load, MO_UB) +DO_LDST(LDRH, load, MO_UW) +DO_LDST(LDRSB, load, MO_SB) +DO_LDST(LDRSH, load, MO_SW) + +DO_LDST(STR, store, MO_UL) +DO_LDST(STRB, store, MO_UB) +DO_LDST(STRH, store, MO_UW) + +#undef DO_LDST + +/* + * Synchronization primitives + */ + +static bool op_swp(DisasContext *s, arg_SWP *a, MemOp opc) +{ + TCGv_i32 addr, tmp; + TCGv taddr; + + opc |= s->be_data; + addr = load_reg(s, a->rn); + taddr = gen_aa32_addr(s, addr, opc); + tcg_temp_free_i32(addr); + + tmp = load_reg(s, a->rt2); + tcg_gen_atomic_xchg_i32(tmp, taddr, tmp, get_mem_index(s), opc); + tcg_temp_free(taddr); + + store_reg(s, a->rt, tmp); + return true; +} + +static bool trans_SWP(DisasContext *s, arg_SWP *a) +{ + return op_swp(s, a, MO_UL | MO_ALIGN); +} + +static bool trans_SWPB(DisasContext *s, arg_SWP *a) +{ + return op_swp(s, a, MO_UB); +} + +/* + * Load/Store Exclusive and Load-Acquire/Store-Release + */ + +static bool op_strex(DisasContext *s, arg_STREX *a, MemOp mop, bool rel) +{ + TCGv_i32 addr; + /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ + bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); + + /* We UNDEF for these UNPREDICTABLE cases. */ + if (a->rd == 15 || a->rn == 15 || a->rt == 15 + || a->rd == a->rn || a->rd == a->rt + || (!v8a && s->thumb && (a->rd == 13 || a->rt == 13)) + || (mop == MO_64 + && (a->rt2 == 15 + || a->rd == a->rt2 + || (!v8a && s->thumb && a->rt2 == 13)))) { + unallocated_encoding(s); + return true; + } + + if (rel) { + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); + } + + addr = tcg_temp_local_new_i32(); + load_reg_var(s, addr, a->rn); + tcg_gen_addi_i32(addr, addr, a->imm); + + gen_store_exclusive(s, a->rd, a->rt, a->rt2, addr, mop); + tcg_temp_free_i32(addr); + return true; +} + +static bool trans_STREX(DisasContext *s, arg_STREX *a) +{ + if (!ENABLE_ARCH_6) { + return false; + } + return op_strex(s, a, MO_32, false); +} + +static bool trans_STREXD_a32(DisasContext *s, arg_STREX *a) +{ + if (!ENABLE_ARCH_6K) { + return false; + } + /* We UNDEF for these UNPREDICTABLE cases. */ + if (a->rt & 1) { + unallocated_encoding(s); + return true; + } + a->rt2 = a->rt + 1; + return op_strex(s, a, MO_64, false); +} + +static bool trans_STREXD_t32(DisasContext *s, arg_STREX *a) +{ + return op_strex(s, a, MO_64, false); +} + +static bool trans_STREXB(DisasContext *s, arg_STREX *a) +{ + if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { + return false; + } + return op_strex(s, a, MO_8, false); +} + +static bool trans_STREXH(DisasContext *s, arg_STREX *a) +{ + if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { + return false; + } + return op_strex(s, a, MO_16, false); +} + +static bool trans_STLEX(DisasContext *s, arg_STREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + return op_strex(s, a, MO_32, true); +} + +static bool trans_STLEXD_a32(DisasContext *s, arg_STREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + /* We UNDEF for these UNPREDICTABLE cases. */ + if (a->rt & 1) { + unallocated_encoding(s); + return true; + } + a->rt2 = a->rt + 1; + return op_strex(s, a, MO_64, true); +} + +static bool trans_STLEXD_t32(DisasContext *s, arg_STREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + return op_strex(s, a, MO_64, true); +} + +static bool trans_STLEXB(DisasContext *s, arg_STREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + return op_strex(s, a, MO_8, true); +} + +static bool trans_STLEXH(DisasContext *s, arg_STREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + return op_strex(s, a, MO_16, true); +} + +static bool op_stl(DisasContext *s, arg_STL *a, MemOp mop) +{ + TCGv_i32 addr, tmp; + + if (!ENABLE_ARCH_8) { + return false; + } + /* We UNDEF for these UNPREDICTABLE cases. */ + if (a->rn == 15 || a->rt == 15) { + unallocated_encoding(s); + return true; + } + + addr = load_reg(s, a->rn); + tmp = load_reg(s, a->rt); + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); + gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN); + disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel | ISSIsWrite); + + tcg_temp_free_i32(tmp); + tcg_temp_free_i32(addr); + return true; +} + +static bool trans_STL(DisasContext *s, arg_STL *a) +{ + return op_stl(s, a, MO_UL); +} + +static bool trans_STLB(DisasContext *s, arg_STL *a) +{ + return op_stl(s, a, MO_UB); +} + +static bool trans_STLH(DisasContext *s, arg_STL *a) +{ + return op_stl(s, a, MO_UW); +} + +static bool op_ldrex(DisasContext *s, arg_LDREX *a, MemOp mop, bool acq) +{ + TCGv_i32 addr; + /* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */ + bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M); + + /* We UNDEF for these UNPREDICTABLE cases. */ + if (a->rn == 15 || a->rt == 15 + || (!v8a && s->thumb && a->rt == 13) + || (mop == MO_64 + && (a->rt2 == 15 || a->rt == a->rt2 + || (!v8a && s->thumb && a->rt2 == 13)))) { + unallocated_encoding(s); + return true; + } + + addr = tcg_temp_local_new_i32(); + load_reg_var(s, addr, a->rn); + tcg_gen_addi_i32(addr, addr, a->imm); + + gen_load_exclusive(s, a->rt, a->rt2, addr, mop); + tcg_temp_free_i32(addr); + + if (acq) { + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); + } + return true; +} + +static bool trans_LDREX(DisasContext *s, arg_LDREX *a) +{ + if (!ENABLE_ARCH_6) { + return false; + } + return op_ldrex(s, a, MO_32, false); +} + +static bool trans_LDREXD_a32(DisasContext *s, arg_LDREX *a) +{ + if (!ENABLE_ARCH_6K) { + return false; + } + /* We UNDEF for these UNPREDICTABLE cases. */ + if (a->rt & 1) { + unallocated_encoding(s); + return true; + } + a->rt2 = a->rt + 1; + return op_ldrex(s, a, MO_64, false); +} + +static bool trans_LDREXD_t32(DisasContext *s, arg_LDREX *a) +{ + return op_ldrex(s, a, MO_64, false); +} + +static bool trans_LDREXB(DisasContext *s, arg_LDREX *a) +{ + if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { + return false; + } + return op_ldrex(s, a, MO_8, false); +} + +static bool trans_LDREXH(DisasContext *s, arg_LDREX *a) +{ + if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) { + return false; + } + return op_ldrex(s, a, MO_16, false); +} + +static bool trans_LDAEX(DisasContext *s, arg_LDREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + return op_ldrex(s, a, MO_32, true); +} + +static bool trans_LDAEXD_a32(DisasContext *s, arg_LDREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + /* We UNDEF for these UNPREDICTABLE cases. */ + if (a->rt & 1) { + unallocated_encoding(s); + return true; + } + a->rt2 = a->rt + 1; + return op_ldrex(s, a, MO_64, true); +} + +static bool trans_LDAEXD_t32(DisasContext *s, arg_LDREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + return op_ldrex(s, a, MO_64, true); +} + +static bool trans_LDAEXB(DisasContext *s, arg_LDREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + return op_ldrex(s, a, MO_8, true); +} + +static bool trans_LDAEXH(DisasContext *s, arg_LDREX *a) +{ + if (!ENABLE_ARCH_8) { + return false; + } + return op_ldrex(s, a, MO_16, true); +} + +static bool op_lda(DisasContext *s, arg_LDA *a, MemOp mop) +{ + TCGv_i32 addr, tmp; + + if (!ENABLE_ARCH_8) { + return false; + } + /* We UNDEF for these UNPREDICTABLE cases. */ + if (a->rn == 15 || a->rt == 15) { + unallocated_encoding(s); + return true; + } + + addr = load_reg(s, a->rn); + tmp = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), mop | MO_ALIGN); + disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel); + tcg_temp_free_i32(addr); + + store_reg(s, a->rt, tmp); + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); + return true; +} + +static bool trans_LDA(DisasContext *s, arg_LDA *a) +{ + return op_lda(s, a, MO_UL); +} + +static bool trans_LDAB(DisasContext *s, arg_LDA *a) +{ + return op_lda(s, a, MO_UB); +} + +static bool trans_LDAH(DisasContext *s, arg_LDA *a) +{ + return op_lda(s, a, MO_UW); +} + +/* + * Media instructions + */ + +static bool trans_USADA8(DisasContext *s, arg_USADA8 *a) +{ + TCGv_i32 t1, t2; + + if (!ENABLE_ARCH_6) { + return false; + } + + t1 = load_reg(s, a->rn); + t2 = load_reg(s, a->rm); + gen_helper_usad8(t1, t1, t2); + tcg_temp_free_i32(t2); + if (a->ra != 15) { + t2 = load_reg(s, a->ra); + tcg_gen_add_i32(t1, t1, t2); + tcg_temp_free_i32(t2); + } + store_reg(s, a->rd, t1); + return true; +} + +static bool op_bfx(DisasContext *s, arg_UBFX *a, bool u) +{ + TCGv_i32 tmp; + int width = a->widthm1 + 1; + int shift = a->lsb; + + if (!ENABLE_ARCH_6T2) { + return false; + } + if (shift + width > 32) { + /* UNPREDICTABLE; we choose to UNDEF */ + unallocated_encoding(s); + return true; + } + + tmp = load_reg(s, a->rn); + if (u) { + tcg_gen_extract_i32(tmp, tmp, shift, width); + } else { + tcg_gen_sextract_i32(tmp, tmp, shift, width); + } + store_reg(s, a->rd, tmp); + return true; +} + +static bool trans_SBFX(DisasContext *s, arg_SBFX *a) +{ + return op_bfx(s, a, false); +} + +static bool trans_UBFX(DisasContext *s, arg_UBFX *a) +{ + return op_bfx(s, a, true); +} + +static bool trans_BFCI(DisasContext *s, arg_BFCI *a) +{ + TCGv_i32 tmp; + int msb = a->msb, lsb = a->lsb; + int width; + + if (!ENABLE_ARCH_6T2) { + return false; + } + if (msb < lsb) { + /* UNPREDICTABLE; we choose to UNDEF */ + unallocated_encoding(s); + return true; + } + + width = msb + 1 - lsb; + if (a->rn == 15) { + /* BFC */ + tmp = tcg_const_i32(0); + } else { + /* BFI */ + tmp = load_reg(s, a->rn); + } + if (width != 32) { + TCGv_i32 tmp2 = load_reg(s, a->rd); + tcg_gen_deposit_i32(tmp, tmp2, tmp, lsb, width); + tcg_temp_free_i32(tmp2); + } + store_reg(s, a->rd, tmp); + return true; +} + +static bool trans_UDF(DisasContext *s, arg_UDF *a) +{ + unallocated_encoding(s); + return true; +} + +/* + * Parallel addition and subtraction + */ + +static bool op_par_addsub(DisasContext *s, arg_rrr *a, + void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32)) +{ + TCGv_i32 t0, t1; + + if (s->thumb + ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) + : !ENABLE_ARCH_6) { + return false; + } + + t0 = load_reg(s, a->rn); + t1 = load_reg(s, a->rm); + + gen(t0, t0, t1); + + tcg_temp_free_i32(t1); + store_reg(s, a->rd, t0); + return true; +} + +static bool op_par_addsub_ge(DisasContext *s, arg_rrr *a, + void (*gen)(TCGv_i32, TCGv_i32, + TCGv_i32, TCGv_ptr)) +{ + TCGv_i32 t0, t1; + TCGv_ptr ge; + + if (s->thumb + ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) + : !ENABLE_ARCH_6) { + return false; + } + + t0 = load_reg(s, a->rn); + t1 = load_reg(s, a->rm); + + ge = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(ge, cpu_env, offsetof(CPUARMState, GE)); + gen(t0, t0, t1, ge); + + tcg_temp_free_ptr(ge); + tcg_temp_free_i32(t1); + store_reg(s, a->rd, t0); + return true; +} + +#define DO_PAR_ADDSUB(NAME, helper) \ +static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ +{ \ + return op_par_addsub(s, a, helper); \ +} + +#define DO_PAR_ADDSUB_GE(NAME, helper) \ +static bool trans_##NAME(DisasContext *s, arg_rrr *a) \ +{ \ + return op_par_addsub_ge(s, a, helper); \ +} + +DO_PAR_ADDSUB_GE(SADD16, gen_helper_sadd16) +DO_PAR_ADDSUB_GE(SASX, gen_helper_saddsubx) +DO_PAR_ADDSUB_GE(SSAX, gen_helper_ssubaddx) +DO_PAR_ADDSUB_GE(SSUB16, gen_helper_ssub16) +DO_PAR_ADDSUB_GE(SADD8, gen_helper_sadd8) +DO_PAR_ADDSUB_GE(SSUB8, gen_helper_ssub8) + +DO_PAR_ADDSUB_GE(UADD16, gen_helper_uadd16) +DO_PAR_ADDSUB_GE(UASX, gen_helper_uaddsubx) +DO_PAR_ADDSUB_GE(USAX, gen_helper_usubaddx) +DO_PAR_ADDSUB_GE(USUB16, gen_helper_usub16) +DO_PAR_ADDSUB_GE(UADD8, gen_helper_uadd8) +DO_PAR_ADDSUB_GE(USUB8, gen_helper_usub8) + +DO_PAR_ADDSUB(QADD16, gen_helper_qadd16) +DO_PAR_ADDSUB(QASX, gen_helper_qaddsubx) +DO_PAR_ADDSUB(QSAX, gen_helper_qsubaddx) +DO_PAR_ADDSUB(QSUB16, gen_helper_qsub16) +DO_PAR_ADDSUB(QADD8, gen_helper_qadd8) +DO_PAR_ADDSUB(QSUB8, gen_helper_qsub8) + +DO_PAR_ADDSUB(UQADD16, gen_helper_uqadd16) +DO_PAR_ADDSUB(UQASX, gen_helper_uqaddsubx) +DO_PAR_ADDSUB(UQSAX, gen_helper_uqsubaddx) +DO_PAR_ADDSUB(UQSUB16, gen_helper_uqsub16) +DO_PAR_ADDSUB(UQADD8, gen_helper_uqadd8) +DO_PAR_ADDSUB(UQSUB8, gen_helper_uqsub8) + +DO_PAR_ADDSUB(SHADD16, gen_helper_shadd16) +DO_PAR_ADDSUB(SHASX, gen_helper_shaddsubx) +DO_PAR_ADDSUB(SHSAX, gen_helper_shsubaddx) +DO_PAR_ADDSUB(SHSUB16, gen_helper_shsub16) +DO_PAR_ADDSUB(SHADD8, gen_helper_shadd8) +DO_PAR_ADDSUB(SHSUB8, gen_helper_shsub8) + +DO_PAR_ADDSUB(UHADD16, gen_helper_uhadd16) +DO_PAR_ADDSUB(UHASX, gen_helper_uhaddsubx) +DO_PAR_ADDSUB(UHSAX, gen_helper_uhsubaddx) +DO_PAR_ADDSUB(UHSUB16, gen_helper_uhsub16) +DO_PAR_ADDSUB(UHADD8, gen_helper_uhadd8) +DO_PAR_ADDSUB(UHSUB8, gen_helper_uhsub8) + +#undef DO_PAR_ADDSUB +#undef DO_PAR_ADDSUB_GE + +/* + * Packing, unpacking, saturation, and reversal + */ + +static bool trans_PKH(DisasContext *s, arg_PKH *a) +{ + TCGv_i32 tn, tm; + int shift = a->imm; + + if (s->thumb + ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) + : !ENABLE_ARCH_6) { + return false; + } + + tn = load_reg(s, a->rn); + tm = load_reg(s, a->rm); + if (a->tb) { + /* PKHTB */ + if (shift == 0) { + shift = 31; + } + tcg_gen_sari_i32(tm, tm, shift); + tcg_gen_deposit_i32(tn, tn, tm, 0, 16); + } else { + /* PKHBT */ + tcg_gen_shli_i32(tm, tm, shift); + tcg_gen_deposit_i32(tn, tm, tn, 0, 16); + } + tcg_temp_free_i32(tm); + store_reg(s, a->rd, tn); + return true; +} + +static bool op_sat(DisasContext *s, arg_sat *a, + void (*gen)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32)) +{ + TCGv_i32 tmp; + int shift = a->imm; + + if (!ENABLE_ARCH_6) { + return false; + } + + tmp = load_reg(s, a->rn); + if (a->sh) { + tcg_gen_sari_i32(tmp, tmp, shift ? shift : 31); + } else { + tcg_gen_shli_i32(tmp, tmp, shift); + } + + gen(tmp, cpu_env, tmp, tcg_constant_i32(a->satimm)); + + store_reg(s, a->rd, tmp); + return true; +} + +static bool trans_SSAT(DisasContext *s, arg_sat *a) +{ + return op_sat(s, a, gen_helper_ssat); +} + +static bool trans_USAT(DisasContext *s, arg_sat *a) +{ + return op_sat(s, a, gen_helper_usat); +} + +static bool trans_SSAT16(DisasContext *s, arg_sat *a) +{ + if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { + return false; + } + return op_sat(s, a, gen_helper_ssat16); +} + +static bool trans_USAT16(DisasContext *s, arg_sat *a) +{ + if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { + return false; + } + return op_sat(s, a, gen_helper_usat16); +} + +static bool op_xta(DisasContext *s, arg_rrr_rot *a, + void (*gen_extract)(TCGv_i32, TCGv_i32), + void (*gen_add)(TCGv_i32, TCGv_i32, TCGv_i32)) +{ + TCGv_i32 tmp; + + if (!ENABLE_ARCH_6) { + return false; + } + + tmp = load_reg(s, a->rm); + /* + * TODO: In many cases we could do a shift instead of a rotate. + * Combined with a simple extend, that becomes an extract. + */ + tcg_gen_rotri_i32(tmp, tmp, a->rot * 8); + gen_extract(tmp, tmp); + + if (a->rn != 15) { + TCGv_i32 tmp2 = load_reg(s, a->rn); + gen_add(tmp, tmp, tmp2); + tcg_temp_free_i32(tmp2); + } + store_reg(s, a->rd, tmp); + return true; +} + +static bool trans_SXTAB(DisasContext *s, arg_rrr_rot *a) +{ + return op_xta(s, a, tcg_gen_ext8s_i32, tcg_gen_add_i32); +} + +static bool trans_SXTAH(DisasContext *s, arg_rrr_rot *a) +{ + return op_xta(s, a, tcg_gen_ext16s_i32, tcg_gen_add_i32); +} + +static bool trans_SXTAB16(DisasContext *s, arg_rrr_rot *a) +{ + if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { + return false; + } + return op_xta(s, a, gen_helper_sxtb16, gen_add16); +} + +static bool trans_UXTAB(DisasContext *s, arg_rrr_rot *a) +{ + return op_xta(s, a, tcg_gen_ext8u_i32, tcg_gen_add_i32); +} + +static bool trans_UXTAH(DisasContext *s, arg_rrr_rot *a) +{ + return op_xta(s, a, tcg_gen_ext16u_i32, tcg_gen_add_i32); +} + +static bool trans_UXTAB16(DisasContext *s, arg_rrr_rot *a) +{ + if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) { + return false; + } + return op_xta(s, a, gen_helper_uxtb16, gen_add16); +} + +static bool trans_SEL(DisasContext *s, arg_rrr *a) +{ + TCGv_i32 t1, t2, t3; + + if (s->thumb + ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) + : !ENABLE_ARCH_6) { + return false; + } + + t1 = load_reg(s, a->rn); + t2 = load_reg(s, a->rm); + t3 = tcg_temp_new_i32(); + tcg_gen_ld_i32(t3, cpu_env, offsetof(CPUARMState, GE)); + gen_helper_sel_flags(t1, t3, t1, t2); + tcg_temp_free_i32(t3); + tcg_temp_free_i32(t2); + store_reg(s, a->rd, t1); + return true; +} + +static bool op_rr(DisasContext *s, arg_rr *a, + void (*gen)(TCGv_i32, TCGv_i32)) +{ + TCGv_i32 tmp; + + tmp = load_reg(s, a->rm); + gen(tmp, tmp); + store_reg(s, a->rd, tmp); + return true; +} + +static bool trans_REV(DisasContext *s, arg_rr *a) +{ + if (!ENABLE_ARCH_6) { + return false; + } + return op_rr(s, a, tcg_gen_bswap32_i32); +} + +static bool trans_REV16(DisasContext *s, arg_rr *a) +{ + if (!ENABLE_ARCH_6) { + return false; + } + return op_rr(s, a, gen_rev16); +} + +static bool trans_REVSH(DisasContext *s, arg_rr *a) +{ + if (!ENABLE_ARCH_6) { + return false; + } + return op_rr(s, a, gen_revsh); +} + +static bool trans_RBIT(DisasContext *s, arg_rr *a) +{ + if (!ENABLE_ARCH_6T2) { + return false; + } + return op_rr(s, a, gen_helper_rbit); +} + +/* + * Signed multiply, signed and unsigned divide + */ + +static bool op_smlad(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) +{ + TCGv_i32 t1, t2; + + if (!ENABLE_ARCH_6) { + return false; + } + + t1 = load_reg(s, a->rn); + t2 = load_reg(s, a->rm); + if (m_swap) { + gen_swap_half(t2, t2); + } + gen_smul_dual(t1, t2); + + if (sub) { + /* + * This subtraction cannot overflow, so we can do a simple + * 32-bit subtraction and then a possible 32-bit saturating + * addition of Ra. + */ + tcg_gen_sub_i32(t1, t1, t2); + tcg_temp_free_i32(t2); + + if (a->ra != 15) { + t2 = load_reg(s, a->ra); + gen_helper_add_setq(t1, cpu_env, t1, t2); + tcg_temp_free_i32(t2); + } + } else if (a->ra == 15) { + /* Single saturation-checking addition */ + gen_helper_add_setq(t1, cpu_env, t1, t2); + tcg_temp_free_i32(t2); + } else { + /* + * We need to add the products and Ra together and then + * determine whether the final result overflowed. Doing + * this as two separate add-and-check-overflow steps incorrectly + * sets Q for cases like (-32768 * -32768) + (-32768 * -32768) + -1. + * Do all the arithmetic at 64-bits and then check for overflow. + */ + TCGv_i64 p64, q64; + TCGv_i32 t3, qf, one; + + p64 = tcg_temp_new_i64(); + q64 = tcg_temp_new_i64(); + tcg_gen_ext_i32_i64(p64, t1); + tcg_gen_ext_i32_i64(q64, t2); + tcg_gen_add_i64(p64, p64, q64); + load_reg_var(s, t2, a->ra); + tcg_gen_ext_i32_i64(q64, t2); + tcg_gen_add_i64(p64, p64, q64); + tcg_temp_free_i64(q64); + + tcg_gen_extr_i64_i32(t1, t2, p64); + tcg_temp_free_i64(p64); + /* + * t1 is the low half of the result which goes into Rd. + * We have overflow and must set Q if the high half (t2) + * is different from the sign-extension of t1. + */ + t3 = tcg_temp_new_i32(); + tcg_gen_sari_i32(t3, t1, 31); + qf = load_cpu_field(QF); + one = tcg_constant_i32(1); + tcg_gen_movcond_i32(TCG_COND_NE, qf, t2, t3, one, qf); + store_cpu_field(qf, QF); + tcg_temp_free_i32(t3); + tcg_temp_free_i32(t2); + } + store_reg(s, a->rd, t1); + return true; +} + +static bool trans_SMLAD(DisasContext *s, arg_rrrr *a) +{ + return op_smlad(s, a, false, false); +} + +static bool trans_SMLADX(DisasContext *s, arg_rrrr *a) +{ + return op_smlad(s, a, true, false); +} + +static bool trans_SMLSD(DisasContext *s, arg_rrrr *a) +{ + return op_smlad(s, a, false, true); +} + +static bool trans_SMLSDX(DisasContext *s, arg_rrrr *a) +{ + return op_smlad(s, a, true, true); +} + +static bool op_smlald(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub) +{ + TCGv_i32 t1, t2; + TCGv_i64 l1, l2; + + if (!ENABLE_ARCH_6) { + return false; + } + + t1 = load_reg(s, a->rn); + t2 = load_reg(s, a->rm); + if (m_swap) { + gen_swap_half(t2, t2); + } + gen_smul_dual(t1, t2); + + l1 = tcg_temp_new_i64(); + l2 = tcg_temp_new_i64(); + tcg_gen_ext_i32_i64(l1, t1); + tcg_gen_ext_i32_i64(l2, t2); + tcg_temp_free_i32(t1); + tcg_temp_free_i32(t2); + + if (sub) { + tcg_gen_sub_i64(l1, l1, l2); + } else { + tcg_gen_add_i64(l1, l1, l2); + } + tcg_temp_free_i64(l2); + + gen_addq(s, l1, a->ra, a->rd); + gen_storeq_reg(s, a->ra, a->rd, l1); + tcg_temp_free_i64(l1); + return true; +} + +static bool trans_SMLALD(DisasContext *s, arg_rrrr *a) +{ + return op_smlald(s, a, false, false); +} + +static bool trans_SMLALDX(DisasContext *s, arg_rrrr *a) +{ + return op_smlald(s, a, true, false); +} + +static bool trans_SMLSLD(DisasContext *s, arg_rrrr *a) +{ + return op_smlald(s, a, false, true); +} + +static bool trans_SMLSLDX(DisasContext *s, arg_rrrr *a) +{ + return op_smlald(s, a, true, true); +} + +static bool op_smmla(DisasContext *s, arg_rrrr *a, bool round, bool sub) +{ + TCGv_i32 t1, t2; + + if (s->thumb + ? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP) + : !ENABLE_ARCH_6) { + return false; + } + + t1 = load_reg(s, a->rn); + t2 = load_reg(s, a->rm); + tcg_gen_muls2_i32(t2, t1, t1, t2); + + if (a->ra != 15) { + TCGv_i32 t3 = load_reg(s, a->ra); + if (sub) { + /* + * For SMMLS, we need a 64-bit subtract. Borrow caused by + * a non-zero multiplicand lowpart, and the correct result + * lowpart for rounding. + */ + tcg_gen_sub2_i32(t2, t1, tcg_constant_i32(0), t3, t2, t1); + } else { + tcg_gen_add_i32(t1, t1, t3); + } + tcg_temp_free_i32(t3); + } + if (round) { + /* + * Adding 0x80000000 to the 64-bit quantity means that we have + * carry in to the high word when the low word has the msb set. + */ + tcg_gen_shri_i32(t2, t2, 31); + tcg_gen_add_i32(t1, t1, t2); + } + tcg_temp_free_i32(t2); + store_reg(s, a->rd, t1); + return true; +} + +static bool trans_SMMLA(DisasContext *s, arg_rrrr *a) +{ + return op_smmla(s, a, false, false); +} + +static bool trans_SMMLAR(DisasContext *s, arg_rrrr *a) +{ + return op_smmla(s, a, true, false); +} + +static bool trans_SMMLS(DisasContext *s, arg_rrrr *a) +{ + return op_smmla(s, a, false, true); +} + +static bool trans_SMMLSR(DisasContext *s, arg_rrrr *a) +{ + return op_smmla(s, a, true, true); +} + +static bool op_div(DisasContext *s, arg_rrr *a, bool u) +{ + TCGv_i32 t1, t2; + + if (s->thumb + ? !dc_isar_feature(aa32_thumb_div, s) + : !dc_isar_feature(aa32_arm_div, s)) { + return false; + } + + t1 = load_reg(s, a->rn); + t2 = load_reg(s, a->rm); + if (u) { + gen_helper_udiv(t1, cpu_env, t1, t2); + } else { + gen_helper_sdiv(t1, cpu_env, t1, t2); + } + tcg_temp_free_i32(t2); + store_reg(s, a->rd, t1); + return true; +} + +static bool trans_SDIV(DisasContext *s, arg_rrr *a) +{ + return op_div(s, a, false); +} + +static bool trans_UDIV(DisasContext *s, arg_rrr *a) +{ + return op_div(s, a, true); +} + +/* + * Block data transfer + */ + +static TCGv_i32 op_addr_block_pre(DisasContext *s, arg_ldst_block *a, int n) +{ + TCGv_i32 addr = load_reg(s, a->rn); + + if (a->b) { + if (a->i) { + /* pre increment */ + tcg_gen_addi_i32(addr, addr, 4); + } else { + /* pre decrement */ + tcg_gen_addi_i32(addr, addr, -(n * 4)); + } + } else if (!a->i && n != 1) { + /* post decrement */ + tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); + } + + if (s->v8m_stackcheck && a->rn == 13 && a->w) { + /* + * If the writeback is incrementing SP rather than + * decrementing it, and the initial SP is below the + * stack limit but the final written-back SP would + * be above, then we must not perform any memory + * accesses, but it is IMPDEF whether we generate + * an exception. We choose to do so in this case. + * At this point 'addr' is the lowest address, so + * either the original SP (if incrementing) or our + * final SP (if decrementing), so that's what we check. + */ + gen_helper_v8m_stackcheck(cpu_env, addr); + } + + return addr; +} + +static void op_addr_block_post(DisasContext *s, arg_ldst_block *a, + TCGv_i32 addr, int n) +{ + if (a->w) { + /* write back */ + if (!a->b) { + if (a->i) { + /* post increment */ + tcg_gen_addi_i32(addr, addr, 4); + } else { + /* post decrement */ + tcg_gen_addi_i32(addr, addr, -(n * 4)); + } + } else if (!a->i && n != 1) { + /* pre decrement */ + tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); + } + store_reg(s, a->rn, addr); + } else { + tcg_temp_free_i32(addr); + } +} + +static bool op_stm(DisasContext *s, arg_ldst_block *a, int min_n) +{ + int i, j, n, list, mem_idx; + bool user = a->u; + TCGv_i32 addr, tmp; + + if (user) { + /* STM (user) */ + if (IS_USER(s)) { + /* Only usable in supervisor mode. */ + unallocated_encoding(s); + return true; + } + } + + list = a->list; + n = ctpop16(list); + if (n < min_n || a->rn == 15) { + unallocated_encoding(s); + return true; + } + + s->eci_handled = true; + + addr = op_addr_block_pre(s, a, n); + mem_idx = get_mem_index(s); + + for (i = j = 0; i < 16; i++) { + if (!(list & (1 << i))) { + continue; + } + + if (user && i != 15) { + tmp = tcg_temp_new_i32(); + gen_helper_get_user_reg(tmp, cpu_env, tcg_constant_i32(i)); + } else { + tmp = load_reg(s, i); + } + gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + tcg_temp_free_i32(tmp); + + /* No need to add after the last transfer. */ + if (++j != n) { + tcg_gen_addi_i32(addr, addr, 4); + } + } + + op_addr_block_post(s, a, addr, n); + clear_eci_state(s); + return true; +} + +static bool trans_STM(DisasContext *s, arg_ldst_block *a) +{ + /* BitCount(list) < 1 is UNPREDICTABLE */ + return op_stm(s, a, 1); +} + +static bool trans_STM_t32(DisasContext *s, arg_ldst_block *a) +{ + /* Writeback register in register list is UNPREDICTABLE for T32. */ + if (a->w && (a->list & (1 << a->rn))) { + unallocated_encoding(s); + return true; + } + /* BitCount(list) < 2 is UNPREDICTABLE */ + return op_stm(s, a, 2); +} + +static bool do_ldm(DisasContext *s, arg_ldst_block *a, int min_n) +{ + int i, j, n, list, mem_idx; + bool loaded_base; + bool user = a->u; + bool exc_return = false; + TCGv_i32 addr, tmp, loaded_var; + + if (user) { + /* LDM (user), LDM (exception return) */ + if (IS_USER(s)) { + /* Only usable in supervisor mode. */ + unallocated_encoding(s); + return true; + } + if (extract32(a->list, 15, 1)) { + exc_return = true; + user = false; + } else { + /* LDM (user) does not allow writeback. */ + if (a->w) { + unallocated_encoding(s); + return true; + } + } + } + + list = a->list; + n = ctpop16(list); + if (n < min_n || a->rn == 15) { + unallocated_encoding(s); + return true; + } + + s->eci_handled = true; + + addr = op_addr_block_pre(s, a, n); + mem_idx = get_mem_index(s); + loaded_base = false; + loaded_var = NULL; + + for (i = j = 0; i < 16; i++) { + if (!(list & (1 << i))) { + continue; + } + + tmp = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | MO_ALIGN); + if (user) { + gen_helper_set_user_reg(cpu_env, tcg_constant_i32(i), tmp); + tcg_temp_free_i32(tmp); + } else if (i == a->rn) { + loaded_var = tmp; + loaded_base = true; + } else if (i == 15 && exc_return) { + store_pc_exc_ret(s, tmp); + } else { + store_reg_from_load(s, i, tmp); + } + + /* No need to add after the last transfer. */ + if (++j != n) { + tcg_gen_addi_i32(addr, addr, 4); + } + } + + op_addr_block_post(s, a, addr, n); + + if (loaded_base) { + /* Note that we reject base == pc above. */ + store_reg(s, a->rn, loaded_var); + } + + if (exc_return) { + /* Restore CPSR from SPSR. */ + tmp = load_cpu_field(spsr); + if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { + gen_io_start(); + } + gen_helper_cpsr_write_eret(cpu_env, tmp); + tcg_temp_free_i32(tmp); + /* Must exit loop to check un-masked IRQs */ + s->base.is_jmp = DISAS_EXIT; + } + clear_eci_state(s); + return true; +} + +static bool trans_LDM_a32(DisasContext *s, arg_ldst_block *a) +{ + /* + * Writeback register in register list is UNPREDICTABLE + * for ArchVersion() >= 7. Prior to v7, A32 would write + * an UNKNOWN value to the base register. + */ + if (ENABLE_ARCH_7 && a->w && (a->list & (1 << a->rn))) { + unallocated_encoding(s); + return true; + } + /* BitCount(list) < 1 is UNPREDICTABLE */ + return do_ldm(s, a, 1); +} + +static bool trans_LDM_t32(DisasContext *s, arg_ldst_block *a) +{ + /* Writeback register in register list is UNPREDICTABLE for T32. */ + if (a->w && (a->list & (1 << a->rn))) { + unallocated_encoding(s); + return true; + } + /* BitCount(list) < 2 is UNPREDICTABLE */ + return do_ldm(s, a, 2); +} + +static bool trans_LDM_t16(DisasContext *s, arg_ldst_block *a) +{ + /* Writeback is conditional on the base register not being loaded. */ + a->w = !(a->list & (1 << a->rn)); + /* BitCount(list) < 1 is UNPREDICTABLE */ + return do_ldm(s, a, 1); +} + +static bool trans_CLRM(DisasContext *s, arg_CLRM *a) +{ + int i; + TCGv_i32 zero; + + if (!dc_isar_feature(aa32_m_sec_state, s)) { + return false; + } + + if (extract32(a->list, 13, 1)) { + return false; + } + + if (!a->list) { + /* UNPREDICTABLE; we choose to UNDEF */ + return false; + } + + s->eci_handled = true; + + zero = tcg_constant_i32(0); + for (i = 0; i < 15; i++) { + if (extract32(a->list, i, 1)) { + /* Clear R[i] */ + tcg_gen_mov_i32(cpu_R[i], zero); + } + } + if (extract32(a->list, 15, 1)) { + /* + * Clear APSR (by calling the MSR helper with the same argument + * as for "MSR APSR_nzcvqg, Rn": mask = 0b1100, SYSM=0) + */ + gen_helper_v7m_msr(cpu_env, tcg_constant_i32(0xc00), zero); + } + clear_eci_state(s); + return true; +} + +/* + * Branch, branch with link + */ + +static bool trans_B(DisasContext *s, arg_i *a) +{ + gen_jmp(s, jmp_diff(s, a->imm)); + return true; +} + +static bool trans_B_cond_thumb(DisasContext *s, arg_ci *a) +{ + /* This has cond from encoding, required to be outside IT block. */ + if (a->cond >= 0xe) { + return false; + } + if (s->condexec_mask) { + unallocated_encoding(s); + return true; + } + arm_skip_unless(s, a->cond); + gen_jmp(s, jmp_diff(s, a->imm)); + return true; +} + +static bool trans_BL(DisasContext *s, arg_i *a) +{ + gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); + gen_jmp(s, jmp_diff(s, a->imm)); + return true; +} + +static bool trans_BLX_i(DisasContext *s, arg_BLX_i *a) +{ + /* + * BLX <imm> would be useless on M-profile; the encoding space + * is used for other insns from v8.1M onward, and UNDEFs before that. + */ + if (arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + + /* For A32, ARM_FEATURE_V5 is checked near the start of the uncond block. */ + if (s->thumb && (a->imm & 2)) { + return false; + } + gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | s->thumb); + store_cpu_field_constant(!s->thumb, thumb); + /* This jump is computed from an aligned PC: subtract off the low bits. */ + gen_jmp(s, jmp_diff(s, a->imm - (s->pc_curr & 3))); + return true; +} + +static bool trans_BL_BLX_prefix(DisasContext *s, arg_BL_BLX_prefix *a) +{ + assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); + gen_pc_plus_diff(s, cpu_R[14], jmp_diff(s, a->imm << 12)); + return true; +} + +static bool trans_BL_suffix(DisasContext *s, arg_BL_suffix *a) +{ + TCGv_i32 tmp = tcg_temp_new_i32(); + + assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); + tcg_gen_addi_i32(tmp, cpu_R[14], (a->imm << 1) | 1); + gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | 1); + gen_bx(s, tmp); + return true; +} + +static bool trans_BLX_suffix(DisasContext *s, arg_BLX_suffix *a) +{ + TCGv_i32 tmp; + + assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2)); + if (!ENABLE_ARCH_5) { + return false; + } + tmp = tcg_temp_new_i32(); + tcg_gen_addi_i32(tmp, cpu_R[14], a->imm << 1); + tcg_gen_andi_i32(tmp, tmp, 0xfffffffc); + gen_pc_plus_diff(s, cpu_R[14], curr_insn_len(s) | 1); + gen_bx(s, tmp); + return true; +} + +static bool trans_BF(DisasContext *s, arg_BF *a) +{ + /* + * M-profile branch future insns. The architecture permits an + * implementation to implement these as NOPs (equivalent to + * discarding the LO_BRANCH_INFO cache immediately), and we + * take that IMPDEF option because for QEMU a "real" implementation + * would be complicated and wouldn't execute any faster. + */ + if (!dc_isar_feature(aa32_lob, s)) { + return false; + } + if (a->boff == 0) { + /* SEE "Related encodings" (loop insns) */ + return false; + } + /* Handle as NOP */ + return true; +} + +static bool trans_DLS(DisasContext *s, arg_DLS *a) +{ + /* M-profile low-overhead loop start */ + TCGv_i32 tmp; + + if (!dc_isar_feature(aa32_lob, s)) { + return false; + } + if (a->rn == 13 || a->rn == 15) { + /* + * For DLSTP rn == 15 is a related encoding (LCTP); the + * other cases caught by this condition are all + * CONSTRAINED UNPREDICTABLE: we choose to UNDEF + */ + return false; + } + + if (a->size != 4) { + /* DLSTP */ + if (!dc_isar_feature(aa32_mve, s)) { + return false; + } + if (!vfp_access_check(s)) { + return true; + } + } + + /* Not a while loop: set LR to the count, and set LTPSIZE for DLSTP */ + tmp = load_reg(s, a->rn); + store_reg(s, 14, tmp); + if (a->size != 4) { + /* DLSTP: set FPSCR.LTPSIZE */ + store_cpu_field(tcg_constant_i32(a->size), v7m.ltpsize); + s->base.is_jmp = DISAS_UPDATE_NOCHAIN; + } + return true; +} + +static bool trans_WLS(DisasContext *s, arg_WLS *a) +{ + /* M-profile low-overhead while-loop start */ + TCGv_i32 tmp; + DisasLabel nextlabel; + + if (!dc_isar_feature(aa32_lob, s)) { + return false; + } + if (a->rn == 13 || a->rn == 15) { + /* + * For WLSTP rn == 15 is a related encoding (LE); the + * other cases caught by this condition are all + * CONSTRAINED UNPREDICTABLE: we choose to UNDEF + */ + return false; + } + if (s->condexec_mask) { + /* + * WLS in an IT block is CONSTRAINED UNPREDICTABLE; + * we choose to UNDEF, because otherwise our use of + * gen_goto_tb(1) would clash with the use of TB exit 1 + * in the dc->condjmp condition-failed codepath in + * arm_tr_tb_stop() and we'd get an assertion. + */ + return false; + } + if (a->size != 4) { + /* WLSTP */ + if (!dc_isar_feature(aa32_mve, s)) { + return false; + } + /* + * We need to check that the FPU is enabled here, but mustn't + * call vfp_access_check() to do that because we don't want to + * do the lazy state preservation in the "loop count is zero" case. + * Do the check-and-raise-exception by hand. + */ + if (s->fp_excp_el) { + gen_exception_insn_el(s, 0, EXCP_NOCP, + syn_uncategorized(), s->fp_excp_el); + return true; + } + } + + nextlabel = gen_disas_label(s); + tcg_gen_brcondi_i32(TCG_COND_EQ, cpu_R[a->rn], 0, nextlabel.label); + tmp = load_reg(s, a->rn); + store_reg(s, 14, tmp); + if (a->size != 4) { + /* + * WLSTP: set FPSCR.LTPSIZE. This requires that we do the + * lazy state preservation, new FP context creation, etc, + * that vfp_access_check() does. We know that the actual + * access check will succeed (ie it won't generate code that + * throws an exception) because we did that check by hand earlier. + */ + bool ok = vfp_access_check(s); + assert(ok); + store_cpu_field(tcg_constant_i32(a->size), v7m.ltpsize); + /* + * LTPSIZE updated, but MVE_NO_PRED will always be the same thing (0) + * when we take this upcoming exit from this TB, so gen_jmp_tb() is OK. + */ + } + gen_jmp_tb(s, curr_insn_len(s), 1); + + set_disas_label(s, nextlabel); + gen_jmp(s, jmp_diff(s, a->imm)); + return true; +} + +static bool trans_LE(DisasContext *s, arg_LE *a) +{ + /* + * M-profile low-overhead loop end. The architecture permits an + * implementation to discard the LO_BRANCH_INFO cache at any time, + * and we take the IMPDEF option to never set it in the first place + * (equivalent to always discarding it immediately), because for QEMU + * a "real" implementation would be complicated and wouldn't execute + * any faster. + */ + TCGv_i32 tmp; + DisasLabel loopend; + bool fpu_active; + + if (!dc_isar_feature(aa32_lob, s)) { + return false; + } + if (a->f && a->tp) { + return false; + } + if (s->condexec_mask) { + /* + * LE in an IT block is CONSTRAINED UNPREDICTABLE; + * we choose to UNDEF, because otherwise our use of + * gen_goto_tb(1) would clash with the use of TB exit 1 + * in the dc->condjmp condition-failed codepath in + * arm_tr_tb_stop() and we'd get an assertion. + */ + return false; + } + if (a->tp) { + /* LETP */ + if (!dc_isar_feature(aa32_mve, s)) { + return false; + } + if (!vfp_access_check(s)) { + s->eci_handled = true; + return true; + } + } + + /* LE/LETP is OK with ECI set and leaves it untouched */ + s->eci_handled = true; + + /* + * With MVE, LTPSIZE might not be 4, and we must emit an INVSTATE + * UsageFault exception for the LE insn in that case. Note that we + * are not directly checking FPSCR.LTPSIZE but instead check the + * pseudocode LTPSIZE() function, which returns 4 if the FPU is + * not currently active (ie ActiveFPState() returns false). We + * can identify not-active purely from our TB state flags, as the + * FPU is active only if: + * the FPU is enabled + * AND lazy state preservation is not active + * AND we do not need a new fp context (this is the ASPEN/FPCA check) + * + * Usually we don't need to care about this distinction between + * LTPSIZE and FPSCR.LTPSIZE, because the code in vfp_access_check() + * will either take an exception or clear the conditions that make + * the FPU not active. But LE is an unusual case of a non-FP insn + * that looks at LTPSIZE. + */ + fpu_active = !s->fp_excp_el && !s->v7m_lspact && !s->v7m_new_fp_ctxt_needed; + + if (!a->tp && dc_isar_feature(aa32_mve, s) && fpu_active) { + /* Need to do a runtime check for LTPSIZE != 4 */ + DisasLabel skipexc = gen_disas_label(s); + tmp = load_cpu_field(v7m.ltpsize); + tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 4, skipexc.label); + tcg_temp_free_i32(tmp); + gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized()); + set_disas_label(s, skipexc); + } + + if (a->f) { + /* Loop-forever: just jump back to the loop start */ + gen_jmp(s, jmp_diff(s, -a->imm)); + return true; + } + + /* + * Not loop-forever. If LR <= loop-decrement-value this is the last loop. + * For LE, we know at this point that LTPSIZE must be 4 and the + * loop decrement value is 1. For LETP we need to calculate the decrement + * value from LTPSIZE. + */ + loopend = gen_disas_label(s); + if (!a->tp) { + tcg_gen_brcondi_i32(TCG_COND_LEU, cpu_R[14], 1, loopend.label); + tcg_gen_addi_i32(cpu_R[14], cpu_R[14], -1); + } else { + /* + * Decrement by 1 << (4 - LTPSIZE). We need to use a TCG local + * so that decr stays live after the brcondi. + */ + TCGv_i32 decr = tcg_temp_local_new_i32(); + TCGv_i32 ltpsize = load_cpu_field(v7m.ltpsize); + tcg_gen_sub_i32(decr, tcg_constant_i32(4), ltpsize); + tcg_gen_shl_i32(decr, tcg_constant_i32(1), decr); + tcg_temp_free_i32(ltpsize); + + tcg_gen_brcond_i32(TCG_COND_LEU, cpu_R[14], decr, loopend.label); + + tcg_gen_sub_i32(cpu_R[14], cpu_R[14], decr); + tcg_temp_free_i32(decr); + } + /* Jump back to the loop start */ + gen_jmp(s, jmp_diff(s, -a->imm)); + + set_disas_label(s, loopend); + if (a->tp) { + /* Exits from tail-pred loops must reset LTPSIZE to 4 */ + store_cpu_field(tcg_constant_i32(4), v7m.ltpsize); + } + /* End TB, continuing to following insn */ + gen_jmp_tb(s, curr_insn_len(s), 1); + return true; +} + +static bool trans_LCTP(DisasContext *s, arg_LCTP *a) +{ + /* + * M-profile Loop Clear with Tail Predication. Since our implementation + * doesn't cache branch information, all we need to do is reset + * FPSCR.LTPSIZE to 4. + */ + + if (!dc_isar_feature(aa32_lob, s) || + !dc_isar_feature(aa32_mve, s)) { + return false; + } + + if (!vfp_access_check(s)) { + return true; + } + + store_cpu_field_constant(4, v7m.ltpsize); + return true; +} + +static bool trans_VCTP(DisasContext *s, arg_VCTP *a) +{ + /* + * M-profile Create Vector Tail Predicate. This insn is itself + * predicated and is subject to beatwise execution. + */ + TCGv_i32 rn_shifted, masklen; + + if (!dc_isar_feature(aa32_mve, s) || a->rn == 13 || a->rn == 15) { + return false; + } + + if (!mve_eci_check(s) || !vfp_access_check(s)) { + return true; + } + + /* + * We pre-calculate the mask length here to avoid having + * to have multiple helpers specialized for size. + * We pass the helper "rn <= (1 << (4 - size)) ? (rn << size) : 16". + */ + rn_shifted = tcg_temp_new_i32(); + masklen = load_reg(s, a->rn); + tcg_gen_shli_i32(rn_shifted, masklen, a->size); + tcg_gen_movcond_i32(TCG_COND_LEU, masklen, + masklen, tcg_constant_i32(1 << (4 - a->size)), + rn_shifted, tcg_constant_i32(16)); + gen_helper_mve_vctp(cpu_env, masklen); + tcg_temp_free_i32(masklen); + tcg_temp_free_i32(rn_shifted); + /* This insn updates predication bits */ + s->base.is_jmp = DISAS_UPDATE_NOCHAIN; + mve_update_eci(s); + return true; +} + +static bool op_tbranch(DisasContext *s, arg_tbranch *a, bool half) +{ + TCGv_i32 addr, tmp; + + tmp = load_reg(s, a->rm); + if (half) { + tcg_gen_add_i32(tmp, tmp, tmp); + } + addr = load_reg(s, a->rn); + tcg_gen_add_i32(addr, addr, tmp); + + gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), half ? MO_UW : MO_UB); + + tcg_gen_add_i32(tmp, tmp, tmp); + gen_pc_plus_diff(s, addr, jmp_diff(s, 0)); + tcg_gen_add_i32(tmp, tmp, addr); + tcg_temp_free_i32(addr); + store_reg(s, 15, tmp); + return true; +} + +static bool trans_TBB(DisasContext *s, arg_tbranch *a) +{ + return op_tbranch(s, a, false); +} + +static bool trans_TBH(DisasContext *s, arg_tbranch *a) +{ + return op_tbranch(s, a, true); +} + +static bool trans_CBZ(DisasContext *s, arg_CBZ *a) +{ + TCGv_i32 tmp = load_reg(s, a->rn); + + arm_gen_condlabel(s); + tcg_gen_brcondi_i32(a->nz ? TCG_COND_EQ : TCG_COND_NE, + tmp, 0, s->condlabel.label); + tcg_temp_free_i32(tmp); + gen_jmp(s, jmp_diff(s, a->imm)); + return true; +} + +/* + * Supervisor call - both T32 & A32 come here so we need to check + * which mode we are in when checking for semihosting. + */ + +static bool trans_SVC(DisasContext *s, arg_SVC *a) +{ + const uint32_t semihost_imm = s->thumb ? 0xab : 0x123456; + + if (!arm_dc_feature(s, ARM_FEATURE_M) && + semihosting_enabled(s->current_el == 0) && + (a->imm == semihost_imm)) { + gen_exception_internal_insn(s, EXCP_SEMIHOST); + } else { + if (s->fgt_svc) { + uint32_t syndrome = syn_aa32_svc(a->imm, s->thumb); + gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2); + } else { + gen_update_pc(s, curr_insn_len(s)); + s->svc_imm = a->imm; + s->base.is_jmp = DISAS_SWI; + } + } + return true; +} + +/* + * Unconditional system instructions + */ + +static bool trans_RFE(DisasContext *s, arg_RFE *a) +{ + static const int8_t pre_offset[4] = { + /* DA */ -4, /* IA */ 0, /* DB */ -8, /* IB */ 4 + }; + static const int8_t post_offset[4] = { + /* DA */ -8, /* IA */ 4, /* DB */ -4, /* IB */ 0 + }; + TCGv_i32 addr, t1, t2; + + if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + if (IS_USER(s)) { + unallocated_encoding(s); + return true; + } + + addr = load_reg(s, a->rn); + tcg_gen_addi_i32(addr, addr, pre_offset[a->pu]); + + /* Load PC into tmp and CPSR into tmp2. */ + t1 = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, t1, addr, get_mem_index(s), MO_UL | MO_ALIGN); + tcg_gen_addi_i32(addr, addr, 4); + t2 = tcg_temp_new_i32(); + gen_aa32_ld_i32(s, t2, addr, get_mem_index(s), MO_UL | MO_ALIGN); + + if (a->w) { + /* Base writeback. */ + tcg_gen_addi_i32(addr, addr, post_offset[a->pu]); + store_reg(s, a->rn, addr); + } else { + tcg_temp_free_i32(addr); + } + gen_rfe(s, t1, t2); + return true; +} + +static bool trans_SRS(DisasContext *s, arg_SRS *a) +{ + if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + gen_srs(s, a->mode, a->pu, a->w); + return true; +} + +static bool trans_CPS(DisasContext *s, arg_CPS *a) +{ + uint32_t mask, val; + + if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + if (IS_USER(s)) { + /* Implemented as NOP in user mode. */ + return true; + } + /* TODO: There are quite a lot of UNPREDICTABLE argument combinations. */ + + mask = val = 0; + if (a->imod & 2) { + if (a->A) { + mask |= CPSR_A; + } + if (a->I) { + mask |= CPSR_I; + } + if (a->F) { + mask |= CPSR_F; + } + if (a->imod & 1) { + val |= mask; + } + } + if (a->M) { + mask |= CPSR_M; + val |= a->mode; + } + if (mask) { + gen_set_psr_im(s, mask, 0, val); + } + return true; +} + +static bool trans_CPS_v7m(DisasContext *s, arg_CPS_v7m *a) +{ + TCGv_i32 tmp, addr; + + if (!arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + if (IS_USER(s)) { + /* Implemented as NOP in user mode. */ + return true; + } + + tmp = tcg_constant_i32(a->im); + /* FAULTMASK */ + if (a->F) { + addr = tcg_constant_i32(19); + gen_helper_v7m_msr(cpu_env, addr, tmp); + } + /* PRIMASK */ + if (a->I) { + addr = tcg_constant_i32(16); + gen_helper_v7m_msr(cpu_env, addr, tmp); + } + gen_rebuild_hflags(s, false); + gen_lookup_tb(s); + return true; +} + +/* + * Clear-Exclusive, Barriers + */ + +static bool trans_CLREX(DisasContext *s, arg_CLREX *a) +{ + if (s->thumb + ? !ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M) + : !ENABLE_ARCH_6K) { + return false; + } + gen_clrex(s); + return true; +} + +static bool trans_DSB(DisasContext *s, arg_DSB *a) +{ + if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); + return true; +} + +static bool trans_DMB(DisasContext *s, arg_DMB *a) +{ + return trans_DSB(s, NULL); +} + +static bool trans_ISB(DisasContext *s, arg_ISB *a) +{ + if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) { + return false; + } + /* + * We need to break the TB after this insn to execute + * self-modifying code correctly and also to take + * any pending interrupts immediately. + */ + s->base.is_jmp = DISAS_TOO_MANY; + return true; +} + +static bool trans_SB(DisasContext *s, arg_SB *a) +{ + if (!dc_isar_feature(aa32_sb, s)) { + return false; + } + /* + * TODO: There is no speculation barrier opcode + * for TCG; MB and end the TB instead. + */ + tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC); + s->base.is_jmp = DISAS_TOO_MANY; + return true; +} + +static bool trans_SETEND(DisasContext *s, arg_SETEND *a) +{ + if (!ENABLE_ARCH_6) { + return false; + } + if (a->E != (s->be_data == MO_BE)) { + gen_helper_setend(cpu_env); + s->base.is_jmp = DISAS_UPDATE_EXIT; + } + return true; +} + +/* + * Preload instructions + * All are nops, contingent on the appropriate arch level. + */ + +static bool trans_PLD(DisasContext *s, arg_PLD *a) +{ + return ENABLE_ARCH_5TE; +} + +static bool trans_PLDW(DisasContext *s, arg_PLD *a) +{ + return arm_dc_feature(s, ARM_FEATURE_V7MP); +} + +static bool trans_PLI(DisasContext *s, arg_PLD *a) +{ + return ENABLE_ARCH_7; +} + +/* + * If-then + */ + +static bool trans_IT(DisasContext *s, arg_IT *a) +{ + int cond_mask = a->cond_mask; + + /* + * No actual code generated for this insn, just setup state. + * + * Combinations of firstcond and mask which set up an 0b1111 + * condition are UNPREDICTABLE; we take the CONSTRAINED + * UNPREDICTABLE choice to treat 0b1111 the same as 0b1110, + * i.e. both meaning "execute always". + */ + s->condexec_cond = (cond_mask >> 4) & 0xe; + s->condexec_mask = cond_mask & 0x1f; + return true; +} + +/* v8.1M CSEL/CSINC/CSNEG/CSINV */ +static bool trans_CSEL(DisasContext *s, arg_CSEL *a) +{ + TCGv_i32 rn, rm, zero; + DisasCompare c; + + if (!arm_dc_feature(s, ARM_FEATURE_V8_1M)) { + return false; + } + + if (a->rm == 13) { + /* SEE "Related encodings" (MVE shifts) */ + return false; + } + + if (a->rd == 13 || a->rd == 15 || a->rn == 13 || a->fcond >= 14) { + /* CONSTRAINED UNPREDICTABLE: we choose to UNDEF */ + return false; + } + + /* In this insn input reg fields of 0b1111 mean "zero", not "PC" */ + zero = tcg_constant_i32(0); + if (a->rn == 15) { + rn = zero; + } else { + rn = load_reg(s, a->rn); + } + if (a->rm == 15) { + rm = zero; + } else { + rm = load_reg(s, a->rm); + } + + switch (a->op) { + case 0: /* CSEL */ + break; + case 1: /* CSINC */ + tcg_gen_addi_i32(rm, rm, 1); + break; + case 2: /* CSINV */ + tcg_gen_not_i32(rm, rm); + break; + case 3: /* CSNEG */ + tcg_gen_neg_i32(rm, rm); + break; + default: + g_assert_not_reached(); + } + + arm_test_cc(&c, a->fcond); + tcg_gen_movcond_i32(c.cond, rn, c.value, zero, rn, rm); + arm_free_cc(&c); + + store_reg(s, a->rd, rn); + tcg_temp_free_i32(rm); + + return true; +} + +/* + * Legacy decoder. + */ + +static void disas_arm_insn(DisasContext *s, unsigned int insn) +{ + unsigned int cond = insn >> 28; + + /* M variants do not implement ARM mode; this must raise the INVSTATE + * UsageFault exception. + */ + if (arm_dc_feature(s, ARM_FEATURE_M)) { + gen_exception_insn(s, 0, EXCP_INVSTATE, syn_uncategorized()); + return; + } + + if (s->pstate_il) { + /* + * Illegal execution state. This has priority over BTI + * exceptions, but comes after instruction abort exceptions. + */ + gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate()); + return; + } + + if (cond == 0xf) { + /* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we + * choose to UNDEF. In ARMv5 and above the space is used + * for miscellaneous unconditional instructions. + */ + if (!arm_dc_feature(s, ARM_FEATURE_V5)) { + unallocated_encoding(s); + return; + } + + /* Unconditional instructions. */ + /* TODO: Perhaps merge these into one decodetree output file. */ + if (disas_a32_uncond(s, insn) || + disas_vfp_uncond(s, insn) || + disas_neon_dp(s, insn) || + disas_neon_ls(s, insn) || + disas_neon_shared(s, insn)) { + return; + } + /* fall back to legacy decoder */ + + if ((insn & 0x0e000f00) == 0x0c000100) { + if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) { + /* iWMMXt register transfer. */ + if (extract32(s->c15_cpar, 1, 1)) { + if (!disas_iwmmxt_insn(s, insn)) { + return; + } + } + } + } + goto illegal_op; + } + if (cond != 0xe) { + /* if not always execute, we generate a conditional jump to + next instruction */ + arm_skip_unless(s, cond); + } + + /* TODO: Perhaps merge these into one decodetree output file. */ + if (disas_a32(s, insn) || + disas_vfp(s, insn)) { + return; + } + /* fall back to legacy decoder */ + /* TODO: convert xscale/iwmmxt decoder to decodetree ?? */ + if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) { + if (((insn & 0x0c000e00) == 0x0c000000) + && ((insn & 0x03000000) != 0x03000000)) { + /* Coprocessor insn, coprocessor 0 or 1 */ + disas_xscale_insn(s, insn); + return; + } + } + +illegal_op: + unallocated_encoding(s); +} + +static bool thumb_insn_is_16bit(DisasContext *s, uint32_t pc, uint32_t insn) +{ + /* + * Return true if this is a 16 bit instruction. We must be precise + * about this (matching the decode). + */ + if ((insn >> 11) < 0x1d) { + /* Definitely a 16-bit instruction */ + return true; + } + + /* Top five bits 0b11101 / 0b11110 / 0b11111 : this is the + * first half of a 32-bit Thumb insn. Thumb-1 cores might + * end up actually treating this as two 16-bit insns, though, + * if it's half of a bl/blx pair that might span a page boundary. + */ + if (arm_dc_feature(s, ARM_FEATURE_THUMB2) || + arm_dc_feature(s, ARM_FEATURE_M)) { + /* Thumb2 cores (including all M profile ones) always treat + * 32-bit insns as 32-bit. + */ + return false; + } + + if ((insn >> 11) == 0x1e && pc - s->page_start < TARGET_PAGE_SIZE - 3) { + /* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix, and the suffix + * is not on the next page; we merge this into a 32-bit + * insn. + */ + return false; + } + /* 0b1110_1xxx_xxxx_xxxx : BLX suffix (or UNDEF); + * 0b1111_1xxx_xxxx_xxxx : BL suffix; + * 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix on the end of a page + * -- handle as single 16 bit insn + */ + return true; +} + +/* Translate a 32-bit thumb instruction. */ +static void disas_thumb2_insn(DisasContext *s, uint32_t insn) +{ + /* + * ARMv6-M supports a limited subset of Thumb2 instructions. + * Other Thumb1 architectures allow only 32-bit + * combined BL/BLX prefix and suffix. + */ + if (arm_dc_feature(s, ARM_FEATURE_M) && + !arm_dc_feature(s, ARM_FEATURE_V7)) { + int i; + bool found = false; + static const uint32_t armv6m_insn[] = {0xf3808000 /* msr */, + 0xf3b08040 /* dsb */, + 0xf3b08050 /* dmb */, + 0xf3b08060 /* isb */, + 0xf3e08000 /* mrs */, + 0xf000d000 /* bl */}; + static const uint32_t armv6m_mask[] = {0xffe0d000, + 0xfff0d0f0, + 0xfff0d0f0, + 0xfff0d0f0, + 0xffe0d000, + 0xf800d000}; + + for (i = 0; i < ARRAY_SIZE(armv6m_insn); i++) { + if ((insn & armv6m_mask[i]) == armv6m_insn[i]) { + found = true; + break; + } + } + if (!found) { + goto illegal_op; + } + } else if ((insn & 0xf800e800) != 0xf000e800) { + if (!arm_dc_feature(s, ARM_FEATURE_THUMB2)) { + unallocated_encoding(s); + return; + } + } + + if (arm_dc_feature(s, ARM_FEATURE_M)) { + /* + * NOCP takes precedence over any UNDEF for (almost) the + * entire wide range of coprocessor-space encodings, so check + * for it first before proceeding to actually decode eg VFP + * insns. This decode also handles the few insns which are + * in copro space but do not have NOCP checks (eg VLLDM, VLSTM). + */ + if (disas_m_nocp(s, insn)) { + return; + } + } + + if ((insn & 0xef000000) == 0xef000000) { + /* + * T32 encodings 0b111p_1111_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq + * transform into + * A32 encodings 0b1111_001p_qqqq_qqqq_qqqq_qqqq_qqqq_qqqq + */ + uint32_t a32_insn = (insn & 0xe2ffffff) | + ((insn & (1 << 28)) >> 4) | (1 << 28); + + if (disas_neon_dp(s, a32_insn)) { + return; + } + } + + if ((insn & 0xff100000) == 0xf9000000) { + /* + * T32 encodings 0b1111_1001_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq + * transform into + * A32 encodings 0b1111_0100_ppp0_qqqq_qqqq_qqqq_qqqq_qqqq + */ + uint32_t a32_insn = (insn & 0x00ffffff) | 0xf4000000; + + if (disas_neon_ls(s, a32_insn)) { + return; + } + } + + /* + * TODO: Perhaps merge these into one decodetree output file. + * Note disas_vfp is written for a32 with cond field in the + * top nibble. The t32 encoding requires 0xe in the top nibble. + */ + if (disas_t32(s, insn) || + disas_vfp_uncond(s, insn) || + disas_neon_shared(s, insn) || + disas_mve(s, insn) || + ((insn >> 28) == 0xe && disas_vfp(s, insn))) { + return; + } + +illegal_op: + unallocated_encoding(s); +} + +static void disas_thumb_insn(DisasContext *s, uint32_t insn) +{ + if (!disas_t16(s, insn)) { + unallocated_encoding(s); + } +} + +static bool insn_crosses_page(CPUARMState *env, DisasContext *s) +{ + /* Return true if the insn at dc->base.pc_next might cross a page boundary. + * (False positives are OK, false negatives are not.) + * We know this is a Thumb insn, and our caller ensures we are + * only called if dc->base.pc_next is less than 4 bytes from the page + * boundary, so we cross the page if the first 16 bits indicate + * that this is a 32 bit insn. + */ + uint16_t insn = arm_lduw_code(env, &s->base, s->base.pc_next, s->sctlr_b); + + return !thumb_insn_is_16bit(s, s->base.pc_next, insn); +} + +static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) +{ + DisasContext *dc = container_of(dcbase, DisasContext, base); + CPUARMState *env = cs->env_ptr; + ARMCPU *cpu = env_archcpu(env); + CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb); + uint32_t condexec, core_mmu_idx; + + dc->isar = &cpu->isar; + dc->condjmp = 0; + dc->pc_save = dc->base.pc_first; + dc->aarch64 = false; + dc->thumb = EX_TBFLAG_AM32(tb_flags, THUMB); + dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE; + condexec = EX_TBFLAG_AM32(tb_flags, CONDEXEC); + /* + * the CONDEXEC TB flags are CPSR bits [15:10][26:25]. On A-profile this + * is always the IT bits. On M-profile, some of the reserved encodings + * of IT are used instead to indicate either ICI or ECI, which + * indicate partial progress of a restartable insn that was interrupted + * partway through by an exception: + * * if CONDEXEC[3:0] != 0b0000 : CONDEXEC is IT bits + * * if CONDEXEC[3:0] == 0b0000 : CONDEXEC is ICI or ECI bits + * In all cases CONDEXEC == 0 means "not in IT block or restartable + * insn, behave normally". + */ + dc->eci = dc->condexec_mask = dc->condexec_cond = 0; + dc->eci_handled = false; + if (condexec & 0xf) { + dc->condexec_mask = (condexec & 0xf) << 1; + dc->condexec_cond = condexec >> 4; + } else { + if (arm_feature(env, ARM_FEATURE_M)) { + dc->eci = condexec >> 4; + } + } + + core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX); + dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx); + dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); +#if !defined(CONFIG_USER_ONLY) + dc->user = (dc->current_el == 0); +#endif + dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL); + dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM); + dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL); + dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE); + dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC); + + if (arm_feature(env, ARM_FEATURE_M)) { + dc->vfp_enabled = 1; + dc->be_data = MO_TE; + dc->v7m_handler_mode = EX_TBFLAG_M32(tb_flags, HANDLER); + dc->v8m_secure = EX_TBFLAG_M32(tb_flags, SECURE); + dc->v8m_stackcheck = EX_TBFLAG_M32(tb_flags, STACKCHECK); + dc->v8m_fpccr_s_wrong = EX_TBFLAG_M32(tb_flags, FPCCR_S_WRONG); + dc->v7m_new_fp_ctxt_needed = + EX_TBFLAG_M32(tb_flags, NEW_FP_CTXT_NEEDED); + dc->v7m_lspact = EX_TBFLAG_M32(tb_flags, LSPACT); + dc->mve_no_pred = EX_TBFLAG_M32(tb_flags, MVE_NO_PRED); + } else { + dc->sctlr_b = EX_TBFLAG_A32(tb_flags, SCTLR__B); + dc->hstr_active = EX_TBFLAG_A32(tb_flags, HSTR_ACTIVE); + dc->ns = EX_TBFLAG_A32(tb_flags, NS); + dc->vfp_enabled = EX_TBFLAG_A32(tb_flags, VFPEN); + if (arm_feature(env, ARM_FEATURE_XSCALE)) { + dc->c15_cpar = EX_TBFLAG_A32(tb_flags, XSCALE_CPAR); + } else { + dc->vec_len = EX_TBFLAG_A32(tb_flags, VECLEN); + dc->vec_stride = EX_TBFLAG_A32(tb_flags, VECSTRIDE); + } + dc->sme_trap_nonstreaming = + EX_TBFLAG_A32(tb_flags, SME_TRAP_NONSTREAMING); + } + dc->cp_regs = cpu->cp_regs; + dc->features = env->features; + + /* Single step state. The code-generation logic here is: + * SS_ACTIVE == 0: + * generate code with no special handling for single-stepping (except + * that anything that can make us go to SS_ACTIVE == 1 must end the TB; + * this happens anyway because those changes are all system register or + * PSTATE writes). + * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) + * emit code for one insn + * emit code to clear PSTATE.SS + * emit code to generate software step exception for completed step + * end TB (as usual for having generated an exception) + * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) + * emit code to generate a software step exception + * end the TB + */ + dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE); + dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS); + dc->is_ldex = false; + + dc->page_start = dc->base.pc_first & TARGET_PAGE_MASK; + + /* If architectural single step active, limit to 1. */ + if (dc->ss_active) { + dc->base.max_insns = 1; + } + + /* ARM is a fixed-length ISA. Bound the number of insns to execute + to those left on the page. */ + if (!dc->thumb) { + int bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; + dc->base.max_insns = MIN(dc->base.max_insns, bound); + } + + cpu_V0 = tcg_temp_new_i64(); + cpu_V1 = tcg_temp_new_i64(); + cpu_M0 = tcg_temp_new_i64(); +} + +static void arm_tr_tb_start(DisasContextBase *dcbase, CPUState *cpu) +{ + DisasContext *dc = container_of(dcbase, DisasContext, base); + + /* A note on handling of the condexec (IT) bits: + * + * We want to avoid the overhead of having to write the updated condexec + * bits back to the CPUARMState for every instruction in an IT block. So: + * (1) if the condexec bits are not already zero then we write + * zero back into the CPUARMState now. This avoids complications trying + * to do it at the end of the block. (For example if we don't do this + * it's hard to identify whether we can safely skip writing condexec + * at the end of the TB, which we definitely want to do for the case + * where a TB doesn't do anything with the IT state at all.) + * (2) if we are going to leave the TB then we call gen_set_condexec() + * which will write the correct value into CPUARMState if zero is wrong. + * This is done both for leaving the TB at the end, and for leaving + * it because of an exception we know will happen, which is done in + * gen_exception_insn(). The latter is necessary because we need to + * leave the TB with the PC/IT state just prior to execution of the + * instruction which caused the exception. + * (3) if we leave the TB unexpectedly (eg a data abort on a load) + * then the CPUARMState will be wrong and we need to reset it. + * This is handled in the same way as restoration of the + * PC in these situations; we save the value of the condexec bits + * for each PC via tcg_gen_insn_start(), and restore_state_to_opc() + * then uses this to restore them after an exception. + * + * Note that there are no instructions which can read the condexec + * bits, and none which can write non-static values to them, so + * we don't need to care about whether CPUARMState is correct in the + * middle of a TB. + */ + + /* Reset the conditional execution bits immediately. This avoids + complications trying to do it at the end of the block. */ + if (dc->condexec_mask || dc->condexec_cond) { + store_cpu_field_constant(0, condexec_bits); + } +} + +static void arm_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) +{ + DisasContext *dc = container_of(dcbase, DisasContext, base); + /* + * The ECI/ICI bits share PSR bits with the IT bits, so we + * need to reconstitute the bits from the split-out DisasContext + * fields here. + */ + uint32_t condexec_bits; + target_ulong pc_arg = dc->base.pc_next; + + if (TARGET_TB_PCREL) { + pc_arg &= ~TARGET_PAGE_MASK; + } + if (dc->eci) { + condexec_bits = dc->eci << 4; + } else { + condexec_bits = (dc->condexec_cond << 4) | (dc->condexec_mask >> 1); + } + tcg_gen_insn_start(pc_arg, condexec_bits, 0); + dc->insn_start = tcg_last_op(); +} + +static bool arm_check_kernelpage(DisasContext *dc) +{ +#ifdef CONFIG_USER_ONLY + /* Intercept jump to the magic kernel page. */ + if (dc->base.pc_next >= 0xffff0000) { + /* We always get here via a jump, so know we are not in a + conditional execution block. */ + gen_exception_internal(EXCP_KERNEL_TRAP); + dc->base.is_jmp = DISAS_NORETURN; + return true; + } +#endif + return false; +} + +static bool arm_check_ss_active(DisasContext *dc) +{ + if (dc->ss_active && !dc->pstate_ss) { + /* Singlestep state is Active-pending. + * If we're in this state at the start of a TB then either + * a) we just took an exception to an EL which is being debugged + * and this is the first insn in the exception handler + * b) debug exceptions were masked and we just unmasked them + * without changing EL (eg by clearing PSTATE.D) + * In either case we're going to take a swstep exception in the + * "did not step an insn" case, and so the syndrome ISV and EX + * bits should be zero. + */ + assert(dc->base.num_insns == 1); + gen_swstep_exception(dc, 0, 0); + dc->base.is_jmp = DISAS_NORETURN; + return true; + } + + return false; +} + +static void arm_post_translate_insn(DisasContext *dc) +{ + if (dc->condjmp && dc->base.is_jmp == DISAS_NEXT) { + if (dc->pc_save != dc->condlabel.pc_save) { + gen_update_pc(dc, dc->condlabel.pc_save - dc->pc_save); + } + gen_set_label(dc->condlabel.label); + dc->condjmp = 0; + } + translator_loop_temp_check(&dc->base); +} + +static void arm_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) +{ + DisasContext *dc = container_of(dcbase, DisasContext, base); + CPUARMState *env = cpu->env_ptr; + uint32_t pc = dc->base.pc_next; + unsigned int insn; + + /* Singlestep exceptions have the highest priority. */ + if (arm_check_ss_active(dc)) { + dc->base.pc_next = pc + 4; + return; + } + + if (pc & 3) { + /* + * PC alignment fault. This has priority over the instruction abort + * that we would receive from a translation fault via arm_ldl_code + * (or the execution of the kernelpage entrypoint). This should only + * be possible after an indirect branch, at the start of the TB. + */ + assert(dc->base.num_insns == 1); + gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc)); + dc->base.is_jmp = DISAS_NORETURN; + dc->base.pc_next = QEMU_ALIGN_UP(pc, 4); + return; + } + + if (arm_check_kernelpage(dc)) { + dc->base.pc_next = pc + 4; + return; + } + + dc->pc_curr = pc; + insn = arm_ldl_code(env, &dc->base, pc, dc->sctlr_b); + dc->insn = insn; + dc->base.pc_next = pc + 4; + disas_arm_insn(dc, insn); + + arm_post_translate_insn(dc); + + /* ARM is a fixed-length ISA. We performed the cross-page check + in init_disas_context by adjusting max_insns. */ +} + +static bool thumb_insn_is_unconditional(DisasContext *s, uint32_t insn) +{ + /* Return true if this Thumb insn is always unconditional, + * even inside an IT block. This is true of only a very few + * instructions: BKPT, HLT, and SG. + * + * A larger class of instructions are UNPREDICTABLE if used + * inside an IT block; we do not need to detect those here, because + * what we do by default (perform the cc check and update the IT + * bits state machine) is a permitted CONSTRAINED UNPREDICTABLE + * choice for those situations. + * + * insn is either a 16-bit or a 32-bit instruction; the two are + * distinguishable because for the 16-bit case the top 16 bits + * are zeroes, and that isn't a valid 32-bit encoding. + */ + if ((insn & 0xffffff00) == 0xbe00) { + /* BKPT */ + return true; + } + + if ((insn & 0xffffffc0) == 0xba80 && arm_dc_feature(s, ARM_FEATURE_V8) && + !arm_dc_feature(s, ARM_FEATURE_M)) { + /* HLT: v8A only. This is unconditional even when it is going to + * UNDEF; see the v8A ARM ARM DDI0487B.a H3.3. + * For v7 cores this was a plain old undefined encoding and so + * honours its cc check. (We might be using the encoding as + * a semihosting trap, but we don't change the cc check behaviour + * on that account, because a debugger connected to a real v7A + * core and emulating semihosting traps by catching the UNDEF + * exception would also only see cases where the cc check passed. + * No guest code should be trying to do a HLT semihosting trap + * in an IT block anyway. + */ + return true; + } + + if (insn == 0xe97fe97f && arm_dc_feature(s, ARM_FEATURE_V8) && + arm_dc_feature(s, ARM_FEATURE_M)) { + /* SG: v8M only */ + return true; + } + + return false; +} + +static void thumb_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) +{ + DisasContext *dc = container_of(dcbase, DisasContext, base); + CPUARMState *env = cpu->env_ptr; + uint32_t pc = dc->base.pc_next; + uint32_t insn; + bool is_16bit; + /* TCG op to rewind to if this turns out to be an invalid ECI state */ + TCGOp *insn_eci_rewind = NULL; + target_ulong insn_eci_pc_save = -1; + + /* Misaligned thumb PC is architecturally impossible. */ + assert((dc->base.pc_next & 1) == 0); + + if (arm_check_ss_active(dc) || arm_check_kernelpage(dc)) { + dc->base.pc_next = pc + 2; + return; + } + + dc->pc_curr = pc; + insn = arm_lduw_code(env, &dc->base, pc, dc->sctlr_b); + is_16bit = thumb_insn_is_16bit(dc, dc->base.pc_next, insn); + pc += 2; + if (!is_16bit) { + uint32_t insn2 = arm_lduw_code(env, &dc->base, pc, dc->sctlr_b); + insn = insn << 16 | insn2; + pc += 2; + } + dc->base.pc_next = pc; + dc->insn = insn; + + if (dc->pstate_il) { + /* + * Illegal execution state. This has priority over BTI + * exceptions, but comes after instruction abort exceptions. + */ + gen_exception_insn(dc, 0, EXCP_UDEF, syn_illegalstate()); + return; + } + + if (dc->eci) { + /* + * For M-profile continuable instructions, ECI/ICI handling + * falls into these cases: + * - interrupt-continuable instructions + * These are the various load/store multiple insns (both + * integer and fp). The ICI bits indicate the register + * where the load/store can resume. We make the IMPDEF + * choice to always do "instruction restart", ie ignore + * the ICI value and always execute the ldm/stm from the + * start. So all we need to do is zero PSR.ICI if the + * insn executes. + * - MVE instructions subject to beat-wise execution + * Here the ECI bits indicate which beats have already been + * executed, and we must honour this. Each insn of this + * type will handle it correctly. We will update PSR.ECI + * in the helper function for the insn (some ECI values + * mean that the following insn also has been partially + * executed). + * - Special cases which don't advance ECI + * The insns LE, LETP and BKPT leave the ECI/ICI state + * bits untouched. + * - all other insns (the common case) + * Non-zero ECI/ICI means an INVSTATE UsageFault. + * We place a rewind-marker here. Insns in the previous + * three categories will set a flag in the DisasContext. + * If the flag isn't set after we call disas_thumb_insn() + * or disas_thumb2_insn() then we know we have a "some other + * insn" case. We will rewind to the marker (ie throwing away + * all the generated code) and instead emit "take exception". + */ + insn_eci_rewind = tcg_last_op(); + insn_eci_pc_save = dc->pc_save; + } + + if (dc->condexec_mask && !thumb_insn_is_unconditional(dc, insn)) { + uint32_t cond = dc->condexec_cond; + + /* + * Conditionally skip the insn. Note that both 0xe and 0xf mean + * "always"; 0xf is not "never". + */ + if (cond < 0x0e) { + arm_skip_unless(dc, cond); + } + } + + if (is_16bit) { + disas_thumb_insn(dc, insn); + } else { + disas_thumb2_insn(dc, insn); + } + + /* Advance the Thumb condexec condition. */ + if (dc->condexec_mask) { + dc->condexec_cond = ((dc->condexec_cond & 0xe) | + ((dc->condexec_mask >> 4) & 1)); + dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f; + if (dc->condexec_mask == 0) { + dc->condexec_cond = 0; + } + } + + if (dc->eci && !dc->eci_handled) { + /* + * Insn wasn't valid for ECI/ICI at all: undo what we + * just generated and instead emit an exception + */ + tcg_remove_ops_after(insn_eci_rewind); + dc->pc_save = insn_eci_pc_save; + dc->condjmp = 0; + gen_exception_insn(dc, 0, EXCP_INVSTATE, syn_uncategorized()); + } + + arm_post_translate_insn(dc); + + /* Thumb is a variable-length ISA. Stop translation when the next insn + * will touch a new page. This ensures that prefetch aborts occur at + * the right place. + * + * We want to stop the TB if the next insn starts in a new page, + * or if it spans between this page and the next. This means that + * if we're looking at the last halfword in the page we need to + * see if it's a 16-bit Thumb insn (which will fit in this TB) + * or a 32-bit Thumb insn (which won't). + * This is to avoid generating a silly TB with a single 16-bit insn + * in it at the end of this page (which would execute correctly + * but isn't very efficient). + */ + if (dc->base.is_jmp == DISAS_NEXT + && (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE + || (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE - 3 + && insn_crosses_page(env, dc)))) { + dc->base.is_jmp = DISAS_TOO_MANY; + } +} + +static void arm_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) +{ + DisasContext *dc = container_of(dcbase, DisasContext, base); + + /* At this stage dc->condjmp will only be set when the skipped + instruction was a conditional branch or trap, and the PC has + already been written. */ + gen_set_condexec(dc); + if (dc->base.is_jmp == DISAS_BX_EXCRET) { + /* Exception return branches need some special case code at the + * end of the TB, which is complex enough that it has to + * handle the single-step vs not and the condition-failed + * insn codepath itself. + */ + gen_bx_excret_final_code(dc); + } else if (unlikely(dc->ss_active)) { + /* Unconditional and "condition passed" instruction codepath. */ + switch (dc->base.is_jmp) { + case DISAS_SWI: + gen_ss_advance(dc); + gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); + break; + case DISAS_HVC: + gen_ss_advance(dc); + gen_exception_el(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); + break; + case DISAS_SMC: + gen_ss_advance(dc); + gen_exception_el(EXCP_SMC, syn_aa32_smc(), 3); + break; + case DISAS_NEXT: + case DISAS_TOO_MANY: + case DISAS_UPDATE_EXIT: + case DISAS_UPDATE_NOCHAIN: + gen_update_pc(dc, curr_insn_len(dc)); + /* fall through */ + default: + /* FIXME: Single stepping a WFI insn will not halt the CPU. */ + gen_singlestep_exception(dc); + break; + case DISAS_NORETURN: + break; + } + } else { + /* While branches must always occur at the end of an IT block, + there are a few other things that can cause us to terminate + the TB in the middle of an IT block: + - Exception generating instructions (bkpt, swi, undefined). + - Page boundaries. + - Hardware watchpoints. + Hardware breakpoints have already been handled and skip this code. + */ + switch (dc->base.is_jmp) { + case DISAS_NEXT: + case DISAS_TOO_MANY: + gen_goto_tb(dc, 1, curr_insn_len(dc)); + break; + case DISAS_UPDATE_NOCHAIN: + gen_update_pc(dc, curr_insn_len(dc)); + /* fall through */ + case DISAS_JUMP: + gen_goto_ptr(); + break; + case DISAS_UPDATE_EXIT: + gen_update_pc(dc, curr_insn_len(dc)); + /* fall through */ + default: + /* indicate that the hash table must be used to find the next TB */ + tcg_gen_exit_tb(NULL, 0); + break; + case DISAS_NORETURN: + /* nothing more to generate */ + break; + case DISAS_WFI: + gen_helper_wfi(cpu_env, tcg_constant_i32(curr_insn_len(dc))); + /* + * The helper doesn't necessarily throw an exception, but we + * must go back to the main loop to check for interrupts anyway. + */ + tcg_gen_exit_tb(NULL, 0); + break; + case DISAS_WFE: + gen_helper_wfe(cpu_env); + break; + case DISAS_YIELD: + gen_helper_yield(cpu_env); + break; + case DISAS_SWI: + gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb)); + break; + case DISAS_HVC: + gen_exception_el(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2); + break; + case DISAS_SMC: + gen_exception_el(EXCP_SMC, syn_aa32_smc(), 3); + break; + } + } + + if (dc->condjmp) { + /* "Condition failed" instruction codepath for the branch/trap insn */ + set_disas_label(dc, dc->condlabel); + gen_set_condexec(dc); + if (unlikely(dc->ss_active)) { + gen_update_pc(dc, curr_insn_len(dc)); + gen_singlestep_exception(dc); + } else { + gen_goto_tb(dc, 1, curr_insn_len(dc)); + } + } +} + +static void arm_tr_disas_log(const DisasContextBase *dcbase, + CPUState *cpu, FILE *logfile) +{ + DisasContext *dc = container_of(dcbase, DisasContext, base); + + fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first)); + target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size); +} + +static const TranslatorOps arm_translator_ops = { + .init_disas_context = arm_tr_init_disas_context, + .tb_start = arm_tr_tb_start, + .insn_start = arm_tr_insn_start, + .translate_insn = arm_tr_translate_insn, + .tb_stop = arm_tr_tb_stop, + .disas_log = arm_tr_disas_log, +}; + +static const TranslatorOps thumb_translator_ops = { + .init_disas_context = arm_tr_init_disas_context, + .tb_start = arm_tr_tb_start, + .insn_start = arm_tr_insn_start, + .translate_insn = thumb_tr_translate_insn, + .tb_stop = arm_tr_tb_stop, + .disas_log = arm_tr_disas_log, +}; + +/* generate intermediate code for basic block 'tb'. */ +void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns, + target_ulong pc, void *host_pc) +{ + DisasContext dc = { }; + const TranslatorOps *ops = &arm_translator_ops; + CPUARMTBFlags tb_flags = arm_tbflags_from_tb(tb); + + if (EX_TBFLAG_AM32(tb_flags, THUMB)) { + ops = &thumb_translator_ops; + } +#ifdef TARGET_AARCH64 + if (EX_TBFLAG_ANY(tb_flags, AARCH64_STATE)) { + ops = &aarch64_translator_ops; + } +#endif + + translator_loop(cpu, tb, max_insns, pc, host_pc, ops, &dc.base); +} |